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SUMMARY

Multi-threaded code is becoming very common, both on the server side, and very recently
for personal computers as well. Consequently, looking for intermittent bugs is a problem
that is receiving more and more attention. As there is no silver bullet, research focuses
on a variety of partial solutions. We outline a road map for combining the research
within the different disciplines of testing multi-threaded programs and on evaluating the
quality of this research. We have three main goals. First, to create a benchmark that
can be used to evaluate different solutions. Second, to create a framework with open
APIs that enables the combination of techniques in the multi-threading domain. Third,
to create a focus for the research in this area around which a community of people
who try to solve similar problems with different techniques can congregate. We have
started creating such a benchmark and describe the lessons learned in the process. The
framework will enable technology developers, for example, developers of race detection
algorithms, to concentrate on their components and use other ready made components,
(e.g., an instrumentor) to create a testing solution.

Introduction

The increasing popularity of concurrent programming – for the Internet as well as on the server
side – has brought the issue of concurrent defect analysis to the forefront. Concurrent defects
such as unintentional race conditions or deadlocks are difficult and expensive to uncover and
analyze, and such faults often escape to the field. The development of technology and tools for
identifying concurrent defects are now considered by some experts in the domain as the most
important issue that needs to be addressed in software testing [16]. Having new dual core
or hyper-threaded processors in the personal computer, as all processors will have, starting
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in 2006, makes the testing of multi-threaded programs even more important. The programs
that used to work well on single-threaded and single CPU core processors are now exhibiting
problems. As a result, Intel has come out with a race detection tool and Microsoft has also
addressed this issue.

There are a number of distinguishing features between concurrent defect analysis and
sequential testing. These differences make it especially challenging if the set of possible
interleavings is huge and it is not practical to try all of them. First, only a few of
the interleavings actually produce concurrent faults; thus, the probability of producing a
concurrency fault can be very low. Second, under the simple conditions of unit testing, the
scheduler is deterministic; therefore, executing the same tests repeatedly does not help. As a
result, concurrent bugs are often not found early in the process, but in stress tests or by the
customer. The problem of testing multi-threaded programs is even more costly because tests
that reveal a concurrent fault in the field or in a stress test are usually long and run under
different environmental conditions. As a result, such tests are not necessarily repeatable, and
when a fault is detected, much effort must be invested in recreating the conditions under which
it occurred. When the conditions of the bug are finally recreated, the debugging itself may
mask the bug (the observer effect).

There is a large body of research involved in trying to improve the quality of multi-threaded
programs, both in academic circles and in industry. Progress has been made in many domains
and it seems that a high quality solution must contain components from many of them. Work
on race detection [47] [48] [33] [41] [21] [1] [2] has been going on for a long time. Race
detection tools suffers from the dual problem of having too many false alarms as well as not
identifying some of the races. A different approach was taken by a set of tools, called noise
makers. Noise makers increase the probability of bugs being discovered by inducing different
timing scenarios [52] [6] [19]. Noise makers do not do any reporting; instead, they try to make
the tests fail. Tools for replay and partial replay [12] [50] [19] are necessary for debugging and
contain technology that is useful for testing. Static analysis tools of various types [10] [32], as
well as formal analysis tools, are being developed to detect faults in the multi-threaded domain
[53] [31] [51] [15]. Analysis tools that show a view of specific interest in the interleaving space
both for coverage and performance [9] [28] are being worked on. Currently, the most common
testing methodology by dollar value takes single thread tests and creates stress tests by cloning
them many times and executing them simultaneously [27] (and the commercial tools Rational
Robot and Mercury WinRunner). A variety of programming and debugging aids for such
an environment are closely related to the testing technologies discussed, but, due to space
limitations, will not be discussed in this paper.

