Policy Analysisfor Administrative Role Based Access Control*

Amit Sasturkar Ping Yang Scott D. Stoller C.R. Ramakrishnan

Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794, USA
E-mail: {ami t s, pyang, stol | er, cram@s. sunysh. edu

Abstract dent. Permissions are associated with these roles; for exam-

ple, a student can access only her assignments and grades,

Role-Based Access Control (RBAC) is a widely usedwhile a TA can access assignments submitted by students

model for expressing access control policies. In large or- in the course. Expressing access control policy using roles

ganizations, the RBAC policy may be collectively managedeases specification and management of policies, especially
by many administrators. Administrative RBAC (ARBAC) in large organizations.

is a model for expressing the authority of administrators, The RBAC policy in a large organization may be col-
thereby specifying how an organization’s RBAC policy may |ectively managed by many administrators. For instance,
change. Changes by one administrator may interact in un- 5 department manager may have authority to determine
intended ways with changes by other administrators. Con-yhg is a TA, while the registrar’s office determines who
sequently, the effect of an ARBAC policy is hard to under- s 3 student. Thus, there is a need to specify the authority
stand by simple inspection. In this paper, we consider the gf each administrator. Administrative Role-Based Access
problem of analyzing ARBAC policies, in particular to de- control (ARBAC) [26] is a model for expressing such
termine reachability properties (e.g., whether a user can pojicies. At a high level, an ARBAC policy is specified
eventually be assigned to a role by a group of administra- py sets of rules, including canassignrules that specify
tors) and availability properties (e.g., whether a user can- the roles to which an administrator may assign a user, and
not be removed from a role by a group of administrators) ynder what conditions, and canrevokerules that specify
implied by a policy. We first establish the connection be- tne roles from which an administrator may remove a user,
tween SeCUI’ity p0|lcy anaIySiS and planning in Artificial In- and under what conditions. For inaance, acanassignrlﬂe
telligence. Based partly on this connection, we show that can pe used to specify that a department manager may
reachability analysis for ARBAC is PSPACE-complete. We appoint as a TA only users who are aready students. In
also give algorithms and complexity results for reachability gnort, an ARBAC policy defines administrative roles, and

and related analysis problems for several categories of AR- gpecifies how members of each administrative role can
BAC policies, defined by simple restrictions on the policy mogify the RBAC policy.

language.

TheProblem. Itisoften hard to understand the effect of an

ARBAC policy by ssmpleinspection. For instance, consider
1. Introduction a canassignrule for a department manager that specifies
that (1) only students may be appointed as TAs, and (2) a
student in a class cannot be appointed as a TA of the same
class. Thus assignment of a user to the TA roleis governed
by both a positive precondition (1), and a negative precondi-
tion (2). At first glanceit appears asthough this ensures that
astudent in aclass cannot bethe TA for that class. However,
this desired condition may not hold: the registrar’s policy
for assigning a student role in a course might check only
the student’s registration status and not include conditions
regarding TA-ship. This policy would allow the registrar to
add someone to a class after that person’s appointment as a
TA for that class by the department manager. This exam-

*This work was supported in part by NSF under Grants CCR-0205376 pleillustrates that changes to the RBAC policy by one ad-
and CCR-0311512, and by ONR under grant N00014-04-1-0722. ministrator may interact in unintended ways with changes

Background. Role-Based Access Control (RBAC) [27] is
awell known and widely used model for expressing access
control policies. At ahigh level, an RBAC policy specifies
the rolesto which each user has been assigned (the user-role
assignment) and the permissions that have been granted to
each role (the role-permission assignment). Users may per-
form multiple roles in an organization. For instance, in a
university setting, ateaching assistant (TA) for acourse may
be enrolled in other courses at the same time. That person
has at least two distinct rolesin the university: TA and stu-

by other administrators. The ARBAC policy should be de-
signed to prevent such unexpected interactions. In large or-
ganizationswith many roles(e.g, [29] describesaEuropean
bank’s policy with over 1000 roles) and many administra-
tive domains, understanding the ARBAC policy’s implica-
tions for such interactions may be difficult.

Analysisof security policies has been long recognized as
an important problem, e.g, [12, 23, 24, 25, 30, 17, 22, 21].
In arole-based policy framework, a natural analysis prob-
lemisto check potential role membership. The reachability
(or safety[12]) problem asks whether a given user v is a
member of a given role r in any policy reachable from the
initial (i.e., current) policy by actions of a given set of ad-
ministrators. The availability [21] problem asks whether a
given user u is a member of a given role » in al policies
reachable from the initial policy by actions of a given set
of administrators. Another natural analysis problem is con-
tainment[21]: whether every member of agiven role ry is
also amember of a given role r, in some (or all) reachable
policies.

In this paper, we consider analysis of ARBAC policies.
We focus on reachability and availability analysis, which
are simpler than containment analysis but still difficult. For
general ARBAC policies, even reachability and availability
analyses are intractable (PSPACE-compl ete).

Contributions. We consider general ARBAC policies that
(i) control administrative operations that change user-role
as well as permission-role relationships; and (ii) alow
all administrative operations to have positive preconditions
and negative preconditions (e.g., not a student in the same
course).

Our main results are obtained by considering the role
reachability problem for ARBAC in terms of the planning
problemin Artificial Intelligence (Al). Given a set of ac-
tions, a starting state, and a goal, the Al planning problem
isto find a sequence of actions that leads from the starting
state to the goal. For role reachability analysis, the RBAC
policy is the state of the system, the ARBAC policy deter-
mines the allowed actions that can change the state, and the
goal isto add the given user to the given role. To the best of
our knowledge, this paper isthefirst to study the connection
between security analysis and the well-studied area of plan-
ning in Al. A few of our results are corollaries of existing
results in the literature on planning, but most of our results
are new.

We show that reachability analysis (RE) for general AR-
BAC palicies is PSPACE-complete. This motivates us to
consider restrictions on the policies and two variants of the
reachability problem. Our goals are to better understand the
intrinsic complexity of the problem and to identify tractable
cases of practical interest.

We consider the following restrictions on policies:

1. N: no negative preconditions.

2. EN: no explicit negative preconditions; negative pre-
conditions for role assignment may occur only in the
form of static mutually-exclusive role (SMER) con-
straints [19] (sometimes called separation of duty con-
straints), each of which specifies that a user cannot si-
multaneously be a member of two given roles;

3. CR: every role can be revoked unconditionally; and

4. D: digunction is not used in the policy’s overall con-
ditions for assignment or revocation of arole. The pre-
conditioninasinglerule never containsexplicit disjunc-
tion, so this restriction actually requires that there is at
most one assignment rule and one revocation rule per
role.

We expect that most ARBAC policies satisfy one of these
restrictions on negation. Moreover, while role assignments
typically have preconditions, role revocations typically do
not, and considering unconditional revocation of al rolesis
sufficient for analysis of policies designed primarily to en-
sure safety (as opposed to availability). The restriction on
disjunctionismotivated by resultsfor Al planning that show
that this restriction (called post-uniqueness in the planning
literature), in combination with other restrictions, can re-
duce the complexity of planning [2, 3].

We also consider two variants of the Reachability prob-
lem. One is Bounded Reachability (BRE): is the goa of
adding the given user to the given role reachable using at
most a given number of administrative operations? The
other is Existence of a Polynomial-size Plan (EPP) for a
class of policies: is every reachable goal reachable using a
sequence of operations whose length is polynomial in the
size of the policy?

