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Abstract. This paper presents a powerful language for querying com-
plex graphs and a method for generating efficient implementations that
can answer queries with complexity guarantees. The graphs may have
edge labels that may have parameters, and easily and naturally capture
complex interrelated objects in object-oriented systems and XML data.
The language is built on extended regular path expressions with variables
and scoping, and can express queries more easily and clearly than pre-
vious query languages. The method for implementation first transforms
queries into Datalog with limited extensions. It then extends a previous
method to generate specialized algorithms and complexity formulas from
Datalog with these extensions.

1 Introduction

Database applications must query complex interrelated objects, and thus lan-
guages that provide both the power and ease of querying complex graphs are
highly desired. Such query languages are essential not only for traditional
database applications and mining of semi-structured data, but also for analyzing
large computer programs and systems.

Various forms of regular path queries are ways of declaratively expressing
queries on graphs as regular-expression-like patterns that are matched against
paths in the graph. Some have been used widely in querying semi-structured
data (e.g., [1, 3, 7, 20]), including in particular tree structured data in XML,
which is increasingly used for representing data, including knowledge as data and
programs as data. Some more powerful kinds have provided general frameworks
for analyzing computer programs and systems (e.g., [21, 11, 17]).

Regular-expression-like patterns are composed of simple and easy operations
for sequencing, choice, repetition, skipping, negation, etc. Even though they are
not as powerful as languages in more sophisticated frameworks, they are more
perspicuous and convenient, and are sufficiently powerful to express common and
important properties. The combined power and simplicity contribute to their
wide use in computing, in database and web information retrieval, languages
and compilers, operating systems and security, etc.
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While regular-expression-like patterns have been studied and used exten-
sively in analysis of linear data and in recent years tree-structured data, many
applications deal with much more complex interrelated objects. In regular path
query frameworks, such information is captured as graphs, and the analyses are
based on properties that hold on paths in the graph. In particular, parametric
regular path queries [17] allow the use of variables, also called parameters, in
queries so that additional information along paths can be captured and related.

Despite this progress, no previous regular path query framework supports
easy, powerful, and efficient queries over a rich data model that naturally mod-
els all aspects of objects in object-oriented systems and XML data. Frameworks
with rich data models exist for querying object-oriented databases [14] and for
querying XML data [20], but the former does not support regular-expression
like patterns, and the latter does not support queries on graphs. Languages that
support regular-expression like patterns on graphs [10, 13] are studied heavily
in terms of expressiveness and query containment, but not on improved ease of
expressing queries or efficient implementation with precise complexity guaran-
tees. The best of existing approaches must be combined and extended to support
easy, powerful, and efficient queries of complex graphs.

This paper presents a powerful language for querying complex graphs and
a method for generating efficient implementations that can answer queries with
complexity guarantees. The graphs may have edge labels that may have param-
eters and easily and naturally capture complex interrelated objects in object-
oriented systems and XML data. The language is built on parameterized reg-
ular path expressions with copings, and can express queries more easily and
clearly than previous query languages. The method for implementation first
transforms queries into Datalog with limited extensions. It then extends a pre-
vious method [18] to generate specialized algorithms and complexity formulas
from Datalog with these extensions.

2 The data model

Complex graphs. We consider edge-labeled directed graphs where the labels
may have parameters. We call such graphs complex graphs. A complex graph
comprises a set of vertices and a set of edges. Each vertex has a unique id. Each
edge has a source vertex, a target vertex, and a label.

A label captures information relating a source vertex and a target vertex.
For example, in applications that manipulate computer programs, an edge may
relate a program-point vertex to another program-point vertex with a label def
that captures the assignment operation in between. In a supply chain applica-
tion, an edge may relate a manufacturer vertex and a product vertex with a
label supply. A label may have arguments that capture additional information
about the relationship. For example, an assignment operation num := 5 may be
represented using an edge label def(num) or def(num, 5). To represent the date
and means of a supply relationship, a label such as supply(12/20/04, air) may



be used. A special label can be used to indicate that no information about the
relationship is of interest.

