
Composing Transformations for
Instrumentation and Optimization ∗

Michael Gorbovitski Yanhong A. Liu Scott D. Stoller Tom Rothamel
Computer Science Department, State University of New York at Stony Brook, Stony Brook, NY 11794

mickg@mickg.net, {liu,stoller,rothamel}@cs.sunysb.edu

Abstract
When transforming programs for complex instrumentation and op-
timization, it is essential to understand the effect of the transforma-
tions, to best optimize the transformed programs, and to speedup
the transformation process. This paper describes a powerful method
for composing transformation rules to achieve these goals.

We specify the transformations declaratively as instrumenta-
tion rules and invariant rules, the latter for transformingcomplex
queries in instrumentation and in programs into efficient incremen-
tal computations. Our method automatically composes the trans-
formation rules and optimizes the composed rules before applying
the optimized composed rules. The method allows (1) the effect
of transformations to be accumulated in composed rules and thus
easy to see, (2) the replacements in composed rules to be optimized
without the difficulty of achieving the optimization on large trans-
formed programs, and (3) the transformation process to be sped up
by applying a composed rule in one pass of program analyses and
transformations instead of applying the original rules in multiple
passes.

We have implemented the method for Python. We successfully
used it for instrumentation, in ranking peers in BitTorrent; and for
optimization of complex queries, in the instrumentation ofBitTor-
rent, in evaluating connections of network hosts using NetFlow, and
in generating efficient implementations of Constrained RBAC.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming—Program transformation; D.3.4
[Programming Languages]: Processors—Optimization; F.3.1 [Log-
ics and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs—Invariants

General Terms Design, Languages, Performance

1. Introduction
Program instrumentation and optimization are key tasks forpro-
gram understanding and improvement. Instrumentation addscode
to monitor program behavior at runtime, for both correctness and
performance reasons. Optimization replaces inefficient code with

∗ This work was supported in part by ONR under grants N000140910651
and N000140710928; NSF under grants CCF-0964196, CNS-0831298,
CCF-0613913, and CNS-0509230; and AFOSR under grant FA0550-09-
1-0481.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM’12, January 23–24, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1118-2/12/01. . . $10.00

efficient code and must preserve program semantics. For better pro-
gram understanding, instrumentation must support complexqueries
of program behaviors. For better program improvement, optimiza-
tion must transform complex queries, in instrumentation inpartic-
ular and in programs in general, into efficient incremental compu-
tations with respect to updates to the values that the queries depend
on; such optimizations are calledincrementalization.

Program instrumentation and optimization can be expressed
using transformation rules, which are then applied to programs.
This allows complex instrumentations to be easily turned onor off,
and complex optimizations to be reused for different applications,
while at the same time allowing the original programs to be easier
to understand. However, three problems must be addressed tofully
support this approach: (1) the effect of applying a combination of
rules can be hard to understand, (2) the efficiency of the resulting
programs might not be the best from a combination of separate
rules, and (3) the application of many rules can be too slow due
to necessary complex program analysis being repeated.

This paper describes a powerful method for composing trans-
formation rules to address these three problems. We specifythe
transformations declaratively as instrumentation rules and invari-
ant rules, the latter for transforming complex queries in instrumen-
tation and in programs into efficient incremental computations. Our
method automatically composes the transformation rules and opti-
mizes the composed rules before applying the optimized composed
rules.

1. The method starts with complex queries needed in instrumen-
tation or in programs, decomposes them into subqueries for
which individual transformation rules may apply, and combines
individual rules by repeatedly matching the replacement-pattern
parts of a rule against the given-pattern parts of another rule.
This allows the effect of transformations to be accumulatedin
composed rules and thus easier to understand through the rules.

2. The method then optimizes the replacement-pattern partsof
composed rules through algebraic simplifications of composed
computations and precise elimination of dead computations.
This allows the replacement-pattern parts in composed rules to
always be optimized without the difficulty of achieving similar
optimizations on large transformed programs. This also allows
the effect of transformations to be even easier to see.

3. The method finally applies the optimized composed rules tothe
program, employing powerful control flow, data type, and alias
analysis to ensure that program semantics is preserved. This al-
lows the transformation process to be sped up by applying a
composed rule in one pass of program analyses and transfor-
mations in place of separate rules in multiple passes.

Our method ensures that applying a composed rule or an optimized
composed rule yields programs that have the same semantics as
programs obtained by applying individual rules.

We have implemented the method for transforming Python pro-
grams. Our implementation handles the entire Python 2.5 language.
We have successfully used our system for instrumentation inrank-
ing peers in BitTorrent—a peer-to-peer distributed file sharing pro-
gram. We also successfully used the system for optimizationof

complex queries in the instrumentation of BitTorrent, in evaluat-
ing connections of network hosts using NetFlow—a Cisco net-
work protocol for collecting IP traffic information, and in generat-
ing efficient implementations from formal specifications for Con-
strained RBAC—advanced components in the ANSI standard for
Role-Based Access Control (RBAC). We present experimentalre-
sults that demonstrate the effectiveness and benefits of themethod.

Much work has been done on program transformations and
many related topics, including invariant rules and incrementaliza-
tion, aspect-oriented programming, and many program transforma-
tion systems and applications, as discussed in Section 7. However,
no previous work has studied composition of invariant rulesand
achieved the kind of optimizations possible using our method.

2. Transformation language
We slightly extend invariant rules from previous work [Liu et al.
2009] to add instrumentation rules. Invariant rules are designed to
support the fundamental concept of maintaining invariantsin pro-
grams. Instrumentation rules are designed to facilitate preserving
semantics of programs when desired.

Invariant rules. Invariant rules are designed for incrementaliza-
tion, i.e., optimizing expensive queries in programs by storing the
query result and incrementally maintaining the result whenthe val-
ues that the query depends on are updated. This maintains thein-
variant that the value of the result variable always equals the result
of the query. By queries, we mean computations of results using
given values.

For example, the invariant rule in Figure 1 maintains the invari-
ant that the value of$r always equals the result of$s.len(), the
size of set$s, under three kinds of updates to$s:

1. when$s is assigned a new empty set,$r is assigned 0;
2. when adding an element$x to $s, $r is incremented by 1 if
$x is not in$s; and

3. when removing an element$x from $s, $r is decremented by
1 if $x is in $s.

If all possible updates to$s are the three kinds specified, i.e.,
there are no updates such as$s=$t, then the linear-time query
$s.len() can be replaced with an efficient retrieval from$r,
and efficient maintenance can be done at each update as specified.

inv py{ $r } = py{ $s.len() }

at py{ $s = set() }
do py{ $r = 0 }

at py{ $s.add($x) }
do before py{

if $x not in $s:
$r = $r + 1

}
at py{ $s.remove($x) }
do before py{

if $x in $s:
$r = $r - 1

}

Figure 1. An invariant rule for set size.

Theinv clause denotes an invariant between a result variable
and a query computation. Anat clause denotes an update to the
values that the query depends on. Ado clause below anat clause
(or inv clause) denotes maintenance of the query result at the
update (or query), which can be done before or after the update
(or query). The notationpy{} indicates that the enclosed text is
in Python. The symbol$ precedes a meta variable that can be
instantiated to any program variable or program segment in general.

In general, a rule may also specify, below the query and each
update, conditions on the query or update, using anif clause,
and declarations (with their scopes) needed for the maintenance,
using ade clause. For convenience, maintenance at an update
may also be done in place of the update, using ado instead

inv result = computation

(if condition+)?
(de ((in scope :)? declaration+)+)?
(do maint? (before maint)? (aftermaint)?)?
(at update
(if condition+)?
(de ((in scope :)? declaration+)+)?
(domaint? (before maint)? (aftermaint)?

