
Role-Based Access Control:

A Corrected and Simplified Specification∗

Yanhong A. Liu Scott D. Stoller

Computer Science Dept., State Univ. of New York at Stony Brook, Stony Brook, NY 11794

{liu,stoller}@cs.sunysb.edu

Abstract

This paper describes a corrected and simplified specification of role-based access control (RBAC)

based on the specification in the ANSI standard for RBAC. We give a complete specification of core
RBAC, explaining the methodology we used in developing it; we then give a complete specification of
hierarchical RBAC, with an additional option for managing the relationship on roles; and we also describe
a specification of constrained RBAC, making extension relationships among RBAC components clear.
We compare our specification with the standard and point out errors and unnecessary complications we
found. We also describe the principles for developing clear and simpler specifications, and summarize
our method and results for generating efficient implementations.

1 Introduction

Role-based access control (RBAC) is a framework for controlling user access to resources based on roles. It

can significantly reduce the cost of access control policy administration and is increasingly widely used in large
organizations. The ANSI standard for RBAC was developed “in recognition of a need among government
and industry purchasers of information technology products for a consistent and uniform definition of role-

based access control features”[Ame]. It was approved in 2004 after several rounds of public review [SFK00,

JT00, FSG+01], building on much research during the preceding decade (e.g., [FK92, GB98]), although the

idea of roles in access control can be traced back at least two decades [LHM84].

The standard has four components: core RBAC defines core functionalities on permissions, users, ses-
sions, and roles, while the other three components are extensions that add support for a hierarchy of roles,
constraints on the roles of a user, and constraints on the active roles in a session, respectively. The func-

tionalities are specified formally and precisely in a set-based specification language, Z [ISO, Spi92].

Because of the importance of RBAC and the ANSI standard for it, we are using them as an application

in our research on optimization by incrementalization [LSG+05]. Our basic idea is to start with straightfor-

ward but likely inefficient implementations of the functionalities and to generate sophisticated and efficient
implementations following a systematic optimization method.

Our powerful optimization method allows one to write clear and modular specifications that may contain
expensive queries if executed straightforwardly, and to automatically generate efficient, though not clear
or modular, implementations by incrementally maintaining the results of expensive queries with respect to
updates to the data they depend on. This enables us to separate “what” from “how” in specifying the
functionalities in a system like RBAC, and to arrive at clearer and simpler specifications that have higher
assurance of correctness.

∗This work was supported in part by ONR under grants N00014-04-1-0722 and N00014-02-1-0363 and NSF under grant
CCR-0306399.

1

Following this approach, we found a number of errors and complications in the standard. Most of them
appear to be caused by interaction with efficiency concerns. For example, the AddInheritance command in
limited hierarchical RBAC can never add any inheritance because its pre-condition, which uses an incorrect
definition to retrieve immediate inheritance from transitive inheritance, is always false. For another example,
five of the seven mapping functions defined in the core RBAC reference model are unnecessary, and so are
the updates to assigned users and assigned permissions in all core RBAC administrative commands.

This paper presents a corrected and simplified specification of RBAC. We use an object-oriented lan-
guage with high-level operations over sets and relations and with a straightforward execution semantics; the
language is also easier to read and write than Z. We use the same names and pre-conditions for commands
and functions as in the standard.

We give a complete specification of core RBAC, explaining the methodology we used in developing it.
We then give a complete specification of hierarchical RBAC, with an additional option for managing the
relationship on roles. We also describe a specification of constrained RBAC, making extension relation-
ships among RBAC components clear. Finally, we compare our specification with the standard and point
out errors and unnecessary complications we found; we describe in particular the principles for developing
clearer and simpler specifications more extensively, summarize our method and results for generating efficient
implementations, and discuss future work.

The rest of this paper is organized as follows. Section 2 gives an overview of the ANSI standard for
RBAC, and defines the language we use for the specification. Sections 3, 4, and 5 specify core RBAC,
hierarchical RBAC, and constrained RBAC, respectively. Section 6 contains discussions and comparison
with the standard. Section 7 concludes.

2 Preliminaries

ANSI standard for RBAC. The ANSI standard for RBAC has the following four components, where

SSD (static separation of duties) and DSD (dynamic separation of duties) are also called constrained RBAC.

• core RBAC: core support for functionalities relating permissions, users, sessions, and roles.

• hierarchical RBAC: added support for a hierarchy of roles.

• SSD: added support for constraints on the roles of a user.

• DSD: added support for constraints on the active roles in a session.

For each component, the standard defines a reference model and a set of functionalities. The reference
model refers to the basic data manipulated in the component, such as the set of roles, the set of users, and
the relationship between roles and users. The functionalities are divided into four categories:

• administrative commands: commands for administrators to update RBAC sets and relations that are
static, i.e., that are independent of user sessions.

• supporting system functions: functions that support user activities which are dynamic, i.e., that are
performed as part of user sessions.

• review functions: mandatory functions for administrators to query RBAC sets and relations.

• advanced review functions: additional, optional functions for administrators to query RBAC sets and
relations.

The standard uses the Z specification language [ISO, Spi92] to formally define the commands and func-

tions, though the reference models and the relationships among components are described in English. We
use the following language instead of Z for reasons explained below.

2

Language. Figure 1 defines the specification language used in this paper, where X∗, X+, and X? denote
that X occurs 0 or more, 1 or more, and 0 or 1 times, respectively.

A specification is a set of classes, each defining a set of fields and a set of methods, possibly with pre-
conditions. Types may be specified not only for fields but also for variables, method parameters, and return
values, although we omit those types from the grammar. We generally omit types when they can be inferred
from the specification. Note the types for sets and tuples, the special for statement, and the expression for

spec ::= class +

class ::= class classname (extends classname +)?

