
From Clarity to Efficiency for Distributed Algorithms ∗

Yanhong A. Liu Scott D. Stoller Bo Lin Michael Gorbovitski

Computer Science Department, State University of New York at Stony Brook, Stony Brook, NY 11794, USA{liu,stoller,bolin,mi
kg}�
s.stonybrook.edu
Abstract
This paper describes a very high-level language for clear de-
scription of distributed algorithms and optimizations nec-
essary for generating efficient implementations. The lan-
guage supports high-level control flows where complex syn-
chronization conditions can be expressed using high-level
queries, especially logic quantifications, over message his-
tory sequences. Unfortunately, the programs would be ex-
tremely inefficient, including consuming unbounded mem-
ory, if executed straightforwardly.

We present new optimizations that automatically trans-
form complex synchronization conditions into incremen-
tal updates of necessary auxiliary values as messages are
sent and received. The core of the optimizations is the first
general method for efficient implementation of logic quan-
tifications. We have developed an operational semantics of
the language, implemented a prototype of the compiler and
the optimizations, and successfully used the language and
implementation on a variety of important distributed algo-
rithms.

Categories and Subject DescriptorsD.1.3 [Programming
Techniques]: Concurrent Programming—Distributed pro-
gramming; D.3.2 [Programming Languages]: Language
Classifications—Very high-level languages; D.3.4 [Pro-
gramming Languages]: Processors—Code generation, Com-
pilers, Optimization; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about
Programs—Specification techniques; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Lan-
guages—Operational semantics; I.2.4 [Computing Method-
ologies]: Knowledge Representation Formalisms and Meth-
ods—Predicate logic

∗ This work was supported in part by ONR under grant N000140910651
and N000140710928; and NSF under grant CCF-0964196 and CNS-
0831298.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

General Terms Algorithms, Design, Languages, Perfor-
mance

Keywords distributed algorithms, incrementalization, logic
quantifications, program optimization, very high-level lan-
guages

1. Introduction
Distributed algorithms are at the core of distributed systems.
Yet, developing practical implementations of distributedal-
gorithms with correctness and efficiency assurances remains
a challenging, recurring task.

• Study of distributed algorithms has relied on either pseu-
docode with English, which is high-level but imprecise,
or formal specification languages, which are precise but
harder to understand, lacking mechanisms for building
real distributed systems, or not executable at all.

• At the same time, programming of distributed systems
has mainly been concerned with program efficiency and
has relied mostly on the use of low-level or complex
libraries and to a lesser extent on built-in mechanisms in
restricted programming models.

What’s lacking is (1) a simple and powerful language that
can express distributed algorithms at a high level and yet
has a clear semantics for precise execution as well as for
verification, and is fully integrated into widely used pro-
gramming languages for building real distributed systems,
together with (2) powerful optimizations that can transform
high-level algorithm descriptions into efficient implementa-
tions.

We have developed a very high-level language, DistAlgo,
for clear description of distributed algorithms, combining
advantages of pseudocode, formal specification languages,
and programming languages.

• The main control flow of a process, including sending
messages and waiting on conditions about received mes-
sages, can be stated directly as in sequential programs;
yield points where message handlers execute can be spec-
ified explicitly and declaratively.

• Complex synchronization conditions can be expressed
using high-level queries, especially quantifications, over
message history sequences, without manually writing

message handlers that perform low-level incremental up-
dates and obscure control flows.

DistAlgo supports these features by building on an object-
oriented programming language. We also developed an op-
erational semantics for the language. The result is that dis-
tributed algorithms can be expressed in DistAlgo clearly ata
high level, like in pseudocode, but also precisely, like in for-
mal specification languages, and be executed as part of real
applications, as in programming languages.

Unfortunately, programs containing control flows with
synchronization conditions expressed at such a high level
are extremely inefficient if executed straightforwardly: each
quantifier will cause a linear factor in running time, and any
use of the history of messages sent and received will cause
space usage to be unbounded.

We describe new optimizations that allow efficient im-
plementations to be generated automatically, extending pre-
vious optimizations to distributed programs and to the most
challenging quantifications.

• Our method transforms sending and receiving of mes-
sages into updates to message history sequences, in-
crementally maintains the truth values of synchroniza-
tion conditions and necessary auxiliary values as those
sequences are updated, and finally removes those se-
quences as dead code as appropriate.

• To incrementally maintain the truth values of general
quantifications, our method first transforms them into
set queries. In general, however, translating nested quan-
tifications simply into nested queries can incur asymp-
totically more space and time overhead than necessary.
Our transformations minimize the nesting of the result-
ing queries.

• Quantified order comparisons are used extensively in
non-trivial distributed algorithms. They can be easily in-
crementalized when not mixed with other conditions or
with each other. We systematically extract single quanti-
fied order comparisons and transform them into efficient
incremental operations.

Overall, our method significantly improves time complexi-
ties and reduces the unbounded space used for message his-
tory sequences to the auxiliary space needed for incremental
computation. Systematic incrementalization also allows the
time and space complexity of the generated programs to be
analyzed easily.

There has been a significant amount of related research,
as discussed in Section 7. Our work contains three main
contributions:

• A very high-level language that combines the best of
pseudocode, specification, and programming languages.

• A systematic method for incrementalizing complex syn-
chronization conditions with respect to all sending and
receiving of messages in distributed programs.

• A general and systematic method for generating effi-
cient implementations of arbitrary logic quantifications
together with general high-level queries.

We have implemented a prototype of the compiler and
the optimizations and experimented with a variety of im-
portant distributed algorithms, including Paxos, Byzantine
Paxos, and multi-Paxos. Our experiments strongly confirm
the benefits of a very high-level language and the effective-
ness of our optimizations.

2. Expressing distributed algorithms
Even when a distributed algorithm appears simple at a high
level, it can be subtle when necessary details are considered,
making it difficult to understand how the algorithm works
precisely. The difficulty comes from the fact that multiple
processes must coordinate and synchronize to achieve global
goals, but at the same time, delays, failures, and attacks can
occur. Even determining the ordering of events is nontrivial,
which is why Lamport’s logical clock [33] is so fundamental
for distributed systems.

Running example. We use Lamport’s distributed mutual
exclusion algorithm [33] as a running example. Lamport de-
veloped it to illustrate the logical clock he invented. The
problem is thatn processes access a shared resource, and
need to access it mutually exclusively, in what is called a
critical section (CS), i.e., there can be at most one process
in a critical section at a time. The processes have no shared
memory, so they must communicate by sending and receiv-
ing messages. Lamport’s algorithm assumes that communi-
cation channels are reliable and first-in-first-out (FIFO).

Figure 1 contains Lamport’s original description of the
algorithm, except with the notation< instead of=⇒ in
rule 5 (for comparing pairs of timestamps and process ids)
and with the word “acknowledgment” added in rule 5 (for
simplicity when omitting a commonly omitted [19, 43] small
optimization mentioned in a footnote). This description is
the most authoritative, is at a high level, and uses the most
precise English we found.

The algorithm satisfies safety, liveness, and fairness, and
has a message complexity of3(n − 1). It is safe in that at
most one process can be in a critical section at a time. It
is live in that some process will be in a critical section if
there are requests. It is fair in that requests are served in the
order of the logical timestamps of the request messages. Its
message complexity is3(n − 1) in that3(n − 1) messages
are required to serve each request.

Challenges. To understand how this algorithm is carried
out precisely, one must understand how each of then pro-
cesses acts as bothPi andPj in interactions with all other
processes. Each process must have an order of handling all
the events according to the five rules, trying to reach its
own goal of entering and exiting a critical section while also
responding to messages from other processes. It must also

The algorithm is then defined by the following five rules. For
convenience, the actions defined by each rule are assumed to
form a single event.

1. To request the resource, processPi sends the message
Tm:Pi requests resourceto every other process, and puts that
message on its request queue, whereTm is the timestamp of the
message.

2. When processPj receives the messageTm:Pi requests
resource, it places it on its request queue and sends a (times-
tamped) acknowledgment message toPi.

3. To release the resource, processPi removes anyTm:Pi

requests resourcemessage from its request queue and sends
a (timestamped)Pi releases resourcemessage to every other
process.

4. When processPj receives aPi releases resourcemessage,
it removes anyTm:Pi requests resourcemessage from its re-
quest queue.

5. ProcessPi is granted the resource when the following two
conditions are satisfied: (i) There is aTm:Pi requests resource
message in its request queue which is ordered before any other
request in its queue by the relation<. (To define the relation<
for messages, we identify a message with the event of sending
it.) (ii) Pi has received an acknowledgment message from every
other process timestamped later thanTm.
Note that conditions (i) and (ii) of rule 5 are tested locallyby
Pi.