(instead maint)?)?)+

Figure 2. General form of an invariant rule.

clause. The general form of an invariant rule is given in Figure 2.
wherecomputation , result , update , declaration , andmaint are
program text, except that they may contain meta variables; and
condition and scope are a Boolean expression and a scope ex-
pression, respectively, in the rule language. Scope expressions are
of the formglobal, package packagename, class classname, or
method methodname.

The semantics of applying an invariant rule is: (1) match a com-
putation in the program againstcomputation , match all possible
updates to the values on which the computation depends against
someupdate , and check all correspondingconditions, and (2) if
these succeed, replace all occurrences of the computation with the
correspondingresult , add correspondingdeclarations in the spec-
ified scope, and add correspondingmaint code before or after the
computation and before, after, or in place of the updates. For con-
venience, a declaration of an existing method, class, or module in-
serts the specified body at the beginning of the existing bodyof the
method, class, or module, respectively.

Applying a rule requires automatic detection of all possible up-
dates to values on which the computation depends. We use power-
ful static analyses—control flow, data type, and alias analysis [Gor-
bovitski et al. 2010]—to minimize the set of possible updates and
insert runtime checks to confirm them.

To use invariant rules for optimization, the overall algorithm
repeatedly applies rules to expensive queries and updates in the
given program until no rule applies. The order that rules areapplied
in follows dependencies among the queries.

The advantage of using an invariant rule to maintain the result
of a query, such as the set size, is that all maintenance code is spec-
ified declaratively in one rule, and the rule is applied automatically,
without the rule’s author needing detailed knowledge of thepro-
gram. This contrasts maintenance code specified in multiplerules
that must be coordinated for transformations, or manually inserted
at scattered updates throughout the program, possibly refactored to
improve the program. For simple queries such as the set size,man-
ual code insertion and refactoring is not too difficult, but it becomes
a serious challenge when maintaining an invariant efficiently re-
quires knowing the internals of multiple classes [Gorbovitski et al.
2008; Liu et al. 2005], or when the class itself is complex, such as
thebitTorrent class of the BitTorrent application.

Instrumentation rules. We slightly extend the rule language
above to support instrumentation, using instrumentation rules and
pure instrumentation rules. Pure instrumentation rules preserve
program semantics. An instrumentation rule is of the same form
as an invariant rule, with two exceptions:

1. The clauseinv result = computation is replaced with
instrumentation or pure instrumentation, indi-
cating that the rule is not for maintaining an invariant, butfor
instrumentation or pure instrumentation, respectively.

2. Pure instrumentation rules cannot havedo instead clauses,
meaning that all maintenance code must not replace existing
code, but be inserted before or after existing code.

The semantics of applying an instrumentation rule differs from
applying an invariant rule in two ways. First, thedo clause below
theinstrumentation or pure instrumentation clause
inserts code before or after the entire program, instead of before
or after the query in theinv clause as for invariant rules. Second,

applying a pure instrumentation rule automatically checksthat in-
serted code does not update existing variables and fields in the pro-
gram, instead of detecting all possible updates to the values that a
query depends on as for invariant rules. This checking uses conser-
vative static analysis first and dynamic checking for the remaining
updates. This ensures that pure instrumentation rules do not change
program semantics other than the extra time and space for running
the inserted code.

An instrumentation rule is applied only once to the given pro-
gram, and not applied again to the transformed parts—this guar-
antees termination. This contrasts invariant rules, whichmay be
repeatedly applied to the transformed parts—this stops because in-
variant rules are designed to reduce program complexities when
possible and have clear limits.

Running example.We use instrumentation and incrementalization
of BitTorrent, version 4.9.3, as a running example.

BitTorrent (http://download.bittorrent.com/dl/)
is a peer-to-peer distributed file sharing protocol. When multiple
peers download the same file concurrently, they can relay data to
each other, making it possible for the file source to support large
numbers of downloaders with only a modest increase in its load.
Each peer downloads pieces of a file from other peers, and then
reassembles the original file from the pieces. The set of peers that
a peer communicates with is called its peer horizon.

Each piece is sent as a sequence of packets. Once a piece is
completely received, the peer verifies that the piece arrived without
errors, by using an SHA1 checksum sent in a bootstrapping filethat
contains the checksum of each piece of the file being distributed. If
the piece contains errors, the peer marks the sender of the piece as
untrustworthy, and attempts to retrieve the piece from another peer.

3. Instrumentation of BitTorrent
We instrument the BitTorrent peer to rank peers, giving lower ranks
to peers that sent or received mismatched data packets. Doing this
efficiently allows us to quickly detect bad peers or peers connected
by bad links. In BitTorrent without instrumentation, such detection
requires the peer to receive one complete piece from anotherpeer
and thus has a delay, because checking is done at the piece level,
rather than the packet level.

Figures 3 and 4 together show the complete instrumentation
rule. An instrumented BitTorrent peer, in Figure 4, calls method
process to (1) record history—send a notification packet to all
peers in its peer horizon when it receives or sends a data packet,
and record the notification packets received, (2) analyze recorded
history—compute the ranks of all peers in the peer horizon to
reflect matches between the data packets sent and received, and
(3) act on the analysis result—sort and write out the list of peers in
order of high to low ranks.

Recording history. When the BitTorrent peer receives or sends a
data packetp, in the middle block of methodprocess in Figure 4,
it sends a notification packet to all peers in its peer horizon. This
is done by calling methodsend notification packet that
is defined in Figure 3, passing in value"s" or "r" indicating
whether the peer was sending or receiving the data packet, and
information about the packetp.

When the BitTorrent peer receives a notification packet, in
the last block of methodprocess in Figure 4, it decodes the
packet and stores the decoded information in$sent or $recv
based on value"s" or "r". This is done by calling method
receive notification packet that is defined in Figure
3.

Analyzing recorded history. Methodcompute rank in Figure
4 uses$sent and$recv to compute the rank of each peer in
the peer horizon. For each peerpeer, uniquely identified by its
addressip, it computesmatch, the number of data packets sent by
or received by the peer and whose sending and receiving payloads
match, i.e.,

match = |{p : p ∈ $sent∩$recv, p.src = ip∨p.dst = ip}|

pure instrumentation

de in global py{
import scapy #socket module from http://www.secdev.org

#called when a data packet is sent
def send_notification_packet(peer, type, p):

... #send event type and info about packet p to
#target peer using scapy over UDP on port 555

$sent = set() # set of all data packets sent
$recv = set() # set of all data packets received
#called when a notification packet is received
def receive_notification_packet(bytestring):

... #receive a bytestring, decode it, and insert
#result in $sent or $recv, respectively

}

Figure 3. Instrumentation rule clauses for sending and receiving
notification packets.

de in global py{
from collections import defaultdict #standard library

}

de in class bitTorrent py{

#insert instrumentation at the start of method __init__
def __init__(self):

#start sniffing for packets sent/recv’d by current proc.
#when a packet is sniffed, self.process is called on it
scapy.sniff(prn = self.process)
self.rank = defaultdict(float) #rank for each peer
self.packet_count = 0 #num. notif. packets received

def process(self, packet):
#if packet is UDP or TCP packet, decode packet into p
if UDP in packet or TCP in packet:

p = packet[UDP] if UDP in packet else packet[TCP]

if p.port in self.portrange: #if p is a data packet
if p.src==self.ip_addr: #if sending p
for peer in self.peers: #notify peer horizon

send_notification_packet(peer, "s", p)
if p.dst==self.ip_addr: #if receiving p
for peer in self.peers: #notify peer horizon

send_notification_packet(peer, "r", p)

if p.port==555: #if p is notif. packet
if p.dst==self.ip_addr: #if receiving p
receive_notification_packet(p.payload) #recording
self.compute_rank() #analysis
self.sort_and_print() #action

