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Abstract General Terms Algorithms, Design, Languages, Perfor-

This paper describes a very high-level language for clear de mance

scription of distributed algorithms and optimizations hec

essary for generating efficient implementations. The lan-

guage supports high-level control flows where complex syn-
o 2. ) : guages

chronization conditions can be expressed using high-level

gueries, especially logic quantifications, over message hi _

tory sequences. Unfortunately, the programs would be ex-1. Introduction

tremely inefficient, including consuming unbounded mem- pjstributed algorithms are at the core of distributed syste
ory, if executed straightforwardly. Yet, developing practical implementations of distribugd

We present new optimizations that automatically trans- 4 rithms with correctness and efficiency assurances remain
form complex synchronization conditions into incremen- a challenging, recurring task.

tal updates of necessary auxiliary values as messages are

sent and received. The core of the optimizations is the first ® Study of distributed algorithms has relied on either pseu-
general method for efficient implementation of logic quan- ~ docode with English, which is high-level but imprecise,
tifications. We have developed an operational semantics of ~ or formal specification languages, which are precise but
the language, implemented a prototype of the compiler and  harder to understand, lacking mechanisms for building
the optimizations, and successfully used the language and real distributed systems, or not executable at all.

implementation on a variety of important distributed algo- o At the same time, programming of distributed systems
rithms. has mainly been concerned with program efficiency and
has relied mostly on the use of low-level or complex
libraries and to a lesser extent on built-in mechanisms in
restricted programming models.

Keywords distributed algorithms, incrementalization, logic
guantifications, program optimization, very high-levetda

Categories and Subject DescriptordD.1.3 [Programming
Techniques Concurrent Programming—Distributed pro-
gramming; D.3.2 Programming Languagés Language
Classifications—Very high-level languages; D.3Rrd- What's lacking is (1) a simple and powerful language that
gramming LanguagégsProcessors—Code generation, Com- can express distributed algorithms at a high level and yet
pilers, Optimization; F.3.1logics and Meanings of Pro-  has a clear semantics for precise execution as well as for
gramg: Specifying and Verifying and Reasoning about verification, and is fully integrated into widely used pro-
Programs—Specification techniques; F.3.2odics and gramming languages for building real distributed systems,
Meanings of Progranjs Semantics of Programming Lan- together with (2) powerful optimizations that can transfor
guages—Operational semantics; |.Z6Mmputing Method-  high-level algorithm descriptions into efficient implentan
ologieg: Knowledge Representation Formalisms and Meth- tions.

ods—Predicate logic We have developed a very high-level language, DistAlgo,
for clear description of distributed algorithms, combipin

* This work was supported in part by ONR under grant NO00146910 advantages of pseudocode, formal specification languages,
and N000140710928; and NSF under grant CCF-0964196 and CNS- gn(g programming Ianguages.
0831298.

e The main control flow of a process, including sending
messages and waiting on conditions about received mes-
sages, can be stated directly as in sequential programs;
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message handlers that perform low-level incremental up- e A general and systematic method for generating effi-
dates and obscure control flows. cient implementations of arbitrary logic quantifications

DistAlgo supports these features by building on an object- together with general high-level queries.

oriented programming language. We also developed an op- We have implemented a prototype of the compiler and
erational semantics for the language. The result is that dis the optimizations and experimented with a variety of im-
tributed algorithms can be expressed in DistAlgo clearly at  portant distributed algorithms, including Paxos, Byzaati
high level, like in pseudocode, but also precisely, likean f Paxos, and multi-Paxos. Our experiments strongly confirm
mal specification languages, and be executed as part of reathe benefits of a very high-level language and the effective-
applications, as in programming languages. ness of our optimizations.

Unfortunately, programs containing control flows with
synchronization conditions expressed at such a high level2. Expressing distributed algorithms

are extremely inefficient if executed straightforwardlgick Even when a distributed algorithm appears simple at a high
guantifier will cause a linear factor in running time, and any level, it can be subtle when necessary details are considere
use of the history of messages sent and received will causeyaking it difficult to understand how the algorithm works
space usage to be unbounded. precisely. The difficulty comes from the fact that multiple

we des_cribe new optimizations that_allow efficier_n im- processes must coordinate and synchronize to achieve globa
plementations to be generated automatically, extendieg pr goals, but at the same time, delays, failures, and attacks ca

vious optimizations to distributed programs and to the most ,cc\,r. Even determining the ordering of events is nontrivia
challenging quantifications. which is why Lamport's logical clock [33] is so fundamental
e Our method transforms sending and receiving of mes- for distributed systems.

sages into upd_ate§ to message history sequences, InF?unning example. We use Lamport’s distributed mutual
c_rementa!ly maintains the truth va!ges of synchroniza- exclusion algorithm [33] as a running example. Lamport de-
tion conditions and necessary "?‘”X"'ary values as thoseveloped it to illustrate the logical clock he invented. The
sequences are updated, and fmglly removes those Se'problem is thatn processes access a shared resource, and
quences as dead code as appropriate. need to access it mutually exclusively, in what is called a
¢ To incrementally maintain the truth values of general critical section (CS), i.e., there can be at most one process
quantifications, our method first transforms them into in a critical section at a time. The processes have no shared
set queries. In general, however, translating nested quan-memory, so they must communicate by sending and receiv-
tifications simply into nested queries can incur asymp- ing messages. Lamport’s algorithm assumes that communi-
totically more space and time overhead than necessary.cation channels are reliable and first-in-first-out (FIFO).
Our transformations minimize the nesting of the result-  Figure 1 contains Lamport’s original description of the
ing queries. algorithm, except with the notatior instead of— in

* Quantified order comparisons are used extensively in fule 5 (for comparing pairs of timestamps and process ids)
non-trivial distributed algorithms. They can be easily in- @nd with the word “acknowledgment” added in rule 5 (for
crementalized when not mixed with other conditions or Simplicity when omitting a commonly omitted [19, 43] small
with each other. We systematically extract single quanti- OPtimization me_ntlc_)neo_l in a f0(_)tnote). This description is
fied order comparisons and transform them into efficient the most authoritative, is at a high level, and uses the most
incremental operations. precise English we found.

The algorithm satisfies safety, liveness, and fairness, and

Overall, our method significantly improves time complexi- pag g message complexity ®fn — 1). It is safe in that at
ties and reduces the unbounded space used for message higyost one process can be in a critical section at a time. It

tory sequences to the auxiliary space needed for incrementas jive in that some process will be in a critical section if

computation. Systematic incrementalization also alldves t  there are requests. It is fair in that requests are serveuein t

time and space complexity of the generated programs to begder of the logical timestamps of the request messages. Its

analyzed easily. o message complexity &(n — 1) in that3(n — 1) messages
There has been a significant amount of related researchg,¢ required to serve each request.

as discussed in Section 7. Our work contains three main _ _ _ _
contributions: Challenges. To understand how this algorithm is carried

out precisely, one must understand how each ofrtheo-
cesses acts as boff) and P; in interactions with all other
processes. Each process must have an order of handling all
¢ A systematic method for incrementalizing complex syn- the events according to the five rules, trying to reach its
chronization conditions with respect to all sending and own goal of entering and exiting a critical section whilecals
receiving of messages in distributed programs. responding to messages from other processes. It must also

¢ A very high-level language that combines the best of
pseudocode, specification, and programming languages.