Figure 1. Original description in English.

keep testing the complex condition in rule 5 as events hap-
pen.

State machine based formal specifications have been used
to fill in such details precisely, but at the same time, they are
lower-level and harder to understand. For example, a formal
specification of Lamport’s algorithm in I/O automata [43,
pages 647-648] occupies about one and a fifth pages, most
of which is double-column.

To actually implement distributed algorithms, details
for many additional aspects must be added, for example,
creating processes, letting them establish communication
channels with each other, incorporating appropriate logical
clocks (e.g., Lamport clock or vector clock [44]) if needed,
guaranteeing the specified channel properties (e.g., reliable,
FIFO), and integrating the algorithm with the application
(e.g., specifying critical section tasks and invoking the code
for the algorithm as part of the overall application). Further-
more, how to do all of these in an easy and modular fashion?

Our approach. We address these challenges with the
DistAlgo language, compilation to executable programs, and
especially optimization by incrementalization of expensive
synchronizations, described in Sections 3, 4, and 5, respec-
tively. An unexpected result is that incrementalization let us
discover simplifications of Lamport’s original algorithm in
Figure 1; the simplified algorithm can be expressed using
basically two send-statements, a receive-definition, and an
await-statement.

3. DistAlgo Language
To support distributed programming at a high level, four
main concepts can be added to commonly used object-
oriented programming languages, such as Java and Python:
(1) processes as objects, and sending of messages, (2) yield
points and waits for control flows, and handling of received
messages, (3) synchronization conditions using high-level
queries and message history sequences, and (4) configura-
tion of processes and communication mechanisms. DistAlgo
supports these concepts, with options and generalizationsfor
ease of programming. We have developed an operational se-
mantics for DistAlgo.

Processes and sending of messages.Distributed processes
are like threads except that each process has its private mem-
ory, not shared with other processes, and processes com-
municate by message passing. Three constructs are used,
for defining processes, creating processes, and sending mes-
sages.

Process definition can use any class, sayP, that extends a
special classPro
ess.
lass P extends Pro
ess:
lass_body
So a process is an object of classPro
ess. This is analogous
to thread definition in Java and Python, except thatPro
ess
is used in place ofThread, and that the fields of an object of
classPro
ess are local to the process. So, like for an object
of Thread, one can define arun method and callstart to
start the process and execute therun method.

Process creation can use a statement of the following
form, whereP is a class that extends classPro
ess, ands
is an optional additional parameter that specifies a site, i.e.,
a machine, by its host name or IP address.new P(...,s)
This creates a new process of classP on sites, or on the
machine running this statement ifs is omitted, and returns
a reference to the process. This is the same as thread cre-
ation except for the additional parameters. For high-level
programming,newpro
esses(n,P,s) creates and returns a
set ofn processes of classP on sites. Process references are
ordered.

Sending messages to other processes uses a send-statement:send m to p
This sends messagem to processp. A message can be a value
of any type and is usually a tuple where the first component
is a string specifying the kind of the message. We allow a
setps of processes in place ofp, to send the message to each
process inps.

Control flows and handling of received messages.The
key idea is to use labels to specify program points where
control flow can yield to handling of messages and resume

afterwards. Three constructs are used, for specifying yield
points, handling of received messages, and synchronization.

A yield point is a statement of the following form, wherel is a label that names this point in the program:-- l
This specifies a program point,l, that can be referred to in
specifying handling of messages, described next, to specify
where the messages can be handled.

Handling of received messages uses receive-definitions,
which are members of class definitions for processes and
have the form:re
eive m1 from p1,...,mi from pi at l1,...,lj:stmt
where eachmk is a variable or tuple pattern. This allows mes-
sages that match any one ofm1 from p1, ..., mi from pi to
be handled at yield points labeled any one ofl1,...,lj, by
executing the statementstmt at those points. A tuple pat-
tern is a tuple in which each component is a constant, a
variable possibly prefixed with "=", or a wildcard. A con-
stant or a variable prefixed with “=” means that the corre-
sponding component of the tuple being matched must equal
the constant or the value of the variable, respectively, for
pattern matching to succeed. A variable not prefixed with
“=” matches any value and gets bound to the corresponding
part of the tuple being matched. A wildcard, written as “_”,
matches any value. The at-clause is optional, and the default
is all yield points. The from-clause is also optional, and if
used, the language provides the identity of the sender. Sup-
port for receive-definition mimics common usage in pseu-
docode, allowing a message handler to be associated with
multiple yield points without using method definition and
invocations. As syntactic sugar, are
eive that is handled at
only one yield point can be written at that point.

Synchronization can use await-statements of the form:await bexp timeout time
This waits for the value of Boolean expressionbexp to be-
come true or untiltime seconds have passed. The timeout-
clause is optional, and the default is to wait only forbexp
to become true. If an await-statement exits due to a timeout,
it setsself.timeout to true. If it exits due to the awaited
condition being true, it setsself.timeout to false. We re-
quire that an await-statement be preceded by a yield point; if
a yield point is not specified explicitly, the default is thatall
message handlers can be executed at this point. Otherwise,
the program would deadlock here ifbexp is false.

These few constructs make it easy to specify any process
that has its own flow of control while also responding to
messages. It is also easy to specify any process that only
responds to messages, for example, by writing just receive-
definitions and arun method containing onlyawait false,
or by writing just arun method containing only awhiletrue loop whose body is a receive-definition.

Synchronization conditions using high-level queries.Syn-
chronization conditions and other conditions can be ex-
pressed using high-level queries—quantifications, compre-
hensions, and aggregates—over sets of processes and se-
quences of messages. High-level queries are used commonly
in distributed algorithms because (1) they make complex
synchronization conditions clearer and easier to write, and
(2) the theoretical efficiency of distributed algorithms is
measured by message complexity, not time complexity of
local processing.

Quantifications are especially common because they di-
rectly capture the truth values of synchronization conditions.
We discovered a number of errors in our initial programs that
used aggregates in place of quantifications before we devel-
oped the method to systematically optimize quantifications.
For example, we regularly expressed “v is larger than all ele-
ments ofs” asv > max(s) and either forgot to handle the case
that s is empty or handled it in ad hoc fashions. Naive use
of aggregates likemax may also hinder generation of more
efficient implementations.

We define operations on sets; operations on sequences are
the same except that elements are processed in order, and
square brackets are used in place of curly braces.

• Quantifications are of the following two forms. Each
variablevi enumerates elements of the set value of ex-
pressionexpi; the return value is whether, for each or
some, respectively, combination of values ofv1,...,vk,
the value of Boolean expressionbexp is true. When an
existential quantification returns true, variablesv1,...,vk
are bound to a witness.ea
h v1 in exp1, ..., vk in expk | bexpsome v1 in exp1, ..., vk in expk | bexp

• Comprehensions are of the following form. Each variablevi enumerates elements of the set value of expressionexpi; for each combination of values ofv1,...vk, if the
value of Boolean expressionbexp is true, the value of
expressionexp forms an element of the resulting set.{ exp: v1 in exp1, ..., vk in expk | bexp }
We abbreviate{v: v in exp | bexp} as{v in exp | bexp}.

• Aggregates are of the formagg(exp), whereagg is an
operation, such assize, sum, or max, specifying the kind
of aggregation over the set value ofexp.

• In the query forms above, eachvi can also be a tuple
pattern, in which case each enumerated element of the set
value ofexpi is first matched against the pattern before
expressionbexp is evaluated. We omit|bexp whenbexp
is true.

We use{} for empty set; uses.add(x) and s.del(x) for
element addition and deletion, respectively; and usex in s
and x not in s for membership test and its negation, re-
spectively. We allow tuple patterns to be used in any access

of set elements. We assume that hashing is used in imple-
menting sets, and the expected time of set membership tests
and updates involving one element isO(1).

DistAlgo has two built-in sequences,re
eived andsent,
containing all messages received and sent, respectively, by a
process.

• Sequencere
eived is updated only at yield points. An ar-
rived messagem for which the program contains a match-
ing receive-definition is added tore
eived when the pro-
gram reaches a yield point wherem is handled, and all
matching message handlers associated with that yield
point are executed form. An arrived message for which
the program contains no matching receive-definitions is
added tore
eived at the next yield point. The sequencesent is updated at each send-statement.

• We usere
eived(m from p) as a shorthand form fromp in re
eived; from p is optional, but when specified,
each message inre
eived is automatically associated
with the corresponding sender. We usesent(m to p) as
a shorthand form to p in sent; to p is optional, but
when specified,p is the process or set of processes in the
corresponding send-statement.

If implemented straightforwardly,re
eived and sent can
create a huge memory leak, because they can grow un-
bounded, preventing their use in practical programming.