(fieldname : type)∗

(methodname (varname ∗): (pre-condition:expr ;)?stmt)∗

type ::= set(type) | tuple(type +) | classname | int | ...

stmt ::= for (varname in expr)+| expr : stmt

| expr .methodname (expr ∗) | return expr

| expr .fieldname = expr | varname = expr | stmt stmt | ...

expr ::= {expr : (varname in expr)+| expr }

| expr .methodname (expr ∗)

| expr .fieldname | varname | expr and expr | ...

classname , fieldname , methodname , varname : identifiers

Figure 1: Language.

set comprehension. We make substantial use of sets and tuples because they are well suited for high-level
specifications.

For the loop for v1 in e1, ..., vk in ek | e : s, each variable vi enumerates elements of the set value of
expression ei, and for each combination of values of v1 through vk, if the value of Boolean expression e is
true, then execute s. We read the entire statement as “for each v1 in e1,..., and vk in ek such that e, do s”.
We omit | e when e is true.

For the set comprehension {e0: v1 in e1, ..., vk in ek | e}, each variable vi enumerates elements of the set
value of expression ei, and for each combination of values of v1 through vk, if the value of Boolean expression
e is true, then the value of expression e0 is an element of the resulting set. We read the expression as “the
set of e0 where v1 is from e1,..., and vk is from ek such that e”. We omit | e when e is true.

We use the following kinds of expressions for other operations on sets and tuples. We use standard infix
set notation instead of object-oriented notation, although we express them in ASCII.

{x1, ..., xk} a set with elements x1, ..., xk

[x1, ..., xk] a tuple with elements x1, ..., xk

{[x1,y1], ...,[xk,yk]} a binary relation, i.e., a set of 2-tuples, i.e., pairs
S + T , S - T union and difference, respectively, of sets S and T

S subset T whether S is a subset of or equal to T

x in S, x notin S whether or not, respectively, x is an element of S

exists x in S | e whether some element x in S satisfies condition e

forall x in S | e whether every element x in S satisfies condition e

#S number of elements in S

They are mostly like expressions on sets and tuples in SETL [SDDS86]. We abbreviate forall x in

S | (forall y in T | e) as forall x in S, y in T | e, and abbreviate forall x in S, y in S | e as
forall x, y in S | e; similarly for exists .

Other statements and expressions are as in popular object-oriented languages such as Java. Only side-
effect-free methods may be invoked in expressions, and their bodies are always of the form return expr .

3

We use the convention that this.methodname (expr ∗) and this.fieldname are abbreviated as method-

name (expr ∗) and fieldname, respectively. We abbreviate and as a comma. We use indentation to indicate

scoping. We use // to begin a comment that lasts till the end of the line.
The set operations and other constructs in our language have their standard semantics, allowing formal

verification of the specifications. Our language differs from the Z specification language used in the ANSI

standard for RBAC in four main ways: (1) it supports modularity and inheritance, which is needed for

describing a system with multiple components where a component may extend others, (2) it is executable—

the semantics of a specification corresponds to a straightforward implementation of the specification, (3) it is

easy to read, especially set comprehension, since the subexpressions appear in the same order as in a natural

English description, and (4) it is easy to write, since it uses only ASCII characters.

3 Specification of core RBAC

We specify the core RBAC component as a class CoreRBAC, whose fields specify the reference model, and
whose methods specify the functionalities.

class CoreRBAC:

... // reference model

... // functionalities

We define the following sets and relations for the reference model of core RBAC, explained below.

OBJS: set(Object) // an operation-object pair

OPS: set(Operation) // is called a permission.

USERS: set(User)

ROLES: set(Role)

PR: set(tuple(tuple(Operation,Object),Role)) // PR subset (OPS * OBJS) * ROLES

UR: set(tuple(User,Role)) // UR subset USERS * ROLES

SESSIONS: set(Session)

SU: set(tuple(Session,User)) // SU subset SESSIONS * USERS

SR: set(tuple(Session,Role)) // SR subset SESSIONS * ROLES

A system has sets of objects, operations, users, roles, and sessions; their elements are of types Object,
Operation, User, Role, and Session, respectively. A operation-object pair, called a permission, denotes
an allowed operation on an object. A permission-role pair in PR denotes a permission assigned to a role. A
user-role pair in UR denotes a user assigned to a role. A session-user pair in SU denotes a session and the
unique user of the session. A session-role pair in SR denotes a session and a role active in the session.

We define below the functionalities summarized in the following table for core RBAC.

Categories Core RBAC Functionalities

administrative commands add/delete user/role, assign/deassign user, grant/revoke permission
supporting system functions create/delete session, add/drop active role, check access
review functions assigned users/roles
advanced review functions role/user permissions, session roles/permissions, role/user ops on obj

Administrative commands. Adding an element to a set of users or roles (AddUser, AddRole) can be

specified in a similar way; the same is true for adding an element to a relation (AssignUser adding to UR ,

and GrantPermission adding to PR , except that the latter uses nested tuples).

AddUser(user):

pre-condition: user notin USERS;

USERS = USERS + {user}

4

AddRole(role):

pre-condition: role notin ROLES;

ROLES = ROLES + {role}

AssignUser(user, role):

pre-condition: user in USERS, role in ROLES, [user,role] notin UR;

UR = UR + {[user, role]}

GrantPermission(operation, object, role):

pre-condition: operation in OPS, object in OBJS, role in ROLES,

[[operation,object],role] notin PR;

PR = PR + {[[operation,object],role]}

Deleting an element is symmetric to adding an element, but possibly with two kinds of additional updates.