The algorithm is then defined by the following five rules. For 3. DIStA|gO Language
convenience, the actions defined by each rule are assumed to To support distributed programming at a high level, four
form a single event. main concepts can be added to commonly used object-
1. To request the resource, procégssends the message g jented programming languages, such as Java and Python:
s e vy e ocess. S U () processes as objects, and sening of messages, (2 il
’ ' points and waits for control flows, and handling of received

message. . . - h .
2. When process; receives the message.: P; requests messages, (3) synchronization conditions using high-leve

resource it places it on its request queue and sends a (times- dueries and message history sequences, and (4) configura-

tamped) acknowledgment messageio tion of processes and communication mechanisms. DistAlgo
3. To release the resource, procégsremoves anyl’,: P; supports these concepts, with options and generalizgtions
requests resourcenessage from its request queue and sgnds ease of programming. We have developed an operational se-
a (timestamped)p; releases resourcenessage to every other mantics for DistAlgo.
process.
4. When proces®; receives &; releases resourceiessage Processes and sending of messageBistributed processes
it removes anyl'»: P; requests resourcmessage from its rer are like threads except that each process has its private mem
quest queue. ory, not shared with other processes, and processes com-

5. Procesd?; is granted the resource when the following o mynicate by message passing. Three constructs are used,
condltlon§ are satisfied: (i) Therellswln.Pi requests resource for defining processes, creating processes, and sending mes
message in its request queue which is ordered before any pthe sages
request in its queue by the relatien (To define the relatior: Pro'cess definition can use any class, safiat extends a
for messages, we identify a message with the event of sending ) y ’
it.) (i) P; has received an acknowledgment message from every special classrocess.

other process timestamped later tfan. class P extends Process:
Note that conditions (i) and (ii) of rule 5 are tested locdily class_body
P;. i

So a process is an object of cl@sscess. This is analogous
Figure 1. Original description in English. to thread definition in Java and Python, except Hiatess
is used in place ofhread, and that the fields of an object of

keep testing the complex condition in rule 5 as events hap- classprocess are local to the process. So, like for an object
pen. of Thread, one can define aun method and calktart to

State machine based formal specifications have been use§t@rt the process and execute ihe method. _
to fill in such details precisely, but at the same time, they ar _ Process creation can use a statement of the following
lower-level and harder to understand. For example, a formal form, wherep is a class that extends clagsocess, ands
specification of Lamport's algorithm in 1/O automata [43, IS @n optlonal e_lddltlonal parameter that specifies a sée, i.
pages 647-648] occupies about one and a fifth pages, mosf Machine, by its host name or IP address.
of which is double-column. new P(...,s)

To actually implement distributed algorithms, details . .
for many additional aspects must be added, for example, This creates a new process of clasen sites, or on the
creating processes, letting them establish communication™achine running this statementsifis omitted, and returns
channels with each other, incorporating appropriate lgic 2 _reference to the process. This is the same as thread cre-
clocks (e.g., Lamport clock or vector clock [44]) if needed, ation except for the additional parameterFor high-level
guaranteeing the specified channel properties (e.g.ptelia Programmingnewprocesses (n,P,s) creates and returns a
FIFO), and integrating the algorithm with the application set ofn processes of clagson sites. Process references are
(e.g., specifying critical section tasks and invoking tode ~ ordered.
for the algorithm as part of the overall application). Ferth Sending messages to other processes uses a send-statement:

more, how to do all of these in an easy and modular fashion? send m to p

Our approach. We address these challenges with the This sends messagéo process. A message can be a value
DistAlgo language, compilation to executable programé, an  of any type and is usually a tuple where the first component
especially optimization by incrementalization of expeasi g g string specifying the kind of the message. We allow a

tively. An unexpected result is that incrementalizatiaruie Process irps.

discover simplifications of Lamport’s original algorithm i

Figure 1; the simplified algorithm can be expressed using Control flows and handling of received messageshe
basically two send-statements, a receive-definition, and a key idea is to use labels to specify program points where
await-statement. control flow can yield to handling of messages and resume



afterwards. Three constructs are used, for specifyinglyiel Synchronization conditions using high-level queries.Syn-
points, handling of received messages, and synchronizatio chronization conditions and other conditions can be ex-
A yield point is a statement of the following form, where pressed using high-level queries—quantifications, compre
1 is a label that names this point in the program: hensions, and aggregates—over sets of processes and se-
guences of messages. High-level queries are used commonly
in distributed algorithms because (1) they make complex
This specifies a program point, that can be referred to in  synchronization conditions clearer and easier to write, an
specifying handling of messages, described next, to gpecif (2) the theoretical efficiency of distributed algorithms is
where the messages can be handled. measured by message complexity, not time complexity of
Handling of received messages uses receive-definitions,local processing.
which are members of class definitions for processes and Quantifications are especially common because they di-
have the form: rectly capture the truth values of synchronization condsgi
We discovered a number of errors in our initial programs that
used aggregates in place of quantifications before we devel-
oped the method to systematically optimize quantifications
where each is a variable or tuple pattern. This allows mes- For example, we regularly expresseds larger than all ele-
sages that match any onemgffrom p:, ..., m; from p; tO ments ofs” asv >max(s) and either forgot to handle the case
be handled at yield points labeled any onaqgf...,1;, by thats is empty or handled it in ad hoc fashions. Naive use
executing the statemestut at those points. A tuple pat-  of aggregates likeax may also hinder generation of more
tern is a tuple in which each component is a constant, a efficient implementations.
variable possibly prefixed with=", or a wildcard. A con- We define operations on sets; operations on sequences are
stant or a variable prefixed with=" means that the corre-  the same except that elements are processed in order, and

sponding component of the tuple being matched must equalsquare brackets are used in place of curly braces.
the constant or the value of the variable, respectively, for

pattern matching to succeed. A variable not prefixed with
“=" matches any value and gets bound to the corresponding
part of the tuple being matched. A wildcard, written a§ “
matches any value. The at-clause is optional, and the defaul
is all yield points. The from-clause is also optional, and if
used, the language provides the identity of the sender. Sup-
port for receive-definition mimics common usage in pseu-
docode, allowing a message handler to be associated with each v; in expi, ..., vy in expx | bexp
multiple yield points without using method definition and some vi in expi, ..., Vi in expx | bexp
invocations. As syntactic sugarraceive that is handled at
only one yield point can be written at that point.
Synchronization can use await-statements of the form:

-1

receive m; from pi1,...,mi from p; at 1i,...,15:
stmt

¢ Quantifications are of the following two forms. Each
variablev; enumerates elements of the set value of ex-
pressionexp;; the return value is whether, for each or
some, respectively, combination of valuesvof. . ., vy,
the value of Boolean expressieaxp is true. When an
existential quantification returns true, variables. . . , v
are bound to a witness.

e Comprehensions are of the following form. Each variable
vi enumerates elements of the set value of expression
exp;; for each combination of values ef, . . . v, if the

await bexp timeout time value of Boolean expressiasexp iS true, the value of

This waits for the value of Boolean expressigsxp to be- expressiorxp forms an element of the resulting set.
come true or untitime seconds have passed. The timeout-
clause is optional, and the default is to wait only fekp

to become true. If an await-statement exits due to a timeout, We abbreviatév: vin exp | bexp} as{v in exp | bexp}.

it setSself.timeout t0O true. If it exits due to the awaited e Aggregates are of the formgg(exp), whereagg is an

condition being true, it setself.timeout t0 false. We re- operation, such asize, sum, Of max, specifying the kind
quire that an await-statement be preceded by ayield pbint; i of aggregation over the set valuedp.

a yield point is not specified explicitly, the default is tladit
message handlers can be executed at this point. Otherwise, *
the program would deadlock hereoixp is false.

