
From Datalog Rules to Efficient Programs with

Time and Space Guarantees

Yanhong A. Liu and Scott D. Stoller

State University of New York at Stony Brook

This paper describes a method for transforming any given set of Datalog rules into an efficient
specialized implementation with guaranteed worst-case time and space complexities, and for com-
puting the complexities from the rules. The running time is optimal in the sense that only useful
combinations of facts that lead to all hypotheses of a rule being simultaneously true are consid-
ered, and each such combination is considered exactly once in constant time. The associated space
usage may sometimes be reduced using scheduling optimizations to eliminate some summands in
the space usage formula. The transformation is based on a general method for algorithm design
that exploits fixed-point computation, incremental maintenance of invariants, and combinations of
indexed and linked data structures. We apply the method to a number of analysis problems, some
with improved algorithm complexities and all with greatly improved algorithm understanding and
greatly simplified complexity analysis.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifi-
cations—constraint and logic languages; D.3.4 [Programming Languages]: Processors—code
generation,optimization; E.1 [Data]: Data Structures—arrays, lists, queues, records; E.2 [Data]:
Data Storage Representations—linked representations; F.2 [Analysis of Algorithms and Prob-

lem Complexity]: Nonnumerical Algorithms and Problems—computations on discrete struc-
tures; H.2.3 [Information Systems]: Database Management—query languages ; H.2.4 [Infor-

mation Systems]: Systems—query processing, rule-based databases; I.2.2 [Artificial Intelli-

gence]: Automatic Programming—program transformation

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Complexity analysis, Datalog, data structure design, incre-
mental computation, indexing, indexed representations, linked representations, program transfor-
mation, optimization, recursion, tabling

1. INTRODUCTION

Many computational problems are most clearly and easily specified using relational
rules. Examples include database queries and problems in program analysis, model

This work was supported in part by NSF under grants CCR-0204280, CCR-0306399, CCF-
0613913, and CCR-9876058 and ONR under grants N00014-01-1-0109, N00014-02-1-0363, N00014-
04-1-0722, and N00014-09-1-0651. This article is a revised and extended version of a paper that
appeared in Proceedings of the 5th ACM SIGPLAN International Conference on Principles and

Practice of Declarative Programming, pages 172–183, Uppsala, Sweden, August 2003. Authors’
address: Computer Science Department, State University of New York at Stony Brook, Stony
Brook, NY 11794-4400. Tel: (631)632-{8463,1627}, Email: {liu,stoller}@cs.sunysb.edu. Contact
author: Y.A. Liu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0164-0925/YY/00-0001 $5.00

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY, Pages 1–37.



2 · Yanhong A. Liu and Scott D. Stoller

checking, and security analysis. Datalog [Ceri et al. 1990; Abiteboul et al. 1995]
is an important rule-based language for specifying how new facts can be inferred
from existing facts. It is sufficiently powerful for expressing many practical analysis
problems, such as pointer analysis for programs.

While a Datalog program can be easily implemented in, say, a Prolog system,
evaluated using various existing methods, or rewritten using methods such as magic
sets to allow more efficient evaluation, such an implementation is typically for fast
prototyping. This is partly due to relatively weak integration with the rest of the
applications. Moreover, the running times of Datalog programs implemented using
these methods can vary dramatically depending on the order of rules and the order
of hypotheses in a rule, and even less is known about the space usage. Developing
and implementing efficient algorithms specialized for any given set of rules and
with time and space guarantees, and thus also easily pluggable into applications, is
a nontrivial, recurring task.

This paper describes a powerful, fully automatable method for generating efficient
specialized algorithms and implementations from Datalog rules. The heart of this
paper consists of two main results:

—The first is a method that, given any set of Datalog rules, transforms them into
an efficient specialized implementation that, given any set of facts, computes
exactly the set of facts that can be inferred.

—The second is a method that computes the guaranteed worst-case time and space
complexities of the implementation from the set of rules and allows easy sim-
plification of the complexity formulas based on characterizations of the set of
facts.

The running time is optimal in the sense that only useful combinations of facts
that lead to all hypotheses of a rule being simultaneously true are considered, and
each such combination is considered exactly once in constant time. For space com-
plexity, our method separately analyzes the output space and the auxiliary space.
The auxiliary space may sometimes be reduced using scheduling optimizations to
eliminate some summands in the space complexity formula.

These two results are formally derived together using a systematic algorithm
development method [Paige and Koenig 1982; Cai and Paige 1988; Paige 1989],
generalized in this paper to support the design of necessary and more sophisticated
data structures. The formal derivation starts with a fixed-point specification and
has three steps: (i) transform the fixed-point expression into a loop that handles
a single new fact in each iteration, (ii) replace expensive computations in the loop
with efficient incremental operations, and (iii) design data structures, built from
records, arrays, and linked lists, that efficiently support every incremental opera-
tion. The analysis of the complexities is based on a thorough understanding of the
transformation process, reflecting the complexities of the implementation back to
the rules.

We apply these results to a number of nontrivial analysis problems. We obtain
improved algorithm complexities for some problems and gain a deeper understand-
ing of all the algorithms. The complexity analysis based on the rules is quite easy,
significantly easier than the ad hoc analysis done previously for individual problems.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 3

The rest of the paper is organized as follow. Sections 2 and 3 introduce Dat-
alog rules and our derivation approach, respectively. Sections 4 and 5 describe
our formal derivation that involves (i) incremental computation of expensive set
expressions and (ii) design of a combination of indexed and linked data structures,
respectively. Section 6 presents complexity analysis and optimality of the derived
complete algorithms. Section 7 describes extensions. Section 8 presents example
applications. Section 9 discusses related work and concludes.

2. PROBLEM

We consider finite sets of relational rules of the form

P1(X11, ..., X1a1
) ∧ ... ∧ Ph(Xh1, ..., Xhah

) → Q(X1, ..., Xa) (1)

where h is a finite natural number, each Pi (respectively Q) is a relation of finite
number ai (respectively a) of arguments, each Xij and Xk is either a constant or a
variable, and each variable in the arguments of Q must also be in the arguments of
some Pi. If h = 0, then there is no Pi or Xij , and each Xk must be a constant, in
which case Q(X1, ..., Xa) is called a fact. For the rest of the paper, “rule” refers only
to the case where h ≥ 1, in which case each Pi(Xi1, ..., Xiai

) is called a hypothesis

of the rule, and Q(X1, ..., Xa) is called the conclusion of the rule.
Such rules and facts are captured exactly by Datalog [Ceri et al. 1990; Abiteboul

et al. 1995], a database query language based on the logic programming paradigm.
Recursion in Datalog allows queries not expressible in relational algebra or relational
calculus.

Example. We use transitive closure of edges in a graph as a running example.
An edge from a vertex u to a vertex v is represented by a fact edge(u,v). The
following two rules capture transitive closure, i.e., all pairs of vertices u and v such
that there is a path from u to v.

edge(u,v) → path(u,v)

edge(u,w) ∧ path(w,v) → path(u,v)

The meaning of a set of rules and a set of facts is the least set of facts that contains
all the given facts and all the facts that can be inferred, directly or indirectly, using
the rules. The problem considered in this paper is to efficiently compute this set.

A variable that occurs multiple times in a hypothesis is called an equal card ; it
forces a fact that matches the hypothesis to have the same value in those argument
positions. A variable that occurs only once in only one hypothesis and not in the
conclusion of a rule is called a wild card ; its name does not affect the meaning of
the rule.

For ease of exposition, we give a formal derivation of the algorithms and com-
plexities for rules with at most two hypotheses, where equal cards and wild cards
may occur only in rules with one hypothesis, and where arguments of relations
appear to be grouped and possibly reordered. We will see in Section 7 that rules
with more hypotheses or with equal cards and wild cards in rules with multiple
hypotheses can be easily reduced to rules with at most two hypotheses and where
equal cards and wild cards occur only in rules with one hypothesis, and that this
does not affect the complexity guarantees. We will see through the derivation that
grouping and reordering of arguments do not affect the results either. Precisely,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



4 · Yanhong A. Liu and Scott D. Stoller

our formal derivation considers rules and facts of the following forms:

form 2: P1(X1s,Ys,C1s) ∧ P2(X2s,Ys,C2s)

→ Q2(X1s,X2s,Y’s,C3s)

form 1: P(Zs,As) → Q1(Z’s,Bs)

form 0: Q(Cs)

(2)

Each of X1s, X2s, Ys, Y’s, Zs, and Z’s abbreviates a group of variables. Each
of C1s, C2s, C3s, As, Bs, and Cs abbreviates a group of constants. Variables in
Y’s and Z’s are subsets of the variables in Ys and Zs, respectively. In form 2,
variables in Ys are exactly those shared between the two hypotheses. Each variable
or constant in a group may occur multiple times in the group, except for X1s, X2s,
and Ys in the hypotheses in form 2. This exception ensures that there is no equal
card in rules with two hypotheses. Also, there is no wild card in rules with two
hypotheses, since each variable occurs in both hypotheses or in a hypothesis and
the conclusion.

Note that different relation names in these forms may refer to the same relation.
We use different names for different occurrences of relations so that in the descrip-
tion that follows, we can tell which one is from where. For similar reasons, we use
different names for different groups of constants and variables.

3. APPROACH

We use a set-based language for the formal derivation and analysis. The language
is based on SETL [Schwartz et al. 1986; Snyder 1990] extended with a fixed-point
operation [Cai and Paige 1988]; we allow sets of heterogeneous elements and extend
the language with pattern matching.

Primitive data types include sets, tuples, and maps, i.e., binary relations repre-
sented as sets of 2-tuples. Their syntax and operations on them are summarized in
Figure 1.

{X1 ... Xn} a set with elements X1,...,Xn

[X1 ... Xn] a tuple with elements X1,...,Xn in order
{[X1 Y1] ... [Xn Yn]} a map that maps X1 to Y1, ..., Xn to Yn

{} empty set
exists X in S whether set S is not empty and, if not, binding variable

X to any element of S

S + T, S − T union and difference, respectively, of sets S and T

S with X, S less X S + {X} and S − {X}, respectively
S ⊆ T whether set S is a subset of set T

X in S, X notin S whether or not, respectively, X is an element of set S

#S number of elements of set S

dom(M) domain set1 of map M , i.e., {X : [X Y ] in M}
M{X} image set of X under map M , i.e., {Y : [X Y ] in M}

Fig. 1. Sets, tuples, maps, and operations on them.

We use the notation below for pattern matching a value against a tuple pattern,
i.e., a tuple whose components may be constants or variables. It returns false if

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 5

X is not a tuple of length n, if any Yi is a constant but the ith component of X

is not the same constant, or if any Yi and Yj are a same variable but the ith and
jth components of X are not a same constant; otherwise, it binds each Yi that is a
variable to the ith component of X and returns true.

X of [Y1 ... Yn] matching value X against tuple pattern [Y1 ... Yn] (3)

We use the notation below for set comprehension. Each variable Yi enumerates
elements of set Si; for each combination of values of Y1, ..., Yn, if the value of
Boolean expression Z is true, then the value of expression X forms an element of
the resulting set.

{X : Y1 in S1, ..., Yn in Sn | Z} set comprehension (4)

Each Yi can also be a tuple pattern, in which case each enumerated element of set
Si is first matched against the pattern before expressions Z and X are evaluated.
If | Z is omitted, Z is implicitly the constant true.

LFP(S0, F ) denotes the least fixed point of F that includes set S0. In other
words, it is the smallest set S that satisfies the condition S0 ⊆ S and F (S) = S.

We use standard control constructs while, for, and if, and we use indentation to
indicate scope. We abbreviate assignments of the form X := X op Y as X op := Y .

The fixed-point specification

Using the above language, we represent a fact of the form Q(Cs) using [Q Cs],
which abbreviates a tuple whose first component is a constant Q and whose other
components are the constants in Cs; and we represent a hypothesis of the form
P(Xs,Cs) using [P Xs Cs], where P and the components in Cs are constants and
those in Xs are variables.