First, if an element is deleted from a set, then from all relations defined using the set, all pairs that contain
the deleted element must be deleted. Second, DeleteUser, DeleteRole, and DeassignUser may affect

SESSIONS, because sessions are created by users and have active roles, and must satisfy the constraint that
a session can have a role only if the user of the session is assigned that role. Specifically, DeleteUser may

either delete associated sessions or leave the sessions to terminate normally; DeleteRole and DeassignUser

have a third option of deleting only the specified role from the sessions. As in the standard, we formally

specify only the first option, i.e., deleting all associated sessions, for all three operations, illustrating both
kinds of additional updates; the other two options are simpler to specify.

DeleteUser(user):

pre-condition: user in USERS;

UR = UR - {[user,r]: r in ROLES} // maintain UR

for s in SESSIONS | [s,user] in SU: // maintain SESSIONS

DeleteSession(user,s) // DeleteSession is defined below

USERS = USERS - {user} // update last for pre-condition of DeleteSession

DeleteRole(role):

pre-condition: role in ROLES;

PR = PR - {[[op,obj],role]: op in OPS, obj in OBJS} // maintain PR

UR = UR - {[u,role]: u in USERS} // maintain UR

for s in SESSIONS, u in USERS | [s,u] in SU, [s,role] in SR: // maintain SESSIONS

DeleteSession(u,s)

ROLES = ROLES - {role} // update last for update of SR in DeleteSession

DeassignUser(user, role):

pre-condition: user in USERS, role in ROLES, [user,role] in UR;

for s in SESSIONS | [s,user] in SU, [s,role] in SR: // maintain SESSIONS

DeleteSession(user,s)

UR = UR - {[user,role]}

RevokePermission(operation, object, role):

pre-condition: operation in OPS, object in OBJS, role in ROLES,

[[operation,object],role] in PR;

PR = PR - {[[operation,object],role]}

Supporting system functions. CreateSession creates a session for a user with an initial set of active

roles; it first checks that the user is assigned those roles, and then adds the appropriate elements to SU, SR,

and SESSIONS. DeleteSession deletes all elements of SU, SR, and SESSIONS that are associated with the
session.

5

CreateSession(user, session, ars):

pre-condition: user in USERS, session notin SESSIONS,

ars subset AssignedRoles(user); // AssignedRoles is defined below

SU = SU + {[session,user]}

SR = SR + {[session,r]: r in ars}

SESSIONS = SESSIONS + {session}

DeleteSession(user, session):

pre-condition: user in USERS, session in SESSIONS, [session,user] in SU;

SU = SU - {[session,user]}

SR = SR - {[session,r]: r in ROLES} // maintain SR

SESSIONS = SESSIONS - {session}

Adding and deleting active roles adds to and deletes from SR, respectively; adding an active role also first

checks that the user of the session is assigned that role. Note the last condition calls AssignedRoles, as

done in CreateSession, but it can also be written as user in AssignedUsers(role) or as [user,role]
in UR.

AddActiveRole(user, session, role):

pre-condition: user in USERS, session in SESSIONS, role in ROLES,

[session,user] in SU, [session,role] notin SR,

role in AssignedRoles(user);

SR = SR + {[session,role]}

DropActiveRole(user, session, role):

pre-condition: user in USERS, session in SESSIONS, role in ROLES,

[session,user] in SU, [session,role] in SR;

SR = SR - {[session,role]}

CheckAccess checks whether an operation on an object is allowed in a session, i.e., whether the session has

an active role that is assigned the operation-object pair as a permission.

CheckAccess(session, operation, object):

pre-condition: session in SESSIONS, operation in OPS, object in OBJS;

return exists r in ROLES | [session,r] in SR, [[operation,object],r] in PR

Review functions and advanced review functions. These functions are queries on the basic sets and
relations.

Most of them (AssignedUsers, AssignedRoles, RolePermissions, SessionRoles, RoleOperationsOnObject)

are over one relation, i.e., given a value for the left or right component of a relation, find all associated values

for the other component in the relation. For example, the first two are review functions defined by:

AssignedUsers(role):

pre-condition: role in ROLES;

return {u: u in USERS | [u,role] in UR}

AssignedRoles(user):

pre-condition: user in USERS;

return {r: r in ROLES | [user,r] in UR}

The other functions (UserPermissions, SessionPermissions, UserOperationsOnObject) are over two

relations, i.e., given a value for one component of a relation, equate the other component of the relation with
one component of a second relation, and find all associated values for the other component of the second

relation. Two of the functions (RoleOperationsOnObject, UserOperationsOnObject) involve lookups over

nested tuples but are otherwise similar to the other functions. All advanced review functions are defined
below:

6

RolePermissions(role):

pre-condition: role in ROLES;

return {[op,obj]: op in OPS, obj in OBJS | [[op,obj],role] in PR}

UserPermissions(user):

pre-condition: user in USERS;

return {[op,obj]: r in ROLES, op in OPS, obj in OBJS | [user,r] in UR, [[op,obj],r] in PR}

SessionRoles(session):

pre-condition: session in SESSIONS;

return {r: r in ROLES | [session,r] in SR}

SessionPermissions(session):

pre-condition: session in SESSIONS;

return {[op,obj]: r in ROLES, op in OPS, obj in OBJS | [session,r] in SR, [[op,obj],r] in PR}

RoleOperationsOnObject(role, object):

pre-condition: role in ROLES, object in OBJS;

return {op: op in OPS | [[op,object],role] in PR}

UserOperationsOnObject(user, object):

pre-condition: user in USERS, object in OBJS;

return {op: r in ROLES, op in OPS | [user,r] in UR, [[op,object],r] in PR}

4 Specification of hierarchical RBAC

Hierarchical RBAC allows a role to inherit permissions from other roles without being granted those per-
missions directly. The ANSI standard for hierarchical RBAC has two sub-components: general hierarchy,
which allows multiple inheritance, and limited hierarchy, which allows only single inheritance. For both of
them, the standard requires that the inheritance relation be acyclic.

