Congruences: What is the remainder?

What is the last digit of 10^{1000} in decimal?

Yes, it is 0, but why?

Because $10^{1000} \equiv 0 \pmod{10}$

The congruence notation $a \equiv b \pmod{m}$ states that $m \mid a-b$. It is useful because we can specify equivalence classes of integers

$$x \equiv 1 \pmod{m} \iff x \in \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m} \} = \{1 + km \mid k \in \mathbb{Z}\}$$

Further, $a \equiv b \pmod{m} \iff a \mod m \equiv b \mod m$. Congruences observe certain algebraic laws which make them nice to work with.

What is the last decimal digit of 9^{1000}?

We can do the multiplication or we can use properties of modular arithmetic.
What is \(9^{1000} \mod 10 \)?

We observe that \(9 \equiv -1 \pmod{10} \).

Thus this is equivalent to \((-1)^{1000} \pmod{10}\).

If \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \), then
\[ac \equiv bd \pmod{m} \]

This is true because
\[ac - bd = (a-b)c + b(c-d) \]

So since \(m \mid (a-b) + m \mid (c-d) \), then \(m \mid (ac - bd) \).

As a corollary, by applying this repeatedly,
\[a \equiv b \pmod{m} \implies a^n \equiv b^n \pmod{m} \]

So:
\[9^{1000} \equiv (-1)^{1000} \equiv 1 \pmod{10} \]

The last digit must be 1.

\[9^{1001} \equiv -1^{1001} \equiv -1 \pmod{10} \]

So the last digit must be \(10 + 1 = 9 \).

Thus we have shown that \(9^n \) must have a last digit of 1 or 9.
What is \(2^{741} \pmod{5}\)?

Observe \(2^2 = 4 \equiv -1 \pmod{5}\).

Thus \(2^{741} = 2 \cdot 4^{370} \equiv 2 \cdot (-1)^{370} \equiv 2 \pmod{5}\)

Powers of 0, 1, -1 are easiest to work with, so if we can get close to the modulus with some power, our computation is easy.

What is the last digit of \(2^{753}\) in decimal?

\(2^3 \pmod{10} = -2\) \quad | \quad (-2)^3 \pmod{10} = 2

Thus
\[2^{753} = (-2)^{251} \cdot 4^3 \equiv 2 \cdot 2^9 \equiv 2 \cdot (-2)^3 \equiv -4 \cdot 512 \equiv 6 \cdot 2 \pmod{10}\]

\[= 2\]

It is impressive to be able to work with such large numbers so easily. This should convince you that modular arithmetic can be useful in computation.
What is $2^{573} + 3^{752} \pmod{7}$?

We know how to find each of these separately - can we just add and subtract congruences?

Yes, $a \equiv b$ and $c \equiv d \pmod{n} \Rightarrow a + c \equiv b + d \pmod{n}$, $a - c \equiv b - d \pmod{n}$

Proof:

$m \mid a - b + n \mid c - d$, so $m \mid a - b + c - d$

$m \mid (a + c) - (b + d) \Rightarrow (a + c) \equiv (b + d) \pmod{m}$.

- $2^{573} \equiv 191 \equiv 1 \pmod{7}$
- $752 \equiv 3^2 \equiv 2 \pmod{7}$

- $2^{573} + 3^{752} \equiv 1 + 2 \equiv 3 \pmod{7}$

We have addition, subtraction and multiplication of congruences. What about division?

- $3 \cdot 2 \equiv 5 \cdot 2 \pmod{4}$

So we just can't cancel across congruences.

- $3 \equiv 5 \pmod{4}$
We can cancel congruences when \(d \perp m \).

\[ad \equiv bd \quad \Leftrightarrow \quad a \equiv b \pmod{m} \quad \text{for integer} \quad d \perp m \]

So

\[2 \underset{5}{\equiv} 2 \pmod{5} \Rightarrow 3 \cdot 2 \underset{5}{\equiv} 2 \cdot 3 \pmod{5} \]

Proof:

If \(d \perp m \), \(\gcd(d, m) = 1 \)

Thus \(\exists d', m' \) such that \(d'd + m'm = 1 \).

\[ad \equiv bd \Rightarrow add' \equiv bdd' \quad \text{since} \quad d \parallel d' \]

Note \(d'd \equiv 1 \pmod{m} \), since \(M' = 1 - d'd \).

Thus

\[a(d'd) \equiv a \pmod{m} \quad \text{and} \quad b(d'd) \equiv b \pmod{m} \]

So:

\[a dd' \equiv a \equiv b dd' \equiv b \pmod{m} \]

Clearly \(ad \equiv bd \pmod{md} \Leftrightarrow a \equiv b \pmod{m} \)

\[\frac{ad - bd}{md} \Leftrightarrow \frac{a - b}{n} \]
$2^{573} \equiv -(3^{952}) \pmod{7}$ implies
$5 \cdot 2^{573} \equiv -(3^{952}) \cdot 5^x \pmod{7}$ and with $x = 952$.