In this paper, we discuss and show initial results for developing a benchmark that formally
assesses the quality of different tools and technologies and compares them. Many areas,
including some of the technologies discussed in this paper, have benchmarks [3]. The benchmark
we are working on is different in that it not only contains programs against which the tools are
evaluated, but also a number of additional artifacts that are useful for developing the testing
tools. For example, the bugs are annotated so that if a race detection tool suspects a variable,
assessment can be made to determine whether it is a false negative or a real result. We have
started working on this benchmark, and already created about forty annotated programs. The
benchmark can be seen at
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http://qp.research.ibm.com/QuickPlace/concurrency_testing/Main.nsf

A password is required and is available upon request from Shmuel Ur at ur@il.ibm.com. The
annotation of bugs includes information about their location in the program, the variables
involved, and bug patterns exhibited. The annotation work draws on our on-going bug
taxonomy effort [42].

Existing dedicated concurrent testing technologies

This section surveys technologies that we think are the most useful or promising for the creation
of concurrent testing tools and shows how they could interact. We divide the technologies into
two domains. The first includes technologies that statically inspect the program and extract
useful information. This information can be in the form of a description of a bug, stating that
a synchronization statement is redundant or pointing to missing locks. Static technologies can
also be used to generate information that other technologies may find useful, such as a list of
program statements from which there can be no thread switch (single thread executing). The
static technologies we discuss use formal verification, mainly model checking, and forms of
static analysis (the boundary may be blurred [34]). The dynamic technologies are active while
the program is executing. The one most commonly associated with concurrent testing is race
detection. However, we believe that noise makers, replay, coverage, and performance monitors
are also of importance. The technologies described in this paper are white box in that access
to the code is assumed.

Static techniques

Formal Verification - Model checking is a family of techniques, based on systematic
and exhaustive state-space exploration, for verifying the properties of concurrent systems.
Properties are typically expressed as invariants (predicates) or formulas in a temporal logic.
Model checkers are traditionally used to verify models of software expressed in special
modeling languages, which are simpler and higher-level than general-purpose programming
languages. Recently, model checkers have been developed that work by directly executing
real programs; we classify them as dynamic technologies and discuss under dynamic testing
technologies. Manually producing models of software is labor-intensive and error-prone, so a
significant amount of research is focused on abstraction techniques for automatically or semi-
automatically producing such models. Notable work in this direction includes FeaVer [31],
Bandera [15], SLAM [4], Java PathFinder [28], and BLAST [30].

Static Analysis - Static analysis plays two crucial roles in verification and defect detection.
First, it is the foundation for constructing models for verification, as described above.
Dependency analysis, in the form of slicing, is used to eliminate parts of the program that
are irrelevant to the properties of interest. Pointer analysis is used to conservatively determine
which locations may be updated by each program statement. This information is then used
to determine the possible effects of each program statement on the state of the model. For
concurrent programs, escape analysis, such as [10], is used to determine which variables are
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thread-local and which can be shared. This information can be used to optimize the model or
to guide the placement of instrumentation used by dynamic testing techniques.

Second, static analysis can be used by itself for verification and defect detection. Compared to
model checking, static analysis is typically more scalable but more likely to give indeterminate
results (“don’t know”). One approach is to develop specialized static analysis for verifying
specific concurrency-related properties. For example, there are specialized type systems [21]
[8] [24] and data-flow analyzers [20] [54] for detecting data races; some of these analyses,
specifically [8] and [20], also detect deadlocks. The type systems are modular, scalable, and
conservative (i.e., they never overlook errors). However, they require programmers to provide
annotations in the program, and they produce false alarms if the program design is inconsistent
with the design patterns encoded in the type system. Static conflict analysis [54] is conservative
and automatic, but less scalable than the type systems. RacerX [20] is scalable and automatic
but not conservative (it can miss some errors). There are also general verification-oriented
static analysis frameworks, such as Canvas [44], ESP [17], and xgcc [25], but these generally
do not model concurrency and are potentially unsound when applied to concurrent programs.
Nevertheless, in practice, they may still be effective at finding some concurrency-related errors
(e.g., forgetting to release a lock [25]). TVLA [35] is a general static analysis framework that
can model concurrency and rigorously verify a variety of properties for concurrent programs, as
demonstrated in [57, 58]. However, TVLA’s analysis is relatively expensive and, hence, limited
to small programs.

Dynamic testing technologies

All the dynamic testing technologies discussed in this section make use of instrumentation
technology. An instrumentor is a tool that receives as input the original program (source
or object) and instruments it, at different locations, with additional statements. During the
execution of the program, the instructions embedded by the instrumentor are executed.