We consider the same two subcomponents, for consistency with the standard. However, we see little
motivation for limited hierarchy. Single inheritance in object-oriented languages avoids the problem of a
class inheriting conflicting definitions of a method, but that problem does not arise in role hierarchy. While
inheriting from more than one role may give a role too much power, a role may acquire too much power from
other operations anyway, so other controls, such as separation of duties in constrained RBAC, are used to
prevent this.

We also consider a third option, which we call unrestricted inheritance, where the inheritance relation
is unrestricted and thus may contain cycles. Although managerial hierarchies are acyclic, roles and their
relationships do not always mimic managerial hierarchies, and the extra flexibility from allowing cycles may
be useful. A cycle simply means that all the roles in the cycle are in an equivalence class and indeed have
the same permissions. This is useful compared with forcing all the roles in the cycle to be one role because
an inheritance edge in the cycle may be removed later and the remaining inheritance edges can still be used.

For general and limited hierarchical RBAC, we define the following two classes, one for each of the

subcomponents, where the new and redefined parts are specified below.

class GeneralHierarchicalRBAC extends CoreRBAC:

... // new inheritance relation in reference model

... // new and redefined functionalities

class LimitedHierarchicalRBAC extends GeneralHierarchicalRBAC:

... // redefined functionalities

The third option discussed above could be defined as a new subcomponent that extends core RBAC, and
general hierarchical RBAC could extend it instead of core RBAC.

7

We define the inheritance relation INH to be a set of role pairs given explicitly by administrators, not the

reflexive-transitive closure of the role pairs given.

INH: set(tuple(Role,Role))

A pair [r1,r2] in INH , where r1 6= r2, denotes that r1 inherits from r2; the implication is that a user

assigned r1 can activate not only r1 but also r2, without having to be assigned r2 directly. We call r1
the heir and r2 the bearer. We use INH* to denote the transitive-reflexive closure of INH. The acyclicity
requirement is

forall r1, r2 in ROLES | [r1,r2] in INH* , [r2,r1] in INH* ⇒ r1=r2

and the single inheritance requirement is

forall r, r1, r2 in ROLES | [r,r1] in INH , [r,r2] in INH ⇒ r1=r2

The functionalities of general hierarchical RBAC are the same as those of core RBAC except for the
changes summarized in the following table, where + indicates additional functionalities, and ∓ indicates
redefined functionalities.

Categories General Hierarchical RBAC Functionalities

administrative commands + add/delete inheritance, + add ascendant/descendant
supporting system functions∓ create session, ∓ add active role
review functions + authorized users/roles
advanced review functions ∓ role/user permissions, ∓ role/user ops on obj

The functionalities of limited hierarchical RBAC are the same as those of general hierarchical RBAC except
for a modification to the administrative command AddInheritance. In fact, all functionalities except for
AddInheritance are the same for unrestricted inheritance, general hierarchy, and limited hierarchy, so we
describe them together below.

The administrative command AddInheritance simply adds a new pair to INH for unrestricted inheri-

tance; for general hierarchy, its precondition checks acyclicity, and for limited hierarchy, also checks single
inheritance. DeleteInheritance simply removes a pair from INH. AddAscendant and AddDescendant are

self explanatory, although we would call them AddHeir and AddBearer, respectively.

AddInheritance(heir,bearer): // for unrestricted inheritance

pre-condition: heir in ROLES, bearer in ROLES, [heir,bearer] notin INH, heir != bearer;

INH = INH + {[heir,bearer]}

AddInheritance(heir,bearer): // for general hierarchy

... // same as above except to add, in the pre-condition,

// [bearer,hier] notin INH*, to check acyclicity

AddInheritance(heir,bearer): // for limited hierarchy

... // same as above except to also add, in the pre-condition,

// not exists r in ROLES | [heir,r] in INH, to check single inheritance

DeleteInheritance(heir,bearer):

pre-condition: heir in ROLES, bearer in ROLES, [heir,bearer] in INH;

INH = INH - {[heir,bearer]}

AddAscendant(heir,bearer):

AddRole(heir)

AddInheritance(heir,bearer)

AddDescendant(bearer,heir):

AddRole(bearer)

AddInheritance(heir,bearer)

8

The supporting system functions CreateSession and AddActiveRole are minimally modified to call

a new review function; this change allows a user to activate inherited roles. Following the standard, the
function CheckAccess is inherited from core RBAC and does not use the inheritance relation; to use a

permission from inherited roles, a user must find an authorized role that is assigned that permission and
explicitly activate that role for the session during CreateSession or using AddActiveRole.

CreateSession(user, session, ars):

... // same as in CoreRBAC except that, in the precondition,

// AssignedRoles is replaced with AuthorizedRoles, which is defined below

AddActiveRole(user, session, role):

... // same change as for CreateSession above

New review functions (AuthorizedUsers, AuthorizedRoles) and redefined advanced review functions

(RolePermissions, UserPermissions, RoleOperationsOnObject, UserOperationsOnObject) use the in-

heritance relation together with UR and PR . Note that SessionRoles and SessionPermissions are inherited

from core RBAC and do not use the inheritance relation, consistent with the definition of CheckAccess.