Let e0 be the set of all given facts. Since all rules of the same form are processed
in the same way, we will describe the compilation method for only one rule of form 1
and one rule of form 2. Given any set of facts R, for the rule of form 1, let e1(R) be
the set of facts Q1(Z’s,Bs) such that P(Zs,As) is in R, i.e., e1(R) is the set of facts
that can be inferred from R using the rule of form 1 once. For the rule of form 2,
let e2(R) be the set of facts Q2(X1s,X2s,Y’s,C3s) such that P1(X1s,Ys,C1s) and
P2(X2s,Ys,C2s) are in R, i.e., e2(R) is the set of facts that can be inferred from R

using the rule of form 2 once. That is,

e0 = {[Q Cs] : Q(Cs) in givenFacts}

e1(R) = {[Q1 Z’s Bs] : [P Zs As] in R}

e2(R) = {[Q2 X1s X2s Y’s C3s] :

[P1 X1s Ys C1s] in R and

[P2 X2s Ys C2s] in R}

(5)

The meaning of the given set of rules and facts is

LFP(e0,F), where F(R) = R+e1(R)+e2(R). (6)

1Note the difference between the domain of an argument of a relation and the domain set of a
map. The former is the set of possible values for the argument of the relation; the latter is the
domain of the first component of the map.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



6 · Yanhong A. Liu and Scott D. Stoller

Note that we allow sets to contain elements of different types, i.e., facts of different
relations. Such union types allow simpler and clearer algorithm derivation at a high
level before data structure design.

Compilation and analysis

Transforming a set of rules into an efficient implementation has three steps. Step 1
transforms the fixed-point specification into a while-loop. The idea is to perform
a small update operation in each iteration. The fixed-point expression in (6) is
equivalent to

LFP({},F), where F(R) = R+e0+e1(R)+e2(R) (7)

and is transformed into the following loop. When it terminates, R is the result.

R := {}

while exists x in e0+e1(R)+e2(R)-R:

R with:= x

(8)

Step 2 transforms expensive set operations in the loop into incremental opera-
tions. The idea is to replace each expensive expression exp in the loop with a fresh
variable, say E, and maintain the invariant E = exp by inserting appropriate ini-
tializations and updates to E where variables in exp are initialized and updated,
respectively. Step 3 designs appropriate data structures for representing each set so
that operations on it can be implemented efficiently. The idea is to design sophis-
ticated linked structures, whenever possible, based on how sets and set elements
are accessed, so that each operation can be performed in worst-case constant time
and with at most a constant (a small fraction) factor of overall space overhead.
Note, however, to compile Datalog rules, indexed structures (arrays) must also be
exploited extensively in order to achieve the best running time.

These three steps are called dominated convergence [Cai and Paige 1988], finite
differencing [Paige and Koenig 1982; Paige 1986], and real-time simulation [Paige
1989; Cai et al. 1991], respectively, by Paige et al. Details of Steps 2 and 3 for
computing (8) are described in the two subsequent sections. Step 2 is the driving
force; Liu [Liu 2000] gives references to much work that exploits similar ideas, but
the key idea here is to maintain appropriate auxiliary maps for efficient incremental
computation. Step 3 is the enabling mechanism; the main difficulty here is that
linked structures using based representations [Paige 1989; Cai et al. 1991] do not
suffice, and sophisticated indexed structures must also be used extensively and set
up carefully.

The complexity results are obtained by carefully bounding the numbers of facts
actually used and produced by the rules rather than approximating them crudely
using sizes of separate domains of arguments.

Correctness

Correctness of the transformations follows from the correctness of Paige et al.’s
three steps, as proven in [Cai and Paige 1988; Paige and Koenig 1982; Paige 1986;
1989; Cai et al. 1991], the correctness of our use of auxiliary maps in Step 2, and
the correctness of our extensions to Step 3. For Step 2, determining auxiliary maps
is not trivial, but correctness of incremental computation using them follows from

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 7

simple properties of maps. For Step 3, designing appropriate data structures is
difficult, but correctness of the basic operations supported by the resulting data
structures follows from simple properties of records, arrays, and linked lists. Cor-
rectness of the complexity results follows from the careful analysis in Section 6
of the sizes of the sets and maps used and the number of combinations of facts
considered by the algorithm.

4. INCREMENTAL COMPUTATION

We transform (8) to compute expensive set expressions in the loop incrementally
in each iteration. That is, we hold the values of expensive expressions in variables,
initialize the values of these variables for the initial value of R before entering
the loop, use the values of these variables where the values of the corresponding
expressions are needed, and update the values of these variables incrementally as
the value of R is updated. This eliminates repeated recomputations of the expensive
expressions in the loop.

Identifying expensive subexpressions and auxiliary maps

A set expression is expensive if it is a set former (4) or involves high-level set
operations such as union and difference. Therefore, the expensive expressions in
(8) are e0, e1(R), e2(R), and e0+e1(R)+e2(R)-R. We use fresh variables E0, E1,
E2, and W to hold their respective values and thus have the following invariants:

E0 = e0 = as in (5)
E1 = e1(R) = as in (5)
E2 = e2(R) = as in (5)
W = e0+e1(R)+e2(R)-R = E0+E1+E2-R

(9)

As an example of incremental maintenance of the value of an expensive expression,
consider maintaining the invariant for E1. Clearly, E1 can be initialized to {} at
the initialization R:={}. E1 can also be updated easily at the update R with:=x

as follows: if x is of the form [P Zs As], then E1 is updated by adding the cor-
responding [Q1 Z’s Bs] if it is not already in E1, otherwise nothing needs to be
done.

For set expressions such as e2(R) formed by joining elements from sets, efficient
incremental computation may require maintaining auxiliary maps. To update E2

incrementally with the update R with:= x, if x is of the form [P1 X1s Ys C1s],
then we consider all matching tuples [P2 X2s Ys C2s] in R and add the corre-
sponding tuple [Q2 X1s X2s Y’s C3s] to E2. To form the tuples to add, we need
to efficiently find the appropriate values of X2s, so we maintain an auxiliary map
that maps variables in Ys to variables in X2s for all [P2 X2s Ys C2s] in R. We
store this map in variable P2YsX2s, indicating that it is built from P2 and maps
variables in Ys to variables in X2s:

P2YsX2s = {[Ys X2s] : [P2 X2s Ys C2s] in R} (10)

Note that, if arguments of the hypothesis P2(X2s,Ys,C2s) start with variables
in Ys, followed by variables in X2s, and possibly followed by constants, then, by
definition of P2YsX2s, the tuples in P2YsX2s are the same as the initial part of the
arguments of the facts of P2 in R. Therefore, P2YsX2s is not needed and facts of P2

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



8 · Yanhong A. Liu and Scott D. Stoller

that are in R can be used in place of P2YsX2s. Having no shared variables, i.e., Ys
being empty, is a trivial case of this.

Symmetrically, if x is a tuple of P2, we need to consider each matching tuple of
P1 and add the corresponding tuple of Q2 to E2. To efficiently form the tuples to
add, we maintain

P1YsX1s = {[Ys X1s] : [P1 X1s Ys C1s] in R} (11)

We call the first set of arguments in an auxiliary map the anchor and the second
set of arguments the non-anchor. Being able to directly find only the matching
tuples allows us to consider only combinations of facts that make both hypotheses
simultaneously true and to consider each combination only once.

Example. For the transitive closure example, E0, E1, E2, and W are defined
straightforwardly. We also maintain the auxiliary map edgewu = {[w u] : [edge

u w]in R}, which is an inverse of edge. Auxiliary map pathwv is not needed, since
facts of path that are in R can be used in place of pathwv.

Initializations and incremental updates

Variables holding the values of expensive subcomputations and auxiliary maps are
initialized together with the assignment R:={} and updated incrementally together
with the assignment R with:= x in each iteration.

By definitions (9), (10) and (11), when R is {}, we have:

E0 = {[Q Cs] : Q(Cs) in givenFacts}

E1 = {}

E2 = {}

W = E0 = {[Q Cs] : Q(Cs) in givenFacts}

P2YsX2s = {}

P1YsX1s = {}

(12)

and when x is added to R in the loop body, these variables can be updated as
follows. Note that P2YsX2s{Ys} denotes the set of X2s’s such that [Ys,X2s] is in
P2YsX2s, and P2YsX1s{Ys} is similar; they are examples of the image set operation
defined in Figure 1.

if x of [P Zs As]:

E1 with:= [Q1 Z’s Bs]

if [Q1 Z’s Bs] notin R: W with:= [Q1 Z’s Bs]

if x of [P1 X1s Ys C1s]:

E2 +:= {[Q2 X1s X2s Y’s C3s]: X2s in P2YsX2s{Ys}}

W +:= {[Q2 X1s X2s Y’s C3s]: X2s in P2YsX2s{Ys}

| [Q2 X1s X2s Y’s C3s] notin R}

P1YsX1s with:= [Ys X1s]

if x of [P2 X2s Ys C2s]:

E2 +:= {[Q2 X1s X2s Y’s C3s]: X1s in P1YsX1s{Ys}}

W +:= {[Q2 X1s X2s Y’s C3s]: X1s in P1YsX1s{Ys}

| [Q2 X1s X2s Y’s C3s] notin R}

P2YsX2s with:= [Ys X2s]

W less:= x

(13)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 9

Adding these initializations and updates and using W in place of e0+e1(R)+e2(R)-R
in (8), we obtain the following complete code. It is easy to see that W serves as the
workset.

initialize using (12)
R := {}

while exists x in W:

update using (13)
R with:= x

(14)

Eliminating dead code

To compute the result R, only W, P2YsX2s, and P1YsX1s are needed. So E0, E1, and
E2 are dead. Eliminating them from (14), we obtain the following algorithm:

W := {[Q Cs] : Q(Cs) in givenFacts}

P2YsX2s := {}

P1YsX1s := {}

R := {}

while exists x in W:

if x of [P Zs As]:

if [Q1 Z’s Bs] notin R: W with:= [Q1 Z’s Bs]

if x of [P1 X1s Ys C1s]:

W +:= {[Q2 X1s X2s Y’s C3s]: X2s in P2YsX2s{Ys}

| [Q2 X1s X2s Y’s C3s] notin R}

P1YsX1s with:= [Ys X1s]

if x of [P2 X2s Ys C2s]:

W +:= {[Q2 X1s X2s Y’s C3s]: X1s in P1YsX1s{Ys}

| [Q2 X1s X2s Y’s C3s] notin R}

P2YsX2s with:= [Ys X2s]

W less:= x

R with:= x

(15)

Cleaning up

Finally, the code is cleaned up to contain only uniform element-level operations
for data structure design. First, we decompose R into Ri’s, where each Ri is for a
single relation that occurs in the rules. Similarly, we decompose W into Wi’s. For a
relation Qi that occurs in the conclusion of a rule, we write RQi and WQi instead of
Ri and Wi. We also eliminate relation names from the first component of tuples,
and transform the while-clause and pattern matching clauses to iterate over Wi’s.

Example. For the transitive closure example, after representing R as Redge and
Rpath and representing W as Wedge and Wpath, we obtain the algorithm in Figure 2.
Note that the first two cases in (15) are merged for this example since both rules
for this example have a hypothesis that contains edge. Also, Rpath, i.e., facts of
path that are in R, is used in place of an auxiliary relation pathwv.

Then, we do the following three sets of transformations.

(i) Transform set-level operations (unions here) into loops that use element-level
operations. Specifically, replace addition of a set {X : Y in S |Z} to a set T with

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



10 · Yanhong A. Liu and Scott D. Stoller

Wedge := {[u v] : edge(u,v) in givenFacts}

Wpath := {}

edgewu := {} //inverse map for edge

Redge := {}

Rpath := {}

while Wedge != {} or Wpath != {}:

while exists [u,w] in Wedge:

if [u w] notin Rpath: Wpath with:= [u w] //rule 1

Wpath +:= {[u v]: v in Rpath{w} | [u v] notin Rpath}

//rule 2, and use of Rpath

edgewu with:= [w u] //update of inverse map

Wedge less:= [u,w]

Redge with:= [u,w]

while exists [w,v] in Wpath:

Wpath +:= {[u v]: u in edgewu{w} | [u v] notin Rpath}

//rule 2, and use of inverse map

Wpath less:= [u,w]

Rpath with:= [u,w]

Fig. 2. Transitive closure algorithm after decomposing relations R and W.

a for-loop that adds elements one at a time: for Y in S : if Z : T with := X .
Additionally, replace enumeration of facts Q(Cs) from givenFacts with reading
of facts Q(Cs) from input one at time, denoted while read Q(Cs).

