
Simple Walkthrough for Using SYMPHONY

Michael Trick∗and Menal Guzelsoy†

June 24, 2003

SYMPHONY is a callable library including a set of user callback routines to allow it to
solve generic MIPs, as well as easily create custom branch-cut-price solvers. Having been
fully integrated with COIN, SYMPHONY is capable to use CPLEX, OSL, CLP, GLPK,
DYLP, SOPLEX, VOL and XPRESS-MP through the COIN/OSI interface (first two can
also be used through the built-in APIs without using COIN/OSI). The SYMPHONY sys-
tem includes numerous applications: Vehicle Routing Problem (VRP), Capacitated Node
Routing Problem (CNRP), Multi-Criteria Knapsack Problem (MCKP), Mixed Postman
Problem (MPP), Set Partitioning Problems (SPP-basic and advanced). These applications
are extremely well done, but, in generality, are difficult to understand.

Here is a walkthrough for a very simple application that uses SYMPHONY. Rather than
presenting the code in its final version, I will go through the steps that I went through.
Note that some of the code is lifted from the vehicle routing application. This code is
designed to be a sequential code. The MATCH application itself is available for download
at http://www.branchandcut.org/MATCH.

Our goal is to create a minimum one-matching code on a complete graph. Initially we will
just formulate this as an integer program. Then we will include a set of constraints that
can be added by cut generation.

I begin with the template file in the USER subdirectory included in SYMPHONY. This gives
stubs for each user routine. First I need to define the data needed for one-matching. This
data will be included in the structure USER PROBLEM in the file user.h. Initially, the data
will be the number of nodes and the cost matrix, so change USER PROBLEM in user.h to be

typedef struct USER_PROBLEM{
int colnum; /* Number of rows in base matrix */
int rownum; /* Number of columns in base matrix */
user_parameters par; /* Parameters */
int nnodes; /* Number of nodes */
int cost[200][200]; /* Cost of assigning i to j */

∗Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA 15213
trick@cmu.edu, http://mat.gsia.cmu.edu/trick

†Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18017,
megb@lehigh.edu

int node1[20000]; /* First index of each variable */
int node2[20000]; /* Second index of each variable */

}user_problem;

A “real programmer” would not hard-code problem sizes like that, but I am trying to get
a minimal code. The fields node1 and node2 will be used later in the code in order to
map constraints back to the corresponding nodes. Additionally, add the declarations of two
functions which will be needed later:

int match_read_data PROTO((sym_environment *env, void *user, char *infile));
int match_load_problem PROTO((sym_environment *env, void *user));

Next, read in the data. We could easily use the user io() user-callback for this (see this
routine in user master.c for an illustration). However, in order to show how it can be
done explicitly, we will define our own function match read data() in user main.c to fill
in the user data structure and then use sym set user data() to pass this structure to
SYMPHONY. The template already has command-line options set up for the user. The
“-F” flag defines the data file, so we will use that to put in the data. The datafile contains
first the number of nodes in the graph (nnodes) followed by the pairwise cost matrix (nnode
by nnode). Read this in with the match read data() routine in user main.c:

int match_read_data(sym_environment *env, void *user, char *infile)
{

int i, j;
FILE *f = NULL;
/* This gives you access to the user data structure. */
user_problem *prob = (user_problem *) user;

if ((f = fopen(infile, "r")) == NULL){
printf("main(): user file %s can’t be opened\n", infile);
return(ERROR__USER); /*error check for existence of parameter file*/

}

/* Read in the costs */
fscanf(f,"%d",&(prob->nnodes));
for (i = 0; i < prob->nnodes; i++)

for (j = 0; j < prob->nnodes; j++)
fscanf(f, "%d", &(prob->cost[i][j]));

prob->colnum = (prob->nnodes)*(prob->nnodes-1)/2;
prob->rownum = prob->nnodes;

/* This will pass the user data in to SYMPHONY*/
sym_set_user_data(env, (void *)prob);

2

return (FUNCTION_TERMINATED_NORMALLY);
}

Note that we set the number of rows and columns in this routine. We can now define
the integer program. We will have a variable for each edge (i, j) with i < j. We have a
constraint for each node i forcing one edge to be incident to i in the matching.