#otherwise, we sniffed an unknown packet; do nothing

def compute_rank(self): #for analysis
for peer in self.peers:

match = len(set(p for p in intersect($sent,$recv) if
p.src==peer.ip_addr or p.dst==peer.ip_addr))

total = len(set(p for p in union($sent,$recv) if
p.src==peer.ip_addr or p.dst==peer.ip_addr))

self.rank[peer] = 1.0 if total==0 else 1.0*match/total

def sort_and_print(self): #for action
self.packet_count += 1
if self.packet_count % 1000 == 0:

... #call library functions for sorting and printing
}

Figure 4. Rule clauses to instrument BitTorrent peer to process
packets received, compute ranks, and print sorted peers.

and it computestotal, the number of all data packets sent by or
received by the peer, i.e.,

total = |{p : p ∈ $sent∪$recv, p.src = ip∨p.dst = ip}|

The peer’s rank is computed asmatch divided bytotal, i.e.,

rank = match/total

Higher ranks indicate better peers. A peer’s rank is 1 if all data
packets it sent and received match, i.e., no packet is sent but not
received, received but not sent, or modified in transit.

Acting on analysis results. Methodsort and print in Fig-
ure 4 does the sorting and printing for every 1000 notification pack-
ets received.

Overhead caused by instrumentation.The overhead caused by
instrumentation is shown in the first row of Table 1. It is for
(1) sending notification packets to all peers in the peer horizon,
whenever a peer sends or receives a data packet, and (2) executing
the queries that computematch andtotal for all peers in the
peer horizon, whenever a peer receives a notification packet. This
takes O((S + R)2 × H) expected time, because a total of O(S +
R) data and notification packets are sent and received by each
peer, each packet sent or received has a cost factor of O(H), and
computingmatch andtotal takes O(S+R) expected time using
hashing. The space used by the added code is O(S+R) for storing
$sent and$recv.

4. Decomposition and incrementalization
Complex queries in instrumentations and in programs are notonly
expensive, but often repeated while the values they depend on
change. For example, in the instrumentation for BitTorrent, the
queries for computingmatch andtotal take O(S + R) time,
and the query is repeated for each notification packet received.

We optimize these queries by storing the query results and com-
puting the results incrementally as the values the queries depend on
change. For example, for BitTorrent instrumentation, we maintain,
for each peer in the peer horizon, the values ofmatch andtotal
incrementally as$sent and$recv are updated.

We could use a previously studied method [Liu et al. 2005,
2009] to incrementalize expensive queries. It incrementalizes each
query in a basic form using an invariant rule; the transformations
replace the query with a retrieval of the query result from the
result variable, and insert code to maintain the query result at all
places that update the values that the query depends on. For nested
queries, the effect is that the innermost query in a basic form is
incrementalized first; after this the query is replaced by a retrieval
of its result from a variable, the outer query that is then in abasic
form is incrementalized next; this continues until the outermost
query is incrementalized.

This previous method of repeatedly applying invariant rules has
three drawbacks: (1) the overall result of incrementally computing
a nested query is difficult to understand because it is scattered in
many places in the final transformed program, (2) optimizations en-
abled by incrementalization are hard to perform on the oftenlarge
and complex transformed program, and (3) repeatedly applying in-
variant rules is expensive because complex control flow, data type,
and alias analyses of the entire program are required beforeapply-
ing each rule.

To overcome these drawbacks, our method automatically com-
poses the transformation rules and optimizes the composed rules
before applying the optimized composed rules to the program.
To prepare for composition, the method first decomposes nested
queries into subqueries in basic forms, which contain no nested
subqueries, and uses previous methods [Liu et al. 2006; Rothamel
and Liu 2008] to derive invariant rules for incrementally computing
the subqueries.

Decomposing nested queries.The parameters of a query are the
variables used by the query but defined outside the query.

Decomposing nested queries has three steps. Step 1 extracts
subqueries following the innermost, leftmost-first dependency or-
der of computation. That is, if a subquery is contained inside an-
other subquery, then the inner one is extracted first; if neither of
two subqueries is contained inside the other, then the left one is
extracted first. Step 2 introduces, for each subquery, a map from
tuples of values of the subquery parameters to subquery results.
Step 3 rewrites the original query to use this map in place of the
subquery.

instrumented BitTorrent variant time space
use no inv. rules O((S + R)2 ×H) S + R

use separate inv. rules O((S +R) ×H) 5(S +R)
use composed inv. rules O((S +R) ×H) 5(S +R)
use opt. composed inv. rules O((S +R) ×H) S + R

S andR are the sizes of$sent and$recv, respectively.
H is the maximal number of peers in the horizon of any given peer.

Table 1. Time and space overhead caused by instrumentation.

For example, for the query for computingmatch:
len(set(p for p in intersect($sent,$recv)

if p.src==peer.ip_addr or p.dst==peer.ip_addr))

Step 1 first extracts the inner-most subqueryintersect($sent,
$recv), Step 2 introduces a new map$I to store the result of this
subquery, and Step 3 replaces the subquery in the original query
with I[($sent,$recv)], yielding

$I[($sent,$recv)] = intersect($sent,$recv)
match = len(set(p for p in $I[($sent,$recv)]

if (p.src==$ip or p.dst==$ip))

Repeating this procedure until we reach the outermost query,
we obtain new maps$I, $P, and $M that store the intersec-
tion, the selected set for each peer, and the results of the query
for match, respectively; and we replace the original query by
$M[($sent,$recv,peer.ip addr)].

$I[($sent,$recv)] = intersect($sent,$recv)
$P[($sent,$recv,$ip)] = set(p for p in $I[($sent,$recv)]

if (p.src==$ip or p.dst==$ip))
$M[($sent,$recv,$ip)] = len($P[($sent,$recv,$ip)])

Parameters that throughout the lifetime of the program are
bound to a single object are unnecessary and thus removed. For
the example above, parameters$sent and$recv are removed,
yielding the subqueries in Figure 5, and the original query for com-
puting match is then replaced by$M[peer.ip addr]. The

$I = intersect($sent,$recv)
$P[$ip] = set(p for p in $I if p.src==$ip or p.dst==$ip)
$M[$ip] = len($P[$ip])

Figure 5. Result of decomposingmatch query.

query for computingtotal can also be decomposed into three
subqueries, one each for the union, the selection, and the result.

Deriving invariant rules for subqueries. For each subquery, we
use previous methods [Liu et al. 2006; Rothamel and Liu 2008]to
derive invariant rules for incrementally maintaining the query result
under each kind of update to a parameter of the query. The methods
work for large classes of queries and updates. For example, for
incrementally maintaining$I, P, andM, the resulting invariant
rules in Figure 6 are derived. Note that the parameter$ip in a result
expression allows the query result to be looked up in the result
map for any$ip given. Similar rules for incrementally computing
subqueries fortotal can also be derived.