In the following, it is assumed that an instrumentor is available. The benchmarks includes
a paper [14] and documentation including code on how to easily use AspectJ [49] for the
instrumention needed for the technologies discussed.

Noise makers - A noise maker [19] [52] [6] belongs to the class of testing tools that make
tests more likely to fail and thus increase the efficiency of testing. In the sequential domain, such
tools [39] [56] usually work by denying the application certain services, for example, indicating
that no more memory is available to a memory allocation request. In the sequential domain,
this technique is very useful but is limited to verifying that, on the bad path of the test, the
program fails gracefully. In the concurrent domain, noise makers are tools that force different
legal interleavings for each execution of the test in order to check that the test continues to
perform correctly. In a sense, it simulates the behaviour of other possible schedulers. During
the execution of the program, the noise heuristic receives calls embedded by the instrumentor.
When such a call is received, the noise heuristic decides, randomly or based on specific statistics
or coverage, if some kind of delay is needed. Two noise makers can be compared to each other
with regard to the performance overhead and the likelihood of uncovering bugs.

Race and deadlock detection - A race is defined as accesses to a variable by two threads, at
least one of which is a write, which have no synchronization statement temporally between
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them [48]. A race is considered an indication of a bug. Race detectors are tools that look, online
or offline, for evidence of existing races. Typically, race detectors work by first instrumenting
the code, such that the information will be collected; then they process the information. On-
line race detection suffers from performance problems and tends to significantly slow down
the application. On-line race detection techniques compete in the performance overhead they
produce. Off-line race detection sometimes suffer from the fact that huge traces are may
be produced, and compete in reducing and compressing the information needed. The main
problems of race detectors of all types is that they produce too many false alarms and that
they are susceptible to scheduling order.

A deadlock is defined as a state where, in a collection of threads, each thread tries to acquire
a lock already held by one of the other threads in the collection. Hence, the threads block each
other in a cyclic manner. Tools exist that can examine traces for evidence of deadlock potentials
[26] [29]. Specifically, they look for cycles in lock graphs.

Replay - One of the most annoying features of concurrent testing is that once a bug is
detected, it may be very difficult to debug. There are two distinct aspects to this problem.
The first is that often the bug does not reproduce with a high enough probability. The second
is that even if it does, when you try to analyze it using a debugger or print statements, it does
not manifest. The ability to replay a test is essential for debugging [50] [13] [46]. Replay has
two phases: record and playback. In the record phase, information concerning the timing and
any other “ random” decision of the program is recorded. In the playback phase, the test is
executed and the replay mechanism ensures that the same decisions are taken. Doing full replay
[12] may be difficult and may require the recording of large amounts of information. Partial
replay, which causes the program to behave as if the scheduler is deterministic and repeats the
previous test [19], is much easier and, in many cases, good enough. Partial replay algorithms
can be compared on the likelihood of performing correct replay and on their performance.

Coverage - Malaiya et al [38] showed a correlation between good coverage and high quality
testing, mainly at the unit level. The premise, albeit simplified, is that it is very useful to
check that we have gone through every statement. This coverage measure is of very little
utility in the multi-threading domain. The most promising avenue for creating multi-threaded
coverage models is to create models that cover bug patterns. For example, checking that
variables on which contention can occur, had contention in the testing (ensuring possible
races). Another concrete example is synchronization coverage, a model with a task for each
synchronization, which checks that this synchronization statement had impact on the flow of
the test. A synchronization is utilized if it either stopped another thread or was stopped by
it. These two coverage models are implemented in ConTest [19]. Additional coverage measures
should be created and their correlation to bug detection studied.

Systematic state space exploration - Systematic state space exploration [23] [51] [28] [40] [31]
[15] [53] is a technology that integrates automatic test generation, execution, and evaluation
in a single tool. The idea is to systematically explore the state spaces of systems composed of
several concurrent components. Such tools systematically explore the state space of a system
by controlling and observing the execution of all the components, and by reinitializing their
executions. They typically search for deadlocks, and for violations of user-specified assertions.
Whenever an error is detected during state-space exploration, a scenario leading to the
error state is saved. Scenarios can be executed and replayed. To implement this technology,
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Figure 1. Interrelations between technologies

replay technology is needed to force interleavings, instrumentation is needed, and coverage is
advisable, so the tester can make informed decisions on the progress of the testing.