We explore the complexity of reachability analysis, the
above variants of it (BRE and EPP), and availability anal-
ysis under combinations of these restrictions on policies.
In many cases, the analysis problem still has high com-
putational complexity. Most revealing of these results is
the non-existence of polynomial-size plans for a number of
classes of ARBAC palicies. This reflects the difficulty of
understanding the implications of ARBAC policies.

In summary, the main contributions of this paper are to:

e establish that reachability analysis for general ARBAC
policies is PSPACE-compl ete;

o determine the computational complexity of reachability
analysis, bounded reachability analysis, and availabil-
ity analysis, and determine existence of polynomial-size
plans, for several categories of ARBAC policies; and

e give agorithms for cases where the analysis problem is
solvable in polynomial time.

Sections 2 and 3 formally define the policy frameworks
and the analysis problems. Our algorithms and complex-

ity results for reachability and availability analysis appear
in Section 4. Due to space limitations, we present only
selected proof sketches in this paper. Detailed proofs are
availablein [28].

2. Role Based Access Control (RBAC)

The central notion of RBAC isthat users are assigned to
appropriate roles and roles are assigned appropriate permis-
sions. Thus, arole serves as an intermediary in correlating
users with permissions. In this paper, we study policy anal-
ysisonly for models of RBAC based on [1]. Since the pol-
icy analysis queries we support are independent of sessions,
we consider simplified (“mini”) models that do not support
sessions.

The miniRBAC model is based on the core RBAC
model [1].

Definition1 A miniRBAC policy ~ is a tuple
(U,R, P, UA, PA) where

e U, R and P are finite sets of users, roles, and permis-
sions, respectively. A permission represents authoriza-

tion to invoke a particular operation on a particular re-
source.

e UA C U x R is the user-role assignment relation.

(u,r) € UA means that user. is a member of role
r.

e PA C P x Risthe permission-role assignment relation.

(p,7) € PA means that members of roleare granted
the permission.

Given v = (U,P, R, UA, PA), define users,(r) =
{u e U : (u,r) € UA} and perms,(r) = {p € P :
(p.r) € PA}

Our miniHRBAC model based on Hierarchica RBAC
[1] extends the miniRBAC model with role hierarchies
that are a natural means for structuring roles to reflect an
organization’s lines of authority and responsibility.

Definition 2 A miniHRBAC policy v, is a tuple
(U,R, P, UA, PA, =) where

e U, R, P, UA and PA are as inminiRBAC.

e = C R x Ris a partial order on the seR of roles.

r1 = ro MEans ry issenior to ro; i.e., every member of
r1 is also a member of r,, and every permission assigned
to ro isalso available to members of r1.Thus, 5 inheritsall
the users of r; and r; inherits all the permissions of r5.

Given v, = (U,P,R,UA, PA,>), we extend the
users., and perms., functionsto account for role hierarchy:
usersy, (r) ={ue U : 3" € Rr' = rA(u,r') € UA},
and perms,, (r) = {p € P : 3" € Rr = ' A(p,7') €
PA}. Wedefine Senior(r) = {r' € R: v’ = r}.

Figure 1 gives a simple example of a miniRBAC and
a miniHRBAC policy with 8 roles. Consider the roles

Promotion

Committee

[Grant tenure]

PartTime FullTime Teaching
Faculty)
Employee Employee Assistant
[Assign [Assign
grades] homework

scores]

Student

Univ—Employee

[Register for

[Receive courses]

health
benefits]

Univ—Member

[Use gym]

Figure 1. Example of miniRBAC and
miniHRBAC policy.

Uni v- Menber , Uni v- Enpl oyee, andSt udent . The
permissions for each role are shown below the role. Users in
theUni v- Menber role are members of the University and
have permission to use University facilities like the gym.
The rolesUni v- Enpl oyee and St udent are senior to
theUni v- Menber role. Thus, members of these roles are
also implicitty members of thé&ni v- Menber role, and
inherit the permission to use the gym.

3. Administrative Role Based Access Control
(ARBAC)

Administration of {.e., changes to) RBAC policies must
be carefully controlled. RBAC policies for large organi-
zations may have over a thousand roles and tens of thou-
sands of users. For scalability, it is necessary to distribute
the task of administering such large policies, by giving each
administrator authority to make specified kinds of changes
to specified parts of the policy. This is an access control
policy that, for scalability and ease of administration, can
profitably be expressed in a role-based manner.

ARBAC97 (“Administrative RBAC”) is a model for de-
centralized administration of RBAC policies [26]. Changes
to the ARBAC policy €.g, granting permissions to admin-
istrative roles) are not considered in the ARBAC97 model.
This is justified by assuming that only a small group of fully
trusted administrators are allowed to modify the ARBAC

policy.

In typical ARBAC policies, there is a single top level ad- This action is enabled in statg = (U, P, R, UA, PA)
ministrator role, called the Senior Security Officer (SSO) iff there exists (r,,c,r) € canrevokeand v =, c.
which is the principal administrator of the RBAC policy Upon executing the actiony is transformed to the state
and which establishes the ARBAC policy. The SSO parti- v = (U, P, R, UA\ {(u,)}, PA).
tions the organization’s RBAC policy into different security i)
domains, each of which is administered by a different Ju- PRA policy. The PRA policy controls changes to the
nior Security Officer (JSO). For example, there may be a PEmission-role assignmeitd. Assignment of a permis-
JSO role for each department. The ARBAC policy specifies SIon p 10 a roler by an administrator in administrative
the permissions assigned to each JSO role; for example, td°l€ 7a is achieved by thePermAssign(ra,p,r) action
which normal roles and under what conditions can mem- @nd is controlled by thecanassignp relation. Simi-
bers of a JSO role assign users. SSOs can design ARBAC2'lY, revocation of a permissiop from a roler by an
policies that enforce global constraints on the RBAC policy @dministrator in administrative role, is achieved by

by allowing JSOs to make only changes that are consistent® PermRevoke(rq, p,r) action and is controlled by
with the constraints. the canrevokep relation. These relations are defined

There are three main parts in an ARBAC97 policy : the N the same way as theanassignand canrevokerela-
user-role administration (URA) policy, the permission-role tions above, except that users are replaced with permissions.

administration (PRA) policy, and the role-role administra- Static Mutually Exclusive Roles (SMER) constraints.

tion (RRA) policy. They control changes to the user-role miniARBAC also includes a set of SMER constraints [19]

assignmentU/4, the permission-role assignmefitl, and \hich are used to enforce separation of duty [8]. A SMER
the role hierarchy respectively. In this paper, we consider constraint is an unordered pair of roles= {r1,r»} and
a slightly modified version of ARBAC97, which we call g satisfied in a state, denotedy - s, iff users(ri) N

mzmARBAC’ mmZARBACSpeCIfleS the URAand PRA USCTS(?"Q) — @1 i.e., the rO|E'S7“1 and o dO not haVe any
policies, but does not specify a RRA pollc_y; it does not users in common in the RBAC policy. ~ is said to be
allow any changes to the role hler_ar_chy._Unllke A_R_BACQ?, valid for a set of SMER constrainiff Vs € S : 4 - s.

our model does not formally distinguish administrative
roles from normal roles; this is a minor simplification that
does not materially affect any of our results.