AuthorizedUsers(role):

pre-condition: role in ROLES;

return {u: heir in ROLES, u in USERS | [heir,role] in INH*, [u,heir] in UR}

AuthorizedRoles(user):

pre-condition: user in USERS;

return {r: heir in ROLES, r in ROLES | [user,heir] in UR, [heir,r] in INH*}

RolePermissions(role):

pre-condition: role in ROLES;

return {[op,obj]: bearer in ROLES, op in OPS, obj in OBJS |

[role,bearer] in INH*, [[op,obj],bearer] in PR}

UserPermissions(user):

pre-condition: user in USERS;

return {[op,obj]: heir in ROLES, bearer in ROLES, op in OPS, obj in OBJS |

[user,heir] in UR, [heir,bearer] in INH*, [[op,obj],bearer] in PR}

RoleOperationsOnObject(role, object):

pre-condition: role in ROLES, object in OBJS;

return {op: bearer in ROLES, op in OPS |

[role,bearer] in INH*, [[op,object],bearer] in PR}

UserOperationsOnObject(user, object):

pre-condition: user in USERS, object in OBJS;

return {op: heir in ROLES, bearer in ROLES, op in OPS | [user,heir] in UR,

[heir,bearer] in INH*, [[op,object],bearer] in PR}

5 Specification of constrained RBAC

Constrained RBAC supports separation of duty, whose purpose is to reduce fraud by limiting the power of

individual users (statically constrained) or individual sessions (dynamically constrained), so fraud can be

perpetrated only through collusion among multiple users or multiple sessions.

9

Static separation of duty. A static separation of duty (SSD) constraint is characterized by a name, used

to identify it in administrative commands, a set rs of roles, and a natural number n, called the cardinality,

such that 1 <= n <= #rs-1. In our specification, the meaning of an SSD constraint is that a user can be
assigned to n or fewer roles from rs. We find this interpretation more intuitive than the one in the standard,

which says that 2 <= n <= #rs and that a user can be assigned to fewer than n roles from rs. Our formal
model of an SSD constraint includes a set SsdNAMES of SSD constraint names, a relation SsdNR that relates a

name in SsdNAMES to a role in the associated role set, and a relation SsdNC that relates a name in SsdNAMES

to its unique associated cardinality.

SsdNAMES: set(SsdName)

SsdNR: set(tuple(SsdName, Role))

SsdNC: set(tuple(SsdName, int))

SSD constraints can be added to core RBAC or general or limited hierarchical RBAC. In core RBAC
with SSD constraints, the assignment of roles to users must satisfy

forall u in USERS, [name,n] in SsdNC |

#{r: r in AssignedRoles(u) | [name,r] in SsdNR} <= n

In general or limited hierarchical RBAC with SSD constraints, the user assignment and inheritance relation
must satisfy the same constraints except with AssignedRoles replaced with AuthorizedRoles.

The functionalities are described below. We omit the detailed definitions because they are straightforward
aside from the points explained.

Core RBAC with SSD constraints extends core RBAC. All administrative commands are inherited
except that AssignUser is redefined to also check that the updated user assignment would satisfy the

SSD constraints. New administrative commands (Create/DeleteSsdSet, Add/DeleteSsdRoleMember,

SetSsdSetCardinality) are added to create, modify, and delete SSD constraints; the non-deletion com-

mands check that the new or updated SSD constraint would be satisfied, and that the cardinality would be

in the required range. New review functions (SsdRoleSets, SsdRoleSetRoles, SsdRoleSetCardinality)

are introduced to query SSD constraints. Supporting system functions and advanced review functions are
simply inherited.

General hierarchical RBAC with SSD constraints is defined similarly, except that (1) it extends general

hierarchical RBAC and redefines also command AddInheritance to check that the SSD constraints would be
satisfied, and (2) it also extends core RBAC with SSD constraints and just redefines non-deletion commands.

These redefinitions simply use AuthorizedRoles in place of AssignedRoles.
Limited hierarchical RBAC with SSD constraints is defined by extending general hierarchical RBAC with

SSD constraints and just redefining AddInheritance to add a check for single inheritance.

Dynamic separation of duty. A dynamic separation of duty (DSD) constraint is also characterized by

a name, a set rs of roles, and a cardinality n such that 1 <= n <= #rs-1. In our specification, the meaning

is that a session can have n or fewer roles from rs that are active. Our interpretation of the cardinality is

different than the interpretation in the standard, just like for SSD constraints. Our formal model of DSD
constraints is very similar to our model of SSD constraints.

DsdNAMES: set(DsdName)

DsdNR: set(tuple(DsdName, Role))

DsdNC: set(tuple(DsdName, int))

DSD constraints can be added to core RBAC, general or limited hierarchical RBAC. In all of them, the
following condition must be satisfied.

forall s in SESSIONS, [name,n] in DsdNC |

#{r: r in SessionRoles(s) | [name,r] in DsdNR} <= n

10

Core RBAC with DSD constraints extends core RBAC. All administrative commands are inherited.
New administrative commands are added to create, modify, and delete DSD constraints, just as for SSD
above, except that DSD constraints are checked instead of SSD constraints. All supporting system functions
are inherited except that CreateSession and AddActiveRole are redefined to also check that the DSD
constraints would be satisfied. New review functions are introduced to query DSD constraints, similar to
those for SSD above. Advanced review functions are simply inherited.

General hierarchical RBAC with DSD constraints is defined similarly, except that (1) it extends general hi-

erarchical RBAC and simply inherits all definitions, and (2) it also extends core RBAC with DSD constraints

and just redefines CreateSession and AddActiveRole to use AuthorizedRoles in place of AssignedRoles.
Limited hierarchical RBAC with DSD constraints is defined by extending general hierarchical RBAC

with DSD constraints and just redefining AddInheritance to be the same as in limited hierarchical RBAC.