These few constructs make it easy to specify any process
that has its own flow of control while also responding to
messages. It is also easy to specify any process that only
responds to messages, for example, by writing just receive-We use{} for empty set; use.add(x) ands.del(x) for
definitions and aun method containing onlgwait false, element addition and deletion, respectively; andxise s
or by writing just arun method containing only &hile andx not in s for membership test and its negation, re-
true l0oOp whose body is a receive-definition. spectively. We allow tuple patterns to be used in any access

{exp: vi in expi, ..., vk in expx | bexp}

In the query forms above, eagh can also be a tuple
pattern, in which case each enumerated element of the set
value ofexp; is first matched against the pattern before
expressiomexp is evaluated. We omitbexp whenbexp

iS true.



of set elements. We assume that hashing is used in imple-  use Lamport_clock

menting sets, and the expected time of set membership tests | . ' . -
' . which configures sending and receiving of messages to up-
and updates involving one elementi$1).

DistAlgo has two built-in sequencessceived andsent, date the clock appropriately; one can daltport_clock()

L : . to get the value of the clock. This can be implemented with a
containing all messages received and sent, respectiyedy, b . X
process module that provides the functi@amport_clock() as well

as the functions called at sending and receiving of messages

e Sequenceeceived is updated only at yield points. An ar-
rived message for which the program contains a match- Other language constructs. For other constructs, we use
ing receive-definition is added teceived when the pro-  those in high-level object-oriented languages. We mostéy u
gram reaches a yield point wherieis handled, and all ~ Python syntax (indentation for scoping, for separation,
matching message handlers associated with that yield # for comments, etc.), for succinctness, except with a few
point are executed fai. An arrived message for which ~ conventions from Java (keywoedtends for subclass, key-
the program contains no matching receive-definitions is Wordnew for object creation, and omission sé1£, equiva-
added tareceived at the next yield point. The sequence lentofthis in Java, when there is no ambiguity), for ease of
sent is updated at each send-statement. reading.

* We usereceived(m from p) as a shorthand fai from Example. Figure 2 shows Lamport’s algorithm expressed
P in received; from p iS optional, but when specified, in DistAlgo. The algorithm in Figure 1 corresponds to the
each message ipeceived is automatically associated hody ofcs and the two receive-definitions, 15 lines total; the
with the corresponding sender. We us@t(m to p) @S rest of the program, 15 lines total, shows how the algorithm

a shorthand fom to p in sent; to p is optional, but  is used in an application. The execution of the application
when specifiedp is the process or set of processes in the starts with methodain, which configures the system to run
corresponding send-statement. (lines 24-30). Methods and the twareceive-definitions are

If implemented straightforwardlyzeceived and sent can executed when needed and follow the five rules in Figure 1

create a huge memory leak, because they can grow un-lines 5-20).

bounded, preventing their use in practical programming. Note that Figure 2 is not meant to replace Figure 1,

Confi . o ity ch | handii ¢ but to realize Figure 1 in a precisely executable manner.
onfiguration. -One can specily channe types, han INg o Figure 2 is meant to contrast with lower-level specificagion
messages, setup for starting processes, and other conﬂguraand programs

tion items. Such specifications are declarative, so that-alg

rithms can be expressed without unnecessary implementa- -

tion details. We describe a few basic kinds of configuration 4. Compiling to executable programs

items. Compilation generates code to create processes on the spec-
Channel can be specified to befo, for FIFO, in which ified machine, take care of sending and receiving messages,

case messages between two processes are guaranteed to bed realize the specified configuration. In particular, it in

received in the order that they were sent. This is specified serts appropriate message handlers at each yield point.

using: ) o
Processes and sending of messageBrocess creation is

compiled to creating a process on the specified or default
Similarly, channels can be specified to be reliable usinrg machine and that has a private memory space for its fields.
reliable_channel. By default, channels are not required to Each process is implemented using two threads: a main
be FIFO or reliable. One can also specify different channel thread that executes the main flow of control of the process,

use fifo_channel

types for different channels. and a helper thread that receives and enqueues messages sent
One can specify how much effort is spent processing to this process. High-level programming constructs, sich a
messages at yield points. For example, newprocesses (n,P,s), can easily be compiled into loops.

Sending a messageto a process or set of processgs,

) i is compiled into calls to a standard message passing API.
means that all matching received messages that are_not Vet the sequenceent is used in the program, we also insert
handled must be handled before execution of the main flow sent.add(m to p) to be executed. Calling a method on a

of control continues past any yield point; this is the defaul e ote process object is compiled into a remote method call.

For another example, one can specify a time limit. One

can also specify different handling effort for differeneid Control flows and handling of received message€ach

points. yield point1 is compiled into a call to a message handler
Logical clocks [17, 33, 44] are used in many distributed method1() that updates the sequengeceived, if it is

algorithms. One can specify that Lamport logical clock is used in the program, and executes the bodies of the receive-

used: definitions whose at-clause includesPrecisely:

use handling_all
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class P extends Process: label 1 is compiled into a call () followed by while not
def setup(s):

self.s = s # set of all other processes bexp: 10.
self.q = {} # set of pending requests ] ) ] ) ) )
) i Configuration. Configuration options are taken into ac-
def cs(task): # for calling task() in CS . . h . . . .
-~ request count during compilation in a straightforward way. Libesi
self.c = Lamport_clock() #1in Fig 1 and modules are used as much as possible. For example,
send (’request’, c, self) to s # . g
q.add((’request’, c, self)) # when fifo_channel and reliable_channel are specified,
# wait for own req < others in q the compiler can generate code that uses TCP sockets.
# and for acks from all in s
await each (’request’,c2,p2) in q | # 5 in Fig 1
(c2,p2) != (c,self) implies (c,self) < (c2,p2) P . o
and eneh p2 dn o | T SRS L SR 5. Incrementalizing expensive synchronizations
some received(’ack’,c2,=p2) | c2 > ¢ . . . . .
taskO) # critical section Incrementalization transforms expensive computatiotts in
--dri?ase ) 43 in Fie 1 efficient incremental computations with respect to updates
. ’ t?, , i i . . .
oemd Crelense’, Lampost.clock(), self) to s #  © to the values on which the computations depend. It (1) iden-
tifies all expensive queries, (2) determines all updatekeo t
receive (’request’, c2, p2): # 2 in Fig 1 . .
q.2dd((’request’, c2, p2)) # parameters o_f these_q_uen_es, and (3) transforms_ the queries
send (’ack’, Lamport_clock(), self) to p2  # and updates into efficient incremental computations. Much
receive (*release’, _, p2): # 4 in Fig 1 of this has been studied previously.
q.del((’request’, _, =p2)) # The new method here is for (1) systematic handling of
dof run(): # main method for the process qua_ntifications for synchronizgtion as exper_1$ive quegi_es,
# may do non-C§ tasks of the proc pecially nested alternating universal and existentiahtjfia
def task(): ... # define critical section task . . . ..
s (task) # call cs to do task in CS cations and quantifications containing complex order com-
# may do non-CS tasks of the proc parisons and (2) systematic handling of updates caused by
def main(): # main method for the application all sending, receiving, and handling of messages in the same
# other tasks of the application way as other updates in the program. The result is drastic
use reliable_channel # configure channel to be reliable d . fb th t d | t
use fifo_channel # configure channel to be FIFO reduction o o Ime an Space Comp exiues.
use Lamport_clock # configure to use Lamport clock . . . L .
ps = newprocesses(50,P) # create 50 processes of P class Expensive computations using quantifications Expen-
for p in ps: p.setup(ps-{p}) # pass to each proc other procs . . . li | . incladi
for p in ps: p.start() # start each proc, call method run Sive CompUta_tlonS In_genera Involve r.epetltlon’ Inc ngln
# other tasks of the application loops, recursive functions, comprehensions, aggregates,