SMER constraints specifying disjointness of permis-
sions assigned to two roles could also be allowed, but
it is unclear whether such constraints would be useful
URA policy. The URA policy controls changes to the user- in practice. Note that a SMER constraifit;, 72} can
role assignment/A. Its specification usepreconditions ~ be expressed by includingr; in the precondition of all
(called prerequisite conditions in [26]) which are conjunc- canassignrules for r;, and vice versa. We choose to
tions ofliterals, where each literal is eitheror —r forsome explicitly represent SMER constraints (and not specify
roler. Given aminiRBAC statey and a user, v satisfies ~ them in the URA model using negation) because this allows
a preconditiom;l;, denotedu =, Al;, iff for all i, either us to develop specialized algorithms for analyzing policies
l; is aroler andu € users,(r), orl; is a negated roler that use negation only to enforce SMER constraints; this is
andu ¢ usersv(r)_ a common case.

Permission to assign users to roles is specified by the =
canassignC R x C x R relation, where is the set of all ~ "MARBAC policy. A miniARBAC' policy is rep-
resented ag) = (canassign canrevoke canassignp,

preconditions orR. A UserAssign(r,,u,r) action speci- i :
. o ; . . canrevokep, SMER), where the five relations are as
fies that an administrator who is a member of the adminis- = ’ ! . -

defined above. AminiARBAC policy specifies a tran-

trative roler, adds user to roler. This action is enabled ition relation betw miRBAC polici which w
in statey = (U, P, R, UA, PA) iff there exists(rq, ¢,) € sition refation betweenmnini policies, which we

“ ” e act
canassignandu =, ¢. Upon executing the action; is ~ refer to as “states”. \We denote a transitionpy=, 7'
transformed to the staté = (U, P, R, UAU{(u, r)}, PA). whereact is one of the administrative actioi&erAssign,
Note that preconditions are not invariants(if,, 1, 72) € UserRevoke, P e”/”AS_S"Q”' and Perm Revoke specified
can.assign then a use in r, andr, remains a member of ~ @P0ve, andy andy’ satisfy the SMER constraints i

rz €ven if an administrator removesirom r;. Examples. We present a few exampleiniARBAC poli-

Permission to revoke users f“’”_‘ roles is spe_cified by cies that illustrate features efiniARBAC. Consider the
the canrevokeC R x C x R relation, whereC is as miniHRBAC policy of Figure 1

above. [26] mentions the option of including preconditions
in canrevoke but does not include them in the basic e Positive preconditions: A user can be made member
ARBAC97 model. AUserRevoke(r,,u, r) action specifies of theTeachi ng- Assi stant (TA) role by an ad-

that an administrator who is a member of the administrative ~ ministrator in roler, only if she is already a member of
role r, removes user from the membership of role. the St udent role. This policy can be specified by the

rule (r,, St udent , TA) € canassign

e Conjunction in preconditions. A user who is a mem-
ber of bothFacul ty and Ful | Ti ne- Enpl oyee
roles can serve on th&ronotion-Conmittee.
This policy can be specified by the rule
(ro, Faculty A FullTinme-Enpl oyee,
Pronoti on-Commi ttee) € canassign where
r, IS an appropriate administrative role.

e SMER constraints: A user can be a member of at
most one of thd~acul t y and St udent roles. This
policy can be specified by the constraint S8fER =
{{Facul ty, St udent }}.

e Negative preconditions : Negative preconditions in
the canrevokerelation can be used to force role re- A query Q of this kind has the form: Given a user
vocations to occur in a particular order. We might a setA of administrative roles, a sgbal of roles, an ini-
have a policy that says that a user can be made memdial miniRBAC policy v, and aminiARBAC policy 1,
ber of the TA role only if he is already a member can administrators in administrative rolesAntransformy
of the St udent role. The policy also requires that to anotherniniRBAC policy o/ under the restrictions im-
when a user ceases to beSaudent he also ceases posed byy such that: is a member of all roles igoal in
to be aTA. This policy can be enforced with the fol- +’ ? We can simplify the problem as follows.
lowing rules : (r,, St udent ; TA) € canassign and
(rq,~TA St udent) € canrevoke The second rule
forces an administrator to revoke the uséisrole be-
fore revoking hisSt udent role.

e User-Permission Reachability Analysis: Given a user
u and a permissiop, does there exist a rolesuch that
p can be granted tp andw can be added to (i.e., p is
granted tou)?

e User-Role Availability Analysis [21]: Given a roler
and a membeu of », canu be removed fromr ?

e Permission-Role Availability Analysis[21]: Given a
roler and a permissiop granted ta-, canp be revoked
from r?

4.1. User-Role Reachability Analysis without Role
Hierarchy

1. Ignoring permissions. The answer taQ is affected

canassign canrevokeand SMER components of),

so we can ignore the other components~ofind v

e Conditional role revocation: Recall that when answering?. This also implies that only the
miniARBAC, unlike ARBAC97 [26], allows pre- UserAssign and UserRevoke actions are relevant.
conditions in role revocation. The policy with negative o Implicit administrative role: We can remove fromp
preconditions described above is also an example of a | administrative roles not int and their correspond-
policy that requires conditional role revocation. ing canassignand canrevokerules. ThenQ asks

only by the user-role assignment relation and the

4. Analysis of ARBAC poalicies

about reachability under all the (remaining) administra-

tive roles. Thus, there is no need to distinguish these
roles from each other, so we can delete their names. In
other words, we can assume that there is a single im-

As mentioned in Section 1, policy analysis is useful for
policy understanding and maintenance, and can also help
in policy enforcement. AniniARBAC policy ¢ defines a
transition relation betweeminiRBAC policies and there-
fore defines a transition graph. Each vertex of the transition
graph is aminiRBAC policy, and each edge is a transition

~y ‘Efw ~'. Usually we are interested in analyzing or re-
stricting the power of a given set of administrative roles,

so we discard edges labeled with actions by administrative
roles not inA (recall that the administrative role is the first
argument of every action), and ask the following kinds of
gueries about the resulting graph. Note tAas an implicit
parameter of all these queries.

plicit administrative role, and we simplifgan.assign
and canrevoketo have the typel x R (instead of
R x C x R) whereR is the set of roles and’ is the
set of all preconditions oR.

3. Single user: The preconditions for
UserAssign(a,u,r) and UserRevoke(a,u,r) de-
pend only on the current role memberships of user
Therefore when answering a quepyabout uset, we
can remove all other users from the policy. Thus, we

simplify UA to be a subset aR, wherer € UA means
that the implicit user is a member of

With these simplifications, awiniRBAC policy v is a
pair (R, UA) whereUA C R, an action isUserAssign(r)
or UserRevoke(r), and aminiARBAC policy ¢ is a
triple (can.assign canrevoke SM E R) wherecan.assign
¢ Permission-Role Reachability Analysis: Given arole canrevokeC C x R. A reachability query for the simpli-

r and a permissiop not granted to-, canp be granted fied policy can be represented by a get! of roles (since

tor? u and A are now implicit). A goal sepoal is satisfied in

e User-Role Reachability Analysis: Given a roler and
a useru not inr, canu be added ta- (by actions of
administrators in administrative roles i)?

can assume there is a single implicit user, and we can

a RBAC policy statey = (R, UA), denotedy + goal, iff
goal C UA.

Definition 3 A user-role reachability analysis problem
instance is a 3-tuplel (v, goal,) where ~
is a miniRBAC policy, v is a miniARBAC pol-
icy, and goal C R is a goal set. A sequence
of actions acty,acts,...,act, where eachact; €
{UserAssign(r), UserRevoke(r) : r € R} is called a

“plan” or “solution” for I if r %, "and
'+ goal.

acty

7y

We consider the following problems related to reachabil-
ity.
e Reachability(RE): Given a problem instancé, does
there exist a plan fof ?
Bounded Reachabilit{BRE): Given a problem in-
stancel and an integek, does there exist a plan for
I of length at mosk ? Existence of bounded plans is an

interesting problem to consider in cases where existence o

of general plans is difficult to determine.