Since when $d \perp m$ we can divide by d without changing the modulus and when $d \mid m$, we can divide by the d by changing the modulus to m/d,

$$ad \equiv bd \pmod{m} \iff a \equiv b \pmod{\frac{m}{\gcd(m,d)}}$$

because $d/\gcd(m,d) \perp m$.
Probabilistic Primality Testing

To test if an integer \(n \) is composite or prime, we can divide by all possible factors up to \(\sqrt{n} \), but this is very slow for large \(n \).

A better way is to find some property which holds true for all primes and then test it several times using \(n \) in the role of the prime. If it fails, \(n \) must be composite; if not, \(n \) is probably prime.

Fermat's Theorem: \(N^{p-1} \equiv 1 \pmod{p} \) if \(N \) is not prime.

if \(N \neq p \), and \(p \) is a prime, \(N \) is prime.

So is \(p = 753 \) prime?

The only values of \(N \leq 752 \) such that \(N^{752} \equiv 1 \pmod{753} \) are \(N = 1, 250, 503 \) and 752. Thus, the number of false witnesses we encounter are very small!
Proof that \(N^{p-1} \equiv 1 \pmod{p} \), \(N \perp p \), for all prime \(p \).

This is simple with the fact that \(n \mod p, 2n \mod p, \ldots, n(p-1) \mod p \) are a permutation of \(1, 2, \ldots, p-1 \), when \(N \not\mid p \) since:

\[
(N)(2n)\cdots((p-1)n \equiv (p-1)! \pmod{p} \\
(p-1)! \cdot N^{p-1} \equiv (p-1)! \pmod{p}.
\]

Since \(p \) is prime, \(GCD((p-1)!, p) = 1 \), \(N^{p-1} \equiv 1 \pmod{p} \).

But why do we get a permutation?

Ex: \(p = 7, n = 1 \) → obvious 0, 1, 2, 3, 4, 5, 6

\(p = 7, n = 2 \)

\begin{align*}
0 \mod 7 &= 0 \\
2 \mod 7 &= 2 \\
4 \mod 7 &= 4 \\
6 \mod 7 &= 6 \\
8 \mod 7 &= 1 \\
10 \mod 7 &= 3 \\
12 \mod 7 &= 5
\end{align*}

\(p = 7, n = 3 \)

0 3 6 2 5 1 4
Suppose that \(kn \equiv kn \pmod{p} \) did not describe a permutation for \(0 \leq k \leq p-1 \). Since there are \(p \) values, this means that \(an \equiv bn \pmod{p} \), for \(0 \leq a < b \leq p-1 \).

By the division rule,
\[
\frac{a}{b} \equiv \frac{b}{a} \pmod{\frac{p}{\gcd(p,n)}}
\]
Since \(N \perp p \), \(\gcd(p,n) = 1 \), so
\[
a \equiv b \pmod{p}
\]
which is a contradiction since \(a \neq b \) and both are between \(0 \) and \(p-1 \). \(\square \)

Thus if \(C \perp M \), \(Cx \equiv (\pmod{m}) \) gives distinct values for all \(0 \leq x \leq n-1 \).
Ari Kaufman’s Congruence

As final evidence that modular arithmetic is useful, the congruence
\[k = (5x + 3y + z) \mod 517 \]
arises in an architecture for computer graphics. Where does it come from?

Suppose you have an \(N \times N \times N \) array of elements, which you would like to store in \(N \) memories, so they can be accessed in parallel.

The most common access patterns will be all elements in a row, column, or axle \((x, y, k), 1 \leq k \leq N \).
They use the congruence \(k = (5x + 3y + 2) \mod 2517 \)
to partition elements \((x, y, z), 1 \leq x, y, z \leq 512\) into 517 memories.

Since \(1 \perp 2517, 3 \perp 2517, 5 \perp 2517 \), and for any access where two of \(x, y, z \) are constant, the equation reduces to
\[
(cX + d \pmod{m})
\]
where \(c \perp m \) and \(d \) is a constant which acts as an offset.

Thus for any orthogonal query, the \(n \) elements are in distinct memories, allowing parallel access!

In fact, a stronger condition holds. All major + minor diagonal accesses are also contention free!
What happens on a major diagonal query?

\[(x+k, y+k, k), \ 1 \leq k \leq n\]

These elements will be in memories

\[k = (5(x+k) + 3(y+k) + k) \mod 517\]

\[= (5x + 3y + 9k) \mod 517\]

\[
\text{constant } 9 \per 517
\]

The coefficients 5, 3, 1 were selected so any sum or difference combination is relatively prime to 517 and unique

\[5 \neq 3, \ 5 \neq 1, \ 5 + 3 \neq 1, \ 5 \neq 3 \times 1, \ 3 \neq 1\]