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Abstract

Role-Based Access Control (RBAC) is a widely used
model for expressing access control policies. In large or-
ganizations, the RBAC policy may be collectively managed
by many administrators. Administrative RBAC (ARBAC)
is a model for expressing the authority of administrators,
thereby specifying how an organization’s RBAC policy may
change. Changes by one administrator may interact in un-
intended ways with changes by other administrators. Con-
sequently, the effect of an ARBAC policy is hard to under-
stand by simple inspection. In this paper, we consider the
problem of analyzing ARBAC policies, in particular to de-
termine reachability properties (e.g., whether a user can
eventually be assigned to a role by a group of administra-
tors) and availability properties (e.g., whether a user can-
not be removed from a role by a group of administrators)
implied by a policy. We first establish the connection be-
tween security policy analysis and planning in Artificial In-
telligence. Based partly on this connection, we show that
reachability analysis for ARBAC is PSPACE-complete. We
also give algorithms and complexity results for reachability
and related analysis problems for several categories of AR-
BAC policies, defined by simple restrictions on the policy
language.

1. Introduction

Background. Role-Based Access Control (RBAC) [27] is
a well known and widely used model for expressing access
control policies. At a high level, an RBAC policy specifies
the roles to which each user has been assigned (the user-role
assignment) and the permissions that have been granted to
each role (the role-permission assignment). Users may per-
form multiple roles in an organization. For instance, in a
university setting, a teaching assistant (TA) for a course may
be enrolled in other courses at the same time. That person
has at least two distinct roles in the university: TA and stu-
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dent. Permissions are associated with these roles; for exam-
ple, a student can access only her assignments and grades,
while a TA can access assignments submitted by students
in the course. Expressing access control policy using roles
eases specification and management of policies, especially
in large organizations.

The RBAC policy in a large organization may be col-
lectively managed by many administrators. For instance,
a department manager may have authority to determine
who is a TA, while the registrar’s office determines who
is a student. Thus, there is a need to specify the authority
of each administrator. Administrative Role-Based Access
Control (ARBAC) [26] is a model for expressing such
policies. At a high level, an ARBAC policy is specified
by sets of rules, including can assign rules that specify
the roles to which an administrator may assign a user, and
under what conditions, and can revokerules that specify
the roles from which an administrator may remove a user,
and under what conditions. For instance, a can assignrule
can be used to specify that a department manager may
appoint as a TA only users who are already students. In
short, an ARBAC policy defines administrative roles, and
specifies how members of each administrative role can
modify the RBAC policy.

The Problem. It is often hard to understand the effect of an
ARBAC policy by simple inspection. For instance, consider
a can assignrule for a department manager that specifies
that (1) only students may be appointed as TAs, and (2) a
student in a class cannot be appointed as a TA of the same
class. Thus assignment of a user to the TA role is governed
by both a positive precondition (1), and a negative precondi-
tion (2). At first glance it appears as though this ensures that
a student in a class cannot be the TA for that class. However,
this desired condition may not hold: the registrar’s policy
for assigning a student role in a course might check only
the student’s registration status and not include conditions
regarding TA-ship. This policy would allow the registrar to
add someone to a class after that person’s appointment as a
TA for that class by the department manager. This exam-
ple illustrates that changes to the RBAC policy by one ad-
ministrator may interact in unintended ways with changes



by other administrators. The ARBAC policy should be de-
signed to prevent such unexpected interactions. In large or-
ganizations with many roles (e.g., [29] describes a European
bank’s policy with over 1000 roles) and many administra-
tive domains, understanding the ARBAC policy’s implica-
tions for such interactions may be difficult.

Analysis of security policies has been long recognized as
an important problem, e.g., [12, 23, 24, 25, 30, 17, 22, 21].
In a role-based policy framework, a natural analysis prob-
lem is to check potential role membership. The reachability
(or safety[12]) problem asks whether a given user u is a
member of a given role r in any policy reachable from the
initial (i.e., current) policy by actions of a given set of ad-
ministrators. The availability [21] problem asks whether a
given user u is a member of a given role r in all policies
reachable from the initial policy by actions of a given set
of administrators. Another natural analysis problem is con-
tainment[21]: whether every member of a given role r1 is
also a member of a given role r2 in some (or all) reachable
policies.

In this paper, we consider analysis of ARBAC policies.
We focus on reachability and availability analysis, which
are simpler than containment analysis but still difficult. For
general ARBAC policies, even reachability and availability
analyses are intractable (PSPACE-complete).

Contributions. We consider general ARBAC policies that
(i) control administrative operations that change user-role
as well as permission-role relationships; and (ii) allow
all administrative operations to have positive preconditions
and negative preconditions (e.g., not a student in the same
course).

Our main results are obtained by considering the role
reachability problem for ARBAC in terms of the planning
problem in Artificial Intelligence (AI). Given a set of ac-
tions, a starting state, and a goal, the AI planning problem
is to find a sequence of actions that leads from the starting
state to the goal. For role reachability analysis, the RBAC
policy is the state of the system, the ARBAC policy deter-
mines the allowed actions that can change the state, and the
goal is to add the given user to the given role. To the best of
our knowledge, this paper is the first to study the connection
between security analysis and the well-studied area of plan-
ning in AI. A few of our results are corollaries of existing
results in the literature on planning, but most of our results
are new.

We show that reachability analysis (RE) for general AR-
BAC policies is PSPACE-complete. This motivates us to
consider restrictions on the policies and two variants of the
reachability problem. Our goals are to better understand the
intrinsic complexity of the problem and to identify tractable
cases of practical interest.

We consider the following restrictions on policies:

1. N : no negative preconditions.

2. EN : no explicit negative preconditions; negative pre-
conditions for role assignment may occur only in the
form of static mutually-exclusive role (SMER) con-
straints [19] (sometimes called separation of duty con-
straints), each of which specifies that a user cannot si-
multaneously be a member of two given roles;

3. CR: every role can be revoked unconditionally; and

4. D: disjunction is not used in the policy’s overall con-
ditions for assignment or revocation of a role. The pre-
condition in a single rule never contains explicit disjunc-
tion, so this restriction actually requires that there is at
most one assignment rule and one revocation rule per
role.

We expect that most ARBAC policies satisfy one of these
restrictions on negation. Moreover, while role assignments
typically have preconditions, role revocations typically do
not, and considering unconditional revocation of all roles is
sufficient for analysis of policies designed primarily to en-
sure safety (as opposed to availability). The restriction on
disjunction is motivated by results for AI planning that show
that this restriction (called post-uniqueness in the planning
literature), in combination with other restrictions, can re-
duce the complexity of planning [2, 3].

We also consider two variants of the Reachability prob-
lem. One is Bounded Reachability (BRE): is the goal of
adding the given user to the given role reachable using at
most a given number of administrative operations? The
other is Existence of a Polynomial-size Plan (EPP) for a
class of policies: is every reachable goal reachable using a
sequence of operations whose length is polynomial in the
size of the policy?