Existence of Polynomial-size PI§BPP): Given a sefS

of problem instances, is there a polynomfasuch that

for all problem instance$ € S, if I has a plan, thei

has a plan with length at mogt|I|) ? The sizdI| of a
problem instancé is the sum of the sizes of all the sets
in it.

The Reachabilityproblem is PSPACE-complete in gen-
eral. To understand the problem better and identify effi-
ciently solvable cases of practical interest, we impose var-
ious structural restrictions on theiniA RBAC policy and

the query, and for each restricted class of problems, we ana-

lyze the complexity of RE and BRE and determine whether
EPP holds.

We first define some auxiliary functions. Given a
miniRBAC policyy = (R, UA), and aminiARBAC pol-
icy v = (canassign canrevoke SM ER), define for each
roler € R

¢ Num-SMERr) {r {r,7"} € SMER}|.
Num-SMERr) counts the number of SMER constraints
that a roler is involved in.
Disjuncts(r) {c (c,r) € canassign|.
Disjuncts(r) counts the number of different rules in
1 that allow an administrator to assign a user to rnole
(we regard the preconditions in those rules as disjuncts
in the policy’s overall condition for assigning a user to
roler). Similarly, Disjuncts(not(r)) = |{c: (¢,r) €
can.revoke.
Sizéc) for a preconditiore is the number of literals in
c. For exampleSize(r; A —ry) = 2.
Size-Po&c) for a precondition: is the number of posi-
tive role literals inc. For exampleSize-Po&; A ro A
_‘7'3) = 2.

We consider four categories of restrictions ¥n The
acronyms for them are summarized in Figure 2.

e Restricting negation: We say thaty uses explicit
negation if a negative literal appears éan.assignor
can.revoke andy uses implicit negation i) contains a
SMER constrainti(e., SMER # ().

— No negation (N): « satisfies theV restriction if¢
does not use explicit or implicit negation.

— No explicit negation (EN): 1 satisfies theEN re-
striction if ¢» does not use explicit negation. This re-
striction is interesting because SMER constraints are
more common than other uses of negation.

No disunction (D): <« satisfies theD restric-
tion if for all roles r, Disjuncts(r) < 1 and
Disjuncts(not(r)) < 1; in other words, there is at
most one rule in) for assigning/revoking every role in
R.

Restricting revocation:

— No revocation (R): 1 satisfies theR restriction if
canrevoke= (). This implies that once a user is as-
signed to a role, the user cannot be revoked from the
role.

— No conditional revocation (CR): 1 satisfies theCR
restriction if for every roler € R, (true,r) €
canrevoke In other words, every role i can be
unconditionally revoked. When considering power-
ful administrative roles, this restriction is reasonable
because preconditions on revocation are relatively
rare; recall that ARBAC97 does not support condi-
tional revocation.

e Sizerestrictions. ¢ satisfies|pre| < k if V(c,r) €
canrevoke: Size(c) < k andV¥(c,r) € canassign

: Size(c) + Num-SMERr) < k (if {r1,7r2} isa SMER

constraint, thenr is counted as part of every precon-

dition for r in canassign and vice versa).y satis-
fies |ppre| < k if V(c,r) € canassignu canrevoke

Size-Po&) < k. 1 satisfies|SMER(r)| < k if

Vr € R : Num-SMERr) < k. v satisfieggoal| < k

if the size of the goal set is at maost As we show be-

low, enforcing one or more of these restrictions greatly

simplifies the reachability analysis problem.

We also consider a restrictidi/ (empty initial state) on
problem instances. A problem instangg goal, v) satis-
fies E1 if the user assignment inis the empty set

A set of restrictions defines a class of reachability anal-
ysis problems. For example, the clags D, |pre| < 1] in-
cludes all problemsy, goal,) wherey satisfies ther, D
and|pre| < 1restrictions. When a class has tA& restric-
tion (allow SMER constraints, but not explicit negation), the
|ppre| < k restriction is used instead of thgre| < k re-
striction, since preconditions contain only positive literals.

For each class we consider the RE and BRE problems and

check whether EPP tsr ue for every problem instance in
the class. When EPP il se for a problem instance in a
clasC, we say that reachability analysis fois intractable
since the worst case running-time of any algorithm that gen-
erates plans fo€ is more than polynomial in the size of the
problem instance.

Figure 2 summarizes our results. The problem classes

are divided into four groups, separated by double lines,
based on the complexity of RE and BRE. The problem

classes are arranged in a hierarchy. An edge from class

Cy to Cs indicates that’; is a specialization of;. Thus,
every hardness result fak, also applies ta’;, and every
algorithm forC; can be used to sol&. The bibliographic

reference to [22] means that the result was proved there. A

reference to [6] or [3] means that we proved complexity re-
sults for that problem class by reduction from complexity

results for planning given in that reference. Some observa-

tions follow.

1. If Existence of Polynomial-size PI§&PP) for a prob-
lem classC is t r ue, then Reachability(RE) for C is
in NP, because a non-deterministic Turing machine can
guess the plan, and verify it in polynomial time.

. The restrictiongoal| < k is relevant only in classes that
also have the restrictioppre| < 1. If a problem class
C has the former restriction but not the latter, then given
a problem instancé = (v, goal,) with |goal| > k,
we can rewritd to an instancé’ = (v, goal’,¢") with
|goal’| = 1, by introducing new roles i and adding
rules toy for modifying them. For example, foal =
{r1,m2} andC has the restrictiofyoal| < 1 but not the
restriction|pre| < 1, then introduce a new role;, add
the rule(r; A r2,74) to canassign and takegoal’ =
{rq}. The new problem instance is equivalent to the old
instance but satisfiggoal| < 1 and is still inC.

. The restrictionD (no disjunction) makes th&each-
ability problem easier;Reachabilityfor [R] is NP-
complete whereas fdiD, R] it is solvable in polyno-
mial time. Not allowing disjunction in preconditions
reduces the number of possible plans for a problem in-
stance, thereby reducing the complexity of Beacha-
bility problem.

. The restriction CR (only unconditional revocation)
makes theExistence of Polynomial-size PlafiEPP)
problem easier; EPP fdD, EN, [ppre| < 1, |goal| <
k] is f al se and hence fofEN, |ppre| < 1,|goal| <
k]isf al se, implying that a polynomial time algorithm
for generating a plan for this problem class does not ex-
ist. EPP for{ CR, EN, |ppre| < 1,|goal| < k]istr ue.

. The restrictionR (no revocation) ensures that the an-
swer to theExistence of Polynomial-size PIHEPP)
problem ist r ue. When role revocation is not allowed,

the user can be assigned to a role at most once in any
plan. Thus, the length of a plan is at most the number of
roles.

For most problem classese(, sets of restrictions) we
considered, adding th&N restriction (allow SMER
constraints but not explicit negation) neither lowered
the worst-case complexity of RE or BRE nor changed
EPP fromf al se tot rue. Thus, in general, SMER
constraints do not seem to be easier to analyze than
explicit use of negation. However, there are problem
classes for which the effect of adding or removing the
EN restriction remains unknown. For example, we
showed that RE is solvable in polynomial time for the
class[CR, EN, |ppre| < 1, |goal| < k], but the worse-
case complexity of RE for the clag€R, |ppre| <
1,|goal| < k] is unknown.

6.