Configuration. One can specify channel types, handling of
messages, setup for starting processes, and other configura-
tion items. Such specifications are declarative, so that algo-
rithms can be expressed without unnecessary implementa-
tion details. We describe a few basic kinds of configuration
items.

Channel can be specified to befifo, for FIFO, in which
case messages between two processes are guaranteed to be
received in the order that they were sent. This is specified
using:use fifo_
hannel
Similarly, channels can be specified to be reliable usingusereliable_
hannel. By default, channels are not required to
be FIFO or reliable. One can also specify different channel
types for different channels.

One can specify how much effort is spent processing
messages at yield points. For example,use handling_all
means that all matching received messages that are not yet
handled must be handled before execution of the main flow
of control continues past any yield point; this is the default.
For another example, one can specify a time limit. One
can also specify different handling effort for different yield
points.

Logical clocks [17, 33, 44] are used in many distributed
algorithms. One can specify that Lamport logical clock is
used:

use Lamport_
lo
k
which configures sending and receiving of messages to up-
date the clock appropriately; one can callLamport_
lo
k()
to get the value of the clock. This can be implemented with a
module that provides the functionLamport_
lo
k() as well
as the functions called at sending and receiving of messages.

Other language constructs. For other constructs, we use
those in high-level object-oriented languages. We mostly use
Python syntax (indentation for scoping, ’:’ for separation,
’#’ for comments, etc.), for succinctness, except with a few
conventions from Java (keywordextends for subclass, key-
word new for object creation, and omission ofself, equiva-
lent ofthis in Java, when there is no ambiguity), for ease of
reading.

Example. Figure 2 shows Lamport’s algorithm expressed
in DistAlgo. The algorithm in Figure 1 corresponds to the
body of
s and the two receive-definitions, 15 lines total; the
rest of the program, 15 lines total, shows how the algorithm
is used in an application. The execution of the application
starts with methodmain, which configures the system to run
(lines 24-30). Method
s and the twore
eive-definitions are
executed when needed and follow the five rules in Figure 1
(lines 5-20).

Note that Figure 2 is not meant to replace Figure 1,
but to realize Figure 1 in a precisely executable manner.
Figure 2 is meant to contrast with lower-level specifications
and programs.

4. Compiling to executable programs
Compilation generates code to create processes on the spec-
ified machine, take care of sending and receiving messages,
and realize the specified configuration. In particular, it in-
serts appropriate message handlers at each yield point.

Processes and sending of messages.Process creation is
compiled to creating a process on the specified or default
machine and that has a private memory space for its fields.
Each process is implemented using two threads: a main
thread that executes the main flow of control of the process,
and a helper thread that receives and enqueues messages sent
to this process. High-level programming constructs, such asnewpro
esses(n,P,s), can easily be compiled into loops.

Sending a messagem to a process or set of processes,p,
is compiled into calls to a standard message passing API.
If the sequencesent is used in the program, we also insertsent.add(m to p) to be executed. Calling a method on a
remote process object is compiled into a remote method call.

Control flows and handling of received messages.Each
yield point l is compiled into a call to a message handler
methodl() that updates the sequencere
eived, if it is
used in the program, and executes the bodies of the receive-
definitions whose at-clause includesl. Precisely:

1
lass P extends Pro
ess:2 def setup(s):3 self.s = s # set of all other pro
esses4 self.q = {} # set of pending requests5 def
s(task): # for
alling task() in CS6 -- request7 self.
 = Lamport_
lo
k() # 1 in Fig 18 send ('request',
, self) to s #9 q.add(('request',
, self)) ## wait for own req < others in q# and for a
ks from all in s10 await ea
h ('request',
2,p2) in q | # 5 in Fig 1(
2,p2) != (
,self) implies (
,self) < (
2,p2)11 and ea
h p2 in s | #some re
eived('a
k',
2,=p2) |
2 >
12 task() #
riti
al se
tion13 -- release14 q.del(('request',
, self)) # 3 in Fig 115 send ('release', Lamport_
lo
k(), self) to s #16 re
eive ('request',
2, p2): # 2 in Fig 117 q.add(('request',
2, p2)) #18 send ('a
k', Lamport_
lo
k(), self) to p2 #19 re
eive ('release', _, p2): # 4 in Fig 120 q.del(('request', _, =p2)) #21 def run(): # main method for the pro
ess... # may do non-CS tasks of the pro
22 def task(): ... # define
riti
al se
tion task23
s(task) #
all
s to do task in CS... # may do non-CS tasks of the pro
24 def main(): # main method for the appli
ation... # other tasks of the appli
ation25 use reliable_
hannel #
onfigure
hannel to be reliable26 use fifo_
hannel #
onfigure
hannel to be FIFO27 use Lamport_
lo
k #
onfigure to use Lamport
lo
k28 ps = newpro
esses(50,P) #
reate 50 pro
esses of P
lass29 for p in ps: p.setup(ps-{p}) # pass to ea
h pro
 other pro
s30 for p in ps: p.start() # start ea
h pro
,
all method run... # other tasks of the appli
ation
Figure 2. Original algorithm (lines 3-4 and 6-20) in a com-
plete program in DistAlgo.

1. Each receive-definition is compiled into a method that
takes a messagem as argument, matchesm against the
message patterns in the receive-clause, and if the match-
ing succeeds, binds the variables in the pattern appro-
priately, and executes the statement in the body of this
receive-definition.

2. Methodl() compiled for yield pointl does the follow-
ing: for each messagem from p in the queue of messages
not yet handled, (1) ifm matches a message pattern in a
receive-definition whose at-clause includesl, then exe-
cutere
eived.add(m from p) if re
eived is used in the
program and call the methods generated from the receive-
definitions whose at-clause includesl; (2) if m does not
match any message pattern in any receive-definition, then
executere
eived.add(m from p) if re
eived is used in
the program. In both these cases, removem from the mes-
sage queue afterward.

An await-statement can be compiled into a synchroniza-
tion using busy-waiting or blocking. For example, for busy-
waiting, a statementawait bexp that immediately follows a

label l is compiled into a calll() followed by while notbexp: l().

Configuration. Configuration options are taken into ac-
count during compilation in a straightforward way. Libraries
and modules are used as much as possible. For example,
when fifo_
hannel and reliable_
hannel are specified,
the compiler can generate code that uses TCP sockets.

5. Incrementalizing expensive synchronizations
Incrementalization transforms expensive computations into
efficient incremental computations with respect to updates
to the values on which the computations depend. It (1) iden-
tifies all expensive queries, (2) determines all updates to the
parameters of these queries, and (3) transforms the queries
and updates into efficient incremental computations. Much
of this has been studied previously.

The new method here is for (1) systematic handling of
quantifications for synchronization as expensive queries,es-
pecially nested alternating universal and existential quantifi-
cations and quantifications containing complex order com-
parisons and (2) systematic handling of updates caused by
all sending, receiving, and handling of messages in the same
way as other updates in the program. The result is drastic
reduction of both time and space complexities.

Expensive computations using quantifications.Expen-
sive computations in general involve repetition, including
loops, recursive functions, comprehensions, aggregates,and
quantifications over collections. Loops were studied most;
less for recursive functions and comprehensions, and least
for quantifications, basically corresponding to how fre-
quently each construct has traditionally been used in pro-
gramming. However, high-level queries are increasingly
used in programming, and quantifications are dominantly
used in writing synchronization conditions and assertionsin
specifications and very high-level programs. Unfortunately,
if implemented straightforwardly, each quantification incurs
a cost factor that is linear in the size of the collection quan-
tified over.

Optimizing expensive quantifications in general is diffi-
cult, which is a main reason that they are not used in prac-
tical programs, not even logic programs, and programmers
manually write more complex and error-prone code. The
difficulty comes from expensive enumerations over collec-
tions and complex combinations of join conditions. We ad-
dress this challenge by converting quantifications into aggre-
gate queries that can be optimized systematically using pre-
viously studied methods. However, a quantification can be
converted into multiple forms of aggregate queries. Which
one to use depends on what kinds of updates must be han-
dled, and on how the query can be incrementalized under
those updates. Direct conversion of nested quantifications
into nested queries can lead to much more complex incre-
mental computation code and asymptotically worse time and

space complexities for maintaining the intermediate query
results.

Note that, for an existential quantification, we convert it
to a more efficient aggregate query if a witness is not needed;
if a witness is needed, we incrementally compute the set of
witnesses.

Converting quantifications to aggregate queries.We present
all converted forms here and describe which forms to use
after we discuss the updates that must be handled. The pro-
cess to develop them was nontrivial, even though the end
results look simple. The correctness of all rules presented
are proved using first-order logic and set theory. These rules
ensure that the value of a resulting query expression equals
the value of the original quantified expression.