Figure 2. Original algorithm (lines 3-4 and 6-20) in a com- duantifications over collections. Loops were studied most;
plete program in DistAlgo. less for recursive functions and comprehensions, and least

1.

2.

for quantifications, basically corresponding to how fre-

guently each construct has traditionally been used in pro-

gramming. However, high-level queries are increasingly
Each receive-definition is compiled into a method that used in programming, and quantifications are dominantly
takes a message as argument, matchesagainst the used in writing synchronization conditions and assertians
message patterns in the receive-clause, and if the matchspecifications and very high-level programs. Unfortunatel
ing succeeds, binds the variables in the pattern appro-if implemented straightforwardly, each quantificationire
priately, and executes the statement in the body of this a cost factor that is linear in the size of the collection guan
receive-definition. tified over.

Method1() compiled for yield point. does the follow- Optimizir_lg expe_nsive guantifications in general i_s diffi-
ing: for each messagefrom p in the queue of messages c_ult, which is a main reason_that they are not used in prac-
not yet handled, (1) i matches a message pattern in a fical programs, not even logic programs, and programmers
receive-definition whose at-clause includeghen exe- ~ Manually write more complex and error-prone code. The
Cutereceived.add(m from p) if received is used inthe  difficulty comes from expensive enumerations over collec-
program and call the methods generated from the receive-tions and complex combinations of join conditions. We ad-
definitions whose at-clause includes(2) if m does not ~ dress this challenge by converting quantifications intaegg
match any message pattern in any receive-definition, thengate queries that can be optimized systematically using pre
executereceived.add(m from p) if received is used in viously studied methods. However, a quantification can be
the program. In both these cases, remofrem the mes- converted into multiple forms qf aggregate queries. Which
sage queue afterward. one to use depends on what kinds of updates must be han-
dled, and on how the query can be incrementalized under
An await-statement can be compiled into a synchroniza- those updates. Direct conversion of nested quantifications

tion using busy-waiting or blocking. For example, for busy- into nested queries can lead to much more complex incre-
waiting, a statementwait bexp that immediately followsa  mental computation code and asymptotically worse time and



space complexities for maintaining the intermediate query combinations of order comparisons and other conditions can

results. be transformed first into quantifications each involving at
Note that, for an existential quantification, we convert it most one order comparison at a time.

to a more efficient aggregate query if a witness is not needed;

if a witness is needed, we incrementally compute the set of - Existential Using Aggregate
witnesses. Lsome xins |y <=x -, o andy <= max(s)
2 |some x in s | x >=y
Converting quantifications to aggregate querieédle present 3 |some x in s | y >= x ]
. . — _ s !'= {} andy >= min(s)
all converted forms here and describe which forms to use 4 |some x in s | x <= y
after we discuss the updates that must be handled. The pro- 5 |some x in s | y <x | ,_ ( andy < max(s)
cess to develop them was nontrivial, even though the end _6 |some x in s | x >y
results look simple. The correctness of all rules presented _7 |some x in s | y > x s '= {} andy > min(s)
are proved using first-order logic and set theory. Thesesrule _8 [some x in s | x <y
ensure that the va_lu_e of a res_u_ltmg query expression equals Universal Using Aggregate
the value of the original quantified expression. O [each xins | y <= x
Table 1 shows general rules for converting single quan- 1o (cach x in s | x >= y| = {} ory <= min(s)
tifications into equivalent queries that useze aggregates. 1l1]each x in s | y >= x
These rules are general becavsep can be any Boolean 12[each x in s | x <= y s == {} ory >= max(s)
expression, but they are for converting single quantifocesi 13|each x in s | y < x -0 < min(s)
Nested quantifications could be converted one atatime from 14 |each x ins | x >y | - = °F¥ S mats
inside out, but the results can be much more complicated 15|each x ins | y > x
- s == {} ory > max(s)
than necessary. For example, 16|each x in s | x < y
each x in s|some y in t|bexp Table 3. Rules for single quantified order comparison.

would be converted using rule 1 to . .
9 Table 4 shows general rules for decomposing combi-

each x in s |size({y in t|bexp}h!= 0 nations of conditions in general quantifications, to extrac
and then using rule 2 to guantifications each involving a single order comparison.
For example,
size({x in s |size({y in t | bexp}) != 0})
== size(s) each x in s |bexp implies y < x

can be converted using rule 6 to

Quantification Using Aggregate b x in {x i | bexo} | v <
l|some x in s |bexp|size({x in s |bexp}) != 0 each x in ix in sibexprly < x
2 ] size({x in s |bexp}) == size(s) which can be converted using rule 13 of Table 3 to
—jeach x in s | bexpf— .
3 size({x in s |not bexp}) == 0

{x in s |bexp} == {} or y < min({x in s | bexp})

Table 1. Rules for converting single quantifications.

Quantification Decomposed Quantifications
Table 2 shows general rules for converting nested quan- ;| some x in s some x in {x in s | el}
tifications into equivalent, but non-nested, queries ttsat u | el and e2 | e2
size aggregates. These rules yield much simpler results than | some x 1n s some x 1o s | el or
repeated use of the rules in Table 1. For example, rule 2 in | el or e2 some x in s | e2 -
this table yields a much simpler result than using two rules i 3| some x 1n s some x in s | not el or
. . L | el implies e2| some x in s | e2
Table 1 in the previous example. More significantly, rules 1, - .
. e each x in s each x in s | el and
4, and 5 generalize to any number of the same quantifier,and 4 .
. . . | el and e2 each x in s | e2
rules 2 and .3 generalize to any number of quantmers. with cach % in s cach x in {x in 5 | not oif
one alternation. We have not encountered more complicated °| | o1 or 2 | e2
quantificatio_ns t_han these. It is well-known that more t_h_an o| each x in s cach x in {x in s | el}
one alternation is rarely used, so commonly used quantifica- | el implies e2| | e2

tions can all be converted to non-nested aggregate queries. : —
Table 3 shows general rules for converting single quan- '_ra_ble 4, Rule_s for decomposing conditions to extract quan-

tifications with a single order comparison into equivalent tfied comparisons.