We refer to names, such as def and supply, that represent kinds of relation-
ships, as constructors. We refer to names, such as num, 12/20/04, and vertex
ids, that represent individuals, as constants. A label is a constructor applied to
zero or more arguments, where each argument is a constant. We assume that the
domains of constructors and constants are finite; this assumption always holds
in any particular application.

Modeling objects and relationships. Complex graphs can model objects
and classes naturally and precisely. Objects are modeled as vertices, where ver-
tex ids are object ids. Values of attributes are also modeled as vertices, consis-
tent with them being objects in a pure object-oriented model. Classes are also
modeled as vertices, consistent with classes being objects in a powerful object-
oriented model.

Attributes and relationships are modeled as edges. An edge labeled with an
attribute name connects an object to the value of that attribute of the object. An
instance-of relationship connects an object to another object that is an instance
of the first object. A subclass relationship connects an object to another object
that represents a subclass of the first object.

Modeling XML data. Complex graphs can model XML data easily and
significantly better than using only trees. XML elements and attribute values
are modeled as vertices. XML nested element relationship and attribute are
modeled as edges relating an element to a child element of it and to the value
of an attribute of it, respectively; these are the straightforward tree edges in
XML documents. Relationships that can not be captured using tree edges are
expressed directly as graph edges in our model but need to be encoded using
IDREF and IDREFS in XML.

Paths. A path in a complex graph is expressed as a sequence of vertices and
edges of the form:

[v0] l1 [v1] l2 . . . [vn−1] ln [vn] (1)

where each vi is a vertex, and each li is the label of an edge from vi−1 to vi. In
another word, the above expression asserts that there is an edge labeled li from
vertex vi−1 to vi. For example, the program point start followed by an opera-
tion prompt followed by the program point prelogin followed by an operation
read(account, password) followed by the program point preauthentication

may be represented as:

[start] prompt [prelogin] read(account, password) [preauthentication]

3 Path-based queries

For ease of presentation, in this section, we use x, y, and z possibly with sub-
scripts for variables, and use other names besides keywords for constructors and
constants.



Simple queries. One may query for vertices, labels, constructors, and argu-
ments that satisfy certain properties based on paths. Simple queries are of the
form:

x1, ..., xk : e (2)

where x1, ..., xk are variables, called query variables, and e is an expression, called
a path-properties expression, and is constructed from paths that contain x1, ..., xk
and may contain other variables, wildcard , and negation ¬; from combinations
of paths using conjunction ∧, disjunction ∨, and negation ¬; and from constraints
added to these that involve primitive arithmetic, comparison, and Boolean op-
erations on variables in the paths. The query returns the set of tuples of values
of x1, ..., xk such that there exist values of the other variables, if any, for which
the properties about paths asserted by the expression e hold.

Variables and wildcard may refer to, and negation may be applied to, vertices,
labels, constructors, and arguments. Variables that refer to labels may not refer
to vertices, constructors, or arguments. Multiple occurrences of a variable must
be bound to the same value. A wildcard matches any value. A negation applied
to an item matches any value other than what the item matches. For example,
the following query returns the set containing each object that is a branch of
acme and has a director whose salary is at least 150000:

x : [acme] branch [x] director [ ] salary [y] ∧ y >= 150000

We could easily query also the salary, by returning x, y. Each variable used
in a constraint must also appear outside of the constraint, like y appears in
salary [y]. Note that path-properties expression [v0] l1 [v1] l2 [v2] is equivalent
to expression [v0] l1 [v1] ∧ [v1] l2 [v2].

Extended regular expression based queries. One may also express the
property that a path is formed by repeating a path segment 0 or more times.
This is done by applying the repetition operator ∗ to the repeated segment. For
example, the following query returns the set of program points y that immedi-
ately follow a use of an uninitialized variable, i.e., there is a path from program
point start on which a variable is not defined and is used right before y:

y : [start] (¬def(x)[ ])∗ use(x) [y] (3)

One may return also the uninitialized variable by including x as another query
variable.