4.2. Complexity Resultsfor User-Role Reachability
Analysiswithout Role Hierarchy

In this section we give proof sketches for selected rep-
resentative results from Figure 2. Complete proofs of all
the complexity results appear in [28]. Theorem 1 shows
that solving theReachabilityproblem in the general case
is PSPACE-complete. The proof of Theorem 2 provides a
polynomial time algorithm for solvindReachability(RE)
for a problem class that is still general enough to be inter-
esting in practice. Theorems 5 and 6 show that even when
three or four restrictions are applied simultaneously, reach-
ability may remain a hard problem, not solvable in polyno-
mial time.

Theorem 1 Reachability (RE) for the problem class with-
out any restrictions is PSPACE-complete.

PrROOF SKETCH: [3] shows that Plan-Existence for a
SAS™ planning problem under thE andB restrictions is
PSPACE-complete. Informally, th€ restriction requires
actions to have a single effect and tBeestriction requires

the effects of every action to be binary. The actions that
we consider here-HserAssign(r) and UserRevoke(r)—

are binary actions that have a single effect, since they either
add the user to or revoke the user from. We can en-
code Plan-Existence forgAS™ planning problem instance
that satisfies th&J and B restrictions as aniniARBAC
Reachabilityproblem instance. This establishes that solv-
ing Reachabilityfor unrestrictedminiA RBAC' policies is
PSPACE-hardReachabilityfor unrestricted ARBAC poli-
cies is in PSPACE because a Turing Machine can guess
and execute the plan, storing at each step only the current
state whose size is polynomial in the size of the problem in-
stance. ThuReachabilityfor unrestricted ARBAC policies

is PSPACE-complete.]

‘ No restrictions

‘ RE : PSPACE-complete

Reduction from result in [3]

RE : PSPACE-complete EPP: Fase ‘

BRE: NP-hard

BRE: NP- hard

D, CR, EN, |ppre] <=2 CREN, [ppre| <= 1
ISMER(r)| <=1

RE: ??
BRE:?? EPP.??

D, EN, |ppre| <=1
Jgoal| <=k

BRE: NP-hard ‘

B, a, |ppre| <=1
lgoal| =1

EPP: False

R

RE : NP-complete EPP: True
Reduction from result in [6]

lprej <=1 R,EN

RE : NP-hard RE: NE—compIete EPP True
Reduction from result in [6]

CR, lprej <=2

ﬁ, ﬁ, |prej <=1
ISMER(r)| <=1

BRE: NP-hard

RE : NP-complete EPP: True
Reduction from result in [6]

RE : NP-complete

GLOSSARY

RE : Reachability
BRE : Bounded reachability
EPP : Exist polynomial-size plan

R: Norole revocation

RE : NP-hard or unknowr} || ER': Unconditional role

BRE : NP-hard or unkno revocation (all roles)

N : No negation in preconditions
EN : Negation only as SMER
constraints in preconditions

p=}

]) D : No disjunction; one can_assign
RE : polynomial and can_revoke rule per role

El: Empty initial state

|pre| = number of literalsina

Provedin[22]

CR, EN, Jpprej <= 1 N — conjunct of a precondition
goal| <= k CR.D, Jpre| <=1,El ‘ lpref <=1, |goal| <=k ‘ ‘ D,R Ippre] = number of +ve literals
in aconjunct of aprecondition

RE:P EPP: True))
RE:P EPP:True RE:P EPP: True RE:P EPP:True RE: P EPP:True |SMER()| = max number of
Reduction from result in [6]

SMER constraintsaroleisin
|goal| = number of rolesin goal

Figure 2. Complexity of Reachability Analysis

Theorem 2 Reachability (RE) for the problem class
[CR, D, |pre| < 1, EI] (only unconditional role revocation,
no disjunction, at most one precondition, empty initial state)
is solvable in polynomial time.

PROOF SKETCH: Construct a graph Gy = (Vy, Ey)
as follows. The set of vertices V; is the set of roles R.
There are two kinds of edges in E,, positive and nega-
tive. For each (+/,r) € canassigne = (',r) € Ey,
and label(e) = pos. For each (—r',r) € canassign
e = (r,r") € Ey andlabel(e) = neg. Notethat neg edges
have reverse direction as the pos edges. Intuitively, edges
in I, indicate the order in which roles must be assigned and
revoked; if (r,7") € Ey, then UserAssign(r) must occur
before UserAssign(r'). Next, we prune the graph G, by
removing vertices for which thereis no assignment rule and

vertices that are reachable through a sequence of positive
incoming edges from such vertices. These vertices are not
reachable from the empty initial state because each vertex
in G, has at most one positive incoming edge (this follows
from |pre| < 1and D). A cycleiscaled apos cycleifiitis
composed of only pos edges; neg cycles are defined simi-
larly. One can show first that a cycle cannot contain both a
pos edge and aneg edge and then that Reachability(RE)
isf al se if and only if either (C1) G, containsapos cycle
Y suchthat Y Ngoal # 0, or (C2) G, containsaneg cycle
Y suchthat Y C goal, or (C3) goal Z G. If al of C1, C2
and C3 aref al se, then G, contains all goals and one of
the following cases holds: (1) G, is acyclic, in which case
the topol ogical-sort ordering of G, givesthe order in which
roles must be assigned to reach goal; (2) G, containsaneg

cycle Y such that thereexists s € Y and s ¢ goal; or (3)
Gy contains apos cycleY such that Y N goal = 0. We
break cyclesin (2) by deleting each neg edge e = (r, s)
suchthat r € goal and s ¢ goal. Since e isaneg edge, we
know that (—s,r) € canassign Thus, inaplan for I, either
UserAssign(r) occurs before UserAssign(s) (if thereisa
path of pos edges from r to s) or UserRevoke(s) occurs
between UserAssign(s) and UserAssign(r). In the latter
case, we need to ensure that every UserAssign(s') that has
a precondition s occurs before UserRevoke(s) and hence
before UserAssign(r) in the plan. We add edge (s', r) to
G to ensure this. Regarding case (3), we can simply delete
all cyclesthat do not contain any goal. With the abovetrans-
formations, the resulting graph G, is acyclic, and we can
generate a plan for I by assigning roles (to the user) in the
topological-sort order of G

Constructing graph G, takes polynomia time, and
|G| = |I]. Validity of C1 can be checked by restricting G
to only pos edges. Since v satisfiesthe D (no disjunction)
restriction, in this restricted graph each vertex has at most
one incoming edge. Thisimpliesthat al cyclesin the graph
are digoint and we can use a ssimple Depth-First Search to
find all cycles and check whether any cycle contains arole
not in goal. Validity of condition C2 can be checked by
restricting G, to vertices in goal and to neg edges, and
checking whether the restricted graph contains a cycle; a
simple Depth-First Search can accomplish this. Validity of
condition C3 can be checked by traversing G, at most once.
Hence C1, C2 and C3 can be checked in polynomial time.
Transforming G, to an acyclic graph G, takes polynomial
time, and |G/, | isO(|Gy|?), sincefor each neg edgein Gy,
at most |G| new edges may be added. Topologically sort-
ing G, takes polynomial time. Thus, Reachabilityfor this
problem class can be solved in polynomial time. O

The problem class to which Theorem 2 applies can be
expanded by reducing problem instances that do not satisfy
the ET (empty initial state) restriction to problem instances
that satisfy E'I. The next two lemmas express such reduc-
tions; the proofs are straightforward.

Lemma3 Suppose) satisfies CR. RE for
((R, UA), goal, %) is t r ue if RE for ((R,0), goal,) is
true.