6 Discussion and comparison with the ANSI standard

We discuss the principles we use for developing clearer and simpler specifications with higher assurance for
correctness. Compared with the standard, we corrected a number of errors and eliminated a number of
complications and redundancies, most of which appear to be caused by efficiency considerations.

Maintaining basic, not derived, sets and relations. For clarity and simplicity, only basic data should
be maintained in specifications, where basic data refers to data given and modified externally, in contrast to
derived data that can be computed from basic data. Following this principle, we found an error in hierarchical
RBAC, unnecessary complications in core RBAC and hierarchical RBAC, and omissions in the standard.

The error is that the pre-condition of the AddInheritance command in limited hierarchical RBAC is
always false, due to the incorrect definition of the inheritance relation in terms of its reflexive-transitive

closure. The standard maintains the derived relation INH* (denoted RH in the standard) instead of the basic

relation INH. This makes some functionalities more efficient, but it requires giving a definition of INH in
terms of INH*. The definition given in Section 5.2 of the standard is incorrect, because it does not remove the
reflexive relationships and therefore does not completely undo the effects of the reflexive-transitive closure.
This makes the pre-condition of AddInheritance in limited hierarchical RBAC always false, and could also
affect other uses of the direct inheritance relation. The most straightforward remedy is to maintain the basic
relation INH and use INH* as needed, as done in Section 4 of this paper. Fixing the incorrect definition is not
as good a remedy, because it results in an unnecessarily complicated specification. Maintaining INH instead
of INH* yields much simpler definitions of AddInheritance and DeleteInheritance.

Maintaining INH instead of INH* also provides a more natural semantics for DeleteInheritance. For
example, consider this sequence of calls: AddInheritance(r1,r2), AddInheritance(r1,r3),
AddInheritance(r2,r3), DeleteInheritance(r2,r3). With our specification, the last two calls cancel
each other out exactly; in other words, AddInheritance and DeleteInheritance are inverses. With the
definition in the standard, the call to DeleteInheritance also removes the inheritance relation between r1

and r3.
The other main unnecessary complications in core RBAC are that five of the seven mapping functions de-

fined in the reference model (assigned users, assigned permissions, Op, Ob, and avail session perms)

are unnecessary, and so are all updates to assigned users and assigned permissions in all administrative
commands, so we eliminated them. These mapping functions are not used in the rest of the specification. In
fact, the functions corresponding to assigned users, assigned permissions, and avail session perms

are also defined as review or advanced review functions, called AssignedUsers, RolePermissions, and
SessionPermissions, respectively; the other two can be defined as review functions too if needed. Note
that incrementally updating the result of a query, such as AssignedUsers, is needed only for efficiency rea-
sons, because the result can always be computed from scratch; such updates need not be specified because

they can be derived from the query and how the data it depends on are updated, as we do in [LSG+05].

11

Similarly, we removed the two mapping functions, authorized permissions and authorized users, in
the reference model of hierarchical RBAC. Another small simplification we made to core RBAC is that we
removed the set PERMS , which equals OPS ×OBJS , so the few uses of PERMS are replaced with uses of OPS and
OBJS .

Omissions of functionalities were found because our design principle allows one to freely update and
query basic data as needed; we did not add them to the specifications earlier to avoid distraction from

the main concepts. First, basic data is given and updated externally, so functionalities should be provided
for appropriate updates. The standard lacks commands to add and delete objects and operations. These

commands can be defined similarly to commands for adding and deleting users and roles. Similarly, some

query functions seem needed but not provided. For example, in hierarchical RBAC, since a user must
explicitly activate an inherited role to use its permissions, one needs a function PermissionRoles to find

the set of roles granted a given permission and, furthermore, a function UserPermissionRoles to find the
set of roles authorized to the user and granted the given permission:

PermissionRoles(operation,object):

pre-condition: operation in OPS, object in OBJS;

return {r: r in ROLES | [[operation,object],r] in PR}

UserPermissionRoles(user,operation,object):

pre-condition: user in USERS, operation in OPS, object in OBJS;

return {r: r in ROLES | r in AuthorizedRoles(user), [[operation,object],r] in PR}

Query functions should probably also include most of the mapping functions in the standard that do not
have corresponding review or advanced review functions. For example, one other mapping function in core

RBAC (besides the five eliminated), called session users (though could perhaps be called session user),

maps a session to its unique user; this could be a useful review function.
There are two related problems. First, some of the query functions are needed by users as well as

administrators, so it is not clear whether they should be classified as supporting system functions or review
or advanced review functions. Second, it is not clear what criteria are used in the standard to distinguish
review functions from advanced review functions. For example, SessionPermissions is essentially the

operation needed for efficient CheckAccess (discussed with other simplifications below), but it is only an

optional advanced review function, not a mandatory review function.

Using relations instead of mapping functions. Relations should generally be used instead of mapping
functions. Relations can be updated more readily, and information in them can easily be used as mappings
from any components to other components. In particular, a binary relation can be easily used as two mapping
functions—from left to right, and right to left. Following this principle, we replaced the two other mapping

functions in core RBAC (besides the five eliminated), session user and session roles, with relations

SU and SR , respectively. This simplified maintenance of these values in all supporting system functions and
uses of these values in deletion commands, as discussed below. We also replaced mapping functions with
relations in constrained RBAC, which gives similar benefits.