gueries that useax andmin aggregates. These rules are use-

ful because single quantified order comparison, when thereUpdates caused by message passinBarameters of a

are no element deletions, can be computed more efficiently,query are variables in the query whose values may affect

with a constant instead of linear space overhead. Booleanthe query result. Updates to a parameter are operations that




Nested Quantifications Using Aggregate
1| some x in s | some y in t | bexp| size({true: x in s, y in t | bexp}) != 0
2| each x in s | some y in t | bexp| size({x: x in s, y in t | bexp}) == size(s)
3| some x in s | each y in t | bexp| size({x: x in s, y in t | not bexp}) != size(s)
4] each x in s | each y in t | bexp s%ze({(x,y): X %n s, y %n t | bexp}) == size({(x,y): x in s, y in t})
5 size({(x,y): x in s, y in t | not bexp}) ==

Table 2. Rules for converting nested quantifications.

may change the value of the parameter. The most common no order comparisons or there are deletions from the sets
updates are assignmenis= exp, which is an update to or sequences whose elements are compared, the rules in
v. Other updates can all be expressed as assignments. For Table 1 are used. The space overhead is linear in the sizes
objects, all updates can be expressed as field assignments, of the sets maintained and being aggregated over.
o.f = exp. For collections, all updates can be expressed as
initialization to empty and element additions and remavals
For distributed algorithms, a distinct class of important
updates are caused by message passing. Updates are caused
in two ways:

¢ For non-nested quantifications, if the conditions contain
order comparisons and there are no deletions from the
sets or sequences whose elements are compared, the rules
in Table 4 are first used to extract single quantified order
comparisons, and then the rules in Table 3 are used to
1. Sending and receiving messages updates the sequences convert the extracted quantifications. In this case, the

sent andreceived, respectively. Before incrementaliza- space overhead is constant.
tion, code is generated, as described in Section 4, t0 €x- o Myltiple ways of conversion may be possible: for univer-
plicitly perform these updates. sal quantifications using rules 2 and 3 in Table 1 and rules

2. Handling of messages by code in receive-definitions up- 4 and 5 in Table 2, for nested quantifications with two or
dates variables that are parameters of the queries forcom- more alternations using rules 2 and 3 in Table 2 (each way
puting synchronization conditions, or that are used to  of conversion corresponds to a choice of which two al-
compute the values of these parameters. ternating quantifiers to eliminate using one of the rules),

and for quantifications with symmetric ways of decom-

posing combinations of conditions using rules 1, 5, and

6 in Table 4. Our method transforms in all these ways,

Incremental computation. Given expensive queries and obtains the time and space complexities for each result,

updates to the query parameters, efficient incremental com-  and chooses one with the best complexities.

putations can be derived for large classes of queries and up-

da.tes b"’Fsed on the Iangl_Jage co_ns.tructs used in them or bW’able 5 summarizes well-known incremental computation
using a library of rules built on existing data structure$43 methods for these aggregate queries. The methods are ex-
41, 501 : L pressed as incrementalization rules: if a query in the progr

For_ aggregat_e gueries converted from qyantlflcanons, _al- matches the query form in the table, and each update to a pa-
gebrgu_: properties of the_aggregate operatlons are eeglloit rameter of the query in the program matches an update form
to efficienty handle possible updates. In particular, ezeh in the table, then transform the query into the correspandin

S“'(;".‘g aggregaitle query rgsu(::tﬁ;:aln pe obtame(ng) t|meh replacement given in the table and insert at each update the
ant mcr_er:u_antz ymdan;ftaTed I( )ﬂt:m? perfup atcla tot_t eth corresponding maintenance; a fresh variable is introduced
sets maintained and affected plus the time for evaluatieg th ¢, oo, different query.

conditions in the aggregate query once per update. Addition The overall incrementalization algorithm [39, 40, 50] (1)
ally, if max andmin aggregates are used and there are no el- .

deleti f h ed. th h introduces new variables to store the results of expensive
ement deletions from the sets queried, the space over eaqgueries and subqueries, as well as appropriate additiakal v
is constant. Note that ifiax andmin are used naively and

h | deleti h d b head fues, (2) transforms the queries and subqueries to use the
there are element deletions, there would be an overnead ok, e g query results and additional values, and (3) tramsfo
O(n) space and(logn) update time from using more so-

histicated data struct i intain i ’ d updates to query parameters to also do incremental mainte-
glé;g:r?tEc}ielezoans[:{gczuzre;06rg]am ain mag O min UNGer nance of the stored query results and additional values.

N . If queries are nested, inner queries are transformed be-
To allow the most efficient incremental computation un-

der all ai d hod ¢ h | Ifore outer queries. Note that a comprehension sudh as
erall given up ates, our method transforms each top-level | bexp} is incrementalized with respect to changes to pa-
guantification as follows:

rameters of Boolean expressiesxp as well as addition and
¢ For nested quantifications, the rules in Table 2 are used.removal of elements af; if bexp contains nested subqueries,
For non-nested quantifications, if the conditions contain then after the subqueries are transformed, incrementalmai

Once these are established, updates can be determined using
previously studied analysis methods, e.g., [21, 39].



Query Replacement Cost
size(s) | count o(1)
Updates Inserted Maintenance Cost
s = {} count = 0 o(1)
s.add(x) | if x not in s: count += 1 [O(1)
s.del(x) | if x in s: count -= 1 O(1)
Query Replacement Cost
max(s) |maximum O(1)
Updates Inserted Maintenance Cost
s = {x} |maximum = x O(1)
s.add(x) |if x > maximum: maximum = x |O(1)

Table 5. Incrementalization rules farize and formax. The
rule formin is similar to the rule fomax.

tenance of their query results become additional updates to
the enclosing query. This is one of the reasons that incre-

mentalization is challenging.

At the end, variables and computations that are dead in
the transformed program are eliminated. In particular, se-
guencesreceived and sent Will be eliminated as appro-

priate, because queries using them have been compiled into
message handlers that only store and maintain values needed

for incremental evaluation of the synchronization condi-
tions.

Example. In the program in Figure 2, three quantifica-
tions are used in the synchronization condition in the await
statement, and two of them are nested. The condition is
copied below, except that’ack’,c2,p2) in received IS
now used.

each (’request’,c2,p2) in q |

(c2,p2) '= (c,self) implies (c,self) < (c2,p2)
and each p2 in s |

some (’ack’,c2,=p2) in received | c2 > ¢

Incremental computation [39-41, 50] introduces vari-
ables to store the values of all three aggregates in the con-
verted query, transforms the aggregates to use the inteaduc
variables, and incrementally maintains the stored valties a
each of the updates, yielding the following:

¢ For the first conjunct, store the set value and thee
value in two variables, sayarlier and count, respec-
tively; whenc is assigned a new value, lesrlier be
q and letcount1 be its size, taking)(|earlier|) time,
amortized taO(1) time when each request #arlier is
served; when a request is added;fdf c is defined and
(c,self) > (c2,p2) holds, add the request tarlier
and incrementount1 by 1, takingO(1) time; similarly
for deletion fromg.

Note that at the addition and removal Ofrequest’,c,
self) in particularearlier andcount1 are not updated,
becausdc,self) > (c,self) is trivially false.