Lemma4 RE for ((R, UA), goal,) is f al se if RE for
((R,0), UA,%) is t rue and RE for((R,0), goal,?) is
fal se.

problem asks whether GG has a clique of size k, i.e., acom-
pletely connected subgraph with & vertices. We construct
a problem instance I = (v, goal,) in the problem class
[D, EN, |ppre| < 1] such that G has a clique of size k if
and only if I has a plan of size at most 15n — 2k, where
n=|V|.

The proof of Theorem 8 in [3] establishes NP-hardness
of Bounded-Plan-Existence for a planning problem, which
is equivalent to our Bounded Reachabilitgroblem for the
problem class D, by reduction from the CLI QUE problem.
Our reduction and proof is similar to theirsin structure, but
since our aim is to show NP-hardness of Bounded Reacha-
bility for amore restricted problem class [D, EN, |ppre| <
1], our construction and proof is significantly more in-
volved. m]

Theorem 6 Existence of Polynomial-size Plan (EPP) for
the problem clas$D, CR, EN,|SMER(r)| < 1] (no dis-
junction, only unconditional role revocation, no explicit

negation, at most one SMER constraint per role)dd se.

PROOF SKETCH: Consider the problem instance
I, = (v,g0al,v) where the set of roles R =
{ug,ug, ...\ Up, 1,02, ..., 0 1,y = (R, 0), goal = {uy,},
and ¢ = (canassign canrevoke SMER) where
o SMER = {{u;,v;}: 1 <i<n}
e V1<i<m:(true,v;) € canassign
e V1<i<n:(true,v;) € canrevoke
e V1<i<m:(true,u;) € canrevoke
e (true,u;) € canassign (ui,uz) € canassign and
V3<i<nifi= 2k+1then(v1/\v2.../\vi,2/\
u;—1,u;) € can_assign, else ifi = 2k then(u; A uz A
... A uj_1,u;) € can_assign.

It is easy to check that I,, is in the problem class
(D, CR,EN,|SMER(r)| < 1].

We claim there exists aplan for 7,,, and a minimum plan
for I,, has size exponential in n. Note that reachability of a
role u; depends only on roles u; where j < 4. Intuitively,
in order to reach wus, for some integer k, we must reach a
state v in which the goa set {u1,...,ug,—1} IS satisfied.
ugk_1 Can only be reached from a state 4/ in which the
goal set {vy,va,...,vak—3, usp—2} IS satisfied. Since for
al 1, {1)2'7’11,1'} € SMER, it follows that U1, U2,y ..., U2k —3
are al fal se in+'. Therefore, to go from +’ to ~, the
roles vy, va, . .., vor_3 Must first be revoked, and then the
goal set g = {u1,us,...,us,_3} Must be proved. But, to

Theorem 5 Bounded Reachability (BRE) for the problem
class[D,EN,|ppre| < 1] (no disjunction, SMER con-
straints allowed but no explicit negation, at most one posi-

prove goa usy_o (Whilereaching state ') starting from the
initial empty state v, the same goal set ¢ must be proved.
Therefore, the length of the plan+’ —* ~y isgreater than the

tive literal in pre-requisites) is NP-hard.

PROOF SKETCH: The proof is by reduction from the
CLI QUE problem which is known to be NP-complete [18].
Given agraph G = (V, E) and an integer k, the CLI QUE

length of v/ —* ~/, implying that the length of 4" —* ~ is
at least twice the length of v/ —* ~/. Thus, the length of a
minimum plan to reach uyy is at least twice the length of a
minimum plan to reach us,_o. It follows that the length of

aminimum plan to reach u,, is exponentia inn. Since |1, |
is O(n?), the length of a minimum plan to reach w,, is not
polynomial in |I,,]. O

4.3. User-Role Reachability Analysisin Hierarchi-
cal RBAC

Recall that miniARBAC does not consider a RRA pol-
icy, i.e, miniARBAC does not allow changes to the role
hierarchy. This alows us to transform analysis problems
for hierarchical policies into analysis problems for non-
hierarchical policies. The transformation makes the effects
of inherited membership explicit; in the original problem,
the effects of inherited membership are implicit in the se-
mantics of preconditions.

Let I, = (yn,go0aly,) be a reachability problem
instance for hierarchical RBAC with v, = (R, UA,),
Yy, = (canassign,, canrevoke,, SMER;), and goal, =
{ry1,rq,...,r}. Define a set of reachability problem in-
stances for non-hierarchical RBAC as follows.

o Lety = (R, UA).
e The canassignand canrevokerelations are generated
in two steps from can.assign, and can.revoke, .

1. For each (¢,r) € canassign,, and for each =t ¢
c, replace =t with A .01 s Transform
the canrevoke, relation in a similar manner. Let
can.assign’and can.revoke’denote the transformed
relations.

2. For each (¢™ A ¢™,r) € canassign; where ¢ isa
conjunctionry A ... A of positiveroles, and ¢~ is
a conjunction of negative roles, generate the Carte-
sian product PosConjunct = Senior(ry) x ... X
Senior(ry). Foresch (r,...,r}) € PosConjunct
addtherule (1) A.. . A7 Ac™,r) to canassign Gen-
erate canrevokefrom the canrevoke’in the same
manner.
o Let SMER = {(r,s) :
s¥ s}
e Goals = Senior(gy)x Senior(gs) X...x Senior(gn).

(r',s") € SMER), Ar = r' A

Then, theanswer to [}, ist r ue if and only if there exists
agoal € Goals such that the answer to I = (v, goal, v) is
t r ue. Moreover, it is easy to show that any plan for I, is
also aplanfor I, and vice versa.

Starting from our results in Section 4.1 for analysis of
non-hierarchical policies, we can derive results for analy-
sis of aclass of hierarchical policies, defined by some re-
strictions on the policies, by determining (1) the restrictions
satisfied by the transformed policies, (2) the size of atrans-
formed policy relative to the size of the original (hierarchi-
cal) policy, and (3) the number of transformed problem in-
stances, i.e., the number of transformed goals. We consider
these issuesin turn.

The restrictions N, EN, R, CR, |ppre| < 1, and
|goal| < k are preserved by the transformation; the proofs
are straightforward. The transformation may invalidate
other restrictions. Specifically, steps 1 and 2 in the transfor-
mation may invalidate the restrictions |pre| < 1 and D, re-
spectively, and the transformation from SMER;, to SMER
may invalidate the |SMER(r)| < 1 restriction.

The size of the transformed policy might not be polyno-
mial in the size of the original policy because, in the worst
case, the Cartesian product Senior(ry) X ... x Senior(r)
in step 2 may result in addition of O(h!PP7¢l) rules, where h
is a bound on the number of senior roles for each role, and
|ppre| is a bound on the number of positive preconditions
in each canassignrule. Therefore, in general, the transfor-
mation may increase the size of the policy by afactor expo-
nentia in [ppre|. Thisimplies, for example, that results giv-
ing polynomial-time agorithms for a problem class do not
carry over to analysis of hierarchical policies, unless |ppre|
is bounded. We do expect that in practice, the number of
positive preconditions in each canassignrule is bounded
by asmall constant.

Thetransformed goals are defined by a Cartesian product
Senior(g1) x Senior(ga) X ...x Senior(gy,). Intheworst
case, the number of transformed goalsis O(hl9°¢l), where
h isasin the previous paragraph. For problem classes with
the restriction |goal| < k, the number of transformed goals
is polynomial in the size of the original policy.

For example, recall that reachability analysis for the
problem class [EN, CR, |ppre| < 1,|goal] < k] for
non-hierarchical policies can be solved polynomial time.
Based on the above observations, we conclude that reach-
ability analysis for the problem class [EN, CR, |ppre| <
1, |goal| < k] for hierarchical policies can also be solved in
polynomial time.