To illustrate the benefit of easy maintenance, consider the command AddActiveRole(user, session,

role). In the standard, it updates session roles by retrieving the current value of session roles(session),
inserting role in the returned set to obtain the new set of active roles, removing the current entry for this
session from session roles, and then adding an entry to session roles that maps this session to the new
set of active roles. The formula to do this is too long to fit on one line. In our specification, the update is
simply SR = SR + {[session,role]}.

To illustrate the benefit of binary relations being easily usable in both directions, consider DeleteRole,
which calls DeleteSession to delete sessions in which the role being deleted is active. There is an error in
the standard here: DeleteSession has two parameters, a user and a session, but the call site in DeleteRole

passes only one argument, namely, the session. To fix this, user sessions (which is not defined but is used

12

in multiple functionalities in the standard) needs to be used in reverse to find the associated user. Using a

function in reverse is awkward. In our specification, the relation SU can easily be used in both directions.
For statically constrained RBAC, the standard represents SSD constraints as a set SSD of names together

with mapping functions ssd set and ssd card that map each name to the associated role set and cardinality,
respectively. We replaced the two mapping functions with two relations, SsdNR and SsdNC. This leads to
simplified specifications of the functionalities for manipulating SSD constraints; the simplifications are similar
to those described above. We did a similar replacement for DSD constraints in dynamically constrained
RBAC.

Other simplifications. One kind of simplification is to replace a complicated formula with a more straight-
forward, shorter, and logically equivalent formula. Another kind of simplification is to call other defined
functions, instead of repeating the bodies of those functions. One can also combine these two kinds of
simplifications.

We did the first kind of simplification for all the more complicated functionalities of statically con-

strained RBAC. Specifically, in administrative commands, both redefined commands (AssignUser and

AddInheritance) and three of the five new commands (CreateSsdSet, AddSsdRoleMember,

SetSsdSetCardinality) contain similar conditions that check whether the attempted operation would lead

to the user assignment violating the SSD constraints. As written in the standard, all of these conditions
are hard to read, because they involve a triple or quadruple subscript and an implicit universal quantifica-
tion over subset, and because they are structured much differently than the informal explanation of SSD
constraints in Section 5.3.1 of the standard. In our specification, all of these conditions are replaced with
simpler ones based closely on the informal explanation, like our formula for SSD constraints in Section 5 of
this paper.

We did the second kind of simplification in the pre-conditions of CreateSession and AddActiveRole in
core RBAC and hierarchical RBAC. For example, the pre-condition of CreateSession(user,session,ars)
in core RBAC checks whether user is assigned all of the roles in ars. In the standard, this condition includes
repeating the body of the review function AssignedRoles. In our specification, that expression is replaced
with a call to AssignedRoles; this generally makes the specification shorter and easier to read. The benefit
shows up more when CreateSession in hierarchical RBAC needs a more complicated pre-condition, and one
can simply replace AssignedRoles with AuthorizedRoles in the definition. Similarly, also for consistency,
we call AssignedRoles and AuthorizedRoles in the pre-condition of AddActiveRole in core RBAC and
hierarchical RBAC, respectively. Note that the standard uses the mapping function authorized users in the
pre-condition of AddActiveRole in hierarchical RBAC; user in authorized users(role) equals user in

AuthorizedUsers(role), which equals our role in AuthorizedRoles(user).

For combining both kinds of simplifications, consider CheckAccess(session,operation,object), which

returns the Boolean value of the following expression.

exists r in ROLES | [session,r] in SR, [[operation,object],r] in PR

This expression equals at least the following three expressions that use advanced review functions, although,

here, the bodies of those functions are not exactly the same as the replaced fragments; the last one clearly

looks neatest:

exists r in ROLES | [session,r] in SR, [operation,object] in RolePermissions(r)

exists r in SessionRoles(session) | [operation,object] in RolePermissions(r)

[operation,object] in SessionPermissions(session)

One could also use a review or advanced review function in the definition of another function; even when
such rewrite does not yield a more concise definition, one might find that in an extended component, only the
first function has to be redefined instead of both. For example, if in core RBAC one uses RolePermissions
and RoleOperationsOnObject in the definitions of UserPermissions and UserOperationsOnObject, re-
spectively, then in hierarchical RBAC, only the first two have to be redefined, not all four. We did not do
these rewrites, since we felt that they are not more straightforward, even though they look neater—one must
understand the functions called to understand the caller.

13

Implementation. Our specification can be translated straightforwardly into a programming language that

supports objects and classes as well as sets and tuples. We chose Python (http://www.python.org/), which

has excellent support for these. This provides an executable specification, useful for validation and proto-
typing. This straightforward implementation is inefficient, because it always computes expensive queries,
such as the set of roles satisfying the conditions in CheckAccess, from scratch.

We have developed a powerful method for optimization by incrementalization, which analyzes programs to
identify expensive queries and updates to their parameters, i.e., values on which the query result depends, and
transforms the programs to incrementally maintain the results of expensive queries with respect to updates

to their parameters [LSG+05]. We applied a prototype implementation of this method for Python to our

straightforward implementation of core RBAC, and obtained efficient implementations. The incrementalized
implementations incrementally maintain the results of expensive queries, such as the set of roles satisfying

the conditions in CheckAccess. The experiments reported in [LSG+05, LWG+06] confirm the effectiveness

of this method, showing improvements from polynomial time in the straightforward implementation, to
constant time in the incrementalized implementations, for CheckAccess.

An executable specification of core RBAC is at ftp://ftp.cs.sunysb.edu/pub/liu/coreRBAC.py. We
plan to make an executable specification of the entire RBAC available.