Interactions between technologies

Figure 1 illustrates a high level depiction of a suggested design as to how the different
technologies can interact. Different technologies talk to each other through the observation
database. Instrumentation is an enabling technology for all the technologies included in the
dynamic and trace evaluation boxes. Some technologies are orthogonal and have no awareness
that another technology is being used. For example, coverage can be measured for cloned tests.
In such a case, the two technologies do not have to share anything through the observation
database. This section uses examples to demonstrate ways in which technologies can be
combined to yield additional value.

The observation database contains the following information (partial suggestion):

• Interesting variables - for example, variables that could be involved in races or bugs
• Possible race locations - locations in the programs that are suspect
• Unimportant locations - areas that are well synchronized, for example, areas in which

only one thread is alive
• Coverage information - database showing which coverage tasks [45] were covered
• Traces of executions - to be used by off-line analyzers
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Instrumentation is the process of automatically modifying code by adding user exits. The
instrumentor is told what to instrument by the observation database. Input to the instrumentor
may include which parts of code (e.g., files, classes, methods, lines), which subset of the
variables, where to instrument, and what to put at each point. A natural selection, which
already has most of the required features, is AspectJ [49]. Augmenting AspectJ so it can do
all the work required from an instrumentor in this framework was studied in [14] and is not a
very difficult job.

The static technologies (static analysis and formal verification) can be used directly for
finding bugs, and can also be used to create information that is useful for other technologies.
The work by Choi et al [11, 43] and von Praun and Gross [54] are good examples of the use of
static analysis to optimize run-time race detection. With the observation database, one may
improve a race detector by using an existing static analyzer.

The information gleaned in static analysis can also be transferred to the instrumentor and
used to reduce the overhead (i.e., instrument only what really needs instrumenting), or by
attaching information that is used in run-time to the instrumentation calls. For example,
one of Stoller’s improvements [52] when compared to ConTest was to use static analysis to
find locations that do not need instrumentation. Had the suggested architecture been used to
implement Stoller’s idea, a small modification would have been necessary, without writing a
project from scratch.

The technologies are already combined in a variety of ways. For example, ConTest contains
an instrumentor, a noise generator, a replay and coverage component, and listenter architecture
on top of which a deadlock discipline violation was created and race detectors are planned in
the near future. The integration of the components is integral to the service that ConTest gives
to testing multi-threaded Java programs. With ConTest, tests can be executed multiple times
to increase the likelihood of finding bugs (instrumentor and noise). Once a bug is found, replay
is used to debug it. Coverage is used to evaluate the quality of the testing, and static analysis
improves the coverage quality and the performance of the noise maker. Another example is Java
PathExplorer (JPaX) [29] [5], a runtime monitoring tool for monitoring the execution of Java
programs. It automatically instruments the Java bytecode of the program to be monitored and
inserts logging instructions. The logging instructions write events relevant for the monitoring
to a log file, or to a socket, in the case that online-monitoring is requested. Event traces are
examined for data races (using the Eraser algorithm) and deadlock potentials. Furthermore,
JPaX can monitor that an execution trace conforms with a set of user provided properties
stated in temporal logic.

Such technologies currently require mastery of a number of different technologies. One of
the goals of this proposed project is to create a standard interface between technologies and
the observation database, so that improvement in one tool can be used to improve the overall
solution. The assumption is that a good solution will have a number of components. It is
important that a researcher can work on one component, use the rest ”off-the shelf”, and
check the global impact of her work.
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Benchmark

The different technologies for concurrent testing can be compared to each other based on: the
number of bugs they can find or the probability of finding bugs, the percentage of false alarms,
and performance overhead. Sometimes the technology itself cannot be compared, as it is only
part of a solution and the improvement in the solution, as a whole, must be evaluated. To
facilitate the comparison, we are creating a benchmark that is composed of two parts:

1. A repository of annotated programs which can be used to evaluate technologies. This
repository is already in use by a number of researchers.