We define the IP in our other helper function match load problem() in user main.c. In the
first part of this routine, we will represent the IP with a set of arrays, and then in the second
part, will load this representation to SYMPHONY through sym explicit load problem().
Note that, we could also create the same IP model in user create subproblem() callback
(see this routine in user lp.c for an illustration).

int match_load_problem(sym_environment *env, void *user){

int i, j, index, n, m, nz, *matbeg, *matind;
double *matval, *lb, *ub, *obj, *rhs, *rngval;
char *sense, *is_int;
user_problem *prob = (user_problem *) user;

/* set up the inital LP data */
n = prob->colnum;
m = prob->rownum;
nz = 2 * n;

/* Allocate the arrays */
matbeg = (int *) malloc((n + 1) * ISIZE);
matind = (int *) malloc((nz) * ISIZE);
matval = (double *) malloc((nz) * DSIZE);
obj = (double *) malloc(n * DSIZE);
lb = (double *) calloc(n, DSIZE);
ub = (double *) malloc(n * DSIZE);
rhs = (double *) malloc(m * DSIZE);
sense = (char *) malloc(m * CSIZE);
rngval = (double *) calloc(m, DSIZE);
is_int = (char *) malloc(n * CSIZE);

/* Fill out the appropriate data structures -- each column has
exactly two entries */

index = 0;
for (i = 0; i < prob->nnodes; i++) {

for (j = i+1; j < prob->nnodes; j++) {
prob->node1[index] = i; /* The first node of assignment ’index’ */
prob->node2[index] = j; /* The second node of assignment ’index’ */

3

obj[index] = prob->cost[i][j]; /* Cost of assignment (i, j) */
is_int[index] = TRUE;
matbeg[index] = 2*index;
matval[2*index] = 1;
matval[2*index+1] = 1;
matind[2*index] = i;
matind[2*index+1] = j;
ub[index] = 1.0;
index++;

}
}
matbeg[n] = 2 * n;

/* set the initial right hand side */
for (i = 0; i < prob->nnodes; i++) {

rhs[i] = 1;
sense[i] = ’E’;

}

/* Load the problem to SYMPHONY */
sym_explicit_load_problem(env, n, m, matbeg, matind, matval, lb, ub,

is_int, obj, 0, sense, rhs, rngval, true);

FREE(matbeg);
FREE(matind);
FREE(matval);
FREE(lb);
FREE(ub);
FREE(obj);
FREE(sense);
FREE(rhs);
FREE(rngval);

return (FUNCTION_TERMINATED_NORMALLY);
}

Now, we are ready to gather everything in the main() routine in user main(). This will
involve to create a SYMPHONY environment and a user data structure, read in the data,
create the corresponding IP, load it to the environment and ask SYMPHONY to solve it
(CALL FUNCTION is just a macro to take care of the return values):

int main(int argc, char **argv)
{

int termcode;
char * infile;

4

/* Create a SYMPHONY environment */
sym_environment *env = sym_open_environment();

/* Create a user problem structure to read in the data and then pass it to
SYMPHONY.

*/
user_problem *prob = (user_problem *)calloc(1, sizeof(user_problem));

CALL_FUNCTION(sym_parse_command_line(env, argc, argv));

/* Get the data file name which was read in by ’-F’ flag. */
CALL_FUNCTION(sym_get_str_param(env, "infile_name", &infile));

CALL_FUNCTION(match_read_data(env, (void *) prob, infile));

CALL_FUNCTION(match_load_problem(env, (void *) prob));

CALL_FUNCTION(sym_solve(env));

CALL_FUNCTION(sym_close_environment(env));

return(0);
}

OK, that’s it. That defines an integer program, and if you compile and optimize it, the rest
of the system will come together to solve this problem. Here is a data file to use:

6
0 1 1 3 3 3
1 0 1 3 3 3
1 1 0 3 3 3
3 3 3 0 1 1
3 3 3 1 0 1
3 3 3 1 1 0

The optimal value is 5. To display the solution, we need to be able to map back from
variables to the nodes. That was the use of the node1 and node2 parts of the USER PROBLEM.
We can now use user display solution() in user master.c to print out the solution:

int user_display_solution(void *user, double lpetol, int varnum, int *indices,
double *values, double objval)

{
/* This gives you access to the user data structure. */

5

user_problem *prob = (user_problem *) user;
int index;

for (index = 0; index < varnum; index++){
if (values[index] > lpetol) {

printf("%2d matched with %2d at cost %6d\n",
prob->node1[indices[index]],
prob->node2[indices[index]],
prob->cost[prob->node1[indices[index]]]
[prob->node2[indices[index]]]);

}
}

return(USER_SUCCESS);
}

We will now update the code to include a crude cut generation. Of course, I am eventually
aiming for a Gomory-Hu type odd-set separation (ala Groetschel and Padberg) but for the
moment, let’s just check for sets of size three with more than value 1 among them (such
a set defines a cut that requires at least one edge out of any odd set). We can do this by
brute force checking of triples.