(ii) Replace tuples and tuple operations with maps and map operations. Specifi-
cally, replace tuples of more than two components with tail nested tuples of two
components, e.g., [X Y Z V ] becomes [X [Y [Z V ] ] ]. Then, for each 2-tuple Z

and map M , replace while exists Z in M : ... Z... with

while exists X in dom(M) :
while exists Y in M{X} :

... [X Y ]...

and replace for-loops similarly. Finally, replace M 6= {} with dom(M) 6= {};
replace [X Y ] notin M with X notin dom(M) or Y notin M{X}, where or uses
short-circuit semantics; replace M with := [X Y ] with if X notin dom(M) :
M{X} := {} followed by M{X} with := Y ; and replace M less := [X Y ] with
M{X} less := Y followed by if M{X} = {} : dom(M) less := X .

(iii) Make all element-level updates easy by testing membership first. Specifically,
replace S with := X with if X notin S : S with := X and replace S less := X

with if X in S : S less := X . There are three exceptions. First, removal from a
Wi does not need the additional test, since the removed element is retrieved from
Wi. Second, addition to Ri does not need the additional test, since elements are
moved from Wi to Ri one at a time and each element is put into Wi, and thus Ri,
only once. Third, addition to PiYsXis does not need the additional test if the
corresponding hypothesis Pi(Xis,Ys,Cis) has no constant arguments, since the
element to add corresponds to an element in some Wj and each element is put
into Wj, and thus the corresponding element put into PiYsXis, only once.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 11

Example. For the transitive closure example, after applying the three sets of
transformations, we obtain the algorithm in Figure 3. The comments show the
corresponding statements in Figure 2.

while read edge(u,v): //Wedge :=...

if u notin dom(Wedge): Wedge{u} := {} //

if v notin Wedge{u}: Wedge{u} with:= v //

Wpath := {}

edgewu := {}

Redge := {}

Rpath := {}

while dom(Wedge) != {} or dom(Wpath) != {}: //while Wedge!={} or...

while exists u in dom(Wedge): //while exists [u,w] in Wedge

while exists w in Wedge{u}: //

if u notin dom(Rpath) or w notin Rpath{u}://if [u w] notin Rpath

if u notin dom(Wpath): Wpath{u} := {} //Wpath with:=[u w]

if w notin Wpath{u}: Wpath{u} with:= w //

for v in Rpath{w}: //Wpath +:=...

if u notin dom(Rpath) or v notin Rpath{u}: //

if u notin dom(Wpath): Wpath{u} := {} //

if v notin Wpath{u}: Wpath{u} with:= v //

if w notin dom(edgewu): edgewu{w} := {} //edgewu with:=...

edgewu{w} with:= u //

Wedge{u} less:= w //Wedge less:= [u,w]

if Wedge{u} = {}: dom(Wedge) less:= u //

if u notin dom(Redge): Redge{u} := {} //Redge with:= [u,w]

Redge{u} with:= w //

while exists w in dom(Wpath): //while exists [w,v] in Wpath

while exists v in Wpath{w}: //

for u in edgewu{w}: //Wpath +:=...

if u notin dom(Rpath) or v notin Rpath{u}: //

if u notin dom(Wpath): Wpath{u} := {} //

if v notin Wpath{u}: Wpath{u} with:= v //

Wpath{u} less:= w //Wpath less:= [u,w]

if Wpath{u} = {}: dom(Wpath) less:= u //

if u notin dom(Rpath): Rpath{u} := {} //Rpath with:= [u,w]

Rpath{u} with:= w //

Fig. 3. Transitive closure algorithm after all clean-up transformations.

Correctness

The derivation of the algorithm in (15) from (6) explains how to choose the iteration
step, what invariants and auxiliary values to maintain, and the exact transforma-
tions for iteration, initializations, incremental updates, and dead-code elimination.
Each transformation is easily seen to preserve correctness, and together the deriva-
tion provides a proof for the correctness of the resulting algorithm. That is, the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



12 · Yanhong A. Liu and Scott D. Stoller

derived algorithm in (15) correctly computes the sets of facts specified by least fixed-
point specification in (6). Additionally, each of the cleaning-up transformations is
easily seen to preserve correctness. Therefore, we have the following theorem.

Theorem 1. The algorithm derived using transformations for incremental com-
putation is correct with respect to the least fixed-point specification in (6).

5. DATA STRUCTURE DESIGN

We describe how to guarantee that each set operation in the cleaned-up version
of (15) takes worst-case O(1) time. All operations are among the following kinds:
set initialization S := {}, computing domain set dom(M), computing image set
M{X}, emptiness test S = {} and S 6= {}, element retrieval in for X in S and
while exists X in S, membership test X in S and X notin S, and element
addition S with X and deletion S less X . We use associative access to refer to
membership test (X in S and X notin S) and computing image set (M{X}). Such
an operation requires the ability to locate an element (X) in a set (S or dom(M)).

Based representations

Consider using a singly linked list for each set, for the domain set of each map, and
for each of the image sets of each map. Let each element in a domain set linked list
contain a pointer to its image set linked list. In other words, represent a set as a
linked list, and represent a map as a linked list of linked lists. It is easy to see that,
if associative access can be done in worst-case O(1) time, so can all other primitive
operations. To see this, note that computing a domain set or an image set simply
returns a pointer to the set; retrieving an element from a set only needs to locate
any element in the set; and adding or deleting an element from a set can be done in
constant time after doing an associative access. An associative access would take
linear time if a linked list is naively traversed to locate an element. A classical
approach to address this problem is to use hash tables [Aho et al. 1983] instead of
linked lists. However, this gives average, rather than worst-case, O(1) time for each
operation, and has the overhead of computing hashing-related functions for each
operation.

Paige et al. [Paige 1989; Cai et al. 1991] describe a technique for designing linked
structures that support associative access in worst-case O(1) time with little space
overhead for a general class of set-based programs. Consider a piece of code that
retrieves elements from set W and tests whether such an element is in set S:

for X in W, or while exists X in W

...X in S..., or ...X notin S...,

or ...M{X}... where the domain set of M is S

We want to locate value X in set S after it has been located in set W . The idea is
to use a set B, called a base, to store values for both W and S, such that retrieval
of a value from W also locates the value in S. Base B is a set (this set is only
conceptual) of records, with a K field storing the key (i.e., value).

—Set S is represented using an S field of B: records of B whose keys belong to S

are connected by a linked list whose links are stored in the S field; records of B

whose keys are not in S store a special value for undefinedness in the S field.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 13

—Set W is represented as a separate linked list of pointers to records of B whose
keys belong to W .

Thus, an element of S is represented as a field in the record, and S is said to be
strongly based on B; an element of W is represented as a pointer to the record, and
W is said to be weakly based on B. Figure 4 shows the based representation for set
W containing elements x1 and x3 and set S containing elements x1 and x2. Such a
representation allows an arbitrary number of weakly based sets but only a constant
number of strongly based sets. Essentially, base B provides a kind of indexing to
elements of S starting from elements of W .

W S
ց B ւ

•−−→ K : x1 S

| ↓
|
|
|

K : x2 S

| ↓
| null
↓

•−−→ K : x3 S : undef

↓
null

Fig. 4. Based representation for sets S and W using base B.

However, often a non-constant number of sets must be strongly based for constant-
time associative access [Liu et al. 2001; Liu and Yu 2002; Liu et al. 2004], and this
is particularly the case here for compiling general forms of rules. Specifically, in
the cleaned-up version of (15), there is associative access in the domain of each
component of the

(i) result sets RQi’s and worksets WQi’s for relations Qi’s that occur in the conclu-
sions of rules, e.g., the result set Rpath and workset Wpath in Figure 3, for testing
whether a fact of Qi to be added to WQi is already in RQi or WQi,

(ii) anchors of the auxiliary maps PiYsXis’s, i.e., the components corresponding
to Ys’s in PiYsXis’s, e.g., the domain set of edgewu in Figure 3, by the image
set operations PiYsXis{Ys}’s, and

(iii) auxiliary maps PiYsXis’s if the corresponding hypothesis Pi(Xis,Ys,Cis)

has constant arguments, for testing whether a tuple to be added to PiYsXis is
already in it.

Since each value accessed in the domain of a non-last component yields an image set
for the domain of the next component whose values need to be accessed efficiently
again, and there are a non-constant number of values in the domain of a component,
these non-constant number of image sets can not be all strongly based directly on
the set of possible domain values. Therefore, based representations do not apply.
Nevertheless, we may extend them to use arrays for all the non-constant numbers of
image sets, as described below. This guarantees worst-case constant running time
for each operation.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



14 · Yanhong A. Liu and Scott D. Stoller

Data structures

The data structures need to support the three kinds of associative access (i) to (iii)
described above and the following two kinds of element retrieval. Note that an
associative access of kind (iii) is not needed if the relation Pi from which PiYsXis

is built does not appear in any conclusion, because in that case, every tuple [Ys

Xis] added to PiYsXis is built from a unique given fact Pi(Xis,Ys,Cis) and thus
must be new. Element retrieval is by traversals in the domain of each component
of the

(i) worksets Wi’s, by the nested while-loops transformed from the single while-loop
in (15), and

(ii) non-anchors of the auxiliary maps PiYsXis’s, by the nested for-loops in the
cleaned-up version of (15) that add elements to the worksets Wi’s.

We describe a uniform method for representing all these sets and maps, using an
array for each non-constant number of sets that have associative access, a linked
list for each set that is traversed by loops, and both an array and a linked list when
both kinds of operations are needed.

Consider all domains from which arguments of relations take values. For each
domain D, we map the values in D one-to-one to the integers from 1 to #D, and
use these integers to refer to the values in D. Recall that Qi’s denote relations that
occur in the conclusions of rules. We represent RQi’s, WQi’s and other Wi’s, and
PiYsXis’s, respectively, as follows.

—Each RQi of, say, a components, is represented using an a-level nested array
structure. The first level is an array indexed by values in the domain of the first
component of RQi; the k-th element of the array is null if there is no tuple of RQi
whose first component has value k, and otherwise is true if a=1, and otherwise
is recursively an (a-1)-level nested array structure for the remaining components
of tuples of RQi whose first component has value k.

—Each WQi is represented the same as RQi with two additions. First, for each array,
we add a linked list linking indices of non-null elements of the array. Second, to
each linked list, we add a tail pointer, i.e., a pointer to the last element, to form
a queue. We combine the array, the head of the linked list, and the tail pointer
in a record. Each other Wi is represented simply as a nested queue structure
(without the underlying arrays), one level for each component of Wi, linking the
elements (which correspond to indices of the arrays) directly.

—Each PiYsXis for which associative access of kind (iii) is needed uses a nested
array structure as RQi and WQi do and additionally linked lists (without the tail
pointers) for each component of the non-anchor as WQi does. Each other PiYsXis
uses a nested array structure only for the anchor, where elements of arrays for
the last component of the anchor are each a nested linked-list structure (without
the tail pointers or the underlying arrays) for the non-anchor. Finally, if an Ri is
used in place of an PiYsXis, the corresponding data structure must be imposed
on Ri.

Note that we did not discuss representations for relations Ri’s that do not occur
in the conclusion of any rule and are not used in place of any auxiliary map. These

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 15

sets contain only given facts, not newly inferred facts. They are not used in any
way by our derived algorithms, except that their elements are simply taken from
the given facts via the Wi’s. Elements of RQi’s and other Ri’s could be linked
together as we do for WQi’s and other Wi’s if these result sets need to be traversed
in subsequent computations.

A small natural improvement is to avoid using completely separate data struc-
tures for the different kinds of tuples in Ri’s, Wi’s, and PiYsXis’s. For all kinds of
tuples whose first components are from the same domain, we use a single 1st-level
array of records, as a base, for the domain, and use a field for each kind of tuples
that shares the 1st-level array. This does not change the asymptotic complexities
but allows the use of a single indexing operator to locate the first component of
multiple tuples that are always accessed next to each other, e.g., Ri and Wi in each
of the three cases of (15), and P2YsX2s and P1YsX1s in each of the last two cases
of (15). This also allows all the data structures to fall back to completely based
representations when there is no associative access into a non-constant number of
sets.