Table 1 shows general rules for converting single quan-
tifications into equivalent queries that usesize aggregates.
These rules are general becausebexp can be any Boolean
expression, but they are for converting single quantifications.
Nested quantifications could be converted one at a time from
inside out, but the results can be much more complicated
than necessary. For example,ea
h x in s | some y in t | bexp
would be converted using rule 1 toea
h x in s | size({y in t | bexp})!= 0
and then using rule 2 tosize({x in s | size({y in t | bexp}) != 0})== size(s)

Quantification Using Aggregate
1 some x in s | bexp size({x in s | bexp}) != 0
2
3
ea
h x in s | bexp size({x in s | bexp}) == size(s)size({x in s | not bexp}) == 0
Table 1. Rules for converting single quantifications.

Table 2 shows general rules for converting nested quan-
tifications into equivalent, but non-nested, queries that usesize aggregates. These rules yield much simpler results than
repeated use of the rules in Table 1. For example, rule 2 in
this table yields a much simpler result than using two rules in
Table 1 in the previous example. More significantly, rules 1,
4, and 5 generalize to any number of the same quantifier, and
rules 2 and 3 generalize to any number of quantifiers with
one alternation. We have not encountered more complicated
quantifications than these. It is well-known that more than
one alternation is rarely used, so commonly used quantifica-
tions can all be converted to non-nested aggregate queries.

Table 3 shows general rules for converting single quan-
tifications with a single order comparison into equivalent
queries that usemax andmin aggregates. These rules are use-
ful because single quantified order comparison, when there
are no element deletions, can be computed more efficiently,
with a constant instead of linear space overhead. Boolean

combinations of order comparisons and other conditions can
be transformed first into quantifications each involving at
most one order comparison at a time.

Existential Using Aggregate
1
2

some x in s | y <= xsome x in s | x >= y s != {} and y <= max(s)
3
4

some x in s | y >= xsome x in s | x <= y s != {} and y >= min(s)
5
6

some x in s | y < xsome x in s | x > y s != {} and y < max(s)
7
8

some x in s | y > xsome x in s | x < y s != {} and y > min(s)
Universal Using Aggregate

9
10

ea
h x in s | y <= xea
h x in s | x >= y s == {} or y <= min(s)
11
12

ea
h x in s | y >= xea
h x in s | x <= y s == {} or y >= max(s)
13
14

ea
h x in s | y < xea
h x in s | x > y s == {} or y < min(s)
15
16

ea
h x in s | y > xea
h x in s | x < y s == {} or y > max(s)
Table 3. Rules for single quantified order comparison.

Table 4 shows general rules for decomposing combi-
nations of conditions in general quantifications, to extract
quantifications each involving a single order comparison.
For example,ea
h x in s | bexp implies y < x
can be converted using rule 6 toea
h x in {x in s | bexp} | y < x
which can be converted using rule 13 of Table 3 to{x in s | bexp} == {} or y < min({x in s | bexp})

Quantification Decomposed Quantifications

1
some x in s| e1 and e2 some x in {x in s | e1}| e2

2
some x in s| e1 or e2 some x in s | e1 orsome x in s | e2

3
some x in s| e1 implies e2 some x in s | not e1 orsome x in s | e2

4
ea
h x in s| e1 and e2 ea
h x in s | e1 andea
h x in s | e2

5
ea
h x in s| e1 or e2 ea
h x in {x in s | not e1}| e2

6
ea
h x in s| e1 implies e2 ea
h x in {x in s | e1}| e2

Table 4. Rules for decomposing conditions to extract quan-
tified comparisons.

Updates caused by message passing.Parameters of a
query are variables in the query whose values may affect
the query result. Updates to a parameter are operations that

Nested Quantifications Using Aggregate
1 some x in s | some y in t | bexp size({true: x in s, y in t | bexp}) != 0
2 ea
h x in s | some y in t | bexp size({x: x in s, y in t | bexp}) == size(s)
3 some x in s | ea
h y in t | bexp size({x: x in s, y in t | not bexp}) != size(s)
4
5

ea
h x in s | ea
h y in t | bexp size({(x,y): x in s, y in t | bexp}) == size({(x,y): x in s, y in t})size({(x,y): x in s, y in t | not bexp}) == 0
Table 2. Rules for converting nested quantifications.

may change the value of the parameter. The most common
updates are assignments,v = exp, which is an update tov. Other updates can all be expressed as assignments. For
objects, all updates can be expressed as field assignments,o.f = exp. For collections, all updates can be expressed as
initialization to empty and element additions and removals.

For distributed algorithms, a distinct class of important
updates are caused by message passing. Updates are caused
in two ways:

1. Sending and receiving messages updates the sequencessent andre
eived, respectively. Before incrementaliza-
tion, code is generated, as described in Section 4, to ex-
plicitly perform these updates.

2. Handling of messages by code in receive-definitions up-
dates variables that are parameters of the queries for com-
puting synchronization conditions, or that are used to
compute the values of these parameters.

Once these are established, updates can be determined using
previously studied analysis methods, e.g., [21, 39].

Incremental computation. Given expensive queries and
updates to the query parameters, efficient incremental com-
putations can be derived for large classes of queries and up-
dates based on the language constructs used in them or by
using a library of rules built on existing data structures [39–
41, 50].

For aggregate queries converted from quantifications, al-
gebraic properties of the aggregate operations are exploited
to efficiently handle possible updates. In particular, eachre-
sulting aggregate query result can be obtained inO(1) time
and incrementally maintained inO(1) time per update to the
sets maintained and affected plus the time for evaluating the
conditions in the aggregate query once per update. Addition-
ally, if max andmin aggregates are used and there are no el-
ement deletions from the sets queried, the space overhead
is constant. Note that ifmax andmin are used naively and
there are element deletions, there would be an overhead of
O(n) space andO(log n) update time from using more so-
phisticated data structures to maintain themax or min under
element deletion [13, 22, 67, 68].

To allow the most efficient incremental computation un-
der all given updates, our method transforms each top-level
quantification as follows:

• For nested quantifications, the rules in Table 2 are used.
For non-nested quantifications, if the conditions contain

no order comparisons or there are deletions from the sets
or sequences whose elements are compared, the rules in
Table 1 are used. The space overhead is linear in the sizes
of the sets maintained and being aggregated over.

• For non-nested quantifications, if the conditions contain
order comparisons and there are no deletions from the
sets or sequences whose elements are compared, the rules
in Table 4 are first used to extract single quantified order
comparisons, and then the rules in Table 3 are used to
convert the extracted quantifications. In this case, the
space overhead is constant.

• Multiple ways of conversion may be possible: for univer-
sal quantifications using rules 2 and 3 in Table 1 and rules
4 and 5 in Table 2, for nested quantifications with two or
more alternations using rules 2 and 3 in Table 2 (each way
of conversion corresponds to a choice of which two al-
ternating quantifiers to eliminate using one of the rules),
and for quantifications with symmetric ways of decom-
posing combinations of conditions using rules 1, 5, and
6 in Table 4. Our method transforms in all these ways,
obtains the time and space complexities for each result,
and chooses one with the best complexities.

Table 5 summarizes well-known incremental computation
methods for these aggregate queries. The methods are ex-
pressed as incrementalization rules: if a query in the program
matches the query form in the table, and each update to a pa-
rameter of the query in the program matches an update form
in the table, then transform the query into the corresponding
replacement given in the table and insert at each update the
corresponding maintenance; a fresh variable is introduced
for each different query.

The overall incrementalization algorithm [39, 40, 50] (1)
introduces new variables to store the results of expensive
queries and subqueries, as well as appropriate additional val-
ues, (2) transforms the queries and subqueries to use the
stored query results and additional values, and (3) transforms
updates to query parameters to also do incremental mainte-
nance of the stored query results and additional values.

If queries are nested, inner queries are transformed be-
fore outer queries. Note that a comprehension such as{x ins | bexp} is incrementalized with respect to changes to pa-
rameters of Boolean expressionbexp as well as addition and
removal of elements ofs; if bexp contains nested subqueries,
then after the subqueries are transformed, incremental main-

Query Replacement Costsize(s)
ount O(1)

Updates Inserted Maintenance Costs = {}
ount = 0 O(1)s.add(x) if x not in s:
ount += 1 O(1)s.del(x) if x in s:
ount -= 1 O(1)

Query Replacement Costmax(s) maximum O(1)

Updates Inserted Maintenance Costs = {x} maximum = x O(1)s.add(x) if x > maximum: maximum = x O(1)

Table 5. Incrementalization rules forsize and formax. The
rule formin is similar to the rule formax.

tenance of their query results become additional updates to
the enclosing query. This is one of the reasons that incre-
mentalization is challenging.