We explore the complexity of reachability analysis, the
above variants of it (BRE and EPP), and availability anal-
ysis under combinations of these restrictions on policies.
In many cases, the analysis problem still has high com-
putational complexity. Most revealing of these results is
the non-existence of polynomial-size plans for a number of
classes of ARBAC policies. This reflects the difficulty of
understanding the implications of ARBAC policies.

In summary, the main contributions of this paper are to:

• establish that reachability analysis for general ARBAC
policies is PSPACE-complete;

• determine the computational complexity of reachability
analysis, bounded reachability analysis, and availabil-
ity analysis, and determine existence of polynomial-size
plans, for several categories of ARBAC policies; and

• give algorithms for cases where the analysis problem is
solvable in polynomial time.

Sections 2 and 3 formally define the policy frameworks
and the analysis problems. Our algorithms and complex-



ity results for reachability and availability analysis appear
in Section 4. Due to space limitations, we present only
selected proof sketches in this paper. Detailed proofs are
available in [28].

2. Role Based Access Control (RBAC)

The central notion of RBAC is that users are assigned to
appropriate roles and roles are assigned appropriate permis-
sions. Thus, a role serves as an intermediary in correlating
users with permissions. In this paper, we study policy anal-
ysis only for models of RBAC based on [1]. Since the pol-
icy analysis queries we support are independent of sessions,
we consider simplified (“mini”) models that do not support
sessions.

The miniRBAC model is based on the core RBAC
model [1].

Definition 1 A miniRBAC policy γ is a tuple
〈U,R, P,UA,PA〉 where

• U , R andP are finite sets of users, roles, and permis-
sions, respectively. A permission represents authoriza-
tion to invoke a particular operation on a particular re-
source.

• UA ⊆ U × R is the user-role assignment relation.
(u, r) ∈ UA means that useru is a member of role
r.

• PA ⊆ P×R is the permission-role assignment relation.
(p, r) ∈ PA means that members of roler are granted
the permissionp.

Given γ = 〈U,P,R,UA,PA〉, define usersγ(r) =
{u ∈ U : (u, r) ∈ UA} and permsγ(r) = {p ∈ P :
(p, r) ∈ PA}

Our miniHRBAC model based on Hierarchical RBAC
[1] extends the miniRBAC model with role hierarchies
that are a natural means for structuring roles to reflect an
organization’s lines of authority and responsibility.

Definition 2 A miniHRBAC policy γh is a tuple
〈U,R, P,UA,PA,
〉 where

• U ,R, P , UA andPA are as inminiRBAC .

• 
 ⊆ R×R is a partial order on the setR of roles.

r1 
 r2 means r1 is senior to r2; i.e., every member of
r1 is also a member of r2, and every permission assigned
to r2 is also available to members of r1.Thus, r2 inherits all
the users of r1 and r1 inherits all the permissions of r2.

Given γh = 〈U,P,R,UA,PA,
〉, we extend the
usersγ and permsγ functions to account for role hierarchy:
usersγh

(r) = {u ∈ U : ∃r′ ∈ R.r′ 
 r ∧ (u, r′) ∈ UA},
and permsγh

(r) = {p ∈ P : ∃r′ ∈ R.r 
 r′ ∧ (p, r′) ∈
PA}. We define Senior(r) = {r′ ∈ R : r′ 
 r}.

Figure 1 gives a simple example of a miniRBAC and
a miniHRBAC policy with 8 roles. Consider the roles
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Figure 1. Example of miniRBAC and
miniHRBAC policy.

Univ-Member, Univ-Employee, andStudent. The
permissions for each role are shown below the role. Users in
theUniv-Member role are members of the University and
have permission to use University facilities like the gym.
The rolesUniv-Employee andStudent are senior to
theUniv-Member role. Thus, members of these roles are
also implicitly members of theUniv-Member role, and
inherit the permission to use the gym.

3. Administrative Role Based Access Control
(ARBAC)

Administration of (i.e., changes to) RBAC policies must
be carefully controlled. RBAC policies for large organi-
zations may have over a thousand roles and tens of thou-
sands of users. For scalability, it is necessary to distribute
the task of administering such large policies, by giving each
administrator authority to make specified kinds of changes
to specified parts of the policy. This is an access control
policy that, for scalability and ease of administration, can
profitably be expressed in a role-based manner.

ARBAC97 (“Administrative RBAC”) is a model for de-
centralized administration of RBAC policies [26]. Changes
to the ARBAC policy (e.g., granting permissions to admin-
istrative roles) are not considered in the ARBAC97 model.
This is justified by assuming that only a small group of fully
trusted administrators are allowed to modify the ARBAC
policy.



In typical ARBAC policies, there is a single top level ad-
ministrator role, called the Senior Security Officer (SSO)
which is the principal administrator of the RBAC policy
and which establishes the ARBAC policy. The SSO parti-
tions the organization’s RBAC policy into different security
domains, each of which is administered by a different Ju-
nior Security Officer (JSO). For example, there may be a
JSO role for each department. The ARBAC policy specifies
the permissions assigned to each JSO role; for example, to
which normal roles and under what conditions can mem-
bers of a JSO role assign users. SSOs can design ARBAC
policies that enforce global constraints on the RBAC policy
by allowing JSOs to make only changes that are consistent
with the constraints.

There are three main parts in an ARBAC97 policy : the
user-role administration (URA) policy, the permission-role
administration (PRA) policy, and the role-role administra-
tion (RRA) policy. They control changes to the user-role
assignmentUA, the permission-role assignmentPA, and
the role hierarchy respectively. In this paper, we consider
a slightly modified version of ARBAC97, which we call
miniARBAC . miniARBAC specifies the URA and PRA
policies, but does not specify a RRA policy; it does not
allow any changes to the role hierarchy. Unlike ARBAC97,
our model does not formally distinguish administrative
roles from normal roles; this is a minor simplification that
does not materially affect any of our results.

URA policy. The URA policy controls changes to the user-
role assignmentUA. Its specification usespreconditions
(called prerequisite conditions in [26]) which are conjunc-
tions ofliterals, where each literal is eitherr or¬r for some
role r. Given aminiRBAC stateγ and a useru, u satisfies
a precondition∧ili, denotedu |=γ ∧ili, iff for all i, either
li is a roler andu ∈ usersγ(r), or li is a negated role¬r
andu /∈ usersγ(r).