Overhead caused by instrumentation using separate invariant
rules. The overhead caused by instrumentation after incremental-
ization using separate invariant rules is as shown in the second row
of Table 1. The time complexity is O((S +R)×H), because each
piece of maintenance code inserted takes constant time, andretriev-
ing query results from all three maps also takes constant time, and
thus the overhead is constant for each peer in the peer horizon for
each packet sent or received. The space complexity is bounded by
(S +R)× 5 because, besides storing$sent and$recv, we also
store$I and$P for computing the query formatch and two simi-
lar variables for computing the query fortotal, and the space for
each of these four maps is bounded byS+R; the result map$M for
the query formatch and the result map for the query fortotal
take significantly less space and thus are omitted.

inv py{ $I } = py{
intersect($sent,$recv)

}
de in class bitTorrent py{

def __init__(self):
$I = set()

}
at py{ $sent.add($p) }
do before py{

if $p in $recv:
if $p not in $I:

$I.add($p)
}
at py{ $recv.add($p) }
do before py{

if $p in $sent:
if $p not in $I:

$I.add($p)
}

inv py{ $P[$ip] } = py{
set(p for p in $I if

p.src==$ip or p.dst==$ip)
}
de in class bitTorrent py{

def __init__(self):
$P = defaultdict(set)

}
at py{ $I.add($p) }
do before py{

if $p not in $P[$p.src]:
$P[$p.src].add($p)

if $p not in $P[$p.dst]:
$P[$p.dst].add($p)

}
at py{ $I.remove($p) }
do before py{

if $p not in $P[$p.src]:
$P[$p.src].remove($p)

if $p not in $P[$p.dst]:
$P[$p.dst].remove($p)

}

inv py{ $M[$ip] } = py{
len($P[$ip])

}
de in class bitTorrent py{

def __init__(self):
$M = defaultdict(int)

}
at py{ $P[$ip].add($p) }
do before py{

$M[$ip] += 1
}
at py{ $P[$ip].remove($p) }
do before py{

$M[$ip] -= 1
}

Figure 6. Invariant rules for maintaining the results of subqueries for computingmatch in $I, P, andM. Clauses for handling removals
from $sent and$recv are symmetric to clauses for handling addition and are omitted for brevity.

5. Composition and optimization
We describe composition of invariant rules and optimization of
composed rules. We then discuss composition of instrumentation
rules with invariant rules. Our composition and optimization pre-
serve program semantics, i.e., applying a composed rule or an opti-
mized composed rule yields programs that have the same semantics
as programs obtained by applying individual rules; however, apply-
ing an optimized composed rule may yield more efficient programs
due to optimizations performed on the composed rules.

5.1 Composition of rules

Given a nested queryq decomposed into a sequence of subqueries,
they form a sequence of invariantsr1 = q1, r2 = q2, . . . , rn = qn,
where the value of original queryq equals the resultrn of the last
query with its parameters instantiated to the corresponding param-
eters inq. For example, the subqueries for computingmatch, in
Figure 5, form three invariants, and the value of the original query
equals the result$M[$ip] of the third subquery with its parameter
$ip instantiated topeer.ip addr.

For each invariantri = qi in the sequence, there is a corre-
sponding invariant ruleRi of the forminv ri = qi Bi, where
Bi is the body of the rule.Bi may have multipleat, if, de, and
do clauses. Composition must combine code patterns in allinv,
at, de, anddo clauses, as described below. The conditions inif
clauses can be evaluated or simplified using static analysisduring
the composition. Composition produces a single rule whose invari-
ant isrn = q′n such thatq′n, with its parameters instantiated to the
corresponding parameters in the original queryq, is syntactically
identical toq.

The composition algorithm builds a composed rule up start-
ing from the first rule—the rule for the innermost subquery of
the original query. The construction produces a sequence ofrules
R′

1, R
′

2, . . . , R
′

n, whereR′

i is the result of composing rulesR1 to
Ri. As the base case,R′

1 is identical toR1. At the end,R′

n is the
desired rule forq. We give the precise algorithm below for the case
that the sequence of subqueries are strictly nested; it is straightfor-
ward to extend it to handle multiple independent subqueriesinside
an enclosing query. We uset1[v 7→ t2] to denotet1 with each oc-
currence ofv replaced witht2.

q′1 = q1; B′

1 = B1; R′

1 = R1 (1)
for i = 1to n− 1 (2)
q′i+1 = qi+1[ri 7→ q′i] (3)
B′

i+1 = transform(B′

i, Ri+1) (4)
R′

i+1 = inv ri+1 = q′i+1 B′

i+1 (5)

Applying the substitution[ri 7→ q′i] to qi+1 in line (3) recon-
structs part of the structure of the original nested query, because
this substitution reverses the replacement ofqi with ri when ex-
tractingqi from qi+1 during the decomposition. This substitution
is valid becauseR′

i ensures its invariantri = q′i. To ensure that
R′

i+1 also maintains this invariant, the bodyB′

i of R′

i is used in
line (4) as the basis for the bodyB′

i+1 of R′

i+1.
To ensure thatR′

i+1 also maintains the invariant ofRi+1, the
transformation specified byBi+1 is applied to the maintenance
code inB′

i. Specifically,transform(B′

i, Ri+1) in line (4) returns
the result of that application. Following the semantics forapplying
invariant rules,transform first checks whether every update to
parameters ofqi+1 in B′

i matches someupdate pattern inBi+1. If
so, declarations and maintenance code inBi+1 are inserted inB′

i

as specified by thede anddo clauses inBi+1. If not,transform
aborts, which causes the composition algorithm to abort.

Note that the transformation defined byBi+1 is applied only
to code inB′

i. If we did not use rule composition, it would be
applied to the entire subject program. To ensure that applying it
only toB′

i gives the same result as applying it to the entire subject
program,transform(B′

i, Ri+1) checks that every update pattern
in Bi+1 updates only the query parameter that is the query resultri
introduced byR′

i and hence would not match any other update in
the subject program. If this condition is not satisfied,transform
aborts.

When applying Ri+1 to the maintenance code inB′

i,
transform(B′

i, Ri+1) needs alias information to identify pos-
sible updates to the query parameters inRi+1. The two checks
above imply that the only such query parameter is the result vari-
able ofRi; updates to index variables inRi, if any, do not matter
because the query result can be looked up for any index values.
Standard alias analysis cannot be used here, because it requires the
whole program. Instead,transform(B′

i, Ri+1) checks whether
B′

i contains assignments that could create aliases to that result vari-
able. If so, the call totransform aborts; otherwise, it proceeds
knowing that result variable has no aliases.

To summarize, the algorithm succeeds for rules that obey the
following: (1) every update in the maintenance code of the rule for
an inner query is handled by an update pattern of the rule for the
enclosing query, (2) every update in the rule for an outer query
updates only query parameters that are the query results in the
rules for the enclosed queries, and (3) the maintenance codein a
rule does not create aliases to the result variable. The algorithm
is correct because each iteration of its for-loop ensures that an
invariant is preserved. Figure 7 shows the result of composing the
three rules in Figure 6.

at py{ $sent.add($p) }
do before py{

if $p in $recv:
if $p not in $I:

if $p not in $P[$p.src]:
$M[$p.src] += 1
$P[$p.src].add($p)

if $p not in $P[$p.dst]:
$M[$p.dst] += 1
$P[$p.dst].add($p)

$I.add($p)
}

at py{ $recv.add($p) }
do before py{

if $p in $sent:
if $p not in $I:

if $p not in $P[$p.src]:
$M[$p.src] += 1
$P[$p.src].add($p)

if $p not in $P[$p.dst]:
$M[$p.dst] += 1
$P[$p.dst].add($p)

$I.add($p)
}

at py{ $sent.remove($p) }
do before py{

if $p in $recv:
if $p in $I:

if $p in $P[$p.src]:
$M[$p.src] -= 1
$P[$p.src].remove($p)

if $p in $P[$p.dst]:
$M[$p.dst] -= 1
$P[$p.dst].remove($p)

$I.remove($p)
}

at py{ $recv.remove($p) }
do before py{

if $p in $sent:
if $p in $I:

if $p in $P[$p.src]:
$M[$p.src] -= 1
$P[$p.src].remove($p)

if $p in $P[$p.dst]:
$M[$p.dst] -= 1
$P[$p.dst].remove($p)

$I.remove($p)
}

Figure 7. Result of composing the rules in Figure 6 for computingmatch. Theinv andde clauses are not shown; they are the same as in the
optimized rule on the left of Figure 8, except that, in thede clause, the definition of init also contains$P = defaultdict(set)
and$I = set().