Often, intermediate vertices in paths are not of interest, as in the example
above. Thus we allow [ ] to be omitted from a path; note that this also allows
us to easily refer to the program point right before use(x) without unrolling the
last iteration of the repetition. We also allow a shorthand |, instead of using ∨,
to separate alternative paths. Queries that may use these notations are called
extended regular expression based queries. For example, the following query re-
turns the set of program point pairs z, y right before and after, respectively, the
first use of an uninitialized variable:

z, y : [start] (¬(def(x)|use(x)))∗ [z] use(x) [y] (4)



Extended regular expression based queries provide the full power and ease of
using extended regular expressions in queries over parameterized edge labels, as
in parametric regular path queries [17]. Parametric regular path queries do not
support the use of vertex ids as the queries in this paper do. This support allows
us to easily query vertices on cycles, i.e., a vertex is returned if some nonempty
path from it goes back to it:

x : [x] + [x]

where s+ is a short hand for s s∗ .

Variable scoping and nested queries. Variables can be declared with a
scope local to a subexpression. That is, a path-properties expression may be of
the form:

local x1, ..., xk e (5)

where the keyword local indicates that the scope of variables x1, ..., xk is e.
For example, in a model of a computer network, where link relates directly
connected nodes, the following query returns all pairs of a client and a server
such that the two are connected by a path containing nodes that do not block
port 22:

x, y : [x] type [client] ∧ [y] type [server] ∧
[x] (local z link [z] ∧ ¬([z] block [22]))∗ link [y]

Note that when scoping is not inside a repetition, it is unnecessary and can be
removed, by replacing each local variable with a fresh variable. Variables declared
inside a repetition can not be replaced this way because such a variable is local
to the repeated expression and may be bound to different values for different
rounds in the repetition, but a non-local variable must be bound to the same
value for all rounds of the repetition.

A query may also be nested inside [ ] to express the properties of the vertex
in it, in the form of [x : e], and it is equivalent to conjuncting the expression e

to the immediately enclosing expression. For example, the segment repeated in
the example above can also be written as

local z link [z : ¬([z] block [22])]

This adds convenience and modularity using only the concepts and syntax al-
ready introduced.

Querying objects and XML data. Objects can be organized into classes,
and methods can be defined in classes as usual for querying objects [14], except
that extended regular expression based queries can now be used in the method
body. The use of extended regular expressions is essential for querying graph
structures of unbounded size, and it greatly increases the expressive power of
the query language.

When a method m returns exactly one query variable, an invocation of m

can have the same syntax and semantics as a short-cut edge, [v1]m(a1, ..., ak)[v2],



where the starting vertex v1 is an object on which m is invoked, a1, ..., ak are
other arguments to m, and the ending vertex v2 is an object returned by m. For
simplicity, we may use the same name space for edge label constructors and
method names, and may allow the same names to be used for both and give
preference to one of them.

Objects can be created out of the end result of a query as usual, by viewing
each returned tuple as an object, giving it a logical object id, and giving an
attribute name to each component of the tuple [14]. Since these objects are
created after query evaluation, all operations including repetitions in a query
operate on finite data, and therefore we can guarantee that all queries terminate.

Querying XML data is easy using graph queries. Unbounded levels of ele-
ment nesting poses a challenge to previous object query languages [14] but is
easily expressed in our language using the repetition operator. Querying com-
plicated graphs using our language is significantly easier than using XML query
languages, such as XQuery, that employ explicit joins for relationships that are
not nested elements or attributes.

Expressiveness. We think this query language has the same expressiveness as
GraphLog [10], which is equivalent to stratified linear Datalog, first order logic
with transitive closure, and non-deterministic logarithmic space. This is because
our language supports all the kinds of graph edges and query operations that
GraphLog does, and variable scoping and query nesting in our language can be
translated into GraphLog.