2. An architecture containing supplied components that help in developing testing tools.

The repository contains programs on which the technologies can be evaluated. Each program
comes with artifacts such as:

• Source code (and instrumented bytecode) in standard project format
• Test cases and test drivers
• Documentation of the bugs in each program
• Sample traces of program executions. (not implemented yet)

The repository of programs includes many small programs as well as large programs that
illustrate specific bugs from the field. The programs with the bugs and the instrumented
programs are already available and the traces will be generated on demand. This makes
evaluating many of the technologies much easier.

The second component of the benchmark is a repository of tools, together with the
observation database. This way, researchers can use a mix-and-match approach and
complement their components with benchmark components, to create and evaluate solutions
based on the created whole. The components includes, an instrumentor, which is needed in
most solutions, as well as noise makers and race detection components.

Experience gathered in starting the benchmark

In an effort to start composing the benchmark, we asked students of an undergraduate software
testing class to write benchmark programs containing one (or more) concurrent bugs. As
programs created by the students are biased toward bugs typical of novice programmers, this
was just a beginning. The assignment can be seen at

http://cs.haifa.ac.il/courses/softtest/testing2003

By using raceFinder [7] to produce test reports, and working with a large number of different
users, we where able to reason about raceFinder and noise making in general. We learned,
by looking at the raceFinder heuristics, that creating noise in a few selected locations is
more effective then noise everywhere for finding concurrent bugs. It is advisable to use static
analysis [57, 10], dynamic analysis [22, 55], or both [11] to identify the best program locations.
Testing many programs with non-atomic bug patterns supports the claim that raceFinder,
and by extension noise makers, can effectively handle this type of bug pattern and uncover
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the programs non-atomic buggy interleavings. Atomicity is a common higher-level correctness
requirement that expresses non-interference between concurrently executed code blocks. A
code block is atomic if every execution of the program is equivalent to an execution in which
that code block is executed without being interleaved with actions of other threads. The non-
atomic bug patterns happens when the programmer assumes that something is atomic and it
is not.

A large number of programs containing concurrent bugs, some of which were conceived
in surprising ways, allowed us to reason about the factors that contribute most to the
manifestation (or no manifestation) of concurrent bugs. The three main factors identified:

• Scheduling policy of the JVM – this policy is usually deterministic and thus produces a
limited subset of the interleaving space [12, 18].

• Input of the program (control flow) – some of the interleavings that induce a concurrent
bug are input-dependent.

• Design of the program – a problems arises when the design contains a fault (not the
implementation) and this fault manifests itself only in rare circumstances, requiring
complex scenarios.

Another less common factor is the two levels of the Java memory model. We saw a number
of bugs that cannot be uncovered with tools such as ConTest or raceFinder. Furthermore,
some of these bugs may actually be masked when you look for them with these tools. Both
tools instrument at the bytecode level, which imposes inherent limitations. For example, if a
bytecode is not atomic, the tools cannot create noise inside that bytecode. Bugs that have
to cope with scheduling inside the JVM (e.g., the JVM definition of the order in which the
waiting threads are awakened by a notify) cannot be impacted. In addition, bugs related to
two-tier memory hierarchy, will not be observed on a one-tier memory Java implementation,
regardless of the scheduling.

Each of the identified factors relates to different set of reasons that lead to a bug manifesting.
Ultimately, we would like to handle all of these aspects while testing in order to increase the
likelihood that the bug does appear; however many testing tools deals only with one single
aspect. For example, intelligent noise makers can effectively change JVM scheduling to manifest
concurrent bugs; however, they cannot control the input. Thus, good testing input metrics are
required when the bugs are also related to specific input or inputs. There are tools designed to
give coverage of the program’s logic (see ConAn [36]), and it could be interesting to combine
a noise maker with such tools.

In addition to the bugs in the student applications, we found bugs in our tools. Most of the
bugs found were due to the students’ non-standard programming practices, which were not
considered in the tool design.

The benchmark website contains a table summarizing important aspects of the benchmark
suite. The table is updated as the benchmark grows. Thus the updated table is maintained on
the benchmark web site.