5.2 Optimization of composed rules

Optimizing the maintenance code in invariant rules, beforeap-
plying the rules, conveniently allows the invariants maintained by
the rules to be exploited for optimization. While these invariants
could be made available to an optimizer running on the transformed
program, it is much more difficult and less efficient to optimize
the transformed program, which is typically much larger, than the
rules.

Optimizing the maintenance code is especially useful for rules
constructed by composition, because composition of separate rules
may introduce redundant or dead computations. Our method re-
peatedly eliminates redundant computations and dead computa-
tions in the composed rules until no more can be eliminated.

Eliminating redundant computations. Composing rules derived
for separate subqueries may produce, in the composed maintenance
code, redundant computations, i.e., computations that areunneces-
sary for producing the desired result. For queries over sets, the re-
dundant computations are dominantly redundant membershiptests,
i.e., membership tests that can be statically simplified to betrue
or false. We first show an example before describing member-
ship test simplification in general.

Consider the code segment on lines 4-6 in the third column of
Figure 7:

if $p in $I:
if $p in $P[$p.dst]:

$M[$p.dst] -= 1

First, using the invariant about$P from Figure 5:
$P[$ip] = set(p for p in $I if p.src==$ip or p.dst==$ip)

the membership test$p in $P[$p.dst] is replaced with its
equivalent, yielding the following rewritten code segment:

if $p in $I:
if $p in $I and ($p.src==$p.dst or $p.dst==$p.dst):

$M[$p.dst] -= 1

Then, the resulting conjunction is simplified; the first conjunct
becomestrue because it equals the condition of the encosingif
statement and is in thetrue branch of the statement:

if $p in $I:
if true and ($p.src==$p.dst or $p.dst==$p.dst):

$M[$p.dst] -= 1

then the second equality is symbolically evaluated totrue:
if $p in $I:
if true and ($p.src==$p.dst or true):

$M[$p.dst] -= 1

and further symbolic evaluation of Boolean expressions yields:
if $p in $I:
if true:

$M[$p.dst] -= 1

In general, our method simplifies membership tests of the form
v in r such thatr = q is an invariant generated during query de-
composition andq has the formset(x for x in S if c).
This is done in two steps.

Step 1 replaces a membership testv in r with the equivalentv
in S and c[x 7→ v], wherec[x 7→ v] denotesc with all
occurrences ofx replaced withv.

Step 2 simplifies the conjuncts from Step 1 by repeatedly apply-
ing (a) simplification in context, and (b) symbolic evaluation of
primitives, until no more simplification can be done.

For (a), if any conjunct simplifies to an expression that is the con-
dition of an enclosingif statement or the negation of the condi-
tion, and if variables used by the conjunct are not updated between
the condition and the conjunct, then the conjunct is replaced with
true or false, respectively. For (b), standard symbolic evalu-
ation is used, e.g., for any expressione, e and true simplifies
to e; and for expressione without side effect,e==e simplifies to
true. Checking updates and side effects uses alias analysis con-
servatively as in composing rules. If (a) or (b) replaces anyconjunct
with a Boolean constant, then the original membership test is sim-
plified; otherwise, the membership test is left unchanged.

It would be difficult to perform this optimization based purely
on analysis of the transformed program because Step 1 would
require re-discovering the invariant of the invariant rule.

Eliminating dead computations. Dead computations include
dead branches, i.e., branches that will never be executed; dead vari-
ables, i.e., variables that will never be used; and updates to dead
variables.

If the condition in anif statement is a Boolean constant, usu-
ally as a result of membership test simplification, then the alterna-
tive branch is dead, and theif statement is replaced with the reach-
able branch. For the example above, this optimization replaces

if true:
$M[$p.dst] -= 1

with
$M[$p.dst] -= 1

If the value of a variable that is introduced by an invariant rule
is not used in the rule’s result (on the left side of theinv clause)
or in the rule’s maintenance code (indo clauses), and there are no
aliases of the variable, then the variable and all updates toit are
dead and thus eliminated. For example, after repeatedly applying
membership test simplification to the rules in Figure 7, variables
$I and$P are dead, so these variables and updates to them are
eliminated.

Applying these optimizations to the composed rule in Figure7
for maintainingmatch and the similar composed rule for main-
tainingtotal, we obtain the optimized composed rules in Figure
8. Note how much easier theat clauses in these rules are to under-
stand than those in Figure 7.

Overhead caused by instrumentation using optimized com-
posed rules. The optimized composed invariant rule for com-
putingmatch does not use$I and$P. Similarly, the optimized
composed invariant rule for computingtotal does not introduce
maps maintaining the union and peer selection. Thus, the optimiza-
tions eliminate four maps, each of size O(S +R). This is reflected
in the improved space complexity in the last row in Table 1.

inv py{ $M[$ip] } = py{
len(set(p for p in intersect($sent,$recv)

if p.src==$ip or p.dst==$ip))
}
de in class bitTorrent py{

def __init__(self):
$M = defaultdict(int)

}
at py{ $sent.add($p) }
do before py{

if $p in $recv:
if not ($p in $sent):

$M[$p.src] += 1
$M[$p.dst] += 1

}
at py{ $recv.add($p) }
do before py{

if $p in $sent:
if not ($p in $recv):

$M[$p.src] += 1
$M[$p.dst] += 1

}

inv py{ $T[$ip] } = py{
len(set(p for p in union($sent,$recv)

if p.src==$ip or p.dst==$ip))
}
de in class bitTorrent py{

def __init__(self):
$T = defaultdict(int)

}
at py{ $sent.add($p) }
do before py{

if $p not in $recv:
if not ($p in $sent):

$T[$p.src] += 1
$T[$p.dst] += 1

}
at py{ $recv.add($p) }
do before py{

if $p not in $sent:
if not ($p in $recv):

$T[$p.src] += 1
$T[$p.dst] += 1

}

Figure 8. Optimized composed rules for maintainingmatch andtotal.

5.3 Composing instrumentation rules with invariant rules

Our system composes instrumentation rules with invariant rules by
applying invariant rules, including composed and optimized com-
posed invariant rules, to the code in instrumentation rules, before
applying the instrumentation rules to a subject program. This al-
lows expensive queries in instrumentation code to be incremental-
ized before the instrumentation code is inserted in a subject pro-
gram. When applying an invariant rule to the code in an instrumen-
tation rule, the analysis and transformations are done in the same
way as when applying an invariant rule to the maintenance code of
another invariant rule when composing invariant rules.

This composition is not essential, but it reduces the overall
transformation time. Applying an invariant rule to an instrumen-
tation rule, and then applying the resulting rule to the subject pro-
gram, requires one analysis of the code in the instrumentation rule
and one analysis of the subject program. Sequentially applying the
instrumentation rule, and then the invariant rule to the subject pro-
gram, requires two analyses of the subject program. The former
increases performance, because the code in an instrumentation rule
is typically much smaller than the subject program, and because
the alias analysis used to analyze code in instrumentation rules is
less sophisticated, and hence cheaper, than the alias analysis used
to analyze subject programs.

6. Experiments
We have implemented the composition and optimization method by
extending InvTS [Gorbovitski et al. 2010; Liu et al. 2005, 2009],
a system for applying invariant rules, performing powerfulanal-
ysis, and deriving classes of invariant rules. Our implementation
handles the entire Python 2.5 language. The generated, optimized
composed rules make the effect of transformations much easier to
see, as discussed. We then performed experiments to confirm that
our method also increases the efficiency of the transformed pro-
gram and reduces the transformation time, as described below.