Support for scoping, and textual flexibilities such as query nesting, make
our language easier to use, either by itself or as part of another query language
such as [15]. For example, the client-server example above, if expressed using
GraphLog, needs two graphs, one for each of the following rules:

result(x,y) :- type(x,client), type(y,server),

link_node_not_block_22*.link(x,y).

link_node_not_block_22(x,z) :- link(x,z), not block(z,22).

where each argument variable or constant corresponds to a vertex, and each
label(vert1, vert2) corresponds to an edge from vert1 to vert2 and labeled
label; the edge on the left of :- is called the distinguished edge of the graph,
and is drawn as a thick line. So the first graph has 4 vertices and 4 edges, and the
second has 3 vertices and 3 edges. Furthermore, if there are additional constraints
involving z, x, and y, one can simply conjunct them with the segment repeated
in our language, but one must add not only these constraints to the second
rules, but also additional parameters to the label link node not block 22 in
both graphs to pass them between the graphs.

4 Transformation into Datalog with limited extensions

Datalog with limited extensions. A Datalog program is a finite set of



relational rules of the form:

p1(x11, ..., x1a1) ∧ ... ∧ ph(xh1, ..., xhah) → q(x1, ..., xa) (6)

where h is a natural number, each pi (respectively q) is a relation of ai (re-
spectively a) arguments, each xij and xk is either a constant or a variable, and
variables in xk’s must be a subset of the variables in xij’s. If h = 0, then there are
no pi’s or xij’s, and xk’s must be constants, in which case q(x1, ..., xa) is called
a fact. For the rest of the paper, “rule” refers only to the case where h ≥ 1, in
which case each pi(xi1, ..., xiai) is called a hypothesis of the rule, and q(x1, ..., xa)
is called the conclusion of the rule.

The meaning of a set of rules and a set of facts is the smallest set of facts
that contains all the given facts and all the facts that can be inferred, directly or
indirectly, using the rules. Note that variables occurring in exactly one hypothesis
and not in the conclusion of a rule are equivalent to wildcards; their names do
not affect the meaning of the rule and can be replaced with .

Datalog is a database query language based on the logic programming
paradigm [8, 2]. Recursion in Datalog allows queries that are not expressible
in relational algebra or relational calculus but are essential for querying graph
structures of unbounded size.

We consider Datalog with limited extensions—stratified negation, unsafe
rules, and additional constraints—for capturing complex graph queries, includ-
ing extended regular expression based queries. Stratified negation allows negated
hypotheses, but they may not appear in cycles in recursive rules; it has much
simpler meanings and more efficient implementations than arbitrary negation,
by allowing all facts in a relation to be inferred before its negation is needed.
Unsafe rules contain variables in the conclusion that are unbound, i.e., that do
not appear in any hypothesis; such variables may be left in the arguments of
inferred facts and be universally quantified. Additional constraints involve prim-
itive arithmetic, comparison, and Boolean operations on variables that appear
in the hypotheses or the conclusion of a rule; they are additional conditions on
the values of those variables.

Transforming basic queries and extended regular expression based

queries. Complex graph queries can be transformed into Datalog with stratified
negation, unsafe rules, and additional constraints. Queries where variables, wild-
card, and negation do not appear in constructors of edge labels are transformed
as described below. Other queries can be transformed in the same way after each
exceptional constructor is first transformed into a distinct new constructor that
has an additional argument whose value ranges over possible constructors.

Each constructor c of an edge label corresponds to an edge relation c that
relates source and target vertices and the arguments of the label. An edge from
v1 to v2 with label c(a1, ..., ak) corresponds to a fact c(v1, v2, a1, ..., ak).

Operations in path-properties expressions correspond to rules that combine
relations that capture sub-expressions into relations that capture larger expres-
sions. Edge relations capture the smallest expressions. New relations are intro-
duced to capture larger expressions; the arguments of a new relation are deter-



mined as described below. Finally, a special relation is introduced to capture the
entire query; it projects the relation that captures the outermost path-properties
expression onto the query variables.