For the second conjunct, store the set value and the two
size values in three variables, sagsponded, count2,
andtotal, respectively; wher is initialized in setup,
assigntotal the size ofs, takingO(|s|) time, done only
once for each process; whers assigned a new value, let
responded be {}, and letcount2 be 0, takingO(1) time;
when an ack-message is addeddeeived, if the associ-
ated conditions hold, incremegdunt2 by 1, takingO(1)

time.

Note that incrementalization uses basic properties about
primitives and libraries. These properties are incorpamtat
in incrementalization rules. For the running example, the
property used is that a call ttamport_clock() returns a
timestamp larger all timestamps of messages previously re-
ceived, and thus at the assignment twve have tha¢arlier
iS q andresponded is {}.

Figure 3 shows the optimized program after incremental-

Converting quantifications into aggregates as describedization of the synchronization condition on lines 10-11 in

using Tables 1 through 4 proceeds as follows. In the first
conjunct, the universal quantification is converted usirg r

Figure 2. All commented lines are new except that the syn-
chronization condition in the await-statement is simptifie

2 or 3 in Table 1, because it contains an order comparisonThe synchronization condition now takéx1) time, com-

with elements of; and there are element deletions frgm
rule 3 is used here because it is slightly simpler after the
negated condition is simplified. In the second conjunct, the
nested quantification is converted using rule 2 in Table 2.
The resulting expression is:

size({(’request’,c2,p2) in q |
(c,self) > (c2,p2)}H)

= 0

and

size({p2: p2 in s, (’ack’,c2,=p2) in received |
c2 > c}) size(s)

Updates to parameters of the first conjunct are additions
and removals of requests to and frgnand also assignment

pared withO(|s|?) if implemented straightforwardly. The

trade-off is the much smaller amortizéx1) time overhead

at updates ta andq and on receiving of ack-messages.
Note that the sequenagceived used in the synchro-

nization condition in Figure 2 is no longer used after incre-

mentalization. All values needed for evaluating the syaehr

nization condition are stored in new variables introduced:

earlier, countl, responded, count2, andtotal, a drastic

space improvement from unbounded fekeived to linear

in the number of processes.

Simplifications to the original algorithm. Consider the
original algorithm in Figure 2. Note that incrementalipati

to c. Updates to parameters of the second conjunct are ad-determined that there is no need for a process to update aux-

ditions of ack-messages teceived, and assignment te,
after the initial assignment ta

iliary values for its own request. Based on this, we discov-
ered that updates t@ for a process’s own request do not



1 class P extends Process: 1 class P extends Process:
2 def setup(s): 2 def setup(s):
3 self.s = s 3 self.s = s
4 self.q = {}
5 self.total = size(s) # total num of other procs 4  def cs(task):
5 -- request
6 def cs(task): 6 self.c = Lamport_clock()
7 -- request 7 send (’request’, c, self) to s
8 self.c = Lamport_clock() 8 await each received(’request’,c2,p2) |
9 self.earlier = q # set of pending earlier reqs not (some received(’release’,c3,=p2) | c3 > c2)
10 self.countl = size(earlier) # num of pending earlier regs implies (c,self) < (c2,p2)
11 self.responded = {} # set of responded procs 9 and each p2 in s |
12 self.count2 = 0 # num of responded procs some received(’ack’,c2,=p2) | c2 > ¢
13 send (’request’, c, self) to s 10 task()
14 q.add((’request’, c, self)) 11 -- release
15 await countl == 0 12 send (’release’, Lamport_clock(), self) to s
and count2 == total # use maintained results
16 task() 13  receive (’request’, c2, p2):
17 -- release 14 send (’ack’, Lamport_clock(), self) to p2
18 q.del((’request’, c, self)) - - — — - —
19 send (’release’, Lamport_clock(), self) to s Figure 4. Simplified original algorithm. Definitions afun
20 receive (’request’, c2, p2): andmain are as in Flgure 2.
21 if ¢ != undefined: # if ¢ is defined
22 if (c,self) > (c2,p2): # comparison in conjunct 1
23 if (’request’,c2,p2) not in earlier: # if not in . . .
2 eaﬂigr,add((,rzquest,, c2, p2) # add to earlier We implemented DistAlgo as slightly extended Python
25 countl += 1 # increment countl because Python has rich support of very high-level con-
26 q.add((’request’, c2, p2)) . . .
27 send (’ack’, Lamport. clock(), self) to p2 structs for ease of programming, and simple and consis-

tent syntax for ease of reading. We mostly exploit Python’s

28 i ’ack’, c2, p2): # handl f e .

25 xegeive Uack’, 2, p2) 4 comparison in conjunct 2 support for comprehensions, aggregates, and quantifisatio

30 if p2 in s: # membership in conjunct 2 over sets and sequences, albeit with a slightly different sy

31 if p2 not in responded: # if not responded already tax than in this paper. Processes are implemented usin

32 responded.add(p2) # add to responded X I .I pap . imp ; .U .I g

33 count2 += 1 # increment count2 Python’s multiprocessing package. Message passing is im-

34 receive (’release’, _, p2): plemented using the_ socket library, W_ith support for UDP or

35 if c != undefined: # if c is defined TCP as the underlying protocol. Await-statements are com-

36 if (c,self) > (c2,p2): # comparison in conjunct 1 I d . t bl k h . t tb t

37 if (’request’,c2,p2) in earlier: # if in earlier pl ed Into 0(.: Ing SynC .rO.nlza |On,.n0 Usy-Wal -Ing'

gg earli(ler,dei_((’requeSt’y c2, p2)) # delete it ) Our compiler and optimizer are implemented in Python,
-= # d - ,

20 q.del(Crequest’s _, =p2)) ecrement count building on Python’s parser module and AST package. Our

compiler runs on either a modified or unmodified Python
parser. The modified parser is a 390-line patch to the C code
of the Python source distribution and extends the Python
grammar to support labels and message handlers with the
affect the only use o, on line 10, so we can remove the syntax used in this paper. When using unmodified Python,
updates tg on lines 9 and 14 as well as the test,p2) our compiler supports labels and message handlers specified
'= (c,self), which becomes always true, in the synchro- using specially named Python statements and methods; this
nization condition. Furthermore, note that the remainipgu  alternate syntax avoids the need for the Python parser patch
dates tog are merely maintaining pending requests by oth- The latter approach is used also for the rest of the exten-
ers, so we can remove lines 4, 17, 20 and the entire receive-sions: process creation, sending messages, synchromizati
definition for release, by using, for the first conjunct in the and configurations. The rest of the compiler and optimizer
await-statement, consists of about 1850 lines of Python, including code for

each received(’request’,c2,p2) | transformin_g quantifications i_nto_set and aggregate gsierie

not (some received(’release’,c3,=p2) | c3 > c2) and excluding code for applying incrementalization to thos
implies (c,self) < (c2,p2) queries. Applying incrementalization uses the methods and

implementation from previous work [21, 39-41]. The best
program generated from incrementalizing differently con-
verted aggregate queries is currently selected manually.

We have programmed a variety of well-known distributed
. . algorithms using DistAlgo, applied our analyses and op-
6. Implementation and experiments timizations, and generated executable Python code for all
We have implemented a prototype compiler and optimizer of them. We discuss our experiments and experiences with
for DistAlgo. The system can parse a DistAlgo program, ap- twelve of them, listed in Table 6. DistAlgo has also been
ply analyses and optimizations to it, and generate exeleutab used by undergraduate and graduate students to easily im-
Python code. plement a variety of distributed algorithms used in dis-

Figure 3. Optimized program after incrementalization. Def-
initions of run andmain are as in Figure 2.