Permission to assign users to roles is specified by the
can assign⊆ R×C ×R relation, whereC is the set of all
preconditions onR. A UserAssign(ra, u, r) action speci-
fies that an administrator who is a member of the adminis-
trative rolera adds useru to roler. This action is enabled
in stateγ = 〈U,P,R,UA,PA〉 iff there exists(ra, c, r) ∈
can assignandu |=γ c. Upon executing the action,γ is
transformed to the stateγ′ = 〈U,P,R,UA∪{(u, r)},PA〉.
Note that preconditions are not invariants; if(ra, r1, r2) ∈
can assign, then a useru in r1 andr2 remains a member of
r2 even if an administrator removesu from r1.

Permission to revoke users from roles is specified by
the can revoke⊆ R × C × R relation, whereC is as
above. [26] mentions the option of including preconditions
in can revoke but does not include them in the basic
ARBAC97 model. AUserRevoke(ra, u, r) action specifies
that an administrator who is a member of the administrative
role ra removes useru from the membership of roler.

This action is enabled in stateγ = 〈U,P,R,UA,PA〉
iff there exists (ra, c, r) ∈ can revoke and u |=γ c.
Upon executing the action,γ is transformed to the state
γ′ = 〈U,P,R,UA \ {(u, r)},PA〉.
PRA policy. The PRA policy controls changes to the
permission-role assignmentPA. Assignment of a permis-
sion p to a role r by an administrator in administrative
role ra is achieved by thePermAssign(ra, p, r) action
and is controlled by thecan assignp relation. Simi-
larly, revocation of a permissionp from a role r by an
administrator in administrative rolera is achieved by
the PermRevoke(ra, p, r) action and is controlled by
the can revokep relation. These relations are defined
in the same way as thecan assignand can revokerela-
tions above, except that users are replaced with permissions.

Static Mutually Exclusive Roles (SMER) constraints.
miniARBAC also includes a set of SMER constraints [19]
which are used to enforce separation of duty [8]. A SMER
constraint is an unordered pair of roless = {r1, r2} and
is satisfied in a stateγ, denotedγ � s, iff users(r1) ∩
users(r2) = ∅; i.e., the rolesr1 andr2 do not have any
users in common in the RBAC policyγ. γ is said to be
valid for a set of SMER constraintsS iff ∀s ∈ S : γ � s.

SMER constraints specifying disjointness of permis-
sions assigned to two roles could also be allowed, but
it is unclear whether such constraints would be useful
in practice. Note that a SMER constraint{r1, r2} can
be expressed by including¬r1 in the precondition of all
can assign rules for r2, and vice versa. We choose to
explicitly represent SMER constraints (and not specify
them in the URA model using negation) because this allows
us to develop specialized algorithms for analyzing policies
that use negation only to enforce SMER constraints; this is
a common case.

miniARBAC policy. A miniARBAC policy is rep-
resented asψ = 〈can assign, can revoke, can assignp,
can revokep,SMER〉, where the five relations are as
defined above. AminiARBAC policy specifies a tran-
sition relation betweenminiRBAC policies, which we

refer to as “states”. We denote a transition byγ
act→ψ γ′

whereact is one of the administrative actionsUserAssign,
UserRevoke, PermAssign, andPermRevoke specified
above, andγ andγ′ satisfy the SMER constraints inψ.

Examples. We present a few exampleminiARBAC poli-
cies that illustrate features ofminiARBAC . Consider the
miniHRBAC policy of Figure 1.

• Positive preconditions : A user can be made member
of theTeaching-Assistant (TA) role by an ad-
ministrator in rolera only if she is already a member of
theStudent role. This policy can be specified by the



rule (ra,Student,TA) ∈ can assign.

• Conjunction in preconditions: A user who is a mem-
ber of bothFaculty and FullTime-Employee
roles can serve on thePromotion-Committee.
This policy can be specified by the rule
(ra, Faculty ∧ FullTime-Employee,
Promotion-Committee) ∈ can assign, where
ra is an appropriate administrative role.

• SMER constraints: A user can be a member of at
most one of theFaculty andStudent roles. This
policy can be specified by the constraint setSMER =
{{Faculty,Student}}.

• Negative preconditions : Negative preconditions in
the can revokerelation can be used to force role re-
vocations to occur in a particular order. We might
have a policy that says that a user can be made mem-
ber of theTA role only if he is already a member
of the Student role. The policy also requires that
when a user ceases to be aStudent he also ceases
to be aTA. This policy can be enforced with the fol-
lowing rules : (ra,Student,TA) ∈ can assign, and
(ra,¬TA,Student) ∈ can revoke. The second rule
forces an administrator to revoke the user’sTA role be-
fore revoking hisStudent role.

• Conditional role revocation: Recall that
miniARBAC , unlike ARBAC97 [26], allows pre-
conditions in role revocation. The policy with negative
preconditions described above is also an example of a
policy that requires conditional role revocation.

4. Analysis of ARBAC policies

As mentioned in Section 1, policy analysis is useful for
policy understanding and maintenance, and can also help
in policy enforcement. AminiARBAC policy ψ defines a
transition relation betweenminiRBAC policies and there-
fore defines a transition graph. Each vertex of the transition
graph is aminiRBAC policy, and each edge is a transition

γ
act→ψ γ′. Usually we are interested in analyzing or re-

stricting the power of a given setA of administrative roles,
so we discard edges labeled with actions by administrative
roles not inA (recall that the administrative role is the first
argument of every action), and ask the following kinds of
queries about the resulting graph. Note thatA is an implicit
parameter of all these queries.

• User-Role Reachability Analysis: Given a roler and
a useru not in r, canu be added tor (by actions of
administrators in administrative roles inA)?

• Permission-Role Reachability Analysis: Given a role
r and a permissionp not granted tor, canp be granted
to r?

• User-Permission Reachability Analysis: Given a user
u and a permissionp, does there exist a roler such that
p can be granted tor andu can be added tor (i.e., p is
granted tou)?

• User-Role Availability Analysis [21]: Given a roler
and a memberu of r, canu be removed fromr ?

• Permission-Role Availability Analysis [21]: Given a
roler and a permissionp granted tor, canp be revoked
from r?

4.1. User-Role Reachability Analysis without Role
Hierarchy

A queryQ of this kind has the form: Given a useru,
a setA of administrative roles, a setgoal of roles, an ini-
tial miniRBAC policy γ, and aminiARBAC policy ψ,
can administrators in administrative roles inA transformγ
to anotherminiRBAC policy γ′ under the restrictions im-
posed byψ such thatu is a member of all roles ingoal in
γ′ ? We can simplify the problem as follows.

1. Ignoring permissions: The answer toQ is affected
only by the user-role assignment relation and the
can assign, can revokeandSMER components ofψ,
so we can ignore the other components ofγ and ψ
when answeringQ. This also implies that only the
UserAssign andUserRevoke actions are relevant.

