
Lecture 4:
Modeling (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Show that for any real constantsa andb, b > 0,

(n + a)b = Θ(nb)

To showf (n) = Θ(g(n)), we must showO andΩ. Go back
to the definition!

• Big O – Must show that(n + a)b ≤ c1 · n
b for all n > n0.

When is this true? Ifc1 = 2b, this is true for alln > |a|
sincen + a < 2n, and raise both sides to theb.

• Big Ω – Must show that(n + a)b ≥ c2 · n
b for all n > n0.

When is this true? Ifc2 = (1/2)b, this is true for alln >
3|a|/2 sincen + a > n/2, and raise both sides to theb.

Note the need for absolute values.

Modeling

Modeling is the art of formulating your application in terms
of precisely described, well-understood problems. Proper
modeling is the key to applying algorithmic design techniques
to any real-world problem.
Real-world applications involve real-world objects.
Most algorithms, however, are designed to work on rig-
orously defined abstract structures such as permutations,
graphs, and sets.
You must first describe your problem abstractly, in terms of
fundamental structures and properties.

Combinatorial Objects

• Permutations, are arrangements, or orderings, of items.
For example,{1, 4, 3, 2} and{4, 3, 2, 1} are two distinct
permutations of the same set of four integers. Permu-
tations are likely the object in question whenever your
problem seeks an “arrangement,” “tour,” “ordering,”, or
“sequence.”

• Subsets, which represent selections from a set of items.
For example,{1, 3, 4} and{2} are two distinct subsets of
the first four integers. Order does not matter in subsets
the way it does with permutations, so the subsets{1, 3, 4}
and {4, 3, 1} would be considered identical. Subsets

are likely the object in question whenever your problem
seeks a “cluster,” “collection,” “committee,” “group,”
“packaging,” or “selection.”

• Strings, which represent sequences of characters or
patterns. For example, the names of students in a class
can be represented by strings. Strings are likely the
object in question whenever you are dealing with “text,”
“characters,” “patterns,” or “labels.”

Relationship Models

• Trees, which represent hierarchical relationships between
items. Figure (a) illustrates a portion of the family tree
of the Skiena clan. Trees are likely the object in question
whenever your problem seeks a “hierarchy,” “dominance
relationship,” “ancestor/decendant relationship,” or “tax-
onomy.”

Sol

Steve Len Jim Lisa JeffRichardRob Laurie

Morris Eve Sid

Stony Brook

Orient Point

Montauk

Shelter Island

Sag Harbor

Riverhead

Islip

Greenport

• Graphs, which represent relationships between arbitrary
pairs of objects. Figure (b) models a network of roads
as a graph, where the vertices are cities and the edges
are roads connecting pairs of cities. Graphs are likely
the object in question whenever you seek a “network,”
“circuit,” “web,” or “relationship.”

Geometric Objects

• Points, which represent locations in some geometric
space. For example, the locations of McDonald’s
restaurants can be described by points on a map/plane.
Points are likely the object in question whenever your
problems work on “sites,” “positions,” “data records,” or
“locations.”

• Polygons, which represent regions in some geometric
space. For example, the borders of a country can be
described by a polygon on a map/plane. Polygons and
polyhedra are likely the object in question whenever you
are working on “shapes,” “regions,” “configurations,” or
“boundaries.”

Using the Catalog

These fundamental structures all have associated prob-
lems and properties, which are presented in the catalog
of Part II.

Familiarity with all of these problems is important,
because they provide the language we use to model
applications.

Understanding all or most of these problems, even at a
cartoon/definition level, will enable you to know where to
look later when the problem arises in your application.

Rules for Algorithm Design

The secret to successful algorithm design, and problem
solving in general, is to make sure you ask the right questions.
Below, I give a possible series of questions for you to
ask yourself as you try to solve difficult algorithm design
problems:

1. Do I really understand the problem?

(a) What exactly does the input consist of?

(b) What exactly are the desired results or output?

(c) Can I construct some examples small enough to solve
by hand? What happens when I solve them?

(d) Are you trying to solve a numerical problem? A graph
algorithm problem? A geometric problem? A string
problem? A set problem? Might your problem be
formulated in more than one way? Which formulation
seems easiest?

2. Can I find a simple algorithm for the problem?

(a) Can I find the solve my problem exactly by searching
all subsets or arrangements and picking the best one?

i. If so, why am I sure that this algorithm always gives
the correct answer?

ii. How do I measure the quality of a solution once I
construct it?

iii. Does this simple, slow solution run in polynomial
or exponential time?

iv. If I can’t find a slow,guaranteedcorrect algorithm,
am I sure that my problem is well defined enough to
permit a solution?

(b) Can I solve my problem by repeatedly trying some
heuristic rule, like picking the biggest item first? The
smallest item first? A random item first?

i. If so, on what types of inputs does this heuristic
rule work well? Do these correspond to the types
of inputs that might arise in the application?

ii. On what types of inputs does this heuristic rule work
badly? If no such examples can be found, can I show

that in fact it always works well?
iii. How fast does my heuristic rule come up with an

answer?

3. Are there special cases of this problem I know how to
solve exactly?

(a) Can I solve it efficiently when I ignore some of the
input parameters?

(b) What happens when I set some of the input parameters
to trivial values, such as 0 or 1?

(c) Can I simplify the problem to create a problem I can
solve efficiently? How simple do I have to make it?

(d) If I can solve a certain special case, why can’t this be
generalized to a wider class of inputs?

4. Which of the standard algorithm design paradigms seem
most relevant to the problem?

(a) Is there a set of items which can be sorted by size or
some key? Does this sorted order make it easier to find
what might be the answer?

(b) Is there a way to split the problem in two smaller
problems, perhaps by doing a binary search, or a
partition of the elements into big and small, or left and
right? If so, does this suggest a divide-and-conquer
algorithm?

(c) Are there certain operations being repeatedly done on
the same data, such as searching it for some element,
or finding the largest/smallest remaining element? If

so, can I use a data structure of speed up these queries,
like hash tables or a heap/priority queue?

5. Am I still stumped?

(a) Why don’t I go back to the beginning of the list and
work through the questions again? Do any of my
answers from the first trip change on the second?