Arguments of a new relation include all variables in the expression it captures
that also appear in the rest of the query or, if the expression is a repetition or
is inside a repetition, all variables except those that are local to the repeated
expression and appear only in the expression captured; this takes care of vari-
able scoping, and the requirement of appearance in the rest of the query avoids
propagation of unneeded values. In particular, for an expression that represents
a path segment, the starting vertex and ending vertex of the path segment are
included as the first two arguments of the corresponding relation. For an expres-
sion that represents a path segment and whose starting or ending vertex is a
wildcard or is not indicated explicitly, we introduce a fresh variable for such a
vertex. The fresh variable is effectively a wildcard, so the semantics is preserved.
When combining relations that capture smaller expressions into relations that
capture larger expressions, shared variables are used to capture equality between
the ending vertex of one path segment and the starting vertex of the next path
segment.

Wildcards for, and negations applied to, vertices, arguments, and labels are
transformed as follows. Wildcards for vertices and arguments are handled as de-
scribed above by introducing fresh variables. All wildcards for labels are trans-
formed into a special edge relation, anylabel(v1, v2) for source vertex v1 and
target vertex v2, and a set of rules of the following form, one for each edge
relation c:

c(v1, v2, a1, ..., ak) → anylabel(v1, v2) (7)

Negation applied to a vertex or an argument is transformed into an inequality
constraint attached to the relation that captures the enclosing path-properties
expression and where the vertex or argument with negation is replaced by a
fresh variable; the inequality constraint expresses that the fresh variable is not
equal to the constant or variable to which the negation is applied, except that
the constraint is omitted if the negation is applied to a variable not used in the
rest of the query. Negation applied to a label is transformed into anylabel plus
a negated hypothesis, where the hypothesis corresponds to the edge relation for
the label without negation.

Combinations of paths using conjunction, disjunction, and negation are trans-
formed as follows. Suppose p1(x11, ..., x1k1) captures exp1, and p2(x21, ..., x2k2)
captures exp2. If p(x1, ..., xk) captures exp1 ∧ exp2, then we introduce a rule:

p1(x11, ..., x1k1) ∧ p2(x21, ..., x2k2) → p(x1, ..., xk) (8)

Note that if exp1 and exp2 are consecutive path segments, then x12 and x21 are
the same variable. If p(x1, ..., xk) captures exp1 ∨ exp2, then we introduce two
rules:

p1(x11, ..., x1k1) → p(x1, ..., xk)
p2(x21, ..., x2k2) → p(x1, ..., xk)

(9)



These rules may be unsafe, because any variable in p(x1, ..., xk) that is not in a
disjunct is unbound in the conclusion of the corresponding rule. More generally,
a conjunction with k conjuncts is transformed into a rule with k hypotheses,
and a disjunction with k disjuncts is transformed into k rules. Negation applied
to a path-properties expression is simply transformed into a rule with a negated
hypothesis; we show in the next section that these negations are stratified.

A repetition of an expression is transformed into a fact with variable argu-
ments, for repeating zero times, and a rule involving recursion, for repeating
non-zero times. If p1(x1, x2, x3, ..., xk) captures exp, and p(x1, x2, x3, ..., xk) cap-
tures exp∗ , then the fact is p(x, x, x3, ..., xk), and the rule is

p(x1, x12, x3, ..., xk) ∧ p1(x12, x2, x3, ..., xk) → p(x1, x2, x3, ..., xk) (10)

The rule may also be written by exchanging p and p1 in the hypotheses. They are
both correct rules, but depending on the query, may lead to different asymptotic
running times, as discussed below.

Constraints themselves do not require transformation. If all variables in a
constraint are from the same scope after unnecessary scopings are removed, i.e.,
the constraint is not inside a repetition and involves both local variables and non-
local variables of the repeated expression, then it is simply added as a hypothesis
of the rule that combines all the subexpressions it constrains. Otherwise, the facts
and rules for the repetition are rewritten when combining the repetition with
the expression on the left or right that is constrained. For example, suppose (10)
has, as an additional condition, a constraint c(..., y) that is transformed from the
same constraint in exp, where y is a variable not local to exp; q(x1, x2, y) captures
the expression to the left of the repetition; and r(x1, x2, x3, ..., xk, y) captures
the combined expression. Then, the fact p(x, x, x3, ..., xk) and the rule (10) are
rewritten into

q(x1, x2, y) → r(x1, x2, x3, ..., xk, y)
r(x1, x12, x3, ..., xk, y) ∧ p1(x12, x2, x3, ..., xk) → r(x1, x2, x3, ..., xk, y)

Combining a repetition with the expression on the right that is constrained is
similar. However, if a constraint involves non-local variables on both sides of the
repetition, only one side can be combined using the rewrite above, and the non-
local variables on the other side are not bound and must be enumerated during
the execution of the resulting program. Therefore, one may choose to combine
with the side that will minimize the enumeration.