2. Implicit administrative role: We can remove fromψ
all administrative roles not inA and their correspond-
ing can assign and can revoke rules. ThenQ asks
about reachability under all the (remaining) administra-
tive roles. Thus, there is no need to distinguish these
roles from each other, so we can delete their names. In
other words, we can assume that there is a single im-
plicit administrative role, and we simplifycan assign
and can revoke to have the typeC × R (instead of
R × C × R) whereR is the set of roles andC is the
set of all preconditions onR.

3. Single user: The preconditions for
UserAssign(a, u, r) and UserRevoke(a, u, r) de-
pend only on the current role memberships of useru.
Therefore when answering a queryQ about useru, we
can remove all other users from the policy. Thus, we
can assume there is a single implicit user, and we can
simplify UA to be a subset ofR, wherer ∈ UA means
that the implicit user is a member ofr.

With these simplifications, aminiRBAC policy γ is a
pair 〈R,UA〉 whereUA ⊆ R, an action isUserAssign(r)
or UserRevoke(r), and a miniARBAC policy ψ is a
triple 〈can assign, can revoke, SMER〉 wherecan assign,
can revoke⊆ C × R. A reachability query for the simpli-
fied policy can be represented by a setgoal of roles (since
u andA are now implicit). A goal setgoal is satisfied in



a RBAC policy stateγ = 〈R,UA〉, denotedγ � goal, iff
goal ⊆ UA.

Definition 3 A user-role reachability analysis problem
instance is a 3-tupleI = (γ, goal, ψ) where γ
is a miniRBAC policy, ψ is a miniARBAC pol-
icy, and goal ⊆ R is a goal set. A sequence
of actions act1, act2, . . . , actn where each acti ∈
{UserAssign(r),UserRevoke(r) : r ∈ R} is called a

“plan” or “solution” for I if γ
act1→ψ . . .

actn→ψ γ′ and
γ′ � goal.

We consider the following problems related to reachabil-
ity.

• Reachability(RE): Given a problem instanceI, does
there exist a plan forI ?

• Bounded Reachability(BRE): Given a problem in-
stanceI and an integerk, does there exist a plan for
I of length at mostk ? Existence of bounded plans is an
interesting problem to consider in cases where existence
of general plans is difficult to determine.

• Existence of Polynomial-size Plan(EPP): Given a setS
of problem instances, is there a polynomialf such that
for all problem instancesI ∈ S, if I has a plan, thenI
has a plan with length at mostf(|I|) ? The size|I| of a
problem instanceI is the sum of the sizes of all the sets
in it.

TheReachabilityproblem is PSPACE-complete in gen-
eral. To understand the problem better and identify effi-
ciently solvable cases of practical interest, we impose var-
ious structural restrictions on theminiARBAC policy and
the query, and for each restricted class of problems, we ana-
lyze the complexity of RE and BRE and determine whether
EPP holds.

We first define some auxiliary functions. Given a
miniRBAC policy γ = 〈R,UA〉, and aminiARBAC pol-
icy ψ = 〈can assign, can revoke, SMER〉, define for each
role r ∈ R
• Num-SMER(r) = |{r′ : {r, r′} ∈ SMER}|.

Num-SMER(r) counts the number of SMER constraints
that a roler is involved in.

• Disjuncts(r) = |{c : (c, r) ∈ can assign}|.
Disjuncts(r) counts the number of different rules in
ψ that allow an administrator to assign a user to roler
(we regard the preconditions in those rules as disjuncts
in the policy’s overall condition for assigning a user to
role r). Similarly,Disjuncts(not(r)) = |{c : (c, r) ∈
can revoke|.

• Size(c) for a preconditionc is the number of literals in
c. For example,Size(r1 ∧ ¬r2) = 2.

• Size-Pos(c) for a preconditionc is the number of posi-
tive role literals inc. For example,Size-Pos(r1 ∧ r2 ∧
¬r3) = 2.

We consider four categories of restrictions onψ. The
acronyms for them are summarized in Figure 2.

• Restricting negation: We say thatψ uses explicit
negation if a negative literal appears incan assignor
can revoke, andψ uses implicit negation ifψ contains a
SMER constraint (i.e., SMER �= ∅).

– No negation (N ): ψ satisfies theN restriction ifψ
does not use explicit or implicit negation.

– No explicit negation (EN ): ψ satisfies theEN re-
striction if ψ does not use explicit negation. This re-
striction is interesting because SMER constraints are
more common than other uses of negation.

• No disjunction (D): ψ satisfies theD restric-
tion if for all roles r, Disjuncts(r) ≤ 1 and
Disjuncts(not(r)) ≤ 1; in other words, there is at
most one rule inψ for assigning/revoking every role in
R.

• Restricting revocation:
– No revocation (R): ψ satisfies theR restriction if

can revoke= ∅. This implies that once a user is as-
signed to a role, the user cannot be revoked from the
role.

– No conditional revocation (CR): ψ satisfies theCR
restriction if for every roler ∈ R, (true, r) ∈
can revoke. In other words, every role inR can be
unconditionally revoked. When considering power-
ful administrative roles, this restriction is reasonable
because preconditions on revocation are relatively
rare; recall that ARBAC97 does not support condi-
tional revocation.

• Size restrictions: ψ satisfies|pre| ≤ k if ∀(c, r) ∈
can revoke: Size(c) ≤ k and ∀(c, r) ∈ can assign
: Size(c) + Num-SMER(r) ≤ k (if {r1, r2} is a SMER
constraint, then¬r1 is counted as part of every precon-
dition for r2 in can assign, and vice versa).ψ satis-
fies |ppre| ≤ k if ∀(c, r) ∈ can assign∪ can revoke:
Size-Pos(c) ≤ k. ψ satisfies|SMER(r)| ≤ k if
∀r ∈ R : Num-SMER(r) ≤ k. ψ satisfies|goal| ≤ k
if the size of the goal set is at mostk. As we show be-
low, enforcing one or more of these restrictions greatly
simplifies the reachability analysis problem.

We also consider a restrictionEI (empty initial state) on
problem instances. A problem instance(γ, goal, ψ) satis-
fiesEI if the user assignment inγ is the empty set.

A set of restrictions defines a class of reachability anal-
ysis problems. For example, the class[R,D, |pre| ≤ 1] in-
cludes all problems(γ, goal, ψ) whereψ satisfies theR,D
and|pre| ≤ 1 restrictions. When a class has theEN restric-
tion (allow SMER constraints, but not explicit negation), the
|ppre| ≤ k restriction is used instead of the|pre| ≤ k re-
striction, since preconditions contain only positive literals.



For each class we consider the RE and BRE problems and
check whether EPP istrue for every problem instance in
the class. When EPP isfalse for a problem instance in a
classC, we say that reachability analysis forC is intractable,
since the worst case running-time of any algorithm that gen-
erates plans forC is more than polynomial in the size of the
problem instance.