Example. For the transitive closure example, we use numbers from 1 to #vertex

to refer to the vertices. A base for the domain of all vertices is used, since both
arguments of both edge and path are from this domain. The resulting data struc-
ture is explained below and depicted for a small graph in Figure 5, where the edges
drawn with solid lines are already processed and the edges drawn with dashed lines
are not yet processed.

Elements of the base are stored in an array vertex indexed by the vertices, for
efficient access of the first component of Rpath, Wpath, and edgewu. Each element
u of the base array is a record of six fields.

An RpathArray field of u is for Rpath; it is null if no element of Rpath starts
with u and otherwise is an array for the second component of Rpath, indexed by
the vertices and whose element at v is true if [u,v] is an element of Rpath and
null otherwise. An RpathList field of u is a linked list of indices of vertices v for
all tuples [u,v] in Rpath.

A similar WpathArray field of u is used for Wpath. A linked list Wpath with tail
pointer is used to link indices of the base array elements whose WpathArray field is
not null. A WpathQueue field of u is a linked list with tail pointer linking indices of
non-null elements of the array in WpathArray.

A linked list Wedge with tail pointer is used to link indices of vertices in the first
component of Wedge. A WedgeQueue field of u is a linked list of indices of successor
vertices of u.

An edgewuList field of u is used for the inverse map edgewu; it is a linked list
of indices of predecessor vertices of u.

Correctness

In the resulting data structures, we can easily observe the following. First, the
nested array structure for each RQi allows each component in a result tuple to
be accessed in worst-case constant time. Second, the nested queue structure for
each Wi plus nested array structure for each WQi allow each element retrieval in
a traversal by a while-loop and each element access, addition, and deletion to be

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



16 · Yanhong A. Liu and Scott D. Stoller

1

2 4

2 1

2

3

4

Wpath Wedge vertex

1

2

3

4

null

true

true

null

1

2

3

4

null

null

true

null

null null

null null null

null

null null null
1 2

3 4

null

Graph

2

3

null

3

null

4

null

1

null

null null null null3

null

null

1

2

RpathArray WpathArray WpathQueue WedgeQueue edgewuListRpathList

null

RpathArray WpathArray WpathQueue WedgeQueue edgewuListRpathList

null

RpathArray WpathArray WpathQueue WedgeQueue edgewuListRpathList

null

RpathArray WpathArray WpathQueue WedgeQueue edgewuListRpathList

null

Fig. 5. Data structure for the transitive closure algorithm. To reduce clutter, tail pointers for
queues in the WpathQueue and WedgeQueue fields are not shown.

done in worst-case constant time. Third, the nested array structure for PiYsXis

plus nested linked-list structure for the non-anchor of PiYsXis allows each needed
associative access, element retrieval using a for-loop, and element addition to be
done in worst-case constant time. Therefore, we have the following theorem.

Theorem 2. The data structures designed for all Ri’s, Wi’s, and PiYsXis’s
allow each operation in the algorithm derived using transformations for incremental
computation to be done in worst-case constant time.

Time and space trade-offs

When elements in a set are sparse over a domain, array representations may result
in non-optimal use of space. Note that initialization of the arrays does not affect
the time complexity, as per the note in [Aho et al. 1983, Exercise 2.12]. When a
set over a domain is sparse, we could use linked lists instead of arrays for accessing
the set elements. This makes the space usage for this domain optimal but incurs
an extra factor of the length of the lists for the time complexity. When worst-case
time is not a concern, one could also use hash tables in place of arrays or linked
lists, yielding another set of trade-offs involving also the overheads of hashing.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 17

6. DETERMINING COMPLEXITY

We describe how to compute time and space complexities precisely from the rules,
and express the complexities in terms of characterizations of the facts. The size
of each rule is considered a constant. The idea is to analyze precisely the num-
ber of facts actually processed, avoiding approximations that use only the sizes of
individual argument domains.

Size parameters and basic constraints

We use P.i to denote the projection of P on its i-th argument. We use P.I, where I
= {i1,i2,...,ik}, to denote the projection of P on its i1-th, i2-th, ..., and ik-th
arguments.

The analysis uses the following sizes to characterize the set of given facts, called
relation size, domain size, argument size, and relative argument size, respectively:

—#P: the number of facts that actually hold for relation P.

—#D(P.i): the size of the domain from which P.i takes its value.

—#P.i: the number of different values that P.i can actually take.

#P.I: the number of different combinations of values that elements of P.I together
can actually take. For I = ∅, we take #P.I = 1.

—#P.i/j: the maximum number of different values that P.i can actually take for
each possible value of P.j, where i 6= j.

#P.I/J: the maximum number of different combinations of values that elements of
P.I together can actually take for each possible combination of values of elements
of P.J, where I ∩ J = ∅. For I = ∅, we take #P.I/J = 1. For J = ∅, we take
#P.I/J = #P.I.

If j or an element of J can take on only a particular constant value, say c, we
specify that by following j or the element of J, respectively, with =c.

Example. For the transitive closure example, #edge is the number of pairs in
relation edge, i.e., the number of edges in the graph; #D(edge.1) is the number of
vertices; #edge.1 is the number of vertices that are sources of edges; #edge.1/2 is
the maximum number of predecessors of a vertex, i.e., the maximum in-degree of
vertices; and #edge.1/2=c is the number of predecessors of vertex c.

It is easy to see that the following basic constraints hold:

#P= #P.{1,...,a} for relation P of a arguments
#P.i≤ #D(P.i)

#P.I≤ #P.J for I⊆ J

#P.(I∪J)≤ #P.I×#P.J/I and #P.J/I≤ #P.J for I∩J=∅

These imply commonly used constraints, including in particular

#P≤ #D(P.1)× ...× #D(P.a)

for relation P of a arguments, which is especially useful when #P is not an input
parameter, i.e., when P occurs in the conclusion of a rule.

Example. For the transitive closure example, let vertex be the domain of the
arguments of edge, and thus also the domain of the arguments of path. We have

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



18 · Yanhong A. Liu and Scott D. Stoller

#path.2/1≤ #path.2≤ #D(path.2)= #vertex

#path≤ #D(path.1)×#D(path.2)= #vertex2

#edge.1/2≤ #edge.1≤ #D(edge.1)= #vertex

#edge≤ #D(edge.1)×#D(edge.2)= #vertex2

Time complexity and optimality

In our derived algorithms, each fact is added to W once and then moved from W

to R once. Each fact that makes the hypothesis of a rule of form 1 true and each
combination of facts that makes both hypotheses of a rule of form 2 simultaneously
true is considered exactly once, called a firing of the corresponding rule. To see
that each combination of facts that makes both hypotheses P1 and P2 of a rule
simultaneously true is considered only once, note that the auxiliary map entry for a
fact f of P1 or P2 is built after retrieving f from a workset and used afterwards. So,
a fact f1 of P1 combines once with each fact of P2 retrieved before f1 is retrieved,
and each fact of P2 retrieved after f1 is retrieved combines once with f1.

It is therefore easy to see that the time complexity is the total number of firings
of all rules, analyzed below. Since each firing as defined above may imply a new
fact as an instance of the conclusion, it must, in general, be considered at least
once. In this sense the running times of our derived algorithms are optimal.

For each rule r, let r.#firedTimes denote the total number of times r is fired.
Use IXs to denote the set of indices of arguments Xs in a hypothesis. For a rule of
form 1 in (2), we have

r.#firedTimes= #P. (16)

For a rule of form 2 in (2), we have

r.#firedTimes≤min(#P1× #P2.IX2s/IYsC2s,
#P2× #P1.IX1s/IYsC1s).

(17)

where IYsCis includes the constant values for the Cis components.
Consider any given set of rules. Let characteristics of facts be given in terms of

the four kinds of sizes defined above, and consider the constraints on these sizes
described above. The total time complexity is the sum of #firedTimes over all
rules, minimized symbolically with respect to the given sizes and the constraints.
In particular, if a relative argument size is needed but not given, we use the corre-
sponding non-relative argument size; if an argument size #P.I is used but not given,
we use the minimum of (i) the product of domain sizes for arguments of P that are
in I and (ii) the argument size of P for arguments that are a superset of I, if given.

Example. For the transitive closure example, the time complexity is the sum
of #edge for the first rule and min(#edge×#path.2/1,#path×#edge.1/2) for the
second rule. When only parameters #edge and #vertex are given, this sum is
bounded by min(#edge×#vertex,#vertex3) based on the constraints above. Sim-
plifying it based on #edge≤ #vertex2, we obtain the worst-case time complexity
O(#edge×#vertex).

Note that in (17), both ways of bounding the number of firings are excellent
for presenting and understanding the time complexity, because they are precisely
defined and they capture the worst-case time more tightly than in conventional com-
plexity analysis. The symbolic minimization is just for expressing the complexity

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 19

using conventional input sizes, as used typically in conventional complexity analy-
sis, although it generally gives looser bounds. Also, such symbolic minimization is
difficult to automate since the formulas are not linear.

Example. Consider the second rule in the transitive closure example. The first
bound #edge×#path.2/1 says that the complexity is linear in the number of edges
and in the maximum number of vertices reachable from a single vertex, and the
latter is #vertex in the worst case. The second bound, #path×#edge.1/2 says that
the complexity is linear in the number of resulting path pairs and in the maximum
in-degree of vertices, and the former is #vertex2 in the worst case, and the latter is
#vertex in the worst case. The worst-case complexity expressed using only #edge

and #vertex is looser.
Note also that our time complexity analysis takes into account the number of

rules, because the complexity is a sum of firings over all rules. The number of
hypotheses of each rule is considered a constant since it is one or two; we will see
that rules with more than two hypotheses are analyzed as more rules with one
or two hypotheses. The analysis could easily be refined to take into account the
number of arguments of the relations since we know exactly how many arguments
are used for lookups, membership tests, etc. for each rule, but such quantities are
usually considered constant factors.

Additional constraints that capture dependencies among relations and relation
arguments can be constructed from the rules to further bound the sizes for symbolic
minimization. They can provide more precise results of symbolic minimization for
rules that have longer chains of non-circular dependencies among relations and
relation arguments. They can also help understand the complexity in terms of
output size, rather than input size alone. Specifically, we can bound, for each rule
r, the number of instances of the conclusion, denoted r.#addedFacts, based on the
number of instances of the hypotheses combined, and we can bound the number
of instances of a hypothesis, denoted #P(Xs), by summing all facts that match the
hypothesis from the rules that can conclude these facts and from the given facts.
For the latter, we can approximate by considering all facts of relation P. These
yield the following constraints, where P.conclRules denotes the set of rules where
P occurs in the conclusion.

r.#addedFacts ≤ r.#firedTimes, where r.#firedTimes is defined above

#P(Xs) ≤ #{P(Xs):P(Xs)in givenFacts}+
∑

r in P.conclRules

r.#addedFacts

While it is possible to consider facts that match also the arguments, not just the
relation name P, we have not found the need of it in applications.

Space complexity

We consider the space needed besides the space taken by the input. The total such
space is the sum of the space needed for each of the result sets RQi’s and other Ri’s,
worksets WQi’s and other Wi’s, and auxiliary maps PiYsXis’s, described separately
as follows:

—RQi’s are only for relations that occur in the conclusions of the rules, i.e., rela-
tions for which new facts may be inferred. For each such relation Qi of, say, a

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



20 · Yanhong A. Liu and Scott D. Stoller

arguments, the space of RQi is for the a-level nested array structures that RQi

uses. These arrays are indexed by the values in the domains and thus take

#D(Qi.1)× ...× #D(Qi.a)

space. Other Ri’s take the same amount of space as the given facts for the
corresponding relations take.

—WQi’s use the same amount of space for their nested-array structures as RQi’s
use. The queues for WQi’s take no more space than the arrays. The queues for
other Wi’s take the same amount of space as the given facts for the corresponding
relations take.

—PiYsXis’s are only for relations that occur in the hypotheses of rules of form 2.
If associative access of kind (iii) is needed, then the space of PiYsXis is for the
arrays used for accessing all the components; linked lists for the components in
the non-anchor take no more space. Otherwise, the space is taken by the arrays
for the components in the anchor plus linked lists for the non-anchor.

Let the domains of Ys be DY1 to DYj and of Xis be DXi1 to DXik. If associative
access of kind (iii) is needed, the total space for PiYsXis is

#DY1× ...× #DYj× #DXi1× ...× #DXik.