Here we briefly summarize the current status. The benchmark currently contains forty
programs with a range of sizes. Currently there are seven programs under 100 lines, twenty
between 100 and 300 lines, six between 300 and 500 lines, three between 500-1000, three
between 1000-3000, and one programs larger than 15000 lines. The programs contain bugs
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from twelve categories [42] [37] [1]: not atomic, orphaned thread, deadlock, sleep, double-
checked locking, notify instead of notifyAll, Blocking-Critical-Section, Missing Condition-For-
Wait, Unguarded if statement, High level data race, Non atomic floating point operation,
and General race. Approximately two-thirds of the bugs are in the not-atomic category (due
to data being accessed without a lock or when holding the wrong lock). Deadlock is the
second most common type of bug, and the remaining bugs are scattered among the remaining
categories. Though the benchmark is not balanced between different bug types, it provides
broad coverage of the concurrent bug type known in the literature. One of the bugs comes
from a released commercial product, other from open-source code obtained on the web, about a
third from programs created by tool developers, and the rest from programs created by students
specifically for the benchmark. The students’ programs contain novice-level bugs. The bugs in
the commercial and open-source programs are more subtle and seem to be representative of
errors made by experienced programmers. The bugs in the programs created by tool developers
range from simple to subtle.

Conclusions

In this paper, we discussed the problem of evaluating multi-threaded testing technology and
creating a benchmark that will enable research in this domain. There are many technologies
involved and improvements in the use of one technology may depend on utilizing another.
We believe that greater impact, and better tools, could result if use were made of a variety of
relevant technologies. Toward this end, we would like to start an enabling project that will help
create useful technologies, evaluate them, and share knowledge. There are specific attempts at
creating tools that are composed of a variety of technologies [19] [16] but they do not provide
an open interface for extension and do not support the evaluation of competing tools and
technologies.

The suggested framework is an ideal tool to be used in education. The amount of code
needed to build a coverage, noise, race detection, or replay tool is a few hundred lines of code
and is easily within the scope of a class exercise. Indeed, this was one of the motivations of
this paper, as the work reported in [7] started this way.

We discussed this project at PADTAD 2003 and PADTAD 2004 and with additional groups
such as the AspectJ developers. Quite a few groups and researchers have expressed interest
in participating in this project. We are looking at formal structures under which this project
could be held.

In the direction of the benchmark, we have made some slow progress since suggesting the
project in April 2003. We gave our undergraduate software testing class students an assignment
to write programs containing one (or more) concurrent bugs. In testing the homework
assignments we found some bugs in our tools, mainly because the students programmed in
ways we had never considered. Testing tool creation follows a pattern: you see a bug, figure
an automatic way to detect it, and create or augment a tool to automate the detection. The
assignments represent quite a large number of bugs, written in a variety of styles, and therefore
useful for the purpose of evaluating testing tools. There is a bias toward the kind of bugs that
novice programmers create.
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A good source for bugs created by experienced programmers is the open source code. One
way to collect such bugs for the benchmark is to follow the bug fix errata and ask the owners
for the source code containing the bug. This way we can have the bug and the correct fix for
the benchmark.

We saw a number of bugs that could not be uncovered with tools such as ConTest or
raceFinder. Furthermore, some of these bugs may actually be masked when you look for them
with these tools. Bugs that have to cope with scheduling inside the JVM cannot be impacted,
for example, the JVM definition of the order in which the waiting threads are awakened by
a notify. In addition, some bugs, notably bugs related to two-tier memory hierarchy, will not
be observed on a one-tier memory Java implementation, regardless of the scheduling. The
benchmark contains many bugs and we are certain that no single tool can find all of them. By
trying to uncover the bugs with the different tools, we will enhance the tools to detect more
bug types, and figure out the correct mix of tools to use for efficient verification.

In the process, we learned about creating benchmarks in general, and creating benchmarks
using student assignments in particular. As a result of our preliminary use of the benchmark,
we also have a better idea of how to further expand the benchmark. This is an ongoing work in
which we are expanding the benchmark and adding more features. In the near future, we expect
to get additional feedback from benchmark users, which we will use in the next iterations of
this exercise.
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