7 Conclusion

To summarize, this paper shows how a corrected and simplified specification can be developed following
important principles. In addition to correcting a number of errors, we made the following main simpli-
fications to the specification in the standard. For core RBAC, we eliminated five of the seven mapping
functions and maintenance of assigned users and assigned permissions in all administrative commands,
replaced the two other mapping functions with relations and simplified their maintenance in all support-
ing system functions. For hierarchical RBAC, we eliminated the two mapping functions, maintain the
direct inheritance relation instead of the transitive inheritance relation, and simplified AddInheritance and
DeleteInheritance. In constrained RBAC, we simplified the SSD constraints, and thus all the commands
and functions that check them, and we replaced two mapping functions with relations, which also leads to
simplified definitions of some functionalities.

Remaining issues. There are several ways that our current specification and the RBAC model could be
further improved.

First, for specifying DeleteUser, DeleteRole, and DeassignUser, the standard informally describes
multiple acceptable alternatives but formally specifies only one of them, and we did the same. The other
alternatives should also be formally specified, but more importantly, the challenge is to find the best way to
specify all the alternatives declaratively, instead of calling DeleteSession in a loop.

A related issue is that most administrative commands perform a primary update accompanied by sec-
ondary updates needed to preserve consistency among the sets and relations. For example, in DeleteUser,
the update to USERS is accompanied by an update to UR and a sequence of calls to DeleteSession, which
updates SU, SR, and SESSIONS. A better approach would be to express the consistency constraints explicitly
and declaratively, and systematically derive the secondary updates needed to preserve them.

Another issue is that there seems to be a conceptual inconsistency between hierarchical RBAC and core
RBAC in the standard. In core RBAC, a session is deleted if a role active in the session is deleted, or if the
user of the session is deassigned from a role that is active in the session. In hierarchical RBAC, a session
is not deleted even if a role active in the session was authorized by an inheritance and the inheritance is
deleted.

In many applications, separation of duty constraints are most naturally expressed in terms of permission
to perform multiple specified operations on a single object or in a single transaction. It would be useful
to extend the specification to support this. Such separation of duty constraints cannot be reliably enforced

14

by the static or dynamic separation of duty constraints in the current specification, because they can be
circumvented by updates to the user-role assignment and use of multiple sessions, respectively.

More powerful security policies may require the handling of attributes, trust, information flow, etc. We
believe that a unified framework that incorporates all these aspects is attainable, and that this is an important
subject for further study.

Finally, formal verification of correctness properties of the specification, similar as done for variants of

RBAC [SM02], would provide even higher assurance of its correctness.

Acknowledgment

Michael Gorbovitski implemented the method for optimization by incrementalization; he also first used
AssignedRoles in the pre-condition of CreateSession. Tom Rothamel helped with experiments for opti-
mization by incrementalization. Hongxu Cai implemented a clean version of the core RBAC and hierarchical
RBAC standard in Python and described a number of inconsistencies in the standard. They all helped con-
firm some of the errors and complications found in the standard. Amit Sasturkar provided helpful comments
on a draft of this paper. Chen Wang found an error in the specification in a draft of this paper. Zongyan
Qiu pointed out the conceptual inconsistency between hierarchical RBAC and core RBAC discussed in the
conclusion.

References

[Ame] American National Standards Institute, Inc. Role-Based Access Control. ANSI INCITS 359-2004. Approved Feb.

3, 2004. http://csrc.nist.gov/rbac.

[FK92] D. Ferraiolo and R. Kuhn. Role-based access control. In Proceedings of the NIST-NSA National Computer Security

Conference, pages 554–563, 1992.

[FSG+01] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy Chandramouli. Proposed

NIST standard for role-based access control. ACM Transactions on Information and Systems Security, 4(3):224–

274, 2001.

[GB98] A. Gavrila and J. Barkley. Formal specification for RBAC user/role and role relationship management. In Proceed-

ings of the 3rd ACM Workshop on Role Based Access Control, pages 81–90, 1998.

[ISO] International Organization for Standardization. Z formal specification notation – Syntax, type system and semantics.

ISO/IEC 13568:2002.

[JT00] T. Jaeger and J. Tidswell. Rebuttal to the NIST RBAC model proposal. In Proceedings of the 5th ACM Workshop

on Role Based Access Control, pages 66–66, Berlin, Germany, July 2000.

[LHM84] Carl E. Landwehr, Constance L. Heitmeyer, and John McLean. A security model for military message systems.

ACM Trans. Comput. Syst., 2(3):198–222, 1984.

[LSG+05] Yanhong A. Liu, Scott D. Stoller, Michael Gorbovitski, Tom Rothamel, and Yanni E. Liu. Incrementalization

across object abstraction. In Proceedings of the 20th ACM Conference Object-Oriented Programming, Systems,

Languages, and Applications, pages 473–486, San Diego, California, Oct. 2005.

[LWG+06] Yanhong A. Liu, Chen Wang, Michael Gorbovitski, Tom Rothamel, Yongxi Cheng, Yingchao Zhao, and Jing Zhang.

Core role-based access control: Efficient implementations by transformations. In Proceedings of the ACM SIGPLAN

2006 Workshop on Partial Evaluation and Semantics-Based Program Manipulation, Jan. 2006.

[SDDS86] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets: An Introduction to

SETL. Springer-Verlag, New York, 1986.

[SFK00] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for role-based access control: Towards a unified standard.

In Proceedings of the 5th ACM Workshop on Role-Based Access Control, pages 47–63, Berlin, Germany, July 2000.

[SM02] Andreas Schaad and Jonathan D. Moffett. A lightweight approach to specification and analysis of role-based access

control extensions. In Proceedings of the 7th ACM Symposium on Access Control Models and Technologies, pages

13–22, 2002.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition, 1992.

15