Figure 2 summarizes our results. The problem classes
are divided into four groups, separated by double lines,
based on the complexity of RE and BRE. The problem
classes are arranged in a hierarchy. An edge from class
C1 to C2 indicates thatC2 is a specialization ofC1. Thus,
every hardness result forC2 also applies toC1, and every
algorithm forC1 can be used to solveC2. The bibliographic
reference to [22] means that the result was proved there. A
reference to [6] or [3] means that we proved complexity re-
sults for that problem class by reduction from complexity
results for planning given in that reference. Some observa-
tions follow.

1. If Existence of Polynomial-size Plan(EPP) for a prob-
lem classC is true, thenReachability(RE) for C is
in NP, because a non-deterministic Turing machine can
guess the plan, and verify it in polynomial time.

2. The restriction|goal| ≤ k is relevant only in classes that
also have the restriction|pre| ≤ 1. If a problem class
C has the former restriction but not the latter, then given
a problem instanceI = (γ, goal, ψ) with |goal| > k,
we can rewriteI to an instanceI ′ = (γ′, goal′, ψ′) with
|goal′| = 1, by introducing new roles inγ and adding
rules toψ for modifying them. For example, ifgoal =
{r1, r2} andC has the restriction|goal| ≤ 1 but not the
restriction|pre| ≤ 1, then introduce a new rolerg, add
the rule(r1 ∧ r2, rg) to can assign, and takegoal′ =
{rg}. The new problem instance is equivalent to the old
instance but satisfies|goal| ≤ 1 and is still inC.

3. The restrictionD (no disjunction) makes theReach-
ability problem easier;Reachability for [R] is NP-
complete whereas for[D,R] it is solvable in polyno-
mial time. Not allowing disjunction in preconditions
reduces the number of possible plans for a problem in-
stance, thereby reducing the complexity of theReacha-
bility problem.

4. The restrictionCR (only unconditional revocation)
makes theExistence of Polynomial-size Plan(EPP)
problem easier; EPP for[D,EN , |ppre| ≤ 1, |goal| ≤
k] is false and hence for[EN , |ppre| ≤ 1, |goal| ≤
k] isfalse, implying that a polynomial time algorithm
for generating a plan for this problem class does not ex-
ist. EPP for[CR,EN , |ppre| ≤ 1, |goal| ≤ k] istrue.

5. The restrictionR (no revocation) ensures that the an-
swer to theExistence of Polynomial-size Plan(EPP)
problem istrue. When role revocation is not allowed,

the user can be assigned to a role at most once in any
plan. Thus, the length of a plan is at most the number of
roles.

6. For most problem classes (i.e., sets of restrictions) we
considered, adding theEN restriction (allow SMER
constraints but not explicit negation) neither lowered
the worst-case complexity of RE or BRE nor changed
EPP fromfalse to true. Thus, in general, SMER
constraints do not seem to be easier to analyze than
explicit use of negation. However, there are problem
classes for which the effect of adding or removing the
EN restriction remains unknown. For example, we
showed that RE is solvable in polynomial time for the
class[CR,EN , |ppre| ≤ 1, |goal| ≤ k], but the worse-
case complexity of RE for the class[CR, |ppre| ≤
1, |goal| ≤ k] is unknown.

4.2. Complexity Results for User-Role Reachability
Analysis without Role Hierarchy

In this section we give proof sketches for selected rep-
resentative results from Figure 2. Complete proofs of all
the complexity results appear in [28]. Theorem 1 shows
that solving theReachabilityproblem in the general case
is PSPACE-complete. The proof of Theorem 2 provides a
polynomial time algorithm for solvingReachability(RE)
for a problem class that is still general enough to be inter-
esting in practice. Theorems 5 and 6 show that even when
three or four restrictions are applied simultaneously, reach-
ability may remain a hard problem, not solvable in polyno-
mial time.

Theorem 1 Reachability (RE) for the problem class with-
out any restrictions is PSPACE-complete.

PROOF SKETCH: [3] shows that Plan-Existence for a
SAS+ planning problem under theU andB restrictions is
PSPACE-complete. Informally, theU restriction requires
actions to have a single effect and theB restriction requires
the effects of every action to be binary. The actions that
we consider here—UserAssign(r) andUserRevoke(r)—
are binary actions that have a single effect, since they either
add the user tor or revoke the user fromr. We can en-
code Plan-Existence for aSAS+ planning problem instance
that satisfies theU and B restrictions as aminiARBAC
Reachabilityproblem instance. This establishes that solv-
ing Reachabilityfor unrestrictedminiARBAC policies is
PSPACE-hard.Reachabilityfor unrestricted ARBAC poli-
cies is in PSPACE because a Turing Machine can guess
and execute the plan, storing at each step only the current
state whose size is polynomial in the size of the problem in-
stance. ThusReachabilityfor unrestricted ARBAC policies
is PSPACE-complete. ✷
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Figure 2. Complexity of Reachability Analysis

Theorem 2 Reachability (RE) for the problem class
[CR,D, |pre| ≤ 1,EI ] (only unconditional role revocation,
no disjunction, at most one precondition, empty initial state)
is solvable in polynomial time.

PROOF SKETCH: Construct a graph Gψ = (Vψ, Eψ)
as follows. The set of vertices Vψ is the set of roles R.
There are two kinds of edges in Eψ , positive and nega-
tive. For each (r′, r) ∈ can assign, e = (r′, r) ∈ Eψ ,
and label(e) = pos. For each (¬r′, r) ∈ can assign,
e = (r, r′) ∈ Eψ and label(e) = neg. Note that neg edges
have reverse direction as the pos edges. Intuitively, edges
inEψ indicate the order in which roles must be assigned and
revoked; if (r, r′) ∈ Eψ , then UserAssign(r) must occur
before UserAssign(r′). Next, we prune the graph Gψ by
removing vertices for which there is no assignment rule and

vertices that are reachable through a sequence of positive
incoming edges from such vertices. These vertices are not
reachable from the empty initial state because each vertex
in Gψ has at most one positive incoming edge (this follows
from |pre| ≤ 1 andD). A cycle is called a pos cycle if it is
composed of only pos edges; neg cycles are defined simi-
larly. One can show first that a cycle cannot contain both a
pos edge and a neg edge and then that Reachability(RE)
is false if and only if either (C1)Gψ contains a pos cycle
Y such that Y ∩goal �= ∅, or (C2)Gψ contains a neg cycle
Y such that Y ⊆ goal, or (C3) goal �⊆ Gψ . If all of C1, C2
and C3 are false, then Gψ contains all goals and one of
the following cases holds: (1) Gψ is acyclic, in which case
the topological-sort ordering ofGψ gives the order in which
roles must be assigned to reach goal; (2)Gψ contains a neg



cycle Y such that there exists s ∈ Y and s /∈ goal; or (3)
Gψ contains a pos cycle Y such that Y ∩ goal = ∅. We
break cycles in (2) by deleting each neg edge e = (r, s)
such that r ∈ goal and s /∈ goal. Since e is a neg edge, we
know that (¬s, r) ∈ can assign. Thus, in a plan for I , either
UserAssign(r) occurs before UserAssign(s) (if there is a
path of pos edges from r to s) or UserRevoke(s) occurs
between UserAssign(s) and UserAssign(r). In the latter
case, we need to ensure that every UserAssign(s′) that has
a precondition s occurs before UserRevoke(s) and hence
before UserAssign(r) in the plan. We add edge (s′, r) to
Gψ to ensure this. Regarding case (3), we can simply delete
all cycles that do not contain any goal. With the above trans-
formations, the resulting graph G′