The transformation into a set of facts and rules has a worst-case time com-
plexity of O(qvs), where q is the size of the query, v is the number of variables,
and s is the maximum number of scopes that the variables in a constraint are
in. This is because, if all variables in each constraint are from the same scope,
then the transformation is linear in qv, since the transformation considers each
construct in the query once, and in the worst case, each variable may be an
argument in all the intermediate relations. Otherwise, to combine the repetition
of each nested scope with an expression to the left or right of the repetition, we
rewrite the fact and the rules for the repetition, which yields a factor of s in the



complexity. In addition, if a constraint involves non-local variables on both sides
of the repetition, and one chooses to combine with the side that minimizes the
enumeration during execution, then trying all possible combinations to find the
minimum will incur a factor exponential in s.

Handling methods and object creation. The definition of a method is
transformed into a set of rules for the path-properties expression in the method
body, as described above, except that the relation that captures the entire
method is identified by the fully qualified method name, and is related to the
class where the method is defined. That relation relates the arguments of the
method, including this, to the return value, captured by the query variables of
the method body. A method invocation is transformed into rules that conclude
the relation corresponding to the invocation if the object on which the method is
invoked is an instance of a class that defines the method or inherits the method
from a class that defines it, and if the relation corresponding to the method
holds for the arguments and return value of the invocation.

Objects are created from query results after query evaluation, so object cre-
ation does not need to be transformed into Datalog. While multiple logical object
ids can be given to an object, for efficient search and equality comparison in sub-
sequent queries and other processing, an object must have a unique physical id
for indexing. To achieve this, whenever a new object is to be created and to which
search and equality comparison might be applied, it is matched against existing
objects, and if found, a reference to the existing object is used, as opposed to
creating an identical copy of the existing object.

Example. For example, the query (3) is transformed into a fact notdefs(x1, x1, x)
and the following rules, where the query result is captured by the relation result:

¬def(x1, x2, x) → notdef(x1, x2, x)
notdefs(x1, x2, x) ∧ notdef(x2, x3, x) → notdefs(x1, x3, x)
notdefs(x1, x2, x) ∧ use(x2, x3, x) → notdefsuse(x1, x3, x)
notdefsuse(start, y, x) → result(y)

(11)

The query (4) is transformed into the same rules except with ¬def in (11)
replaced by ¬deforuse and with two additional rules:

def(x1, x2, x) → deforuse(x1, x2, x)
use(x1, x2, x) → deforuse(x1, x2, x)

5 Generating specialized algorithms and complexity

formulas

While Datalog programs can be executed in a Prolog system, recursion could
cause nontermination or exponential running time, depending on the order of
rules, due to failure to remember computations already attempted. Polynomial
running time can be ensured by executing Datalog programs in a tabled logic
programming system, such as XSB [24], but it could differ asymptotically, such as



between linear and quadratic, depending on the order of hypotheses in individual
rules. Also, analyzing the running time requires understanding the execution
engine, including for XSB its sophisticated tabling mechanism, and is nontrivial
even for experts. Additionally, a light-weight program that is specialized to do
only the query at hand and can more easily be plugged into other applications
is often preferable to a heavy-weight generic execution engine.

We summarize the method described in [18] for generating specialized al-
gorithms and complexities from pure Datalog, and extend it here to handle
stratified negation, unsafe rules, and additional constraints.

Generating algorithms and complexities from Datalog. A method for
transforming any set of Datalog rules into an efficient, specialized program with
time and space complexity guarantees has been studied [18]. The method breaks
any given set of rules into rules that have one or two hypotheses and generates an
efficient program that, given any set of facts, computes the meaning of the given
rules and facts. The generated program embodies (1) an incremental algorithm
to consider one fact at a time and (2) a combination of linked and indexed data
structures for the sets of facts and indices used by the algorithm. Overall, each
combination of instantiations of the hypotheses is considered exactly once and
in constant time.