At the end, variables and computations that are dead in
the transformed program are eliminated. In particular, se-
quencesre
eived and sent will be eliminated as appro-
priate, because queries using them have been compiled into
message handlers that only store and maintain values needed
for incremental evaluation of the synchronization condi-
tions.

Example. In the program in Figure 2, three quantifica-
tions are used in the synchronization condition in the await-
statement, and two of them are nested. The condition is
copied below, except that('a
k',
2,p2) in re
eived is
now used.ea
h ('request',
2,p2) in q |(
2,p2) != (
,self) implies (
,self) < (
2,p2)and ea
h p2 in s |some ('a
k',
2,=p2) in re
eived |
2 >

Converting quantifications into aggregates as described
using Tables 1 through 4 proceeds as follows. In the first
conjunct, the universal quantification is converted using rule
2 or 3 in Table 1, because it contains an order comparison
with elements ofq and there are element deletions fromq;
rule 3 is used here because it is slightly simpler after the
negated condition is simplified. In the second conjunct, the
nested quantification is converted using rule 2 in Table 2.
The resulting expression is:size({('request',
2,p2) in q |(
,self) > (
2,p2)}) == 0andsize({p2: p2 in s, ('a
k',
2,=p2) in re
eived |
2 >
}) == size(s)

Updates to parameters of the first conjunct are additions
and removals of requests to and fromq, and also assignment
to
. Updates to parameters of the second conjunct are ad-
ditions of ack-messages tore
eived, and assignment to
,
after the initial assignment tos.

Incremental computation [39–41, 50] introduces vari-
ables to store the values of all three aggregates in the con-
verted query, transforms the aggregates to use the introduced
variables, and incrementally maintains the stored values at
each of the updates, yielding the following:

• For the first conjunct, store the set value and thesize
value in two variables, sayearlier and
ount, respec-
tively; when
 is assigned a new value, letearlier beq and let
ount1 be its size, takingO(|earlier|) time,
amortized toO(1) time when each request inearlier is
served; when a request is added toq, if
 is defined and(
,self) > (
2,p2) holds, add the request toearlier
and increment
ount1 by 1, takingO(1) time; similarly
for deletion fromq.

Note that at the addition and removal of('request',
,self) in particular,earlier and
ount1 are not updated,
because(
,self) > (
,self) is trivially false.

• For the second conjunct, store the set value and the twosize values in three variables, sayresponded,
ount2,
andtotal, respectively; whens is initialized in setup,
assigntotal the size ofs, takingO(|s|) time, done only
once for each process; when
 is assigned a new value, letresponded be{}, and let
ount2 be 0, takingO(1) time;
when an ack-message is added tore
eived, if the associ-
ated conditions hold, increment
ount2 by 1, takingO(1)
time.

Note that incrementalization uses basic properties about
primitives and libraries. These properties are incorporated
in incrementalization rules. For the running example, the
property used is that a call toLamport_
lo
k() returns a
timestamp larger all timestamps of messages previously re-
ceived, and thus at the assignment to
, we have thatearlier
is q andresponded is {}.

Figure 3 shows the optimized program after incremental-
ization of the synchronization condition on lines 10-11 in
Figure 2. All commented lines are new except that the syn-
chronization condition in the await-statement is simplified.
The synchronization condition now takesO(1) time, com-
pared withO(|s|2) if implemented straightforwardly. The
trade-off is the much smaller amortizedO(1) time overhead
at updates to
 andq and on receiving of ack-messages.

Note that the sequencere
eived used in the synchro-
nization condition in Figure 2 is no longer used after incre-
mentalization. All values needed for evaluating the synchro-
nization condition are stored in new variables introduced:earlier,
ount1, responded,
ount2, andtotal, a drastic
space improvement from unbounded forre
eived to linear
in the number of processes.

Simplifications to the original algorithm. Consider the
original algorithm in Figure 2. Note that incrementalization
determined that there is no need for a process to update aux-
iliary values for its own request. Based on this, we discov-
ered that updates toq for a process’s own request do not

1
lass P extends Pro
ess:2 def setup(s):3 self.s = s4 self.q = {}5 self.total = size(s) # total num of other pro
s6 def
s(task):7 -- request8 self.
 = Lamport_
lo
k()9 self.earlier = q # set of pending earlier reqs10 self.
ount1 = size(earlier) # num of pending earlier reqs11 self.responded = {} # set of responded pro
s12 self.
ount2 = 0 # num of responded pro
s13 send ('request',
, self) to s14 q.add(('request',
, self))15 await
ount1 == 0and
ount2 == total # use maintained results16 task()17 -- release18 q.del(('request',
, self))19 send ('release', Lamport_
lo
k(), self) to s20 re
eive ('request',
2, p2):21 if
 != undefined: # if
 is defined22 if (
,self) > (
2,p2): #
omparison in
onjun
t 123 if ('request',
2,p2) not in earlier: # if not in24 earlier.add(('request',
2, p2)) # add to earlier25
ount1 += 1 # in
rement
ount126 q.add(('request',
2, p2))27 send ('a
k', Lamport_
lo
k(), self) to p228 re
eive ('a
k',
2, p2): # new message handler29 if
2 >
: #
omparison in
onjun
t 230 if p2 in s: # membership in
onjun
t 231 if p2 not in responded: # if not responded already32 responded.add(p2) # add to responded33
ount2 += 1 # in
rement
ount234 re
eive ('release', _, p2):35 if
 != undefined: # if
 is defined36 if (
,self) > (
2,p2): #
omparison in
onjun
t 137 if ('request',
2,p2) in earlier: # if in earlier38 earlier.del(('request',
2, p2)) # delete it39
ount1 -= 1 # de
rement
ount140 q.del(('request', _, =p2))
Figure 3. Optimized program after incrementalization. Def-
initions ofrun andmain are as in Figure 2.

affect the only use ofq, on line 10, so we can remove the
updates toq on lines 9 and 14 as well as the test(
2,p2)!= (
,self), which becomes always true, in the synchro-
nization condition. Furthermore, note that the remaining up-
dates toq are merely maintaining pending requests by oth-
ers, so we can remove lines 4, 17, 20 and the entire receive-
definition for release, by using, for the first conjunct in the
await-statement,ea
h re
eived('request',
2,p2) |not (some re
eived('release',
3,=p2) |
3 >
2)implies (
,self) < (
2,p2)
Figure 4 shows the simplified algorithm. Incrementalizing
this program yields essentially the same optimized program
as in Figure 3.

6. Implementation and experiments
We have implemented a prototype compiler and optimizer
for DistAlgo. The system can parse a DistAlgo program, ap-
ply analyses and optimizations to it, and generate executable
Python code.

1
lass P extends Pro
ess:2 def setup(s):3 self.s = s4 def
s(task):5 -- request6 self.
 = Lamport_
lo
k()7 send ('request',
, self) to s8 await ea
h re
eived('request',
2,p2) |not (some re
eived('release',
3,=p2) |
3 >
2)implies (
,self) < (
2,p2)9 and ea
h p2 in s |some re
eived('a
k',
2,=p2) |
2 >
10 task()11 -- release12 send ('release', Lamport_
lo
k(), self) to s13 re
eive ('request',
2, p2):14 send ('a
k', Lamport_
lo
k(), self) to p2
Figure 4. Simplified original algorithm. Definitions ofrun
andmain are as in Figure 2.

We implemented DistAlgo as slightly extended Python
because Python has rich support of very high-level con-
structs for ease of programming, and simple and consis-
tent syntax for ease of reading. We mostly exploit Python’s
support for comprehensions, aggregates, and quantifications
over sets and sequences, albeit with a slightly different syn-
tax than in this paper. Processes are implemented using
Python’s multiprocessing package. Message passing is im-
plemented using the socket library, with support for UDP or
TCP as the underlying protocol. Await-statements are com-
piled into blocking synchronization, not busy-waiting.

Our compiler and optimizer are implemented in Python,
building on Python’s parser module and AST package. Our
compiler runs on either a modified or unmodified Python
parser. The modified parser is a 390-line patch to the C code
of the Python source distribution and extends the Python
grammar to support labels and message handlers with the
syntax used in this paper. When using unmodified Python,
our compiler supports labels and message handlers specified
using specially named Python statements and methods; this
alternate syntax avoids the need for the Python parser patch.
The latter approach is used also for the rest of the exten-
sions: process creation, sending messages, synchronization,
and configurations. The rest of the compiler and optimizer
consists of about 1850 lines of Python, including code for
transforming quantifications into set and aggregate queries,
and excluding code for applying incrementalization to those
queries. Applying incrementalization uses the methods and
implementation from previous work [21, 39–41]. The best
program generated from incrementalizing differently con-
verted aggregate queries is currently selected manually.