As an optimization, we can compute dependencies be-
tween roles (based on preconditions) and transform only the
part of the role hierarchy relevant to the goal.

Analysis for some classes of hierarchical policies can be
solved more efficiently by a direct algorithm than by the
above transformation. In particular, reachability analysis
for hierarchical policies that satisfy the N restriction can
always be solved in polynomia time, using a fixed-point
algorithm similar to the algorithm for reachability analysis
for non-hierarchical policies satisfying this restriction. It
might be possible to find an agorithm whose running time
is exponential only in the number of negative preconditions
inthe policy; thisis atopic for future work.

4.4. Other Analysis Problems

Permission-Role Reachability Analysis Consider
gueries of the form “Can administrators in administrative
rolesin A assign apermission p to al rolesin goal?’.

Since miniRBAC and miniARBAC specifications for
the user-role and permission-role assignment relations are
symmetrical, permission-role reachability analysis can be
performed in exactly the same manner as user-role reach-
ability with SMER = (). Thus, the results of Section 4.2

apply directly.

User-Permission Reachability Analysis Consider
queries of the form “Can administrators in administrative
rolesin A give user v permission p?’. Such aquery can be
answered by checking whether there existsarole r such that
(1) user u is dready a member of r or the administrators
can add u to r, and (2) permission p is aready granted to r
or administrators can grant p to ». Thus, the problem can
be transformed into a polynomia number of user-role and
permission-role reachability analysis problems that satisfy
the same structural restrictions (V, D, etc) as the original
problem. Furthermore, a plan for the original problem can
be obtained by simply concatenating the plans for the two
sub-problems (i.e., a plan for adding user « to r, and a plan
for granting permission p to r). These observations imply
that the results in Section 4.2 can easily be used to obtain
algorithms and complexity results for the Reachability

Bounded Reachabilitynd Existence of Polynomial-Size

Plan problems for user-permission problem classes.

Availability Analysis User-Role Availability anaysis
checks whether a given member of a given role always re-
mains in the role. As for user-role reachability anaysis,
we simplify the problem by ignoring permissions and the
permission-role assignment, and assuming a single implicit
user and a single implicit administrative role. Formally,
a user-role availability analysis problem instance has the
form I = (v, goal,) wherey = (R, UA) is asimplified
miniRBAC poalicy, ¢ = (canassign canrevoke SMER)
is a simplified miniARBAC policy and goal is a set of
roles. The answer to I ist r ue iff in every state 7' reach-
able from vy viay (i.e, v —, ~"), the user is a member
of at least one rale in goal in state 7'. I can be solved as
follows.

1. Suppose goal N UA = (; i.e, norolein goal isin the
initial state. Then the answer isf al se.

2. Suppose ¢ satisfies the CR restriction (every role can
be unconditionally revoked). The answer isf al se, be-
cause u's membership in every role in goal can be re-
voked.

3. Otherwise we transform the user-role availability anal-
ysis problem instance I to a user-role reachability anal-
ysisproblem instance I’ = (v, goal’, ") asfollows.

e goal’ = {7 : r € goal} where each 7 isanew role.

e Lety' = (R, UA) where R" = R U goal’.

e 3/ = (canassign; canrevoke; SMER') where (1)
V7 € goal’ : (true,F) € canassign; (2) V7 €
goal’ : (true,) € canrevoke, and (3) SMER' =
SMER U {(r,7) : r € goal}.

We show that I and I’ have opposite answers. Sup-

pose the answer to I’ ist r ue. Then there exists a state

v = (R, UA’) such that v —y 7" and goal” C UA'.

For each r € goal, (7,7) € SMER',s0r ¢ ~'. Thus,

goal N~y = Q. This implies that the answer to I is

fal se. Conversely, it is easy to show that if the an-
swer to I’ is f al se, then the answer to I istrue.

Thus, availability analysis can be reduced to reachabil -

ity analysis, and we can apply the complexity results

and algorithmsin Section 4.2.

5 Reéated Work

We classify related work on security policy analysisinto
three categories, which focus on different and complemen-
tary analysis problems.

The first category is anaysis (including enforcement)
of a fixed policy. We mention some representative pa-
pers in this category. Jajodia, Samarati, and Subrahma
nian [16] propose a policy language that can express pos-
itive and negative authorizations and derived authorizations
(similar to delegation), and they give polynomial-time al-
gorithms to check consistency and completeness of a given
policy. Cholvy and Cuppens [7] use SOL-deduction to
check consistency of a security policy that expresses pos-
itive and negative permissions and obligations. Bandara,
Lupu, and Russo [4] use abductive logic programming to
detect conflicts in a policy expressed in a language based
on Event Calculus that can express positive and negative
authorizations, obligations, and refrain conditions. Jaeger
et al. [14, 15] give agorithms to check integrity and com-
pleteness of a Security-Enhanced Linux (SELinux) policy.
Guttman et al. [11] describe a technique to analyze infor-
mation flow in a SELinux policy.

The second category is analysis of a single change to
a fixed policy or, similarly, analysis of the differences be-
tween two fixed policies. Jhaand Reps[17] present analysis
algorithms, based on push-down model checking, to check
properties of a given SPKI/SDSI policy and to analyze the
effects of a given change to a given policy. Fisler et al. [9]
consider policy analysisfor asubset of XACML. They give
decision-diagram-based algorithms to check properties of a
given policy and to compute the semantic difference of two
given policies and check properties of the difference.

Work in thefirst two categories differs significantly from
our work (and other work in the third category) by not con-
sidering the effect of sequences of changesto the policy.

The third category is analysis that considers the effect
of sequences of changes to a policy; the allowed changes

are determined by parts of the policy that we call “admin-
istrative policy”. Harrison, Ruzzo, and Ullman [12] present
an access control model based on access matrices, which
can express administrative policy, and show that the safety
analysis problem is undecidable for that model. Following
this, a number of access control systems were designed in
which safety analysis is more tractable, e.g, [23, 24, 25].
While each of these papers proposes a specific model de-
signed with tractable analysis in mind, we start with the
ARBAC97 model [26] and explore the difficulty of policy
analysis in arange of models obtained by combinations of
simple restrictions on the policy language. Also, we con-
sider features not considered in those papers, such as nega-
tive preconditions, and we consider availability as well as
safety (i.e., reachability). Guelev, Ryan, and Schobbens
[10] present a low-level access control model and an algo-
rithm to check properties of the policies; they note that the
worst-case complexity of their algorithm is high and non-
optimal, and they |eave identification of problem classesfor
which it has lower complexity as future work.

Li and Tripunitara[22] introduce two restricted versions
of ARBAC97, called AATU and AAR, and give algorithms
and complexity results for various analysis problems—
primarily safety, availability, and containment—for those
two models. The results are based on Li, Mitchell, and
Winsborough's results for analysis of trust management
policies [21]. Our work goes significantly beyond theirs by
considering negative preconditions and SMER (static mutu-
ally exclusive roles) constraints. They do not consider these
features. Indeed, they write: “Many other more sophisti-
cated cases of security analysisin RBAC remain open. For
example, it is not clear how to deal with negative precondi-
tions in role assignment, and how to deal with constraints
such as mutually exclusive roles’ [22]. Since we consider
these features, we are driven to consider other restrictions,
such as bounds on the size of preconditions, that they do not
consider.