The method also produces formulas for the time and space complexity of the
generated program in terms of data size. Let #p denote the number of facts that
actually hold for relation p. A rule with one hypothesis about relation p is fired
at most #p times; a rule with two hypotheses about relations p1 and p2 is fired
at most

min(#p1 × #p2.matched,#p2 × #p1.matched) (12)

times, where #p2.matched denotes the maximum number of combinations of val-
ues of arguments of p2 that are not shared with p1 for each combination of values
of arguments of p2 that are shared with p1, and vice versa for #p1.matched; if
this number is not known from application domain knowledge, it is bounded by
the product of the domain sizes of unshared arguments as well as by the size
of the relation. The overall time complexity is the sum of the number of firing
times for all rules.

The method applies to pure Datalog, and has been applied successfully to a
number of applications, including regular path queries [19] and parametric reg-
ular path queries [17], grammar constraint simplifications [18], program pointer
analysis [5], and parts of the ANSI standard for role-based access control [4]. A
prototype has also been developed to support the applications and experiments.

Handling extensions. We extend the method above to handle variables as
arguments in facts, additional constraints, and negations, as follows.

Unsafe rules and transformation of repetitions produce facts that contain
variables as arguments. These variables are universally quantified, but we want
to avoid enumerating all possible values of them. So we constrain these variables
using equality during matching as much as possible, and leave them in the facts



when they are not constrained. The complexity calculation is not affected by
this optimization since the formulas are for the worst case.

For each constraint attached as an additional hypothesis in a rule where
variables in the constraint are bound in other hypotheses, the constraint can
simply be evaluated after all its variables are bound with definite values; con-
straints involving primitive arithmetic, comparison, and Boolean operations can
be evaluated in constant time, so such a constraint does not contribute to the
complexity formula. For any constraint that contains variables not bound in the
other hypotheses, the domains of those variables are numerated. This increases
the complexity by a factor linear in the size of the domain for each such vari-
able, but this number will be minimized by the rewrite described in Section 4
for transforming constraints.

Negation applied to a vertex or argument produces an inequality constraint,
which is handled as above. Negation applied to a label is transformed into
anylabel plus a negation applied to an edge relation; the edge relation gives
rise to a set of facts, so the negation, i.e., set complement, is easy to compute.
Negation applied to an expression is transformed into a rule with a negated
hypothesis, so we need to handle Datalog with negation, as described below.

Handling negation. We first show that negations in programs transformed
from extended regular expression based queries are always stratified. Note that
recursive definitions are only transformed from repetitions. For each relation that
captures a repetition, the recursive occurrence of the relation in the hypothesis
is not negated, even though the path-properties expression being repeated may
be negated. Therefore, there is no negation in cycles formed by the dependency
of conclusions on hypotheses in recursive rules.

For stratified negation, we generate a program that fully evaluates a relation
before firing any rules that use the negation of the relation. For rules with one
hypothesis, if the hypothesis is negative, the program enumerates all values of
arguments of the corresponding relation excluding values for which the relation
holds; the number of firings is changed from #p for a hypothesis about p to
the product of the domain sizes of all arguments of p. For rules with two hy-
potheses, rather than considering only elements in a relation and elements that
actually matched (corresponding to #p and #p.matched, respectively, in (12)),
for a negated hypothesis, we instead consider all arguments of the relation and
all unshared arguments, respectively; we pick the order of considering the two
hypotheses to give the minimum of two products in a revised form of (12): the
number of firings for each rule is the same as before except with relation size
#p and matched size #p.matched replaced by the product of the domain sizes
of all arguments and the product of the domain sizes of unshared arguments,
respectively.