Figure 4 shows the simplified algorithm. Incrementalizing
this program yields essentially the same optimized program
as in Figure 3.



Algorithm] Description Algorithm [[ DistAlgo]| PlusCal 10A | Overlog Bloom

La mutex | Lamport’s distributed mutual exclusion [33] La mutex 32|| 90[46]| 64[43]
La mutex2La mutex with optimization in footnote in [33] La mutex2, 33
RA mutex Ricart-Agrawala’s distributed mutual exclusion [57] RA mutex 35
RA token | Ricart-Agrawala’s token-based mutual exclusion [58] RA token 43
SK token | Suzuki-Kasami's token-based mutual exclusion [61] SK token 42
CR leadel Chang-Robert’s leader election [11] CR leader 30 41 [28]
HS leader Hirschberg-Sinclair's leader election [27] HS leader 56
2P commitTwo-phase commit [24] 2P commit 44|| 68[65] 85[64]
DS crash | Dolev-Strong’s consensus under crash failures [15] DS crash 22
La Paxos|Lamport’s Paxos for distributed consensus [34, 35] La Paxos 43|| 83[45]|145([29] 230[49] 157 [51]
CL Paxos| Castro-Liskov's Paxos under Byzantine failures [10] CL Paxos 63|/ 166 [45]
VR Paxos|van Renesse’s pseudocode for multi-Paxos [66] VR Paxos 156
Table 6. Well-known distributed algorithms. Table 7. Sizes of programs in different languages, with ci-
tations.

tributed file sharing and other services, including Kadamli
Tapestry, Pastry, and Chord, and parts of HDFS and Upright. specifications vary in the mechanisms used for processes and
All reported running times are obtained with all processes communications, and their sizes. The first four were devel-
running on one Xen virtual machine with 6GB of main oped by ourselves before we started implementing DistAlgo
memory on an Intel Core-i7 2600K CPU with 16GB of and are our best efforts to use each language in the best
main memory, running a Linux 3.2.0 kernel. Unless stated way for implementing this algorithm. The PlusCal version
otherwise, experiments use Python 3.2.2, reported remeélts s from [46]. The C and Java programs required much more
averages over 10 runs, and program sizes are numbers ogffort than the Python and Erlang programs, which required
lines excluding comments and empty lines. much more effort than the DistAlgo program. For compari-

Programming distributed algorithms. We compared dis-  SON of program sizes, we formatted our programs according
tributed algorithms expressed in DistAlgo with distritdite 0 the suggested styles of the languages; for C, the K&R

algorithms expressed in very different programming and style is used. Our experience conflrmet_j that, as highet-leve

specification languages. We found that DistAlgo programs /anguage features are used, programming effort and program
are generally much easier to read and write. It took very Siz€ decrease.

little time to actually write them, some just a few minutes

before generated code ran as intended, but significant effor

Languagg Distributed programming features ugéfbtal | Clean

. . TCP socket library 358| 272
was spent trying to understand the algorithms from papers :
. . Java TCP socket library 281| 216
and textbooks, some taking days and weeks. Being able to . .
. Lo . . Python | multiprocessing package 165 122
express synchronization conditions using high-level guan Erlang | built-in message passing 777 99
tifications and apply incrementalization also allowed us to . . = .
) i ) PlusCal [single process simulation using array 134] 90
uncover errors in our initial DistAlgo programs that sub- - = —
DistAlgo [built-in high-level synchronization [ 48] 32

consciously used extensive message handlers to do ad hoc

incremental updates. It also helped us discover improve-Taple 8. Main distributed programming features used and
ments to some of the algorithms, for correctness and for program sizes (total number of lines, and number of lines
eﬁlClency [42], such as the Slmpllflcatlons that led to the without comments and empty |ines) for Lamport’s dis-

algorithm in Figure 4. tributed mutual exclusion algorithm.
Directly quantifying the ease of programming and clar-

ity of programs is hard, so we use code size as an indirect
measure, as is common in programming practice. Table 7 Compilation and optimization. We describe compilation
lists the sizes of DistAlgo programs that express these al- and optimization times, generated program sizes, andiperfo
gorithms, and sizes of programs written by other people in mance of generated implementations. We do not discuss im-
other languages, PlusCal [36], IOA [30, 43], Overlog [3], plementation of automatic incrementalization [21, 39+41]
and Bloom [8], that also express these algorithms. DistAlgo because it is prior work. We implemented an interface be-
programs are consistently small, expressing the algosithm tween our DistAlgo compiler and the incrementalizer In-
almost exactly like the pseudocode descriptions except wit vTS [21, 41], so all the examples can be automatically com-
a precise meaning for execution. piled and optimized except for some remaining trivial man-
We also compared Lamport’s distributed mutual exclu- ual steps and selection of the best program as mentioned
sion algorithm written in C, Java, Python, Erlang, PlusCal, above. It is not easy to integrate our DistAlgo compiler and
and DistAlgo, as summarized in Table 8. These programs orthe incrementalizer InvTS, because the incrementalizs us




0.28

4000

Compilation|| DistAlgo | Compiled Incremental- 0.6 “Original time —=—
Algorithm || time (ms)|| size size ized size 024 Incramantalized tme- - 3500
La mutex 13.3 32] 1395 1424 0.2 norementalized memory— ] 3000
La mutex2 15.3 33 1402 1433 g o 2500 2
RA mutex 123 35| 1395 1395 g 01 2000 §
RA token 12.9 43 1402 1402 . 0.1 1500 2
SK token 165 42| 1405 1407 ool 1000
CR leader 10.7 30] 1395 1395 004~ 500
HS leader 18.7 56 1415 1415 0 1500
2P commit 214 a4] 1432 1437 Number of processes
DS crash 10.5 22 1399 1414 - - -
L2 Paxos 20,7 23 1428 1498 Figure 5. Running time and memory usage of Lamport’s
CL Paxos 323 63 1480 1530 distributed mutual exclusion.
VR Paxos 434 160 1555 1606
Table 9. Compilation time and sizes of generated programs 12 o Jrinal time —— ] o
after compilation and after incrementalization. H incrementalized time—~— /1 5000
Incrementalized memory—o-—— -
3 0:9 T 4 4000 g
< >
Python 2.5, which is incompatible with Python 3, used by é 2000 £
our compiler. j 2000 =
Table 9 shows the compilation time and the sizes of the 1 1000
DistAlgo programs, generated Python programs after compi- 0
lation, and generated Python programs after incremeataliz = 50 51000 125 130
tion. Compilation time does not include incrementalizatio umber of acceptors
time, which was well under 30 seconds for all of our pro- Figure 6. Running time and memory usage of Castro-

grams. The generated programs include 1300 lines of fixedLiskov's Byzantine Paxos.
library code. For some of the algorithms, the given origi-
nal description and pseudocode already contain all incre-
mental updates, so applying incrementalization to the gen-
erated program from compilation does not change the pro-
gram. These algorithms and some of the other algorithms
could be written at a higher level, so the synchronization
conditions can be expressed more directly and thus easier to
understand and verify. Incremental updates for efficient im
plementations can then be generated by incrementalization
higher-level programs can also allow more efficient incre-
mental programs to be generated.