We have programmed a variety of well-known distributed
algorithms using DistAlgo, applied our analyses and op-
timizations, and generated executable Python code for all
of them. We discuss our experiments and experiences with
twelve of them, listed in Table 6. DistAlgo has also been
used by undergraduate and graduate students to easily im-
plement a variety of distributed algorithms used in dis-

Algorithm Description

La mutex Lamport’s distributed mutual exclusion [33]
La mutex2La mutex with optimization in footnote in [33]
RA mutex Ricart-Agrawala’s distributed mutual exclusion [57]
RA token Ricart-Agrawala’s token-based mutual exclusion [58]
SK token Suzuki-Kasami’s token-based mutual exclusion [61]
CR leader Chang-Robert’s leader election [11]
HS leader Hirschberg-Sinclair’s leader election [27]
2P commitTwo-phase commit [24]
DS crash Dolev-Strong’s consensus under crash failures [15]
La Paxos Lamport’s Paxos for distributed consensus [34, 35]
CL Paxos Castro-Liskov’s Paxos under Byzantine failures [10]
vR Paxos van Renesse’s pseudocode for multi-Paxos [66]

Table 6. Well-known distributed algorithms.

tributed file sharing and other services, including Kademlia,
Tapestry, Pastry, and Chord, and parts of HDFS and Upright.

All reported running times are obtained with all processes
running on one Xen virtual machine with 6GB of main
memory on an Intel Core-i7 2600K CPU with 16GB of
main memory, running a Linux 3.2.0 kernel. Unless stated
otherwise, experiments use Python 3.2.2, reported resultsare
averages over 10 runs, and program sizes are numbers of
lines excluding comments and empty lines.

Programming distributed algorithms. We compared dis-
tributed algorithms expressed in DistAlgo with distributed
algorithms expressed in very different programming and
specification languages. We found that DistAlgo programs
are generally much easier to read and write. It took very
little time to actually write them, some just a few minutes
before generated code ran as intended, but significant effort
was spent trying to understand the algorithms from papers
and textbooks, some taking days and weeks. Being able to
express synchronization conditions using high-level quan-
tifications and apply incrementalization also allowed us to
uncover errors in our initial DistAlgo programs that sub-
consciously used extensive message handlers to do ad hoc
incremental updates. It also helped us discover improve-
ments to some of the algorithms, for correctness and for
efficiency [42], such as the simplifications that led to the
algorithm in Figure 4.

Directly quantifying the ease of programming and clar-
ity of programs is hard, so we use code size as an indirect
measure, as is common in programming practice. Table 7
lists the sizes of DistAlgo programs that express these al-
gorithms, and sizes of programs written by other people in
other languages, PlusCal [36], IOA [30, 43], Overlog [3],
and Bloom [8], that also express these algorithms. DistAlgo
programs are consistently small, expressing the algorithms
almost exactly like the pseudocode descriptions except with
a precise meaning for execution.

We also compared Lamport’s distributed mutual exclu-
sion algorithm written in C, Java, Python, Erlang, PlusCal,
and DistAlgo, as summarized in Table 8. These programs or

Algorithm DistAlgo PlusCal IOA Overlog Bloom

La mutex 32 90 [46] 64 [43]
La mutex2 33
RA mutex 35
RA token 43
SK token 42
CR leader 30 41 [28]
HS leader 56
2P commit 44 68 [65] 85 [64]
DS crash 22
La Paxos 43 83 [45] 145 [29] 230 [49] 157 [51]
CL Paxos 63 166 [45]
vR Paxos 156

Table 7. Sizes of programs in different languages, with ci-
tations.

specifications vary in the mechanisms used for processes and
communications, and their sizes. The first four were devel-
oped by ourselves before we started implementing DistAlgo
and are our best efforts to use each language in the best
way for implementing this algorithm. The PlusCal version
is from [46]. The C and Java programs required much more
effort than the Python and Erlang programs, which required
much more effort than the DistAlgo program. For compari-
son of program sizes, we formatted our programs according
to the suggested styles of the languages; for C, the K&R
style is used. Our experience confirmed that, as higher-level
language features are used, programming effort and program
size decrease.

LanguageDistributed programming features usedTotal Clean

C TCP socket library 358 272
Java TCP socket library 281 216
Python multiprocessing package 165 122
Erlang built-in message passing 177 99

PlusCal single process simulation using array 134 90

DistAlgo built-in high-level synchronization 48 32

Table 8. Main distributed programming features used and
program sizes (total number of lines, and number of lines
without comments and empty lines) for Lamport’s dis-
tributed mutual exclusion algorithm.

Compilation and optimization. We describe compilation
and optimization times, generated program sizes, and perfor-
mance of generated implementations. We do not discuss im-
plementation of automatic incrementalization [21, 39–41],
because it is prior work. We implemented an interface be-
tween our DistAlgo compiler and the incrementalizer In-
vTS [21, 41], so all the examples can be automatically com-
piled and optimized except for some remaining trivial man-
ual steps and selection of the best program as mentioned
above. It is not easy to integrate our DistAlgo compiler and
the incrementalizer InvTS, because the incrementalizer uses

Compilation DistAlgo Compiled Incremental-
Algorithm time (ms) size size ized size

La mutex 13.3 32 1395 1424
La mutex2 15.3 33 1402 1433
RA mutex 12.3 35 1395 1395
RA token 12.9 43 1402 1402
SK token 16.5 42 1405 1407
CR leader 10.7 30 1395 1395
HS leader 18.7 56 1415 1415
2P commit 21.4 44 1432 1437
DS crash 10.5 22 1399 1414
La Paxos 20.7 43 1428 1498
CL Paxos 32.3 63 1480 1530
vR Paxos 43.4 160 1555 1606

Table 9. Compilation time and sizes of generated programs
after compilation and after incrementalization.

Python 2.5, which is incompatible with Python 3, used by
our compiler.

Table 9 shows the compilation time and the sizes of the
DistAlgo programs, generated Python programs after compi-
lation, and generated Python programs after incrementaliza-
tion. Compilation time does not include incrementalization
time, which was well under 30 seconds for all of our pro-
grams. The generated programs include 1300 lines of fixed
library code. For some of the algorithms, the given origi-
nal description and pseudocode already contain all incre-
mental updates, so applying incrementalization to the gen-
erated program from compilation does not change the pro-
gram. These algorithms and some of the other algorithms
could be written at a higher level, so the synchronization
conditions can be expressed more directly and thus easier to
understand and verify. Incremental updates for efficient im-
plementations can then be generated by incrementalization;
higher-level programs can also allow more efficient incre-
mental programs to be generated.

Figures 5–7 compare the time and space performance of
generated implementations, for original programs and incre-
mentalized programs. A process’s memory usage is mea-
sured after the process has completed all of its work, so the
sequencessent andre
eived no longer grow. The reported
memory usage is the sum of the raw sizes of all data struc-
tures created by the generated Python code, measured using
Pympler.1 Figure 5 shows the running time and memory us-
age of Lamport’s distributed mutual exclusion algorithm; the
running time is the CPU time for each process to complete
a call to
s(task), including time spent handling messages
from other processes, averaged over processes and over runs
of 30 calls each. Figure 6 shows the running time and mem-
ory usage of Castro-Liskov’s Byzantine Paxos algorithm;
the running time is the CPU time for a proposer to suc-
ceed, averaged over proposers, from when it first proposes

1http://pa
kages.python.org/Pympler/

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0.22
 0.24
 0.26
 0.28

 25 50 75 100 125 150
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

T
im

e
(s

ec
)

M
em

or
y

(k
B

)

Number of processes

Original time
Original memory

Incrementalized time
Incrementalized memory

Figure 5. Running time and memory usage of Lamport’s
distributed mutual exclusion.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

 25 50 75 100 125 150
 0

 1000

 2000

 3000

 4000

 5000

 6000

T
im

e
(s

ec
)

M
em

or
y

(k
B

)

Number of acceptors

Original time
Original memory

Incrementalized time
Incrementalized memory

Figure 6. Running time and memory usage of Castro-
Liskov’s Byzantine Paxos.