Otherwise, the product after the anchor is replaced with the amount of space
taken by the nested linked-list structures for the non-anchor, one such structure
for each element of the arrays for the last component of the anchor; it is hard to
sum the space used by these structures directly, but it is easy to express it as the
difference between the space for a nested linked-list structure for all components
and the space for a nested linked-list structure for the anchor. So the total space
for PiYsXis is

#DY1× ...× #DYj+ #Pi.(IYs∪IXis)− #Pi.IYs

We call the space taken by result sets RQi’s output space, and the space taken
by auxiliary maps PiYsXis’s auxiliary space. Worksets WQi’s take the same space
asymptotically as RQi’s, and other Wi’s and Ri’s take no more space asymptotically
than the given facts take.

In our data structures for the auxiliary map for each individual relation, and
for the result set for each individual rule, arrays are used only where needed—
each array supports constant-time associative access by index for a non-constant
number of sets that have associative access—and linked structures with minimum
space overhead are used for the rest. However, optimizations that schedule the
order in which elements in the worksets are considered may allow reuse of space
by considering relations and rules in a certain order. Therefore the total space
used may sometimes be reduced using scheduling optimizations to eliminate some
summands in the space complexity formula.

Example. For the transitive closure problem, the output path takes space
#D(path.1)×#D(path.2), which is O(#vertex2). The auxiliary space usage is
#D(edge.2)+#edge.{2,1}−#edge.2, which is O(#edge) for vertex being the do-
main of the arguments of edge, i.e., vertex= edge.1∪edge.2.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 21

Note that our space complexity analysis takes into account the number of rules,
the number of hypotheses in rules, and the number of arguments of relations, be-
cause the complexity is a sum of space taken by all relations used in all rules.

7. EXTENSIONS

The time complexity of the compilation process described above is linear in the
number of rules. It can handle additions of new rules incrementally—one just
needs to add pattern matching clauses and data structures that correspond to the
new rules. The generated algorithms can handle additions of facts incrementally—
one just needs to start with the previously computed result R and add new facts to
the workset W.

Datalog rules with more than two hypotheses

For rules with more than two hypotheses, we can both transform them into rules
with two hypotheses and generalize our derivation process to handle such rules
directly.

The transformations simply introduce auxiliary relations with necessary argu-
ments to hold the results of combining two hypotheses at a time. Precisely, we
repeatedly apply the following transformations to each rule with more than two
hypotheses until only rules with at most two hypotheses are left: (i) replace any
two hypotheses, say Pi(Xi1, ..., Xiai

) and Pj(Xj1, ..., Xjaj
), of the rule with a new

hypothesis, Q(X1, ..., Xa), where Q is a fresh relation, and Xk’s are variables in the
arguments of Pi or Pj that occur also in the arguments of other hypotheses or the
conclusion of this rule, and (ii) add a new rule Pi(Xi1, ..., Xiai

)∧Pj(Xj1, ..., Xjaj
) →

Q(X1, ..., Xa). For a rule with h hypotheses, there are (2h− 3)!! (i.e., 1× 3× · · · ×
(2h− 3)) ways of decomposing it into rules with two hypotheses, but h is typically
a very small constant, most often no more than two. This observation is supported
by our example applications, as discussed in Section 8.

Each decomposition leads to certain time and space complexities, calculated eas-
ily using our method; the only modification is that the space taken by the intro-
duced auxiliary relations should be counted as auxiliary space not output space.
The complexities resulting from different decompositions can be compared to de-
termine which one is best in terms of time, space, or possibly both. Note that there
may be a trade-off between time and space complexities, if no decomposition leads
to the smallest complexities for both time and space.

For example, the following rules define path2, which is the set of all pairs of
vertices u and v such that there is a path of even length from u to v. The second
rule has three hypotheses and can be decomposed in three ways: combining the
first two hypotheses first, the first and third hypotheses first, and the last two
hypotheses first.

edge(u,w) ∧ edge(w,v) → path2(u,v)

edge(u,w) ∧ edge(w,x) ∧ path2(x,v) → path2(u,v)

The third way yields the following rules and the time complexity O(#edge×#vertex),
because both rules have this complexity, as can be analyzed as for the transitive
closure example. The output space is O(#vertex2) for path2, again as for the tran-
sitive closure example. The auxiliary space is O(#vertex2), worse than O(#edge)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



22 · Yanhong A. Liu and Scott D. Stoller

for the transitive closure example, because of the space taken by the auxiliary
relation path1.

edge(w,x) ∧ path2(x,v) → path1(w,v)

edge(u,w) ∧ path1(w,v) → path2(u,v)

The first way yields the following, with min(#edge×#edge.2/1,#edge×#edge.1/2)

and min(#edge2×#path2.2/1,#path2×#edge2.1/2) as bounds for their respec-
tive numbers of firings. So the time complexity is O(#vertex3), worse than the
third way. The output space and auxiliary space are both O(#vertex2), for similar
reasons as the third way.

edge(u,w) ∧ edge(w,x) → edge2(u,x)

edge2(u,x) ∧ path2(x,v) → path2(u,v)

The second way can be analyzed equally easily. It leads to the same output space
and auxiliary space as above, but an even worse time complexity O(#vertex4),
because it may consider many more combinations of facts for the first and third
hypotheses that are not connected by an edge in between for the second hypothesis.

Note that our method generates correct algorithms and data structures, together
with time and space complexity formulas, regardless of which decomposition is used.
Choosing a decomposition is part of finding an optimal algorithm at a high level.
When a user does not care about such optimizations, any decomposition can be
used.

Although transforming rules is higher-level, more declarative, simpler, and clearer
than treatment of more hypotheses in the derivation process, the space taken by
the auxiliary relations may be unnecessary. Treatment of more hypotheses directly
in the derivation process allows us to try all possible decompositions into groups
of two or more hypotheses. For each group, we consider adding one fact of one hy-
pothesis at a time and test all combinations of facts that make the other hypotheses
in the group true. Note that considering a sequence of three or more hypotheses
requires considering two hypotheses, or one hypothesis and one temporary inter-
mediate relation, at a time, repeatedly, so the best running time this approach can
achieve is no better than the transformational method. However, this method can
avoid storing intermediate relations in considering a sequence of more than two
hypotheses and thus lead to minimum possible auxiliary space. The regular path
query examples in Section 8 illustrate this tradeoff.

Note that not storing auxiliary relations for intermediate results of combinations
is clearly more space efficient, at no loss of time efficiency, when each intermediate
result is used only once. For example, for a rule that contains multiple consecutive
graph edges as hypotheses, when graph vertices are connected by single paths, each
intermediate fact is used only once, so storing auxiliary relations for the interme-
diate facts is not useful. Instead of storing an intermediate fact, the generated
algorithm immediately executes code in the branches that match this fact. In this
case, the running time should also be improved, by a constant factor, because of
elimination of the operations on auxiliary relations. However, when this is not the
case, not storing auxiliary relation can be much less efficient in running time, even
asymptotically less efficient, as shown in the experiments in Section 8.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 23

Datalog rules with equal or wild cards and with multiple hypotheses

We can either eliminate equal cards and wild cards in rules with multiple hypothe-
ses by simple transformations or handle them in the derivation process. Both
approaches result in essentially the same algorithms and complexities. We present
the transformational approach since it is higher-level, more declarative, simpler,
and clearer.

If a hypothesis of a rule with multiple hypotheses contains equal cards, we intro-
duce an auxiliary relation to hold only those facts that have the same value in the
argument positions of each equal card. Precisely, for every hypothesis of a rule that
contains equal cards, we (i) replace the hypothesis, say P (X1, ..., Xa), with a new
hypothesis, Q(X ′

1, ..., X
′

a′), where Q is a fresh relation, and X ′

k’s are the arguments
of P but with the second and later occurrences of each variable eliminated, and (ii)
add a new rule P (X1, ..., Xa) → Q(X ′

1, ..., X
′

a′). Similarly, if a hypothesis of a rule
with multiple hypotheses contains a wild card, we introduce an auxiliary relation
that has only the arguments of the hypothesis that are not wild cards. Precisely,
we do the same two things as for equal cards, except that X ′

k’s are the arguments
of P that are not wild cards. Note that we must first remove equal cards and then
remove wild cards, because removing equal cards may introduce wild cards.

For example, consider rules 1 to 3 below, where edge(u,v,c) denotes an edge
from u to v with color c, and green and red are two constants denoting colors.
Then, path(u,v,c) means that there is a path from u to v with color c on all edges
in the path, and greenReachRedCycle(v) means that there is a vertex v reachable
from a green path and being in a red cycle.

1. edge(u,v,c) → path(u,v,c)

2. edge(u,w,c) ∧ path(w,v,c) → path(u,v,c)

3. path(u,v,green) ∧ path(v,v,red) → greenReachRedCycle(v)

First, to remove equal cards from rule 3 which has two hypotheses, we replace rule
3 with rule 3′ and add rule 4. Then, to remove wild cards from rule 3′ which has
two hypotheses, we replace rule 3′ with rule 3′′ and add rule 5.

3′. path(u,v,green) ∧ redCycle(v,red) → greenReachRedCycle(v)

4. path(v,v,red) → redCycle(v,red)

3′′. greenReach(v,green) ∧ redCycle(v,red) → greenReachRedCycle(v)

5. path(u,v,green) → greenReach(v,green)

To see that equal cards must be removed before wild cards, consider changing
path(u,v,green) in rule 3 to path(u,u,green). Then u is a equal card, but after
the equal card is removed, u becomes a wild card, which is then removed.

The only effect of these two transformations on our complexity analysis is that
the space taken by introduced auxiliary relations should be counted as auxiliary
space not output space. This space is asymptotically no more than the space for
the original given problem. Note that in the derived algorithms for the transformed
rules, when rules with two hypotheses are considered, all instances of a hypothesis
that differ only in the wild card components are considered only once together for
different values of the wild card components, and only instances whose equal cards
components are equal are considered. The domain of an equal card component is
the intersection of the domains of all the components of the equal card.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



24 · Yanhong A. Liu and Scott D. Stoller

Extension of Datalog rules with constraints and external functions

We can extend Datalog rules to allow other constraints as hypotheses and external
functions in conclusions. The constraints are Boolean-valued functions on various
domains, such as greater-than on integers or prefix-of on sequences. The external
functions can be arbitrary functions on these domains. In general, constraints
may use variables not appearing in the non-constraint hypotheses and may be
difficult to handle [Jaffar and Maher 1994]. In all the application problems we
have encountered, many of which are discussed in Section 8, all variables in the
constraints also appear in the non-constraint hypotheses. This makes it much
easier to handle the constraints efficiently.

For example, the following rule is used in computing the name reduction closure in
SPKI trust management framework [Ellison et al. 1999; Clarke et al. 2001; Hristova
et al. 2007], where cert(k1,n,k2,ns) denotes the name certificate stating that
principal k1’s name n is principal k2’s name sequence ns, [] denotes the empty
sequence, constraint isHead(h,s) denotes that h is the head of sequence s, and
external function tail(s) denotes the tail of sequence s.

cert(k1,n1,k2,ns2) ∧ cert(k2,n2,k3,[]) ∧ isHead(n2,ns2)

→ cert(k1,n1,k3,tail(ns2))
(18)

The constraints can be evaluated straightforwardly after all variables in them
are bound. Precisely, after decomposing the rules into rules with at most two hy-
potheses, including constraint hypotheses, we discard decompositions that contain
constraints involving unbound variables. Among the remaining decompositions,
those that evaluate constraints earlier have equal or better running time, because
the constraints may eliminate some combinations of values. The complexity calcu-
lation considers the non-constraint hypotheses as before, but with argument domain
size possibly reduced based on the number of values that can satisfy the constraint,
and with the cost of constraint evaluation added.

The external functions can be evaluated any time after all variables they use are
bound. The complexity calculation is as before except with the cost of evaluating
the functions added.

For some kinds of constraints, it is possible and sometimes beneficial to eval-
uate the constraint earlier, before all the variables in it are bound, because the
bound variables of the constraint can be used to restrict the unbound variables.
For example, for a constraint on sequences that tests whether an element x is the
head of a sequence s, we may evaluate the constraint when s is bound and x is
not, because this will restrict x to be the unique head of s. This can be more effi-
cient than first evaluating additional hypotheses to bind x and then evaluating the
constraint. In the name reduction closure example above, any certificate match-
ing the first hypothesis binds k2 and ns2, and ns2 then binds n2 using constraint
isHead(n2,ns2). Using both k2 and n2, rather than k2 alone, helps reduce the
number of certificates considered that match the second hypothesis.