We used three diverse applications: BitTorrent, a NetFlow query
tool, and Constrained RBAC. For experiments, we automatically
transformed each application using three transformation variants:

1. Application of separate rules, in dependency order.
2. Composition of rules, followed by application of the composed

rule.
3. Composition and optimization of rules, followed by application

of the optimized rule.

For each variant, we measured the size of the application before
and after the transformation, the times it took to compose the rules
and to optimize the composed rules, the time it took InvTS to

apply the rules, and other quantities about the transformedand
original programs. All programs were written in Python and all
experiments were run under Python 2.6.1. Table 2 summarizesthe
results, explained below.

6.1 BitTorrent
We instrumented BitTorrent and optimized the instrumentation as
described in the running example. When the five rules totaling 171
lines are separately applied to the BitTorrent peer, the code size
increases from 41,162 to 41,374 lines, a difference of 212 lines.

Composition and optimization of rules. To evaluate the effi-
ciency of the BitTorrent peers instrumented using each of the three
transformation variants, we performed experiment that measured
the number of notifications stored by the instrumentation, the num-
ber of set operations performed by the instrumentation, theCPU
usage, and the total network usage. During each experiment,we
transferred a 1GB file from a BitTorrent peer to 29 other BitTorrent
peers over a 100 MBit link. Each peer was on a virtual machine run-
ning Ubuntu 9.04 with 1GB of RAM and a single core of a Xeon
L5430@ 2.66GHz provisioned to it. Because the peers were never
CPU-bound, CPU under-provisioning was not an issue. Table 2(a)
summarizes the results.

Instrumented using composed but not optimized rules, the Bit-
Torrent peers stored 93 million notifications, and performed 190
million additional set operations. Using optimized composed rules
eliminated intermediate query results and thereby about two thirds
of the storage overhead, reducing the number of stored notifica-
tions to 25 million, and the number of additional set operations to
59 million.

The BitTorrent peers instrumented using separate rules andus-
ing composed rules both have CPU usage that is 7% higher than
the CPU usage of the original BitTorrent peers, due to the main-
tenance of intermediate query results by both of them. In contrast,
using optimized composed rules eliminated these intermediate re-
sults and reduced the CPU usage to be within 0.5% of the original
BitTorrent peers.

Because the experiments were ran on top-of-the-line machines
connected by only 100 MBit links, none of the BitTorrent variants
were CPU bound, and thus the CPU overhead did not affect the total
time to transfer the file to 29 peers, which was about 220 seconds.
Since the CPU utilization was about 50% even with 100 MBit links,
we estimate that if one was to upgrade the links to the currently
industry-standard 1 GBit, the peers would become CPU bound,
and thus the total time to transfer the file would be noticeably
higher for the BitTorrent peers instrumented using separate rules
and composed rules than for either the original BitTorrent peers or
the peers instrumented using optimized composed rules.

(a) BitTorrent

LOC # LOC #rules composition optimization rule application notifications extra set ops. CPU total
before after time (s) time (s) time (s) stored (millions) (millions) usage network

Original 41,162 41,162 - - - - - - 48.6% 32.1GB
Separate rules 41,162 41,374 6 - - 2998 96.3 193.3 56.1% 33.1GB

Composed rules 41,162 41,374 6 2.9 - 2320 93.1 189.6 56.9% 32.7GB
Opt. composed 41,162 41,331 6 2.8 3.5 2261 25.0 58.8 49.1% 33.3GB

(b) NetFlow query tool

LOC # LOC #rules composition optimization rule application total processing throughput
before after time (s) time (s) time (s) time (s) (packets/s)

Original query 64 64 - - - - >600 81
Separate rules 64 105 5 - - 21.1 33.1 302,114

Composed rules 64 105 5 1.0 - 15.3 32.8 304,878
Opt. composed 64 75 5 1.0 0.4 15.4 19.9 502,512

(c) Constrained RBAC

LOC # LOC #rules composition optimization rule application # inv clauses
before after time (s) time (s) time (s) applied

Separate rules 381 2,183 21 - - 257.4 38
Composed rules 381 2,183 21 1.1 - 44.2 27
Opt. composed 381 2,183 21 1.1 0.5 44.8 27

Table 2. Summary of rule composition and optimization experiments.

Rule application time. Table 2(a) shows that applying separate
rules takes the longest time: 2,998 seconds. Applying composed
rules takes 2,320 seconds, after taking less than 3 seconds to com-
pose the rules, a net savings of 675 seconds. Optimizing the com-
posed rule takes under 4 seconds, and reduces rule application time
to 2,261 seconds, a further gain of 55 seconds.

Effects of instrumentation on free-riding clients. There are non-
specification-adhering modifications to BitTorrent clients that at-
tempt to get around the BitTorrent choking feature that prevents
specification-adhering clients from sending data to free-riding
clients [Moor 2006]. One such modification has the peer start
sending out pieces of the torrent before the peer has fully down-
loaded them. This self-promotion causes no harm when there are
few or no network errors, but it makes the swarm susceptible to
swarm poisoning—wide propagation of pieces corrupted by net-
work errors—when network errors increase.

To measure the effect of swarm poisoning, we transferred a 1GB
file from a BitTorrent peer to 29 other BitTorrent peers over a100
MBit link, with 3 of 29 peers having a 10% error rate. This took438
seconds and a total bandwidth of 93.1GB. This is over 2 times as
long, and a factor of 3 increase in total bandwidth used, compared
to the specification-adhering BitTorrent swarm. Note that this is
10% error rate in 10% of the peers, so only 1% overall error rate.

To combat swarm poisoning, we modify our BitTorrent in-
strumentation rule to use the computed ranks to let the peer
avoid connecting to peers with low ranks. The modified rule
changes the BitTorrent metric for selecting peers, stored field
goodness of each peer, to prefer peers with better ranks. The
modified rule changes program semantics, so we need to change
pure instrumentation toinstrumentation in the rule.
We measure the effect of this instrumentation by performingthe
same experiment as above. The experiment shows that the swarm
took 227 seconds and a total bandwidth of 34.2GB to transfer the
same 1GB file over a 100 MBit link, which is comparable to the
performance of a specification-adhering swarm.

6.2 NetFlow

NetFlow is an IETF-standardized [Claise 2004] network protocol
used for analyzing network traffic. In NetFlow, source hostscol-
lect information about their network activity, including information
about packets received and sent. They then transmit this informa-
tion using the NetFlow protocol to a target host, called a NetFlow
collector. The collector may analyze the received information on-
the-fly, store it for further analysis, or discard it if it cannot cope
with the volume of the incoming information.

HOSTS = set()
RECV = set()
SENT = set()
for p in generate_netflow_packets():

if p.is_received:
RECV.add(p)

else:
SENT.add(p)

HOSTS.add(p.dst)
query()

Figure 9. Pseudocode for the NetFlow query tool.

def query():
for host in HOSTS:
match = len(set(p for p in intersect(SENT,RECV)

if p.dst==host))
total = len(set(p for p in union(SENT,RECV)

if p.dst==host))
quality[host] = 1.0*match/total

Figure 10. The NetFlow query function.

We created a NetFlow query tool based on the collector from
theflowtools package [Romig 2000]. Figure 9 shows the pseu-
docode for this tool, wherequery can be any user-specified query
function. The tool allows the executionquery over the setsSENT,
RECV, andHOSTS—the set of packets sent by the hosts, the set of
packets received by the hosts, and the set of hosts, respectively. The
query is executed every time a packet is received or sent.