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50

M
em

or
y

(k
B

)

Number of calls to cs(task)

Original
Incrementalized

Figure 7. Memory usage of Lamport’s distributed mutual
exclusion.

until it learns that one of its proposals has succeeded, with
the indicated number of acceptor processes and 10 proposer
processes. When an acceptor accepts a proposal, it notifies
only the proposer. The fault tolerance parameterf is set to
⌊(N − 1)/3⌋, whereN is the number of acceptors. Figure 7
shows the average per-process memory usage of Lamport’s
distributed mutual exclusion algorithm with 75 processes,as
a function of the number of calls to
s(task). Use of the
sequencesre
eived andsent causes memory usage of the
un-incrementalized program to grow linearly with the num-
ber of calls, while the memory usage of the incrementalized
program remains constant. We can see that incrementaliza-
tion improves the time and space performance of generated
implementations asymptotically.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 25 50 75 100 125 150

T
im

e
(s

ec
)

Number of processes

DistAlgo
Python(3.2.2)

Java(1.6.0)
C(gcc 4.6.1)

Erlang(R14B04)

Figure 8. Running time of programs for Lamport’s dis-
tributed mutual exclusion written in different languages.

Figure 8 compares the efficiency of our programs for
Lamport’s distributed mutual exclusion algorithm written
in different languages. For C, Java, and Erlang, we used
GCC 4.6.1, JDK 1.6.0, and R14B04, respectively. The figure
shows the CPU time for each process to do a round of re-
questing and releasing the CS, averaged over processes and
over runs of 30 rounds each. We can see that Erlang is the
fastest; we think it is partly because Erlang processes are
lighter weight. The Python code generated from DistAlgo
takes 3 times as long as the manually written Python; it is
because of the overhead in the generated code for pattern
matching against messages received and for method invoca-
tion for message handling at yield points.

This overhead is not intrinsic and could be optimized
away so that the generated implementations can be as fast
as manually written Python programs. Python is generally
slower than Erlang, C, and Java, but is nevertheless widely
used for distributed applications.

7. Related work
A wide spectrum of languages and notations have been used
to describe distributed algorithms, e.g., [4, 19, 32, 36, 43,
55, 56, 63]. At one end, pseudocode with English is used,
e.g., [32], which well gives a high-level flow of the algo-
rithms, but lacks the details and precision needed for a com-
plete understanding. At the other end, state machine based
specification languages are used, e.g., I/O automata [30, 43],
which is completely precise, but uses low-level control flows
that make it harder to write and understand the algorithms.
There are also many notations in between these extremes,
some being much more precise or completely precise while
also giving a high-level control flow, e.g., Raynal’s pseu-
docode [55, 56] and Lamport’s PlusCal [36]. However, all of
these languages and notations still lack concepts and mecha-
nisms for building real distributed applications, and mostof
the languages are not executable at all.

Many programming languages support programming of
distributed algorithms and applications. Most support dis-
tributed programming through messaging libraries, ranging
from relatively simple socket libraries to complex libraries
such as MPI [47]. Many support Remote Procedure Call

(RPC) or Remote Method Invocation (RMI), which allows
a process to call a subroutine in another process without the
programmer coding the details for this. Some programming
languages, such as Erlang [16], based on the actor model [2],
have support for message passing and process management
built into the language. They all lack constructs for express-
ing control flows and complex synchronization conditions at
a much higher level, because these high-level constructs are
extremely difficult to implement efficiently. DistAlgo’s con-
struct for declaratively and precisely specifying yield points
for message handlers is a new feature that we have not seen
in other languages.

There has been much work on generating executable im-
plementations from formal specifications, e.g., from process
algebras [26], I/O automata [20], Unity [23], and Seuss [31],
as well as from more recently proposed high-level languages
for distributed algorithms, e.g., Datalog-based languages
Overlog [3] and Bloom [8], and a logic-based language
EventML [9, 14]. Compilation of DistAlgo to executable
implementations is easy because it is designed to be so and
is given an operational semantics. High-level queries and
quantifications used for synchronization conditions can be
compiled into loops straightforwardly, but they may be ex-
tremely inefficient. None of these prior works study pow-
erful optimizations of quantifications. Efficiency concernis
a main reason that similar high-level language constructs,
whether for queries or assertions, are rarely used, if sup-
ported at all, in widely used languages.

Incrementalization has been studied extensively, e.g., [54],
both done systematically based on languages, and routinely
applied in ad hoc fashions to specific problems. However, all
systematic incrementalization methods based on languages
have been for centralized sequential programs, e.g., for set
languages [25, 40, 50], recursive functions [1, 37, 53], logic
rules [38, 60], and object-oriented languages [39, 48, 59].
This work is the first to extend incrementalization to dis-
tributed programs, where all sending and receiving of mes-
sages are systematically transformed into updates to mes-
sage history sequences. This allows the large body of pre-
vious work on incrementalization, especially on sets and
sequences, to be used for optimizing distributed programs.

Quantifications are the centerpiece of first-order logic,
and are dominantly used in writing synchronization con-
ditions and assertions in specifications, but there are few
results on generating efficient implementations of them. In
databases, despite extensive work on efficient implementa-
tion of high-level queries, efficient implementation of uni-
versal quantification has only been studied in limited scope
or for extremely restricted query forms, e.g., [5–7, 12]. In
logic programming, implementations of universal quantifi-
cation are all based on variants of brute-force Lloyd-Topor
transformations, e.g., [18, 52]; even state-of-the-art logic
programming systems [62, 69] do not support universal
quantification. Our method is the first general and system-

atic method for incrementalizing arbitrary quantifications.
Although they are much more challenging to optimize than
set queries, our method combines a set of general transfor-
mations to transform them into aggregate queries that can
be most efficiently incrementalized using the best previous
methods.

To conclude, this paper presents a powerful language
and method for programming and optimizing distributed
algorithms. There are many directions for future work, from
formal verification on the theoretical side, to generating code
in lower-level languages on the practical side, with many
additional analyses and optimizations in between.

Acknowledgments
We are grateful to the following people for their helpful
comments and discussions: Ken Birman, Andrew Black, Jon
Brandvein, Wei Chen, Ernie Cohen, John Field, Georges
Gonthier, Leslie Lamport, Nancy Lynch, Lambert Meertens,
Stephan Merz, Don Porter, Michel Raynal, John Reppy, Gun
Sirer, Doug Smith, Robbert van Renesse, and anonymous
reviewers.

References
[1] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive func-

tional programming. ACM Transactions on Programming
Languages and Systems, 28(6):990–1034, 2006.

[2] G. Agha. Actors: a model of concurrent computation in
distributed systems. MIT Press, 1986.

[3] P. Alvaro, T. Condie, N. Conway, J. Hellerstein, and R. Sears.
I do declare: Consensus in a logic language.ACM SIGOPS
Operating Systems Review, 43(4):25–30, 2010.

[4] H. Attiya and J. Welch.Distributed Computing: Fundamen-
tals, Simulations, and Advanced Topics. Wiley, 2nd edition,
2004.

[5] A. Badia. Question answering and database querying: Bridg-
ing the gap with generalized quantification.Journal of Applied
Logic, 5(1):3–19, 2007.

[6] A. Badia, M. Gyssens, and D. Van Gucht. Query languages
with generalized quantifiers. In R. Ramakrishnan, editor,
Applications of Logic in Databases. Kluwer Academic, 1994.

[7] A. Badia, B. Debes, and B. Cao. An implementation of a
query language with generalized quantifiers. InProceedings
of the 27th International Conference on Conceptual Model-
ing. Springer, 2008.

[8] Berkeley Orders of Magnitude. Bloom Programming Lan-
guage.http://www.bloom-lang.net/.

[9] M. Bickford. Component specification using event classes.
In Proceedings of the 12th International Symposium on
Component-Based Software Engineering, pages 140–155.
Springer, 2009.

[10] M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery.ACM Transactions on Computer Sys-
tems, 20:398–461, 2002.

[11] E. J. H. Chang and R. Roberts. An improved algorithm
for decentralized extrema-finding in circular configurations
of processes.Communications of the ACM, 22(5):281–283,
1979.

[12] J. Claußen, A. Kemper, G. Moerkotte, and K. Peithner. Opti-
mizing queries with universal quantification in object-oriented
and object-relational databases. InProceedings of the 23rd
International Conference on Very Large Data Bases, pages
286–295. Morgan Kaufman, 1997.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 3rd edition, 2009.

[14] CRASH Project. EventML. http://www.nuprl.org/software/#WhatisEventML, Last dated March 2012.
[15] D. Dolev and H. R. Strong. Authenticated algorithms for

Byzantine agreement. SIAM J. Comput., 12(4):656–666,
1983.

[16] Erlang Programming Language. Erlang Programming Lan-
guage.http://www.erlang.org/.

[17] C. J. Fidge. Timestamps in message-passing systems that
preserve the partial ordering. InProceedings of the 11th
Australian Computer Science Conference, pages 56–66, 1988.

[18] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Program
transformation for development, verification, and synthesis of
programs.Intelligenza Artificiale, 5(1):119–125, 2011.