ψ is acyclic, and we can
generate a plan for I by assigning roles (to the user) in the
topological-sort order of G′

ψ .
Constructing graph Gψ takes polynomial time, and

|Gψ| = |I|. Validity of C1 can be checked by restrictingGψ
to only pos edges. Since ψ satisfies the D (no disjunction)
restriction, in this restricted graph each vertex has at most
one incoming edge. This implies that all cycles in the graph
are disjoint and we can use a simple Depth-First Search to
find all cycles and check whether any cycle contains a role
not in goal. Validity of condition C2 can be checked by
restricting Gψ to vertices in goal and to neg edges, and
checking whether the restricted graph contains a cycle; a
simple Depth-First Search can accomplish this. Validity of
condition C3 can be checked by traversingGψ at most once.
Hence C1, C2 and C3 can be checked in polynomial time.
Transforming Gψ to an acyclic graph G′

ψ takes polynomial
time, and |G′

ψ| isO(|Gψ|2), since for each neg edge inGψ ,
at most |Gψ| new edges may be added. Topologically sort-
ing G′

ψ takes polynomial time. Thus, Reachabilityfor this
problem class can be solved in polynomial time. ✷

The problem class to which Theorem 2 applies can be
expanded by reducing problem instances that do not satisfy
the EI (empty initial state) restriction to problem instances
that satisfy EI . The next two lemmas express such reduc-
tions; the proofs are straightforward.

Lemma 3 Suppose ψ satisfies CR. RE for
(〈R,UA〉, goal , ψ) is true if RE for (〈R, ∅〉, goal, ψ) is
true.

Lemma 4 RE for (〈R,UA〉, goal , ψ) is false if RE for
(〈R, ∅〉,UA, ψ) is true and RE for(〈R, ∅〉, goal, ψ) is
false.

Theorem 5 Bounded Reachability (BRE) for the problem
class [D,EN, |ppre| ≤ 1] (no disjunction, SMER con-
straints allowed but no explicit negation, at most one posi-
tive literal in pre-requisites) is NP-hard.

PROOF SKETCH: The proof is by reduction from the
CLIQUE problem which is known to be NP-complete [18].
Given a graph G = (V,E) and an integer k, the CLIQUE

problem asks whether G has a clique of size k, i.e., a com-
pletely connected subgraph with k vertices. We construct
a problem instance I = (γ, goal, ψ) in the problem class
[D,EN, |ppre| ≤ 1] such that G has a clique of size k if
and only if I has a plan of size at most 15n − 2k, where
n = |V |.

The proof of Theorem 8 in [3] establishes NP-hardness
of Bounded-Plan-Existence for a planning problem, which
is equivalent to our Bounded Reachabilityproblem for the
problem class D, by reduction from the CLIQUE problem.
Our reduction and proof is similar to theirs in structure, but
since our aim is to show NP-hardness of Bounded Reacha-
bility for a more restricted problem class [D,EN, |ppre| ≤
1], our construction and proof is significantly more in-
volved. ✷

Theorem 6 Existence of Polynomial-size Plan (EPP) for
the problem class[D,CR,EN , |SMER(r)| ≤ 1 ] (no dis-
junction, only unconditional role revocation, no explicit
negation, at most one SMER constraint per role) isfalse.

PROOF SKETCH: Consider the problem instance
In = (γ, goal, ψ) where the set of roles R =
{u1, u2, . . . , un, v1, v2, . . . , vn}, γ = 〈R, ∅〉, goal = {un},
and ψ = 〈can assign, can revoke,SMER〉 where

• SMER = {{ui , vi} : 1 ≤ i ≤ n}
• ∀ 1 ≤ i ≤ n : (true, vi) ∈ can assign

• ∀ 1 ≤ i ≤ n : (true, vi) ∈ can revoke

• ∀ 1 ≤ i ≤ n : (true, ui) ∈ can revoke

• (true, u1) ∈ can assign, (u1, u2) ∈ can assign and
∀ 3 ≤ i ≤ n if i = 2k + 1 then(v1 ∧ v2 . . . ∧ vi−2 ∧
ui−1, ui) ∈ can assign, else ifi = 2k then(u1 ∧ u2 ∧
. . . ∧ ui−1, ui) ∈ can assign.

It is easy to check that In is in the problem class
[D,CR,EN , |SMER(r)| ≤ 1 ].

We claim there exists a plan for In, and a minimum plan
for In has size exponential in n. Note that reachability of a
role ui depends only on roles uj where j < i. Intuitively,
in order to reach u2k for some integer k, we must reach a
state γ in which the goal set {u1, . . . , u2k−1} is satisfied.
u2k−1 can only be reached from a state γ′ in which the
goal set {v1, v2, . . . , v2k−3, u2k−2} is satisfied. Since for
all i, {vi, ui} ∈ SMER, it follows that u1, u2, . . . , u2k−3

are all false in γ′. Therefore, to go from γ′ to γ, the
roles v1, v2, . . . , v2k−3 must first be revoked, and then the
goal set g = {u1, u2, . . . , u2k−3} must be proved. But, to
prove goal u2k−2 (while reaching state γ′) starting from the
initial empty state γ′′, the same goal set g must be proved.
Therefore, the length of the plan γ′ →∗ γ is greater than the
length of γ′′ →∗ γ′, implying that the length of γ′′ →∗ γ is
at least twice the length of γ′′ →∗ γ′. Thus, the length of a
minimum plan to reach u2k is at least twice the length of a
minimum plan to reach u2k−2. It follows that the length of



a minimum plan to reach un is exponential in n. Since |In|
is O(n2), the length of a minimum plan to reach un is not
polynomial in |In|. ✷

4.3. User-Role Reachability Analysis in Hierarchi-
cal RBAC

Recall that miniARBAC does not consider a RRA pol-
icy, i.e., miniARBAC does not allow changes to the role
hierarchy. This allows us to transform analysis problems
for hierarchical policies into analysis problems for non-
hierarchical policies. The transformation makes the effects
of inherited membership explicit; in the original problem,
the effects of inherited membership are implicit in the se-
mantics of preconditions.