Schaad and Moffett [30] express RBAC and ARBAC97
in Alloy, a relational modeling language, and use the Al-
loy analyzer [13] to check separation of duty properties.
They do not consider preconditions for any operations; this
greatly ssimplifiesthe analysis problem. They do not present
any analysis algorithms or complexity results. The Al-
loy analyzer trangl ates bounded-size problem instances into
SAT problems, and solves them with a SAT solver.

6. Conclusion

We considered the problem of analyzing the conse-
guences of seguences of changesto RBAC policies that are
allowed by ARBAC policies. We found that the general
analysis problem is intractable, and remains so even when
anumber of fairly strong syntactic restrictions are imposed

on the ARBAC policies. For example, safety (reachability)
analysis remains NP-hard even when revocation of rolesis
not allowed. It also remains NP-hard even when each role
assignment has at most one precondition. We identified
a few combinations of syntactic restrictions under which
safety analysis can be done in polynomial time. More ex-
perience is heeded to determine how often these restrictions
are satisfied in practice. We expect that the restrictions CR
(all roles can be unconditionally revoked) and EN (negation
is used only for specifying mutual exclusion of roles, i.e.,
separation of duty) are satisfied reasonably often in practice.
Other restrictions, such asthe absence of disjunction and re-
strictions on the number of preconditions, may be harder to
satisfy in practice. We also expect that in many cases, when
one of these restrictionsis violated, the policy mostly satis-
fies the restriction, for example, only afew role assignment
rules have more than one precondition.

This work is a step towards a deeper understanding of
policy analysis for ARBAC. An important direction for fu-
ture work is to develop analysis algorithms that perform
well for policies that mostly satisfy combinations of the
syntactic restrictions. The complexity of such algorithms
would be polynomial in policy size parameters expected to
be large in practice and exponential in parameters expected
to be relatively small, e.g, the number of roles that are in-
volved in mutual exclusion constraints and have more than
one positive precondition that constrains their assignment.

Another important direction for future work is to study
the effect of more global properties of the policy (as op-
posed to syntactic restrictions), for instance, to determine
whether the analysis problem becomes tractable when de-
pendencies between roles are acyclic.

Another interesting direction for future work isto extend
our results to apply to containment analysis [22] and trust
management policies [5, 20].

References

[1] American National Standards Institute (ANSI), Interna-
tional Committee for Information Technology Standards
(INCITS). Role-based access control. ANSI INCITS Stan-

dard 359-2004, Feb. 2004.
[2] C.Backstrom and I. Klein. Parallel non-binary planning in

polynomial time. In Proc. IJCAI 91, pages 268-273, 1991.
[3] C. Backstrom and B. Nebel. Complexity results for

SAS+ planning. Computational Intelligencell(4):625—

656, 1995.
[4] A.K.Bandara, E. C. Lupu, and A. Russo. Using event cal-

culusto formalise policy specification and analysis. In Proc.

4th IEEE Workshop on Policies for Distributed Systems and

Networks 2003.
[5] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust

management. In Proc. 1996 IEEE Symposium on Security

and Privacy pages 164173, May 1996.

(6]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

(19]

(16]

(17]
(18]

(19]

(20]

(21]

(22]

(23]

[24]

(29]

T. Bylander. The computational complexity of propositional
STRIPS planning. Atrtificial Intelligence 69(1-2):165-204,

1994,
L. Cholvy and F. Cuppens. Analysing consistency of se-

curity policies. In Proc. IEEE Symposium on Security and

Privacy, 1997.
D.D. Clark and D. R. Wilson. A comparison of commercial

and military security policies. In Proc. 1987 IEEE Sympo-

sium on Security and Privacpages 184-194, 1987.
K. Fider, S. Krishnamurthi, L. A. Meyerovich, and M. C.

Tschantz. Verification and change-impact analysis of
access-control policies. In Proc. 22nd International Confer-

ence on Software Engineering (ICSR3ges 196205, 2005.
D. P Guelev, M. Ryan, and P-Y. Schobbens. Model-

checking access control policies. In Proc. 7th Information

Security Conference (IS()ages 219-230, 2004.
J. D. Guttman, A. L. Herzog, and J. D. Ramsdell. Infor-

mation flow in operating systems: Eager formal methods.
In Proc. 2003 Workshop on Issues in the Theory of Security

(WITS) 2003.
M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protec-

tion in operating systems. Communications of the ACM

19(8):461-471, 1976.
D. Jackson, |. Schechter, and I. Shlyakhter. Alcoa: the alloy

constraint analyzer. In Proc. 22nd International Conference

on Software Engineering (ICSHages 730-733, 2000.
T. Jaeger, A. Edwards, and X. Zhang. Policy management

using access control spaces. In ACM Transactions on Infor-
mation Systems Securi#ug. 2003.

T. Jaeger, R. Sailer, and X. Zhang. Analyzing integrity pro-
tection in the SELinux example policy. In Proc. USENIX

Security SymposiunAug. 2003.
S. Jgjodia, P. Samarati, and V. S. Subrahmanian. A logical

language for expressing authorizations. In Proc. 1997 IEEE

Symposium on Security and Privapgges 31-42, 1997.
S. Jhaand T. Reps. Model-checking SPKI-SDSI. Journal of

Computer Securityl2:317-353, 2004.
R. M. Karp. Reducibility among combinatorial problems.

In Complexity of Computer Computatigrizages 85-103.

Plenum, 1972.
N. Li, Z. Bizri, and M. V. Tripunitara. On mutually-

exclusiveroles and separation of duty. InIn Proc. ACM Con-
ference on Computer and Communications Security (CCS)

pages 42-51, Oct. 2004.
N. Li and J. C. Mitchell. RT: A role-based trust-management

framework. In Proc. Third DARPA Information Survivability
Conference and Exposition (DISCEX |Ifages 201-212.
|EEE Computer Society Press, 2003.

N. Li, J. C. Mitchell, and W. H. Winsborough. Beyond
proof-of-compliance: Security analysis in trust manage-
ment. Journal of the ACM2005. To appear.

N. Li and M. V. Tripunitara. Security analysisin role-based
access control. In Proc. 9th ACM Symposium on Access

Control Models and Techniques (SACMAXne 2004.
R. J. Lipton and L. Snyder. A linear time algorithm for de-

ciding subject security. J. ACM 24(3):455-464, 1977.
R. Sandhu. The schematic protection model: its definition
and analysis for acyclic attenuating schemes. Journal of the

ACM, 35(2):404-432, 1988.
R. Sandhu. The typed access matrix model. In Proceedings

of the IEEE Symposium on Security and Privaages 122—
136, 1992.

[26] R. Sandhu, V. Bhamidipati, and Q. Munawer. The AR-
BAC97 model for role-based administration of roles. ACM

Trans. Inf. Syst. Secu2(1):105-135, 1999.
R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-

based access control models. IEEE Computer29(2):38-47,

Feb. 1996.
A. Sasturkar, P. Yang, S. D. Stoller, and C. R. Ramakr-

ishnan. Policy analysis for administrative role-based ac-
cess control. Technical report, Stony Brook University,
2006. Availablefrom htt p: // ww. ¢s. sunysb. edu/

~stoller/arbac. htnl .
A. Schaad, J. Moffett, and J. Jacob. The role-based access

control system of a European bank: A case study and dis-

(27]

(28]

[29]

cussion. In Proc. 6th ACM Symposium on Access Control

Models and Technologies (SACMAjages 3-9, 2001.
A. Schaad and J. D. Moffett. A lightweight approach to

specification and analysis of role-based access control ex-

(30]

tensions. In Proc. 7th ACM Symposium on Access Control

Models and Technologies (SACMApages 13-22, 2002.