This is done in two steps: first, we find cuts and store them as we wish. Then we “un-
pack” the cuts and create the violated inequalities. Finding the cuts is in the routine
user find cuts() in user cg.c. In the following, “new cuts” is an array which is zero
except for new cuts[i], new cuts[j] and new cuts[k] (where i, j, and k represents the
violating triple) which are “1.”

int user_find_cuts(void *user, int varnum, int iter_num, int level,
int index, double objval, int *indices, double *values,
double ub, double etol, int *num_cuts, int *alloc_cuts,
cut_data ***cuts)

{
user_problem *prob = (user_problem *) user;
double edge_val[200][200]; /* Matrix of edge values */
int i, j, k;
int *new_cuts;
cut_data cut;

new_cuts = (int *) malloc(prob->nnodes * ISIZE);

/* Allocate the edge_val matrix to zero (we could also just calloc it) */
memset((char *)edge_val, 0, 200*200*ISIZE);

for (i = 0; i < varnum; i++) {

6

edge_val[prob->node1[indices[i]]][prob->node2[indices[i]]]
= values[i];

}
for (i = 0; i < prob->nnodes; i++){

for (j = i+1; j < prob->nnodes; j++){
for (k = j+1; k < prob->nnodes; k++) {
if (edge_val[i][j]+edge_val[j][k]+edge_val[i][k] > 1.0 + etol) {

memset(new_cuts, 0, prob->nnodes * ISIZE);
new_cuts[i] = 1;
new_cuts[j] = 1;
new_cuts[k] = 1;
cut.size = (prob->nnodes)*ISIZE;
cut.coef = (char *) new_cuts;
cut.rhs = 1.0;
cut.range = 0.0;
cut.type = TRIANGLE;
cut.sense = ’L’;
cut.deletable = TRUE;
cut.branch = ALLOWED_TO_BRANCH_ON;
cg_send_cut(&cut, num_cuts, alloc_cuts, cuts);

}
}

}
}

FREE(new_cuts);

return(USER_SUCCESS);
}

Note the call of cg send cut(), which tells the system about any cuts found.

The final step is to give a routine that creates cuts from the structure defined in user find cuts().
This is the routine user unpack cuts() in user lp.c. The levels of indirection here are
somewhat confusing (I don’t think I have seen a *** variable before), but the mallocs in
the following create things in the right order:

int user_unpack_cuts(void *user, int from, int type, int varnum,
var_desc **vars, int cutnum, cut_data **cuts,
int *new_row_num, waiting_row ***new_rows)

{
user_problem *prob = (user_problem *) user;

int i, j, nzcnt;

7

int *cutval;
waiting_row **row_list;

*new_row_num = cutnum;
if (cutnum > 0)

*new_rows =
row_list = (waiting_row **) calloc (cutnum, sizeof(waiting_row *));

for (j = 0; j < cutnum; j++){
row_list[j] = (waiting_row *) malloc(sizeof(waiting_row));
switch (cuts[j]->type){

case TRIANGLE:
cutval = (int *) (cuts[j]->coef);
row_list[j]->matind = (int *) malloc(varnum * ISIZE);
row_list[j]->matval = (double *) malloc(varnum * DSIZE);
row_list[j]->nzcnt = 0;
for (nzcnt = 0, i = 0; i < varnum; i++){

if (cutval[prob->node1[vars[i]->userind]] &&
cutval[prob->node2[vars[i]->userind]]){
row_list[j]->matval[nzcnt] = 1.0;
row_list[j]->matind[nzcnt++] = vars[i]->userind;

}
}
row_list[j]->nzcnt = nzcnt;
break;

default:
printf("Unrecognized cut type!\n");

}
}

return(USER_SUCCESS);
}

If you now solve the matching problem on the sample data set, the number of nodes in the
branch and bound tree should just be 1 (rather than 3 without cut generation).

8