Extension of Datalog rules with negation

Datalog rules do not contain negated hypotheses, but negation is useful for express-
ing some analysis problems. The most well-known semantics for Datalog with nega-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 25

tion are stratified semantics [Abiteboul et al. 1995], well-founded semantics [Abite-
boul et al. 1995], and stable model semantics [Gelfond and Lifschitz 1988].

Our derivation and complexity analysis work naturally for rules with stratified
semantics. The first step of our derivation is modified to do a fixed-point computa-
tion following the order of stratification. The rest of the derivation needs no change,
since our data structures support associative access for testing of both positive and
negative hypotheses. The complexity analysis remains the same also, simply ig-
noring negations in the negative hypotheses, since they are processed using the
same time and space as the corresponding positive hypotheses. We think that our
derivation method should work for computing least fixed-points in other semantics,
such as well-founded semantics and stable model semantics, as well. The precise
derivation is a subject for further study.

Extension of Datalog rules with data constructors

Datalog rules do not contain data constructors, i.e., functors in logic programs.
Recursion with data constructors yields recursively structured data and is necessary
for many analysis problems, including many combinatorial optimization problems.

We have developed a general and systematic method, called incrementaliza-
tion [Liu et al. 1998; Liu 2000; Liu et al. 2001], for incremental computation of
recursive functions that use data constructors. The method is able to derive dy-
namic programming algorithms for these problems when they are specified using
recursive functions [Liu and Stoller 2003; 2002]. We believe that the same ideas can
be applied to specifications of these problems using Datalog rules extended with
data constructors as well as with arithmetic.

On-demand computation and other optimizations

The programs our method generates compute all facts that can be inferred, which
can then be used to answer queries of specific facts. If only facts of a particular re-
lation P are needed, then we can first do a reachability analysis to include only rules
on which P depends and then transform only those rules. If only the truth value
of P on a particular set of arguments is needed, a more sophisticated on-demand
(top-down) computation method is needed. The method described in this paper is
bottom-up. How to achieve efficient top-down computation, or an efficient combi-
nation of bottom-up and top-down computations, completely by a transformational
method is a topic that needs future study. We are developing methods to combine
magic sets transformations [Bancilhon et al. 1986] and specialization [Tekle et al.
2008] with our transformations to achieve efficient on-demand computation with
time and space guarantees.

Optimizations that schedule the order in which elements in worksets are consid-
ered also need to be studied, to achieve optimal space usage in a more absolute
sense.

8. APPLICATIONS

We applied our transformation and complexity analysis to a number of nontriv-
ial analysis problems and obtained improved algorithm complexities for some and
greatly improved algorithm understanding and greatly simplified complexity anal-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



26 · Yanhong A. Liu and Scott D. Stoller

ysis for all of them.
Table I summarizes the worst-case complexities of our derived algorithms for

nine application problems: transitive closure (the running example), graph reach-
ability [Cai and Paige 1988], pointer analysis [Andersen 1994], simplification of
regular tree grammar based constraints [Liu et al. 2001], authorization in trust
management [Ellison et al. 1999], and four kinds of regular path queries [Liu and
Yu 2002; de Moor et al. 2003; Liu et al. 2004]. These problems and the complexities
are explained below. Other problems to which we have applied our method include
querying complex graphs [Liu and Stoller 2006], model checking push down sys-
tems [Hristova and Liu 2006], and information flow analysis [Hristova et al. 2007].
These and similar problems have applications in program analysis [Cousot and
Cousot 1977; Heintze and Jaffar 1994; Reps 1998; Aiken 1999; Heintze and Tardieu
2001], model checking [Clarke et al. 1999], security frameworks [Li and Mitchell
2003; Stoller and Liu 2007], and queries of semi-structured data [Abiteboul 1997;
Calvanese et al. 2000; Li and Moon 2001]. Many more analysis problems in these
applications can be specified as Datalog rules and implemented with time and space
guarantees using our method.

problem running time output space auxiliary space

transitive closure O(#edge×#vertex) O(#vertex2) O(#edge)
graph reachability O(#source+#edge) O(#vertex) O(1)
constraint simplification O(#node3) O(#node2) O(#node2)
pointer analysis O(#node3) O(#node2) O(#node2)
trust management O(in×#key2) O(in×#key) O(#key2×#id2)
existential & universal
regular path queries
(RPQ)

O(#edge×#state+
#vertex×#transition)

O(#vertex×
#state)

O(#label×
#vertex×
#state)

existential & universal
parametric RPQ

O(above×
#subst×#param)

O(above×
#subst)

O(above×
#subst)

Table I. Summary of worst-case complexities for example applications.

Graph reachability

Graph reachability finds all vertices reachable (reach) starting from a given set of
source vertices (source) and following a given set of edges (edge). Table I gives
the asymptotic complexities in terms of only input parameters #source and #edge.

More precisely, our derived algorithm uses no auxiliary maps; its time complex-
ity is bound by O(#source+min(#reach×#edge.2/1,#edge)) plus the time for
reading input, and its output space is O(#reach). These formulas give more in-
formation than the simplified formulas in Table I. For example, after reading in
the set of edges, given any set of source vertices, the time complexity is bound by
O(#source+min(#reach×#edge.2/1,#edge)); when few vertices are reachable and
the out-degrees of vertices are small, the running time is only O(#source+#reach),
which is significantly better than O(#source+#edge).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 27

Constraint simplification

Simplification of regular tree grammar based constraints is used to analyze re-
cursive data structures in programs [Liu et al. 2001]. It expresses seven kinds of
constraints using seven kinds of relations. It uses ten rules to infer simplified forms
of constraints from given constraints.

The cubic time complexity in Table I is the worst-case bound for the formula
#simp× min(k+ #copy.1/2, k× #simp.{2,3,...,k+2}/1) that is obtained using
our method, where simp is the set of constraints of simplified forms, copy is the
set of constraints of copy forms, and k is the maximum arity of data constructors
in programs. This is exactly the running time analyzed in [Liu et al. 2001], which
helped better understand the practical performance of the algorithm. The analysis
based on Datalog rules is drastically simpler; it also improves over the analysis
in [Liu et al. 2001] on some of the non-worst-case rules.

Pointer analysis

Andersen’s pointer analysis for C programs [Andersen 1994] defines a points-to
relation based on four kinds of assignment statements that involve pointers: taking
address x = &y (address), making copy x = y (copy), taking content x = ∗y
(content), and assigning content ∗x = y (assign). The analysis can be easily
specified using four Datalog rules, one for each kind of statement. In the resulting
points-to relation, each pointer can point to a set of locations in the program.

The cubic time complexity in Table I is an upper bound of the more precise
formula we derive, O(#address+ #copy×#to+ #content×#to2 + #assign×#to2),
where the four kinds of statements can add up to all the statements in the program,
and to set, the largest set of locations pointed to by a single pointer, could in the
worst case include all locations in the program. However, the to set is typically
very small for well-behaved programs, so the actual running time could be much
better than the worst case bound of O(#node3), and could even be O(#node) when
all but a small number of pointers point to a small number of locations. The more
precise formula also shows precisely how the running time depends on each kind of
statement.

Andersen’s analysis is well-known to have a worst-case cubic time complexity,
but is much more efficient in practice and often appears to be quadratic or even
linear. Our derived algorithms and complexities offer a simple and most precise
explanation.

Trust management

SPKI/SDSI [Ellison et al. 1999] is a well-known trust management framework based
on public keys that is designed to facilitate the development of secure and scalable
distributed systems.

It has two types of certificates. A name certificate defines a local name in the is-
suer’s local name space. An authorization certificate is issued by an issuer to grant
a set of permissions to a subject and possibly allows the subject to delegate the
permission. The heart of authorization checking is to compute the name-reduction
closure given a set of certificates. It composes certificates to infer reduced certifi-
cates and can be expressed directly as a Datalog rule with a constraint that tests

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



28 · Yanhong A. Liu and Scott D. Stoller

whether an id is the head of a sequence of ids, and with a call to an external function
that returns the tail of a sequence in the conclusion, as shown in (18).

The time complexity in Table I is an upper bound of the more precise formula we
derive, #cert×#cert.3/{1,2,4=[]}, where cert is the set of inferred certificates,
and #cert.3/{1,2,4=[]} is the maximum number of keys a single local name
reduces to. In the worst case, the latter could include all keys (key) that appear
in the certificates, but it is much smaller on average in practice and is close to a
constant in large systems. As noted in [Jha and Reps 2004], #cert is bounded by
in×#key, where in is the size of the input, i.e., the sum of the sizes of the given
certificates. These lead to the time complexity in Table I. The auxiliary space
is used for mapping key-id pairs to key-id pairs. Our complexity analysis is more
precise and informative than using only worst-case sizes [Clarke et al. 2001; Jha
and Reps 2004].

Regular path queries

Four kinds of regular path queries are considered. Consider an edge-labeled directed
graph G, a vertex v0 of G, and a regular expression P . An existential query
computes all vertices v in G such that there is a path from v0 to v that matches P ,
where state and transition describe a non-deterministic finite automaton that
corresponds to P . A universal query computes all vertices v in G such that all
paths from v0 to v match P , where state and transition describe a deterministic
finite automaton that corresponds to P . Parametric queries allow labels to have
parameters (param) and compute substitutions (subst) of variables to constants
together with the matched vertices. The rules infer a relation match(v,s) on
vertex v and state s, so the output space has a factor of #vertex×#state.

All four kinds of queries naturally have a rule with three hypotheses. Decom-
posing it into two rules, each with two hypotheses, yields three alternatives. For
non-parametric queries, two of the alternatives have the time and space complexities
given in Table I, and the third has running time O(#edge×#transition) and auxil-
iary space O(#vertex2×#state2). Considering all three hypotheses together with-
out decomposition yields an algorithm with running time O(#edge×#transition)
and auxiliary space O(#label×(#vertex+#state)), exactly as in [Liu and Yu
2002]. The time complexity in Table I improves over O(#edge×#transition)
in [Liu and Yu 2002; de Moor et al. 2003]. The trade-off is the worse auxiliary
space compared with O(#label×(#vertex+#state)) in [Liu and Yu 2002], though
#state is very small in practice. For parametric queries, similar complexities can
be obtained, except with an additional factor of #subst×#param in the time com-
plexity and #subst in the space complexities.

For all four kinds of queries, the factor #edge×#state+#vertex×#transition
in running time is an asymptotic improvement over #edge×#transition in pre-
vious algorithms [Liu and Yu 2002; de Moor et al. 2003; Liu et al. 2004], because
in the worst case, #edge can be quadratic in #vertex, and #transition can be
quadratic in #state.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 29

Experiments

We have developed a prototype implementation of the method and have used it in
generating efficient algorithms for a number of problems in program analysis, model
checking, and security, including most of the examples discussed in this paper, and
some others. We discuss here measurements that characterize the number of hy-
potheses in rules, the number of firings for rules with one or two hypotheses, and the
number of firings for rules with more than two hypotheses. Experiments were also
conducted previously to confirm the analyzed time complexities, for model check-
ing push down system [Hristova and Liu 2006], information flow analysis [Hristova
et al. 2007], and trust management policy analysis [Hristova et al. 2007].

First, we counted the number of hypotheses of rules for all the example appli-
cations in Table I. Table II shows, for each example, the total number of rules
and the number of rules with each different number of hypotheses. For the con-
straint simplification example, #con and #sel denote the numbers of constructors
and selectors, respectively, in the program being analyzed. For the trust manage-
ment example, * indicates that the rule has an additional constraint. None of the
examples has a rule with more than three hypotheses. This helps support our ob-
servation that the number of hypotheses of a rule is typically a very small constant,
most often no more than two.

problem
#rules
total

#rules with
1 hypothesis

#rules with
2 hypotheses

#rules with
3 hypotheses

transitive closure 2 1 1 0
graph reachability 2 1 1 0

constraint simplification
6+3×#con

+#sel
0

6+3×#con

+#sel
0

pointer analysis 4 1 1 2
trust management 2 1 1* 0
existential & universal
regular path queries (RPQ)

3 0 2 1

existential & universal
parametric RPQ

1+#subst

+#label
0 1+#subst #label

Table II. Summary of worst-case complexities for example applications.