Let Ih = (γh, goalh, ψh) be a reachability problem
instance for hierarchical RBAC with γh = 〈R,UA,
〉,
ψh = 〈can assignh, can revokeh,SMERh〉, and goalh =
{r1, r2, . . . , rk}. Define a set of reachability problem in-
stances for non-hierarchical RBAC as follows.

• Let γ = 〈R,UA〉.
• The can assignand can revokerelations are generated

in two steps from can assignh and can revokeh.

1. For each (c, r) ∈ can assignh, and for each ¬t ∈
c, replace ¬t with

∧
s∈Senior(t) ¬s. Transform

the can revokeh relation in a similar manner. Let
can assign’and can revoke’denote the transformed
relations.

2. For each (c+ ∧ c−, r) ∈ can assign’, where c+ is a
conjunction r1 ∧ . . . ∧ rk of positive roles, and c− is
a conjunction of negative roles, generate the Carte-
sian product PosConjunct = Senior(r1) × . . . ×
Senior(rk). For each (r′1, . . . , r

′
k) ∈ PosConjunct

add the rule (r′1∧. . .∧r′k∧c−, r) to can assign. Gen-
erate can revokefrom the can revoke’ in the same
manner.

• Let SMER = {(r , s) : (r ′, s ′) ∈ SMERh ∧ r 
 r ′ ∧
s 
 s ′}.

• Goals = Senior(g1)×Senior(g2)×. . .×Senior(gn).
Then, the answer to Ih is true if and only if there exists

a goal ∈ Goals such that the answer to I = (γ, goal, ψ) is
true. Moreover, it is easy to show that any plan for Ih is
also a plan for I , and vice versa.

Starting from our results in Section 4.1 for analysis of
non-hierarchical policies, we can derive results for analy-
sis of a class of hierarchical policies, defined by some re-
strictions on the policies, by determining (1) the restrictions
satisfied by the transformed policies, (2) the size of a trans-
formed policy relative to the size of the original (hierarchi-
cal) policy, and (3) the number of transformed problem in-
stances, i.e., the number of transformed goals. We consider
these issues in turn.

The restrictions N , EN , R, CR, |ppre| ≤ 1, and
|goal| ≤ k are preserved by the transformation; the proofs
are straightforward. The transformation may invalidate
other restrictions. Specifically, steps 1 and 2 in the transfor-
mation may invalidate the restrictions |pre| ≤ 1 and D, re-
spectively, and the transformation from SMERh to SMER
may invalidate the |SMER(r)| ≤ 1 restriction.

The size of the transformed policy might not be polyno-
mial in the size of the original policy because, in the worst
case, the Cartesian product Senior(r1)× . . .×Senior(rk)
in step 2 may result in addition ofO(h|ppre|) rules, where h
is a bound on the number of senior roles for each role, and
|ppre| is a bound on the number of positive preconditions
in each can assignrule. Therefore, in general, the transfor-
mation may increase the size of the policy by a factor expo-
nential in |ppre|. This implies, for example, that results giv-
ing polynomial-time algorithms for a problem class do not
carry over to analysis of hierarchical policies, unless |ppre|
is bounded. We do expect that in practice, the number of
positive preconditions in each can assignrule is bounded
by a small constant.

The transformed goals are defined by a Cartesian product
Senior(g1)×Senior(g2)× . . .×Senior(gn). In the worst
case, the number of transformed goals is O(h|goal|), where
h is as in the previous paragraph. For problem classes with
the restriction |goal| ≤ k, the number of transformed goals
is polynomial in the size of the original policy.

For example, recall that reachability analysis for the
problem class [EN ,CR, |ppre| ≤ 1, |goal| ≤ k] for
non-hierarchical policies can be solved polynomial time.
Based on the above observations, we conclude that reach-
ability analysis for the problem class [EN ,CR, |ppre| ≤
1, |goal| ≤ k] for hierarchical policies can also be solved in
polynomial time.

As an optimization, we can compute dependencies be-
tween roles (based on preconditions) and transform only the
part of the role hierarchy relevant to the goal.

Analysis for some classes of hierarchical policies can be
solved more efficiently by a direct algorithm than by the
above transformation. In particular, reachability analysis
for hierarchical policies that satisfy the N restriction can
always be solved in polynomial time, using a fixed-point
algorithm similar to the algorithm for reachability analysis
for non-hierarchical policies satisfying this restriction. It
might be possible to find an algorithm whose running time
is exponential only in the number of negative preconditions
in the policy; this is a topic for future work.

4.4. Other Analysis Problems

Permission-Role Reachability Analysis Consider
queries of the form “Can administrators in administrative
roles in A assign a permission p to all roles in goal?” .



Since miniRBAC and miniARBAC specifications for
the user-role and permission-role assignment relations are
symmetrical, permission-role reachability analysis can be
performed in exactly the same manner as user-role reach-
ability with SMER = ∅. Thus, the results of Section 4.2
apply directly.

User-Permission Reachability Analysis Consider
queries of the form “Can administrators in administrative
roles in A give user u permission p?” . Such a query can be
answered by checking whether there exists a role r such that
(1) user u is already a member of r or the administrators
can add u to r, and (2) permission p is already granted to r
or administrators can grant p to r. Thus, the problem can
be transformed into a polynomial number of user-role and
permission-role reachability analysis problems that satisfy
the same structural restrictions (N , D, etc.) as the original
problem. Furthermore, a plan for the original problem can
be obtained by simply concatenating the plans for the two
sub-problems (i.e., a plan for adding user u to r, and a plan
for granting permission p to r). These observations imply
that the results in Section 4.2 can easily be used to obtain
algorithms and complexity results for the Reachability,
Bounded Reachabilityand Existence of Polynomial-Size
Plan problems for user-permission problem classes.

Availability Analysis User-Role Availability analysis
checks whether a given member of a given role always re-
mains in the role. As for user-role reachability analysis,
we simplify the problem by ignoring permissions and the
permission-role assignment, and assuming a single implicit
user and a single implicit administrative role. Formally,
a user-role availability analysis problem instance has the
form I = (γ, goal, ψ) where γ = 〈R,UA〉 is a simplified
miniRBAC policy, ψ = 〈can assign, can revoke,SMER〉
is a simplified miniARBAC policy and goal is a set of
roles. The answer to I is true iff in every state γ′ reach-
able from γ via ψ (i.e., γ →∗

ψ γ′), the user is a member
of at least one role in goal in state γ′. I can be solved as
follows.

1. Suppose goal ∩ UA = ∅; i.e., no role in goal is in the
initial state. Then the answer is false.

2. Suppose ψ satisfies the CR restriction (every role can
be unconditionally revoked). The answer is false, be-
cause u’s membership in every role in goal can be re-
voked.

3. Otherwise we transform the user-role availability anal-
ysis problem instance I to a user-role reachability anal-
ysis problem instance I ′ = (γ′, goal′, ψ′) as follows.