Queries can be written easily and implemented efficiently using
our NetFlow query tool. Figure 10 shows, for ease of explanation,
an example query similar to the query for BitTorrent instrumenta-
tion. It computes, for each host, the quality of its network connec-
tion, defined as the fraction of packets sent to and or received by the
host that arrived unchanged, i.e.,match/total, wherematch
is the number of packets that were sent to the host, received by
the host, and not modified in transit, andtotal is the total num-
ber of packets sent to the host, including packets that were lost or
changed.

It is clear that for reasonable performance, the results oftotal
andmatch must be incrementally maintained. We do so using our
composition and optimization method, by deriving and usingfive
invariant rules. These rules are similar to the rules in Figure 6 for
incrementalizing the instrumentation of BitTorrent.

Incrementalization and rule composition. To show the effect of
optimizing NetFlow queries using each of the three transformation
variants, we ran the original query program and optimized query
programs on a set of 10 million packets recorded over the course
of about 20 seconds from a saturated Gigabit network with 5 hosts
on it. We measure the time to process 10 million packets, and the
number of packets processed per second, and we set the time limit
for the query program to 600 seconds. The query was run on an
Intel i7 920@3.1GHz with 12GB of RAM, running Ubuntu 9.04.
Table 2(b) shows the measured results.

The first row shows that running the original query exceeds the
time limit of 600 seconds while processing an average of only81
packets per second. This is because computingtotal andmatch
iterates over the entireSENT andRECV sets every time the NetFlow
query is called.

The query program transformed using separate rules or com-
posed rules took approximately 33 seconds to process 10 million
packets. In contrast, the query program transformed using opti-
mized composed rules took 19.9 seconds to process the same data.
Because the packets were recorded over the course of 20 seconds
and there is non-negligible overhead in reading the packetsfrom
disk, one can infer that the query program transformed by opti-
mized composed application is capable of running the query in
real-time without the need to store the packets to disk. Thisshows
that using optimized composed rules provides very tangiblebene-
fits over using separate rules.

Rule application time. Table 2(b) shows that applying separate
rules takes the longest time: 21 seconds. Applying composedrules
and optimized composed rules takes 15 seconds each, with com-
position taking an additional 1 second, and optimization taking an-
other 0.5 seconds.

6.3 Constrained RBAC

RBAC is an ANSI-standardized [American National StandardsIn-
stitute, Inc. 2004] framework for controlling user access to re-
sources based on roles. It can significantly reduce the cost of secu-
rity policy administration and is increasingly used in large organi-
zations. Core RBAC controls access based on relations amongper-
missions, users, sessions, and roles. Constrained RBAC adds two
kinds of constraints:

1. Static Separation of Duty (SSD) constraints. A SSD constraint
specifies that a user can be assigned to at mostc roles from a
certain setR of roles.

2. Dynamic Separation of Duty (DSD) constraints. A DSD con-
straint specifies that a session can have at mostc roles from a
setR of roles active at the same time.

Mirroring the formal specification of RBAC, we extended the
125-line straightforward implementation of Core RBAC [Liuet al.
2006] into a 381 line straightforward implementation of Con-
strained RBAC. The queries in Constrained RBAC are much more
complex than those in Core RBAC, even after simplification [Liu
and Stoller 2007]. For example, the SSD constraints hold if the
following universally quantified query returns true.
forall u in USERS, [name,c] in SsdNC |

#{r: r in AssignedRoles(u) | [name,r] in SsdNR } <= c

Clearly, a straightforward implementation is extremely inefficient
when evaluating expensive queries, includingCheckAccess, the
main query of RBAC.

To improve efficiency, we derived and used 21 invariant rulesto
optimize the straightforward implementation, incrementalizing all
queries in it. Out of the 21 rules, only 7 are unique to Constrained
RBAC; the other 14 are the same as the rules used to incremental-
ize Core RBAC [Liu et al. 2006], and this reuse shows the signif-
icant advantage of capturing complex optimizations in rules. For
Constrained RBAC, no dead code is eliminated by optimization of
composed rules, so the optimized composed rules are identical to
the composed rules.

When the straightforward Constrained RBAC program is incre-
mentalized, using all three transformation variants, it becomes 2183
lines of code, a more than 5-fold increase in size. In contrast, when

Core RBAC was incrementalized [Liu et al. 2006], it tripled in size
to slightly over 400 lines. Incrementalization of queries improves
performance asymptotically: for example,CheckAccess is im-
proved fromO(roles) toO(1), which in our experiments with 100
roles manifests itself as an almost 50-fold speedup.

Rule application time. All experiments were performed on the
same machine as in the experiments for the NetFlow query tool.
Table 2(c) shows that applying composed rules, compared to ap-
plying separate rules, reduces the transformation time by up to a
factor of five, from 257 seconds down to 44 seconds . The reason
is evident from the “#inv clauses applied” column, which shows
that when applying composed rules, fewer invariant rules are ap-
plied than when applying separate rules. After applying a rule that
changes the program, the changed program must be reanalyzed.
Thus, applying more separate rules is slower than fewer composed
rules, even when both produce the same transformed program.

Correctness. We also experimentally checked that the incremen-
talization preserved the program semantics, using the sameinten-
sive test approach as for Core RBAC [Liu et al. 2006]. Our testing
suite randomly generates a sequence of 50 million RBAC opera-
tions. It then verifies that the straightforward and incrementalized
implementations produce the same results for these operations.

7. Related work
A large amount of work has been done on program transformations
and in related areas.

The rule language we use is a slight extension of the invariant
rules in [Liu et al. 2009], to support instrumentation rulesthat were
not supported before. It allows concise and convenient specifica-
tion of program transformations for inserting instrumentation and
maintaining invariants. To this end, it supports automaticdetection
of all program segments that may affect an invariant, and coordi-
nated transformations for all those segments. Pure instrumentation
rules ensure that inserted code does not change program seman-
tics. Other powerful program manipulation systems, such asStrat-
egoXL [Visser 2004] and TXL [Cordy 2004], do not provide such
support.

Previous work related to invariant rules [Liu et al. 2005, 2009]
studied only transformations using repeated application of individ-
ual rules, not composition and optimization of rules as in this paper.
Our method in this paper makes the result of composition much
simpler and easier to understand than before. It also significantly
reduces the transformation time, as well as the running timeand
memory overhead of the instrumentation. Our elimination ofdead
computations is more powerful than standard compiler optimiza-
tions [Aho et al. 2006], because it exploits the results of simplifi-
cation and symbolic evaluation, as also exploited in partial evalua-
tion [Jones et al. 1993]. In particular, our transformations are based
on the semantics of set operations, especially set comprehensions,
that have not been studied in partial evaluation before, to the best
of our knowledge.

Aspect-oriented programming (AOP) [Kiczales et al. 1997,
2001] also allows code for cross-cutting concerns, such as de-
bugging, to be expressed separately and inserted automatically
at a set of matched program points. Connections between AOP
and invariants are studied specially [Smith 2007, 2008]. Our work
can be viewed as extensions to existing AOP approaches: our
rule language has an explicit definition for preserving invariants,
to facilitate formal verification, and it provides powerfulstatic
analysis, especially for automatically detecting updates, to ap-
ply coordinated transformations. Also, existing AOP methods do
not help the programmer write code to efficiently maintain the
query results—he must figure that out on his own. Finally, existing
AOP systems for Python provide a very limited set of join points:
Aspyct.aop [Antoine 2010] provides justatCall, atRaise,
andatReturn, whereas our method provides also the equivalent
of pointcuts at field accesses.