[19] V. K. Garg.Elements of Distributed Computing. Wiley, 2002.
[20] C. Georgiou, N. A. Lynch, P. Mavrommatis, and J. A. Tauber.

Automated implementation of complex distributed algorithms
specified in the IOA language.International Journal on Soft-
ware Tools for Technology Transfer, 11(2):153–171, 2009.

[21] M. Gorbovitski, Y. A. Liu, S. D. Stoller, T. Rothamel, and
T. Tekle. Alias analysis for optimization of dynamic lan-
guages. InProceedings of the 6th Symposium on Dynamic
Languages, pages 27–42. ACM, 2010.

[22] D. Goyal and R. Paige. The formal reconstruction and im-
provement of the linear time fragment of Willard’s relational
calculus subset. InAlgorithmic Languages and Calculi, pages
382–414. Chapman & Hall, 1997.

[23] A. Granicz, D. M. Zimmerman, and J. Hickey. Rewriting
UNITY. In Proceedings of the 14th International Conference
on Rewriting Techniques and Applications, pages 138–147,
2003.

[24] J. Gray. Notes on Data Base Operating Systems. InAdvanced
Course: Operating Systems, volume 60 ofLecture Notes in
Computer Science, pages 393–481, 1978.

[25] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintain-
ing views incrementally. InProceedings of the 1993 ACM
SIGMOD International Conference on Management of Data,
pages 157–166, 1993.

[26] D. Hansel, R. Cleaveland, and S. A. Smolka. Distributed
prototyping from validated specifications.Journal of Systems
and Software, 70(3):275–298, 2004.

[27] D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-
finding in circular configurations of processors.Communica-
tions of the ACM, 23(11):627–628, 1980.

[28] I/O Automata Description of Leader Election Algorithm.http://groups.
sail.mit.edu/tds/ioa/leader.html.
[29] IOA toolkit extended version.http://groups.
sail.mit.edu/tds/ioa/distributions/IOA_Toolkit-tools.tar.gz. The Paxos code is under Examples/Paxos.
[30] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager.The

Theory of Timed I/O Automata. Morgan Claypool Publishers,
2nd edition, 2010.

[31] I. H. Krüger. An experiment in compiler design for a con-
current object-based programming language. Master’s thesis,
The University of Texas at Austin, 1996.

[32] A. Kshemkalyani and M. Singhal.Distributed Computing:
Principles, Algorithms, and Systems. Cambridge University
Press, 2008.

[33] L. Lamport. Time, clocks, and the ordering of events in a
distributed system.Communications of the ACM, 21:558–565,
1978.

[34] L. Lamport. The part-time parliament.ACM Transactions on
Computer Systems, 16(2):133–169, 1998.

[35] L. Lamport. Paxos made simple.SIGACT News (Distributed
Computing Column), 32(4):51–58, 2001.

[36] L. Lamport. The PlusCal algorithm language. InProceedings
of the 6th International Colloquium on Theoretical Aspectsof
Computing, pages 36–60, 2009.

[37] Y. A. Liu and S. D. Stoller. Dynamic programming via static
incrementalization. Higher-Order and Symbolic Computa-
tion, 16(1-2):37–62, 2003.

[38] Y. A. Liu and S. D. Stoller. From Datalog rules to efficient
programs with time and space guarantees.ACM Transactions
on Programming Languages and Systems, 31(6):1–38, 2009.

[39] Y. A. Liu, S. D. Stoller, M. Gorbovitski, T. Rothamel, and
Y. E. Liu. Incrementalization across object abstraction. In
Proceedings of the 20th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages
473–486, 2005.

[40] Y. A. Liu, C. Wang, M. Gorbovitski, T. Rothamel, Y. Cheng,
Y. Zhao, and J. Zhang. Core role-based access control: Ef-
ficient implementations by transformations. InProceedings
of the ACM SIGPLAN 2006 Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, pages 112–120,
2006.

[41] Y. A. Liu, M. Gorbovitski, and S. D. Stoller. A language and
framework for invariant-driven transformations. InProceed-
ings of the 8th International Conference on Generative Pro-
gramming and Component Engineering, pages 55–64, 2009.

[42] Y. A. Liu, S. D. Stoller, and B. Lin. High-level executable
specifications of distributed algorithms. InProceedings of
the 14th International Symposium on Stabilization, Safety, and
Security of Distributed Systems. Springer, 2012. To appear.

[43] N. A. Lynch. Distributed Algorithms. Morgan Kaufman,
1996.

[44] F. Mattern. Virtual time and global states of distributed sys-
tems. InProc. International Workshop on Parallel and Dis-
tributed Algorithms, pages 120–131, 1989.

[45] Mechanically Checked Safety Proof of a Byzantine Paxos
Algorithm. Mechanically checked safety proof of a Byzan-
tine Paxos algorithm.http://resear
h.mi
rosoft.
om/en-us/um/people/lamport/tla/byzpaxos.html. Last
modified 1 September 2011.

[46] S. Merz. Lamport’s algorithm, 2010. Email.
[47] Message Passing Interface (MPI) Forum. Message Passing

Interface (MPI) Forum.http://www.mpi-forum.org/.
[48] H. Nakamura. Incremental computation of complex object

queries. InProceedings of the 16th ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications, pages 156–165, 2001.

[49] P2. https://svn.de
larativity.net/overlog-paxos/sr
/olg/
ore/.
[50] R. Paige and S. Koenig. Finite differencing of computable

expressions.ACM Transactions on Programming Languages
and Systems, 4(3):402–454, 1982.

[51] Paxos in Bud Sandbox. https://github.
om/bloom-lang/bud-sandbox/tree/master/paxos.
[52] V. Petukhin. Programs with universally quantified embedded

implications. InProceedings of the 4th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning,
pages 310–324, 1997.

[53] W. Pugh and T. Teitelbaum. Incremental computation via
function caching. InConference Record of the 16th Annual
ACM Symposium on Principles of Programming Languages,
pages 315–328, 1989.

[54] G. Ramalingam and T. Reps. A categorized bibliography
on incremental computation. InConference Record of the
20th Annual ACM Symposium on Principles of Programming
Languages, pages 502–510, 1993.

[55] M. Raynal. Distributed Algorithms and Protocols. Wiley,
1988.

[56] M. Raynal. Communication and Agreement Abstractions for
Fault-Tolerant Asynchronous Distributed Systems. Morgan &
Claypool, 2010.

[57] G. Ricart and A. K. Agrawala. An optimal algorithm for
mutual exclusion in computer networks.Communications of
the ACM, 24(1):9–17, 1981.

[58] G. Ricart and A. K. Agrawala. Author’s response to ’On Mu-
tual Exclusion in Computer Networks’ by Carvalho and Rou-
cairol. Communications of the ACM, 26(2):147–148, 1983.

[59] T. Rothamel and Y. A. Liu. Generating incremental imple-
mentations of object-set queries. InProceedings of the 7th
International Conference on Generative Programming and
Component Engineering, pages 55–66, 2008.

[60] D. Saha and C. R. Ramakrishnan. Incremental evaluation
of tabled logic programs. InProceedings of the 19th Inter-
national Conference on Logic Programming, pages 392–406,
2003.

[61] I. Suzuki and T. Kasami. A distributed mutual exclusion
algorithm. ACM Transactions on Computer Systems, 3(4):
344–349, 1985.

[62] T. Swift, D. S. Warren, et al.The XSB System Version 3.3.
Sourceforge.Net, 2011.http://xsb.sour
eforge.net/.

[63] G. Tel. Introduction to Distributed Algorithms. Cambridge
University Press, 2nd edition, 2000.

[64] Two-phase commit in Bud Sandbox.https://github.
om/bloom-lang/bud-sandbox/blob/master/2p
/2p
.rb.
[65] Two-Phase Commit in PlusCal. http://resear
h.mi
rosoft.
om/en-us/um/people/lamport/tla/two-phase.html.
[66] R. van Renesse. Paxos made moderately complex, October

11, 2011. An online version is atwww.
s.
ornell.edu/
ourses/CS7412/2011sp/paxos.pdf.
[67] D. E. Willard. Efficient processing of relational calculus ex-

pressions using range query theory. InProceedings of the
1984 ACM SIGMOD International Conference on Manage-
ment of Data, pages 164–175, 1984.

[68] D. E. Willard. An algorithm for handling many relational
calculus queries efficiently.Journal of Computer and System
Sciences, 65:295–331, 2002.

[69] G. Yang, M. Kifer, H. Wan, and C. Zhao.Flora-2: User’s
Manual Version 0.95. Sourceforge.Net and Stony Brook Uni-
versity, 2008.http://flora.sour
eforge.net/.