Figures .5_7 compare the time f'“.‘d space performa_nce OTFigure 7. Memory usage of Lamport’s distributed mutual
generated implementations, for original programs anceincr .
mentalized programs. A process’s memory usage is mea—eXC|US'0n'
sured after the process has completed all of its work, so the
sequencesent andreceived NO longer grow. The reported  until it learns that one of its proposals has succeeded, with
memory usage is the sum of the raw sizes of all data struc-the indicated number of acceptor processes and 10 proposer
tures created by the generated Python code, measured usingrocesses. When an acceptor accepts a proposal, it notifies
Pympler! Figure 5 shows the running time and memory us- only the proposer. The fault tolerance paramegtés set to
age of Lamport’s distributed mutual exclusion algorithnet [ (N — 1)/3], whereN is the number of acceptors. Figure 7
running time is the CPU time for each process to complete shows the average per-process memory usage of Lamport’s
a call tocs(task), including time spent handling messages distributed mutual exclusion algorithm with 75 processss,
from other processes, averaged over processes and over rurs function of the number of calls tes(task). Use of the
of 30 calls each. Figure 6 shows the running time and mem- sequenceseceived andsent causes memory usage of the
ory usage of Castro-Liskov's Byzantine Paxos algorithm; un-incrementalized program to grow linearly with the num-
the running time is the CPU time for a proposer to suc- ber of calls, while the memory usage of the incrementalized
ceed, averaged over proposers, from when it first proposesprogram remains constant. We can see that incrementaliza-
tion improves the time and space performance of generated
implementations asymptotically.

3000 — i
Original —=—
Incrementalized-----

2500
2000
1500

Memory (kB)

1000
500 F

20 30 40
Number of calls to cs(task)

10 50

Inttp://packages.python.org/Pympler/



0.12 " DistAlgo —— (RPC) or Remote Method Invocation (RMI), which allows
01l Pyﬁg?,gg%%%fif’f i a process to call a subroutlng in anot_her process Wlthout_the
5  oosl Clgcc 4.6.1) | programmer coding the details for this. Some programming
8 Erlang(R14B04)--~ languages, such as Erlang [16], based on the actor model [2],
g 008f have support for message passing and process management
=004 T built into the language. They all lack constructs for expres
0.02t Ba — ing control flows and complex synchronization conditions at
0 S e D a much higher level, because these high-level construets ar
25 50 75 100 125 150 extremely difficult to implement efficiently. DistAlgo’s ce
Number of processes struct for declaratively and precisely specifying yieldmis

for message handlers is a new feature that we have not seen
in other languages.
There has been much work on generating executable im-
Fi 8 the effici ¢ ¢ plementations from formal specifications, e.g., from pssce
\gure © compares the etliciency ot our programs for algebras [26], /0 automata [20], Unity [23], and Seuss [31]

!_agzortstdllstr|buted m'l:Jtuaéei;cIusmn gl?zolr fthm written q3s well as from more recently proposed high-level languages
In difierent fanguages. or &, Java, and erang, We us€de, . qisyripyted algorithms, e.g., Datalog-based langasage

GCC4.6.1,JDK 1_.6.0, and R14B04, respectively. The figure Overlog [3] and Bloom [8], and a logic-based language
ShOWS the CPU t|m_e for each process to do a round of re- ventML [9, 14]. Compilation of DistAlgo to executable
questing and releasing the CS, averaged over processes an plementations is easy because it is designed to be so and
over ru'ns of 3.0 r".“'f‘ds each. We can see that Erlang is theis given an operational semantics. High-level queries and
fastest, we think it is partly because Erlang Processes arequantifications used for synchronization conditions can be
lighter weight. The Python code generated from DistAlgo compiled into loops straightforwardly, but they may be ex-
takes 3 times as long as the manually written Python; it is !

b £ th head in th ted code f it tremely inefficient. None of these prior works study pow-
ecause ot the overnead In the generated code for patter, optimizations of quantifications. Efficiency concésn

matching against messages received and for method invocay, - reason that similar high-level language constructs,

tlor_}:]qr messr?gedhgndhr:g ‘?.y'e.ld p0|dnts. Id b timized whether for queries or assertions, are rarely used, if sup-
is overhead is not intrinsic and could be optimize Ported atall, in widely used languages.

away so that the generated implementations can be as fas Incrementalization has been studied extensively, e 4}, [5

as manually written Python programs. Python is gene_rally both done systematically based on languages, and routinely
slower tha_n Erlang, C, ?”d .Java, but is nevertheless Wldelyapplied in ad hoc fashions to specific problems. However, all
used for distributed applications. systematic incrementalization methods based on languages
have been for centralized sequential programs, e.g., for se
7. Related work languages [25, 40, 50], recursive functions [1, 37, 53]idog
A wide spectrum of languages and notations have been usedyles [38, 60], and object-oriented languages [39, 48, 59].
to describe distributed algorithms, e.g., [4, 19, 32, 36, 43 This work is the first to extend incrementalization to dis-
55, 56, 63]. At one end, pseudocode with English is used, tributed programs, where all sending and receiving of mes-
e.g., [32], which well gives a high-level flow of the algo- sages are systematically transformed into updates to mes-
rithms, but lacks the details and precision needed for a com-sage history sequences. This allows the large body of pre-
plete understanding. At the other end, state machine basedsious work on incrementalization, especially on sets and
specification languages are used, e.g., I/O automata [30, 43 sequences, to be used for optimizing distributed programs.
which is completely precise, but uses low-level control Bow Quantifications are the centerpiece of first-order logic,
that make it harder to write and understand the algorithms. and are dominantly used in writing synchronization con-
There are also many notations in between these extremesgitions and assertions in specifications, but there are few
some being much more precise or completely precise while results on generating efficient implementations of them. In
also giving a high-level control flow, e.g., Raynal's pseu- databases, despite extensive work on efficient implementa-
docode [55, 56] and Lamport's PlusCal [36]. However, all of tion of high-level queries, efficient implementation of uni
these languages and notations still lack concepts and mechayersal quantification has only been studied in limited scope
nisms for building real distributed applications, and mafst  or for extremely restricted query forms, e.g., [5-7, 12]. In
the languages are not executable at all. logic programming, implementations of universal quantifi-
Many programming languages support programming of cation are all based on variants of brute-force Lloyd-Topor
distributed algorithms and applications. Most support dis transformations, e.g., [18, 52]; even state-of-the-agido
tributed programming through messaging libraries, raggin  programming systems [62, 69] do not support universal

from relatively simple socket libraries to complex libesi  quantification. Our method is the first general and system-
such as MPI [47]. Many support Remote Procedure Call

Figure 8. Running time of programs for Lamport's dis-
tributed mutual exclusion written in different languages.



atic method for incrementalizing arbitrary quantificagon
Although they are much more challenging to optimize than
set queries, our method combines a set of general transfo
mations to transform them into aggregate queries that can
be most efficiently incrementalized using the best previous
methods.

To conclude, this paper presents a powerful language
and method for programming and optimizing distributed
algorithms. There are many directions for future work, from
formal verification on the theoretical side, to generatiode
in lower-level languages on the practical side, with many
additional analyses and optimizations in between.
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