Example. For example, for the rules and fact in (11) for query (3), the time
complexity is O(#point3 × #var), where #point is the domain size of the first
two arguments of def and use, and #var is the domain size of the third argu-



ment. It is obtained from the following sum, one summand for each rule:

#point2 × #var + #point3 × #var + #use× #point + #point× #var

For the rules and fact for query (4), the time complexity formula is the same,
except with two additional summands, #def and #use, for the two additional
rules.

Additional optimizations and extensions are possible. The most important
optimizations include on-demand, i.e., top-down, computation. In our prototype,
we first apply magic set transformations [6] to the rules and the relation that
captures the entire query, obtained from the previous section; we then implement
the transformed program as described in this section. For query (3), the time
complexity after the optimizations is O((#def + #use) × #var). Details of the
complexity analysis for on-demand computations using magic set transforma-
tions will be presented in a separate paper. We are currently experimenting with
the prototype. Handling non-stratified negation is a subject for future study.

6 Related work and conclusion

A number of early studies relate graph analysis problems with regular expres-
sions or regular-expression-like patterns. For example, Tarjan [28] showed that
regular expressions provide a general approach for path analysis problems, and
he gave efficient algorithms for constructing regular-expression patterns for sev-
eral kinds of path problems [27]. Regular-expression-like patterns have also been
used for static program analysis (e.g., [21]), traversing object graphs in devel-
oping adaptive software (e.g., [22, 16]), etc. Most of these works study specific
domain problems, and none of them provides a generic and efficient framework
for querying complex interrelated objects.

The idea of paths has played an essential role in querying object-oriented
databases [14] and semi-structured data [1]. Object graphs may be cyclic but
previous query languages do not support patterns that can match paths of un-
bounded length; this avoids nontermination. Query languages based on XPath [29]
use some regular-expression-like features that allow path segments to be skipped
but not repeated, and the data are treated as trees, not general graphs. Condi-
tional XPath [20] extends XPath to allow path segments to be repeated, and is
as expressive as first-order logic when interpreted on ordered trees, but it does
not handle general graphs.

Various forms of regular path queries, allowing general regular-expression-
like patterns over general graphs, have been proposed for querying databases
and semi-structured data [30, 10, 1, 3, 13, 7]. These languages are studied heavily
in terms of expressiveness and query containment, but not on improved ease of
expressing queries or efficient implementations. The implementations are basi-
cally by transforming queries into logic programs and relying on logic program-
ming engines, such as [23], for query evaluation, but such implementations do
not provide precise complexity guarantees.

Regular path queries with parameters have been studied specially for pro-
gram analysis and model checking [11, 17]. Parameters are essential for expressing



correlations of information in different parts of the data, and are needed also in
querying system logs for intrusion detection [26], and querying objects in gen-
eral, as shown in this paper. Drape et al. [12] describe how to code parametric
queries as extended logic programs. Liu et al. [17] give complete algorithms and
data structures for directly and efficiently solving parametric queries with pre-
cise complexity analysis. However, these frameworks do not support a rich data
model that can naturally model objects in object-oriented systems and XML
data.

The language in this paper is built on parametric regular path queries [17]
and a rich object model [14], extending the former with vertex ids, variable scop-
ing, methods, etc.,and extending the latter with powerful regular-expression like
patterns. It has the same expressiveness as GraphLog [10], but the support of
scoping, and textural flexibilities such as query nesting, make it easier to use,
either by itself or as part of another query language such as [15]. The implemen-
tation is built on a powerful method for generating specialized implementation
with precise complexity guarantees. The transformation to Datalog with limited
extensions helps both in understanding the semantics and in implementation. We
also extend the method in [18] to efficiently handle stratified negation, unsafe
rules, and additional constraints.

Other related works include extensions to OCL path expressions [25] and
trace-based program analysis that uses parameters to correlate information along
paths [9], but they use more sophisticated heavy-weight mechanisms.

Further extensions and improvements to the query framework can be made.
A possible extension is to support universal queries, where properties must hold
on all paths in the graph and where a variable is bound to the same value
on all paths. In terms of implementation, many optimizations can be explored,
including on-demand computation, space reuse, and filtering with constraints.
We are applying the query framework to existing and new problems in program
analysis, model checking, and security policy analysis.
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