Program optimization by incrementalization has been studied
for many languages. For example, Acar et al. [Acar 2009] study a
combination of change propagation and memoization for ML and

C, which works quite well for recursive algorithms. However, the
method requires the programmer to write the program to be trans-
formed using special constructs (e.g., mutable references), and re-
lies on runtime support (e.g., dynamic dependence tracking), with
runtime overhead of up to a factor of 18.8 for C [Hammer et al.
2009] and 31.1 for ML [Ruy et al. 2008]. We derive invariant
rules by combining a method for sets but not objects [Liu et al.
2006] that is static and a method for sets and objects that is dy-
namic [Rothamel and Liu 2008]. None of these previous works
provides a platform for general and efficient instrumentation, nor
do they study composition of transformation rules.

For composing program transformation specifications, there are
two approaches. The extensional approach simply concatenates the
specifications; applying the resulting specification to a program in-
volves applying the original transformations, one at a time, in the
specified order. The intensional approach composes the specifica-
tions into a single transformation specification that can beapplied
in one shot. The extensional approach is used in StrategoXL and
TXL. The intensional approach is used in J& [Nystrom et al. 2006],
but is limited to specifications that do not depend on static analysis
results. Our previous work [Liu et al. 2005, 2009] also uses an ex-
tensional approach, but, unlike StrategoXL and TXL, automatically
determines the order for applying transformation rules. This paper
presents a method for intensional composition without the limita-
tions of J&: we allow the rules to depend on static analysis results,
and we also optimize composed rules.

Using our method in complex applications shows the promise
of the method. For example, our method makes the instrumenta-
tion of BitTorrent significantly easier than manually inserting book-
keeping code. Design and implementation of NetFlow collectors /
analyzers that operate at line speeds on Gigabit links (100,000+
packets/sec) is challenging, due to the classic tension between clar-
ity and efficiency, i.e., the desire to let the network administra-
tor write analysis scripts in a declarative manner vs. the desire
to have these scripts process hundreds of thousands of packets
per second. Some systems allow a degree of customization of the
queries that they efficiently execute [Deri 2003; SolarWinds 2009].
Our method can allow such systems to execute even more gen-
eral queries efficiently. Various implementations of Constrained
RBAC exist, such as [Finin et al. 2008; Strembeck 2004; Ven-
tuneac et al. 2003]. We are aware of only one incrementalized
implementation—Strembeck’s, and it was incrementalized man-
ually. Our method generates efficient implementations automati-
cally.

References
U.A. Acar. Self-adjusting computation: an overview. InProc. of the

2009 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, pages 1–6, 2009.

A. V. Aho, M. S. Lam, , R. Sethi, and J. D. Ullman.Compilers: Principles,
Techniques, and Tools. Addison Wesley, 2006.

American National Standards Institute, Inc. Role-Based Access Control.
ANSI INCITS 359-2004, 2004. Approved Feb. 3, 2004.

d’O. B. Antoine. Aspyct.aop - Python AOP engine.http://old.
aspyct.org/doku.php?id=aspyct, 2010.

B. Claise. Cisco Systems NetFlow services export version 9.RFC 3954,
Internet Engineering Task Force, 2004.

J.R. Cordy. TXL-a language for programming language tools and appli-
cations. Electronic Notes in Theoretical Computer Science, 110:3–31,
2004.

L. Deri. Passively monitoring networks at Gigabit speeds using commodity
hardware and open source software. InProc. of the Passive and Active
Measurement Conf., pages 13–21, 2003.

T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, and
B. Thuraisingham. R OWL BAC: representing role-based access control
in OWL. In Proc. of the 13th ACM Symp. on Access Control Models and
Technologies, pages 73–82, 2008.

M. Gorbovitski, T. Rothamel, Y. A. Liu, and S. D. Stoller. Efficient runtime
invariant checking: A framework and case study. InProc. of the 6th Intl.

Workshop on Dynamic Analysis, pages 43–49, 2008.

M. Gorbovitski, Y. A. Liu, S. D. Stoller, K. T. Tekle, and T. Rothamel.
Alias analysis for optimization of dynamic languages. InProc. of the
2010 Dynamic Languages Symp., pages 12–20, 2010.

M.A. Hammer, U.A. Acar, and Y. Chen. CEAL: a C-based languagefor
self-adjusting computation. InProc. of the 2009 ACM SIGPLAN Conf.
on Programming Language Design and Implementation, pages 25–37,
2009. ISBN 978-1-60558-392-1.

N. D. Jones, C. K. Gomard, and P. Sestoft.Partial Evaluation and Auto-
matic Program Generation. Prentice-Hall, 1993.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.Loingtier,
and J. Irwin. Aspect-oriented programming. InProc. of the 11th Eu-
ropeen Conf. on Object-Oriented Programming, pages 220–242, 1997.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. InProc. of the 15th European Conf.
on Object-Oriented Programming, pages 327–353, 2001.

Y. A. Liu and S. D. Stoller. Role-based access control: A corrected and sim-
plified specification. InDepartment of Defense Sponsored Information
Security Research: New Methods for Protecting Against Cyber Threats.
Wiley, 2007.

Y. A. Liu, S. D. Stoller, M. Gorbovitski, T. Rothamel, and Y.E. Liu. Incre-
mentalization across object abstraction. InProc. of the 20th Annual ACM
SIGPLAN Conf. on Object Oriented Programming, Systems, Languages,
and Applications, pages 473–486, 2005.

Y. A. Liu, C. Wang, M. Gorbovitski, T. Rothamel, Y. Cheng, Y. Zhao, and
J. Zhang. Core role-based access control: Efficient implementations by
transformations. InProc. of the 2006 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, pages 112–120, 2006.

Y.A. Liu, M. Gorbovitski, and S.D. Stoller. A language and framework
for invariant-driven transformations. InProc. of the 8th Intl. Conf. on
Generative Programming and Component Engineering, pages 55–64,
2009.

P. Moor. Free Riding in BitTorrent and Countermeasures.Master’s Thesis,
Distributed Computing Group, Computer Engineering and Networks
Laboratory, Swiss Federal Institute of Technology Zurich, 2006.

N. Nystrom, X. Qi, and A.C. Myers. J&: Nested intersection for scal-
able software composition. InProc. of the 21st Annual ACM SIGPLAN
Conf. on Object Oriented Programming Systems, Languages, and Appli-
cations, pages 21–36, 2006.

S. Romig. The OSU flow-tools package and Cisco NetFlow logs. In Proc.
of the 14th USENIX Conf. on System Administration, page 304, 2000.

T. Rothamel and Y. A. Liu. Generating incremental implementations of
object-set queries. InProc. of the 7th Intl. Conf. on Generative Pro-
gramming and Component Engineering, pages 55–66, 2008.

L. Ruy, M. Fluet, and U.A. Acar. Compiling self-adjusting programs
with continuations. InProc. of the 13th ACM SIGPLAN Intl. Conf. on
Functional Programming, pages 321–334, 2008.

D. R. Smith. Requirement enforcement by transformation automata. In
Proc. of the 6th Workshop on Foundations of Aspect-Oriented Lan-
guages, pages 5–14, 2007.

D. R. Smith. Aspects as invariants.Automatic Program Development: A
Tribute to Robert Paige, pages 270–286, 2008.

SolarWinds. Orion NetFlow Traffic Analyzer. http://www.
solarwinds.com/Products/orion/nta/, 2009.

M. Strembeck. Conflict checking of separation of duty constraints in RBAC
— implementation experiences. InProc. of the 2004 Intl. Conf. on
Software Engineering, pages 224–229, 2004.

M. Ventuneac, T. Coffey, and I. Salomie. A policy-based security frame-
work for web-enabled applications. InProc. of the 1st Intl. Symp. on
Information and Communication Technologies, pages 487–492, 2003.

E. Visser. Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in StrategoXT-0.9.Lecture Notes in Computer Sci-
ence, 3016:216–238, 2004.