• goal′ = {r̄ : r ∈ goal} where each r̄ is a new role.

• Let γ′ = 〈R′,UA〉 where R′ = R ∪ goal′.

• ψ′ = 〈can assign’, can revoke’,SMER′〉 where (1)
∀r̄ ∈ goal′ : (true, r̄) ∈ can assign’, (2) ∀r̄ ∈
goal′ : (true, r̄) ∈ can revoke’, and (3) SMER′ =
SMER ∪ {(r , r̄) : r ∈ goal}.

We show that I and I ′ have opposite answers. Sup-
pose the answer to I ′ is true. Then there exists a state
γ′ = 〈R,UA′〉 such that γ →∗

ψ′ γ′ and goal′ ⊆ UA′.
For each r ∈ goal, (r̄, r) ∈ SMER′, so r /∈ γ′. Thus,
goal ∩ γ′ = ∅. This implies that the answer to I is
false. Conversely, it is easy to show that if the an-
swer to I ′ is false, then the answer to I is true.
Thus, availability analysis can be reduced to reachabil-
ity analysis, and we can apply the complexity results
and algorithms in Section 4.2.

5 Related Work

We classify related work on security policy analysis into
three categories, which focus on different and complemen-
tary analysis problems.

The first category is analysis (including enforcement)
of a fixed policy. We mention some representative pa-
pers in this category. Jajodia, Samarati, and Subrahma-
nian [16] propose a policy language that can express pos-
itive and negative authorizations and derived authorizations
(similar to delegation), and they give polynomial-time al-
gorithms to check consistency and completeness of a given
policy. Cholvy and Cuppens [7] use SOL-deduction to
check consistency of a security policy that expresses pos-
itive and negative permissions and obligations. Bandara,
Lupu, and Russo [4] use abductive logic programming to
detect conflicts in a policy expressed in a language based
on Event Calculus that can express positive and negative
authorizations, obligations, and refrain conditions. Jaeger
et al. [14, 15] give algorithms to check integrity and com-
pleteness of a Security-Enhanced Linux (SELinux) policy.
Guttman et al. [11] describe a technique to analyze infor-
mation flow in a SELinux policy.

The second category is analysis of a single change to
a fixed policy or, similarly, analysis of the differences be-
tween two fixed policies. Jha and Reps [17] present analysis
algorithms, based on push-down model checking, to check
properties of a given SPKI/SDSI policy and to analyze the
effects of a given change to a given policy. Fisler et al. [9]
consider policy analysis for a subset of XACML. They give
decision-diagram-based algorithms to check properties of a
given policy and to compute the semantic difference of two
given policies and check properties of the difference.

Work in the first two categories differs significantly from
our work (and other work in the third category) by not con-
sidering the effect of sequences of changes to the policy.

The third category is analysis that considers the effect
of sequences of changes to a policy; the allowed changes



are determined by parts of the policy that we call “admin-
istrative policy” . Harrison, Ruzzo, and Ullman [12] present
an access control model based on access matrices, which
can express administrative policy, and show that the safety
analysis problem is undecidable for that model. Following
this, a number of access control systems were designed in
which safety analysis is more tractable, e.g., [23, 24, 25].
While each of these papers proposes a specific model de-
signed with tractable analysis in mind, we start with the
ARBAC97 model [26] and explore the difficulty of policy
analysis in a range of models obtained by combinations of
simple restrictions on the policy language. Also, we con-
sider features not considered in those papers, such as nega-
tive preconditions, and we consider availability as well as
safety (i.e., reachability). Guelev, Ryan, and Schobbens
[10] present a low-level access control model and an algo-
rithm to check properties of the policies; they note that the
worst-case complexity of their algorithm is high and non-
optimal, and they leave identification of problem classes for
which it has lower complexity as future work.

Li and Tripunitara [22] introduce two restricted versions
of ARBAC97, called AATU and AAR, and give algorithms
and complexity results for various analysis problems—
primarily safety, availability, and containment—for those
two models. The results are based on Li, Mitchell, and
Winsborough’s results for analysis of trust management
policies [21]. Our work goes significantly beyond theirs by
considering negative preconditions and SMER (static mutu-
ally exclusive roles) constraints. They do not consider these
features. Indeed, they write: “Many other more sophisti-
cated cases of security analysis in RBAC remain open. For
example, it is not clear how to deal with negative precondi-
tions in role assignment, and how to deal with constraints
such as mutually exclusive roles” [22]. Since we consider
these features, we are driven to consider other restrictions,
such as bounds on the size of preconditions, that they do not
consider.

Schaad and Moffett [30] express RBAC and ARBAC97
in Alloy, a relational modeling language, and use the Al-
loy analyzer [13] to check separation of duty properties.
They do not consider preconditions for any operations; this
greatly simplifies the analysis problem. They do not present
any analysis algorithms or complexity results. The Al-
loy analyzer translates bounded-size problem instances into
SAT problems, and solves them with a SAT solver.

6. Conclusion

We considered the problem of analyzing the conse-
quences of sequences of changes to RBAC policies that are
allowed by ARBAC policies. We found that the general
analysis problem is intractable, and remains so even when
a number of fairly strong syntactic restrictions are imposed

on the ARBAC policies. For example, safety (reachability)
analysis remains NP-hard even when revocation of roles is
not allowed. It also remains NP-hard even when each role
assignment has at most one precondition. We identified
a few combinations of syntactic restrictions under which
safety analysis can be done in polynomial time. More ex-
perience is needed to determine how often these restrictions
are satisfied in practice. We expect that the restrictions CR
(all roles can be unconditionally revoked) and EN (negation
is used only for specifying mutual exclusion of roles, i.e.,
separation of duty) are satisfied reasonably often in practice.
Other restrictions, such as the absence of disjunction and re-
strictions on the number of preconditions, may be harder to
satisfy in practice. We also expect that in many cases, when
one of these restrictions is violated, the policy mostly satis-
fies the restriction, for example, only a few role assignment
rules have more than one precondition.

This work is a step towards a deeper understanding of
policy analysis for ARBAC. An important direction for fu-
ture work is to develop analysis algorithms that perform
well for policies that mostly satisfy combinations of the
syntactic restrictions. The complexity of such algorithms
would be polynomial in policy size parameters expected to
be large in practice and exponential in parameters expected
to be relatively small, e.g., the number of roles that are in-
volved in mutual exclusion constraints and have more than
one positive precondition that constrains their assignment.

Another important direction for future work is to study
the effect of more global properties of the policy (as op-
posed to syntactic restrictions), for instance, to determine
whether the analysis problem becomes tractable when de-
pendencies between roles are acyclic.

Another interesting direction for future work is to extend
our results to apply to containment analysis [22] and trust
management policies [5, 20].
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