Second, for the transitive closure example, we counted the number of firings
and measured the running times of the generated program on randomly generated
graphs of different sizes. Table III shows the number of edges, number of vertices,
number of rule firings, analyzed upper bound on combinations of facts that make all
hypotheses of rules true, and the running time for each graph. Comparing columns
3 and 4 clearly shows that the number of firings are bounded by the analyzed upper
bound on combinations. The running times are for generated Python programs not
optimized for constant factors. They are averages over five runs, taken on a Sun
Blade 1500 with 1GHz UltraSPARC IIIi CPU and .5GB RAM, running Solaris 8
and Python 2.5. Figures 6 and 7 show that the running time shown in Table III

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



30 · Yanhong A. Liu and Scott D. Stoller

is linear in the number of edges when the number of vertices is fixed, and linear in
the number of vertices when the number of edges is fixed, as analyzed, and that
the number of firings well reflects the running time.

Note that the running time in Figure 7 appears to increase very slightly faster
than linear, but that is because of the relatively more constant-factor time spent on
graphs with fewer vertices. The reason is, when #edge is fixed, graphs with fewer
vertices are denser and thus produce relatively more path facts, and processing a
path fact in a firing has on average a slightly larger constant cost than processing
an edge fact in a firing, because the first rule uses edge in a simpler way. For the
same reason but used in a symmetric way, in Figure 6, relatively slightly less time
is spent on graphs with fewer edges when #vertex is fixed

#edge #vertex #firings total
analyzed bound
#edge×#vertex

running time
in seconds

1000 2000 1,337,878 2,000,000 13.3579
1000 4000 2,904,172 4,000,000 20.5445
1000 6000 4,375,843 6,000,000 26.1082
1000 8000 5,844,170 8,000,000 31.5518
1000 10000 7,431,620 10,000,000 37.5729

200 10000 1,502,830 2,000,000 5.7458
400 10000 2,925,208 4,000,000 11.9971
600 10000 4,435,026 6,000,000 19.5471
800 10000 5,893,465 8,000,000 27.8315

1000 10000 7,431,620 10,000,000 37.6039

Table III. Number of firings and running time for the transitive closure example.

Third, for the even-length path example in Section 7, we counted the number
of firings for rules decomposed using the third way, where an auxiliary relation is
used for the intermediate results, and the number of pairs of facts that need to be
considered when no auxiliary relation is used. Table IV and Figure 8 show that
these two numbers are the same when graph edges are so sparse that is there is
at most one path between any two vertices, but otherwise using auxiliary relations
reduces the number significantly, even asymptotically.

9. RELATED WORK AND CONCLUSION

Datalog and optimization methods for Datalog have been studied extensively in
logic programming and database areas. What distinguishes our results is (i) the
direct transformation of any set of Datalog rules into a complete algorithm and data
structures specialized for those rules, and (ii) precise analysis of the worst-case time
and space complexities supported by the algorithm and the data structures.

Optimization methods for Datalog and more general logic programs include
smart evaluation methods and rewriting methods [Ceri et al. 1990; Abiteboul et al.
1995]. Examples of the former include semi-naive evaluation for bottom-up eval-
uation [Ceri et al. 1990; Naughton and Ramakrishnan 1991], top-down evaluation

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 31

0

2000000

4000000

6000000

8000000

10000000

2000 4000 6000 8000 10000

#edge, where #vertex = 1000

#
fi

ri
n

g
s
 a

n
d

 a
n

a
ly

z
e
d

 b
o

u
n

d

10

20

30

40

50

ru
n

n
in

g
 t

im
e
 (

s
)

analyzed bound

#firings

running time

Fig. 6. Number of firings and running time for the transitive closure example with varying #edge.

0

2000000

4000000

6000000

8000000

10000000

200 400 600 800 1000

#vertex, where #edge = 10000

#
fi

ri
n

g
s
 a

n
d

 a
n

a
ly

z
e
d

 b
o

u
n

d

0

10

20

30

40

50

60

ru
n

n
in

g
 t

im
e
 (

s
)

analyzed bound

#firings

running time

Fig. 7. Number of firings and running time for the transitive closure example with varying #vertex.

with tabling [Tamaki and Sato 1986; Chen and Warren 1996], and static and dy-
namic filtering [Kifer and Lozinskii 1986; 1990]. Examples of the latter include
magic sets transformation [Bancilhon et al. 1986] and partial evaluation [Lloyd and
Shepherdson 1991; Leuschel 1998]. Our method is not an evaluation method be-
cause it transforms the rules rather than evaluating them; our method is not a
rewriting method in that it does not transform within the frameworks of rules or

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



32 · Yanhong A. Liu and Scott D. Stoller

#vertex
#firings with
aux. relation

considered pairs
no aux. relation

200 62 62
400 236 236
600 978 978
800 3,300 3,300

1000 22,673 22,869

2000 2,675,518 4,027,540
4000 5,816,141 14,390,936
6000 8,775,245 30,287,659
8000 11,735,884 52,231,705

10000 14,944,301 82,523,036

Table IV. Number of firings with and without using auxiliary relations for the
even-length path example.

0

20000000

40000000

60000000

80000000

100000000

20
0

40
0

60
0

80
0

10
00

20
00

40
00

60
00

80
00

10
00

0

#vertex, where #edge = 1000

#
fi

ri
n

g
s
 a

n
d

 c
o

n
s
id

e
re

d
 p

a
ir

s

not using  aux relation

using aux relation

Fig. 8. Number of firings when an auxiliary relation is used vs. number of considered pairs when
no auxiliary relation is used, for the even-length path example.

some algebras. Instead, it compiles the rules directly into an implementation in a
standard imperative programming language. The generated implementation per-
forms a kind of bottom-up computation based on careful incremental updates with
data structure support.

Previous methods for evaluating or rewriting Datalog rules mostly do not provide
complexity analysis [Ceri et al. 1990], even though complexity measures and com-
plexity classes for various query languages have been studied [Vardi 1982; Kolaitis
and Vardi 1995; Dantsin et al. 2001; Gottlob and Papadimitriou 2003; Gottlob et al.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 33

2006]. In fact, such analysis can be very difficult. For example, for top-down evalu-
ation with tabling and indexing [Tamaki and Sato 1986; Sagonas et al. 1994; Chen
and Warren 1996; Ramakrishnan et al. 2001], a graph reachability program may
have several different time complexities between linear and quadratic, depending on
the order of the rules, the order of the hypotheses in a rule, the indexing used, etc.
It is well known that a Datalog program runs in O(nk) time where k is the largest
number of variables in any single rule, and n is the number of constants in the facts
and rules, but such a bound is too loose for most problems. There are also methods
for efficient evaluation of Datalog queries using binary decision diagrams [Whaley
and Lam 2004; Lam et al. 2005] and relational databases [Avgustinov et al. 2007],
but these methods do not provide time and space complexity guarantees.

McAllester [McAllester 1999] introduced a method for capturing precise time
complexities of logic programs, by counting the number of prefix firings, i.e., com-
binations of facts that make all prefixes of the hypotheses of a rule true. Ganzinger
and McAllester generalized it to include priorities and deletion of rules [Ganzinger
and McAllester 2001] and furthermore priorities for instances of the same rule
[Ganzinger and McAllester 2002]. Datalog is a subclass of their programming mod-
els, albeit an important subclass. The main difference is that we generate specialized
algorithms and data structures from the rules, while they use an evaluation method
that is interpretive and uses extensive hashing; such a method incurs extra time
overhead, often consumes unnecessarily large space, and gives no tight worst-case
guarantees on time and space. Also, they do not discuss the implication of chang-
ing the order of hypotheses, and do not discuss space complexity. Finally, they did
not attempt to automate the complexity analysis. A follow-up [Nielson et al. 2002]
discusses how to automate the complexity analysis, but does not address the other
limitations.

The idea of considering one new fact at a time and finding other facts using
indexing to form firings of rules is quite straightforward, and is used in many im-
plementations. For example, in compilation of constraint handling rules [Holzbaur
et al. 2005; Schrijvers 2005], the active constraint corresponds to the new fact con-
sidered, although the constraints are more general. The idea of reducing the time
complexity to the number of firings of rules is used at least as early as the 1970s
by Beeri and Bernstein [Beeri and Bernstein 1979], where they give a linear-time
algorithm for solving the attribute closure problem that is expressed using rules.
Again, what distinguishes our work is the generation of precise algorithms and
data structure specialized for any given set of Datalog rules, and furthermore the
generation of precise time and space complexity formulas.

Our derivation of complete algorithms and data structures from Datalog rules
uses and extends Paige’s method [Paige 1981; Paige and Koenig 1982; Paige 1986;
Cai and Paige 1988; Paige 1989; Cai et al. 1991] for fixed-points specifications
built on set-based languages like SETL [Schwartz et al. 1986; Snyder 1990]. There
are four main advancements. First, we start with Datalog rules, which are easier
and clearer than fixed-point specifications. Second, our method for deriving in-
cremental maintenance handles sets of tuples of any length and sets with different
types of tuples, while Paige’s method handles sets and maps, represented as sets of
pairs, of uniform element types. Third, our data-structure design method handles

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



34 · Yanhong A. Liu and Scott D. Stoller

general sets of tuples, and derives more general and sophisticated combinations of
arrays, linked lists, and records than allowed by the based representation [Paige
1989; Cai et al. 1991] in Paige’s method. Fourth, the advancements above allow
our method to generate precise complexity formulas from the Datalog rules, while
Paige’s method does not generate them from fixed-point specifications. The precise
complexity analysis for both time and space as well as the trade-offs, using detailed
size characterizations of the given facts, can help better understand the practical
performance of the generated algorithms.

There are many other program analysis and model-checking methods that use
equations, constraints, automata, and formal languages [Cousot and Cousot 1977;
Heintze and Jaffar 1994; Reps 1998; Aiken 1999; Esparza et al. 2000], and there
are other query languages, but using rules is typically more direct and more gen-
eral. Furthermore, the algorithms and implementations our method generates are
formally derived using a systematic method, in contrast to the ad hoc development
of other analysis algorithms and query evaluation methods; this helps assure the
correctness and complexity guarantees for the generated algorithms and implemen-
tations. We have developed a prototype implementation of the method, used it
in generating efficient algorithms for a number of application problems in program
analysis, model checking, and security, including most of the examples discussed in
this paper; we have also conducted a number of experiments to confirm the ana-
lyzed time complexities [Hristova and Liu 2006; Hristova et al. 2007; Hristova et al.
2007]. We are developing techniques to handle more extensions of Datalog.

Acknowledgment

Deepak Goyal provided very helpful comments on the first draft of this paper.
Discussions with many colleagues, especially Nevin Heintze, Fritz Henglein, Michael
Kifer, David McAllester, Anil Nerode, C.R. Ramakrishnan, Ganesan Ramalingam,
and David Warren, helped greatly in understanding related work.

REFERENCES

Abiteboul, S. 1997. Querying semi-structured data. In Proceedings of the International Con-
ference on Database Theory. 1–18.

Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley,
Reading, Mass.

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. 1983. Data Structures and Algorithms.
Addison-Wesley, Reading, Mass.

Aiken, A. 1999. Introduction to set constraint-based program analysis. Science of Computer
Programming 35, 2-3, 79–111.

Andersen, L. O. 1994. Program analysis and specialization for the C programming language.
Ph.D. thesis, DIKU, University of Copenhagen.

Avgustinov, P., Hajiyev, E., Ongkingco, N., de Moor, O., Sereni, D., Tibble, J., and

Verbaere, M. 2007. Semantics of static pointcuts in AspectJ. In POPL ’07: Proceedings of the

34th annual ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages.
ACM Press, New York, NY, USA, 11–23.

Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J. D. 1986. Magic sets and other strange
ways to implement logic programs. In Proceedings of the 5th ACM SIGACT-SIGMOD Sym-
posium on Principles of Database Systems. 1–16.

Beeri, C. and Bernstein, P. A. 1979. Computational problems related to the design of normal
form relational schemas. ACM Trans. Database Syst 4, 1, 30–59.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 35

Cai, J., Facon, P., Henglein, F., Paige, R., and Schonberg, E. 1991. Type analysis and

data structure selection. In Constructing Programs from Specifications, B. Möller, Ed. North-
Holland, Amsterdam, 126–164.

Cai, J. and Paige, R. 1988. Program derivation by fixed point computation. Science of Computer
Programming 11, 197–261.

Calvanese, D., DeGiacomo, G., Lenzerini, M., and Vardi, M. 2000. Answering regular path
queries using views. In Proceedings of the 16th IEEE International Conference on Data Engi-
neering. 389–398.

Ceri, S., Gottlob, G., and Tanca, L. 1990. Logic Programming and Databases. Springer-Verlag.

Chen, W. and Warren, D. S. 1996. Tabled evaluation with delaying for general logic programs.
Journal of the ACM 43, 1 (Jan.), 20–74.

Clarke, D. E., Elien, J.-E., Ellison, C. M., Fredette, M., Morcos, A., and Rivest, R. L.

2001. Certificate chain discovery in SPKI/SDSI. Journal of Computer Security 9, 4, 285–322.

Clarke, Jr., E. M., Grumberg, O., and Peled, D. A. 1999. Model Checking. MIT Press.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record of
the 4th Annual ACM Symposium on Principles of Programming Languages. 238–252.

Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. 2001. Complexity and expressive
power of logic programming. ACM Comput. Surv. 33, 3, 374–425.

de Moor, O., Lacey, D., and Wyk, E. V. 2003. Universal regular path queries. Higher-Order
and Symbolic Computation 16, 1-2, 15–35.

Ellison, C., Frantz, B., Lampson, B., Rivest, R. L., Thomas, B., and Ylonen, T. 1999. RFC
2693: SPKI Certificate Theory.

Esparza, J., Hansel, D., Rossmanith, P., and Schwoon, S. 2000. Efficient algorithms for
model checking pushdown systems. In Proceedings of the 12th International Conference on
Computer-Aided Verification. Lecture Notes in Computer Science, vol. 1855. Springer-Verlag.

Ganzinger, H. and McAllester, D. A. 2001. A new meta-complexity theorem for bottom-
up logic programs. In Proceedings of the 1st International Joint Conference on Automated
Reasoning. Springer-Verlag, Berlin, 514–528.

Ganzinger, H. and McAllester, D. A. 2002. Logical algorithms. In ICLP ’02: Proceedings of
the 18th International Conference on Logic Programming. Springer-Verlag, 209–223.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In
Proceedings of the 5th International Conference on Logic Programming, R. A. Kowalski and
K. Bowen, Eds. The MIT Press, Cambridge, Massachusetts, 1070–1080.

Gottlob, G., Koch, C., and Schulz, K. U. 2006. Conjunctive queries over trees. Journal of
the ACM 53, 2, 238–272.

Gottlob, G. and Papadimitriou, C. 2003. On the complexity of single-rule datalog queries.
Inf. Comput. 183, 1, 104–122.

Heintze, N. and Jaffar, J. 1994. Set constraints and set-based analysis. In Proceedings of the
2nd International Workshop on Principles and Practice of Constraint Programming. Lecture
Notes in Computer Science, vol. 874. Springer-Verlag, Berlin, 281–298.

Heintze, N. and Tardieu, O. 2001. Ultra-fast aliasing analysis using CLA: A million lines of
C code in a second. In Proceedings of the ACM SIGPLAN ’01 Conference on Programming
Language Design and Implementation. 254–263.

Holzbaur, C., Banda, M. G. D. L., Stuckey, P. J., and Duck, G. J. 2005. Optimizing
compilation of constraint handling rules in hal. Theory and Practice of Logic Programming 5, 4-
5, 503–531.

Hristova, K. and Liu, Y. A. 2006. Improved algorithm complexities for linear temporal logic
model checking of push down systems. In Proceedings of the 7th International Conference on
Verification, Model Checking and Abstract Interpretation. Springer-Verlag, Berlin, 190–206.

Hristova, K., Rothamel, T., Liu, Y. A., and Stoller, S. D. 2007. Efficient type inference for
secure information flow. Technical Report DAR 07-35, Computer Science Department, SUNY
Stony Brook. May. A preliminary version of this work appeared in PLAS’06: Proceedings of
the 2006 ACM SIGPLAN Workshop on Programming Languages and Analysis for Security.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



36 · Yanhong A. Liu and Scott D. Stoller

Hristova, K., Tekle, K. T., and Liu, Y. A. 2007. Efficient trust management policy analysis

from rules. In Proceedings of the 9th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming. 211–220.

Jaffar, J. and Maher, M. J. 1994. Constraint logic programming: A survey. Journal of Logic
Programming 19/20, 503–581.

Jha, S. and Reps, T. W. 2004. Model checking SPKI/SDSI. Journal of Computer Security 12, 3-
4, 317–353.

Kifer, M. and Lozinskii, E. L. 1986. A framework for an efficient implementation of deductive
databases. In Proceedings of the 6th Advanced Database Symposium. IPS Japan, 109–116.

Kifer, M. and Lozinskii, E. L. 1990. On compile-time query optimization in deductive databases
by means of static filtering. ACM Trans. Database Syst 15, 3, 385–426.

Kolaitis, P. G. and Vardi, M. Y. 1995. On the expressive power of datalog: tools and a case
study. Journal of Computer and System Sciences 51, 1 (Aug.), 110–134.

Lam, M. S., Whaley, J., Livshits, V. B., Martin, M. C., Avots, D., Carbin, M., and Unkel,

C. 2005. Context-sensitive program analysis as database queries. In PODS’05: Proceedings
of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. ACM Press, New York, NY, USA, 1–12.

Leuschel, M. 1998. Logic program specialisation. In Partial Evaluation, J. Hatcliff, T. Æ.

Mogensen, and P. Thiemann, Eds. Lecture Notes in Computer Science, vol. 1706. Springer,
155–188.

Li, N. and Mitchell, J. C. 2003. Datalog with constraints: A foundation for trust management
languages. In Proceedings of the 5th International Symposium on Practical Aspects of Declar-
ative Languages, V. Dahl and P. Wadler, Eds. Lecture Notes in Computer Science, vol. 2562.
Springer-Verlag, 58–73.

Li, Q. and Moon, B. 2001. Indexing and querying XML data for regular path expressions. In
Proceedings of the 27th International Conference on Very Large Databases. 361–370.

Liu, Y. A. 2000. Efficiency by incrementalization: An introduction. Higher-Order and Symbolic
Computation 13, 4 (Dec.), 289–313.

Liu, Y. A., Li, N., and Stoller, S. D. 2001. Solving regular tree grammar based constraints. In
Proceedings of the 8th International Static Analysis Symposium. Lecture Notes in Computer
Science, vol. 2126. Springer-Verlag, Berlin, 213–233.

Liu, Y. A., Rothamel, T., Yu, F., Stoller, S., and Hu, N. 2004. Parametric regular path
queries. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation. Washington, DC, 219–230.

Liu, Y. A. and Stoller, S. D. 2002. Program optimization using indexed and recursive data
structures. In Proceedings of the ACM SIGPLAN 2002 Workshop on Partial Evaluation and
Semantics-Based Program Manipulation. 108–118.

Liu, Y. A. and Stoller, S. D. 2003. Dynamic programming via static incrementalization.
Higher-Order and Symbolic Computation 16, 1-2 (Mar.-June), 37–62. Special issue in memory
of Bob Paige.

Liu, Y. A. and Stoller, S. D. 2006. Querying complex graphs. In Proceedings of the 8th
International Symposium on Practical Aspects of Declarative Languages. Lecture Notes in
Computer Science, vol. 3819. Springer-Verlag, Berlin, 199–214.

Liu, Y. A., Stoller, S. D., and Teitelbaum, T. 1998. Static caching for incremental computa-
tion. ACM Trans. Program. Lang. Syst. 20, 3 (May), 546–585.

Liu, Y. A., Stoller, S. D., and Teitelbaum, T. 2001. Strengthening invariants for efficient
computation. Science of Computer Programming 41, 2 (Oct.), 139–172.

Liu, Y. A. and Yu, F. 2002. Solving regular path queries. In Proceedings of the 6th International
Conference on Mathematics of Program Construction. Lecture Notes in Computer Science, vol.
2386. Springer-Verlag, Berlin, 195–208.

Lloyd, J. W. and Shepherdson, J. C. 1991. Partial evaluation in logic programming. J. Log.
Program. 11, 3&4, 217–242.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.



From Datalog Rules to Efficient Programs with Time and Space Guarantees · 37

McAllester, D. A. 1999. On the complexity analysis of static analyses. In Proceedings of the

6th International Static Analysis Symposium. Lecture Notes in Computer Science, vol. 1694.
Springer-Verlag, Berlin, 312–329.

Naughton, J. F. and Ramakrishnan, R. 1991. Bottom-up evaluation of logic programs. In
Computational Logic: Essays in Honor of Alan Robinson, J.-L. Lassez and G. Plotkin, Eds.
The MIT Press, Cambridge, Mass., 640–700.

Nielson, F., Nielson, H. R., and Seidl, H. 2002. Automatic complexity analysis. In Proceedings
of the 11th European Symposium on Programming. Lecture Notes in Computer Science, vol.
2305. Springer-Verlag, Berlin, 243–261.

Paige, R. 1981. Formal Differentiation: A Program Synthesis Technique. Computer Science and
Artificial Intelligence, vol. 6. UMI Research Press, Ann Arbor, Michigan. Revision of Ph.D.
dissertation, New York University, 1979.

Paige, R. 1986. Programming with invariants. IEEE Software 3, 1 (Jan.), 56–69.

Paige, R. 1989. Real-time simulation of a set machine on a RAM. In Computing and Information,
Vol. II. Canadian Scholars Press, 69–73. Proceedings of ICCI ’89: The International Conference
on Computing and Information, Toronto, Canada, May 23-27, 1989.

Paige, R. and Koenig, S. 1982. Finite differencing of computable expressions. ACM Trans.
Program. Lang. Syst. 4, 3 (July), 402–454.

Ramakrishnan, I. V., Sekar, R. C., and Voronkov, A. 2001. Term indexing. In Handbook
of Automated Reasoning, J. A. Robinson and A. Voronkov, Eds. Elsevier and MIT Press,
Chapter 26, 1853–1964.

Reps, T. 1998. Program analysis via graph reachability. Information and Software Technol-
ogy 40, 11-12 (Nov.), 701–726. Special issue on program slicing.

Sagonas, K., Swift, T., and Warren, D. S. 1994. XSB as a deductive database. In Proceedings
of the 5th ACM SIGACT-SIGMOD Symposium on Principles of Database Systems.

Schrijvers, T. 2005. Analyses, optimizations and extensions of constraint handling rules. Ph.D.
thesis, Katholieke Universiteit Leuven, Belgium.

Schwartz, J. T., Dewar, R. B. K., Dubinsky, E., and Schonberg, E. 1986. Programming with
Sets: An Introduction to SETL. Springer-Verlag, New York.

Snyder, W. K. 1990. The SETL2 Programming Language. Technical report 490, Courant
Institute of Mathematical Sciences, New York University. Sept.

Stoller, S. D. and Liu, Y. A. 2007. Generating efficient security software from policies. In
Department of Defense Sponsored Information Security Research: New Methods for Protecting
Against Cyber Threats. John Wiley & Sons, New York, 416–424.

Tamaki, H. and Sato, T. 1986. OLD resolution with tabulation. In Proceedings of the 3rd
International Conference on Logic Programming, E. Shapiro, Ed. Springer-Verlag, Berlin, 84–

98.

Tekle, K. T., Hristova, K., and Liu, Y. A. 2008. Generating specialized rules and programs
for demand-driven analysis. In Proceedings of the 12th International Conference on Algebraic
Methodology and Software Technology. Springer-Verlag, Berlin, Urbana, Illinois.

Vardi, M. Y. 1982. The complexity of relational query languages (extended abstract). In STOC
’82: Proceedings of the fourteenth annual ACM symposium on Theory of computing. ACM
Press, New York, NY, USA, 137–146.

Whaley, J. and Lam, M. S. 2004. Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference on Program-
ming Language Design and Implementation. 131–144.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, 20YY.


