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Abstract

Authentication protocols are designed to work correctly in the presence of an adversary that can

prompt honest principals to engage in an unbounded number of concurrent executions of the protocol.

The amount of local state used in a single execution of a typical authentication protocol is bounded.

This suggests that there is a bound on the number of protocol executions that could be useful in attacks.

Such bounds clarify the nature of attacks on and provide a rigorous basis for automated veri�cation

of authentication protocols. This paper establishes such a bound for a large class of protocols, which

contains versions of some well-known authentication protocols, including the Yahalom, Otway-Rees, and

Needham-Schroeder-Lowe protocols.

1 Introduction

Many protocols are designed to work correctly in the presence of an adversary|hereafter called a penetrator|

that can prompt honest principals to engage in an unbounded number of concurrent executions of the pro-

tocol. This includes some protocols for authentication (including key establishment) [DvOW92, MvOV97],

Byzantine Agreement [GLR95], and electronic payment [OPT97]. This paper focuses on authentication.

Authentication protocols should satisfy at least two kinds of correctness requirements: secrecy, which states

that certain values are not obtained by the penetrator, and agreement, which states, e.g., that a principal's

conclusion about the identity of a principal with whom it is communicating is never incorrect.

Authentication protocols are short and look deceptively simple, but numerous awed or weak protocols

have been published; some examples are described in [DS81, BAN90, WL94, AN95, AN96, Low96, Aba97,

LR97, THG98c]. This attests to the importance of rigorous veri�cation.

Allowing an unbounded number of concurrent protocol executions makes the number of reachable states

unbounded, so automated veri�cation using state-space exploration is not directly applicable. The case

studies in [MCF87, Ros95, HTWW96, DK97, LR97, MMS97, MCJ97, MSS98, Bol98, DNL99] show that

state-space exploration of authentication protocols and similar cryptographic protocols is feasible when

small upper bounds are imposed on the size of messages and the number of protocol executions. However, in

most of those case studies, the bounds were not rigorously justi�ed, so the results do not prove correctness
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of the protocols. Reduction theorems are needed, which show that if a protocol is correct in a system with

certain bounds on these parameters, then the protocol is correct in the unbounded system as well.

1.1 Contribution

This paper presents a reduction for a large class of protocols. Our results are formulated in the strand space

model [THG98c, THG98a, THG98b].1 In this model, a regular strand can be regarded as a thread that runs

the program corresponding to one role (e.g., initiator or responder) of the protocol and then terminates;

thus, a regular strand corresponds to one execution of one role. Our reduction imposes three signi�cant

restrictions on protocols.

Shallow ciphertext restriction: the protocol does not use nested ciphertexts.2 This is easily checked by

static analysis of the program, so we call it a static restriction.

Bounded Support Restriction (BSR): in every history (i.e., every possible behavior) of the system,

each regular strand depends on at most a given number of regular strands. Our notion of dependence

between nodes, embodied in the de�nition of support, is a variant of Lamport's happened-before

relation [Lam78], modi�ed to treat nonces and session keys|collectively called generated values, or

genvals for short|appropriately. For example, if a genval g generated on a strand s1 appears in

messages received by strand s2 but only in contexts in which it could be replaced with a value generated

by the penetrator, then g's presence in those messages does not cause s2 to depend on s1. Intuitively,

correct authentication protocols are designed to involve only a small number of participants and hence

typically satisfy BSR.

Revealed Genval Restriction (RGR): every genval revealed to the penetrator is revealed \directly";

roughly, this means that the penetrator needs to perform at most one decryption to obtain the genval.

It seems diÆcult to develop static analyses to check BSR and RGR, so we call them dynamic restrictions and

propose to check them during state-space exploration. With static restrictions alone, it seems diÆcult to �nd

restrictions that are both strong enough to justify a reduction and weak enough to be satis�ed by well-known

protocols. Dynamic restrictions and correctness requirements are properties of histories; the di�erence is

that restrictions come with the reduction, while correctness requirements come with the protocol.

In order to check the dynamic restrictions during state-space exploration, we need reductions for them

as well as for the correctness requirements. We prove: if a protocol satis�es the dynamic restrictions and

correctness requirements when appropriate bounds are imposed on the number of regular strands in a history,

then the protocol also satis�es the dynamic restrictions and correctness requirements without those bounds.

We prove the contrapositive of this statement, by supposing that some history of the unbounded system

violates a dynamic restriction or correctness requirement and constructing a history violating the same

property and containing at most the speci�ed number of regular strands. That history is constructed by

starting from an earliest node (in the strand space model, events are usually called \nodes") that causes a

violation of the property and �nding the set of nodes on which that node depends. Roughly speaking, that

set of nodes, augmented with appropriate actions by the penetrator, is the desired history.

1Our results are relatively model-independent. We proved a similar reduction in a variant of Woo and Lam's semantic model
of authentication protocols [WL93].

2This restriction can be relaxed, as discussed at the end of Section 4.
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1.2 Related Work

Few reductions applicable to authentication protocols are known. Most existing techniques for automated

analysis of systems with unbounded numbers of processes, such as [CGJ95, KM95, EN96, AJ98], are not

applicable to authentication protocols, because they assume the set of values (equivalently, the set of local

states of each process) is independent of the number of processes, whereas authentication protocols generate

fresh nonces and session keys, so the set of values grows as the number of processes (equivalently, the number

of regular strands) increases.

Dolev and Yao's algorithms for verifying secrecy requirements of cryptographic protocols [DY83] are

eÆcient but limited. They do not handle agreement requirements, and they apply to a severely restricted

class of protocols that excludes almost all well-known authentication protocols (e.g., the Otway-Rees [OR87]

and Yahalom [BAN90] protocols) and is strictly included in the class of protocols handled by our reduction.

Roscoe and Broadfoot use data-independence techniques to bound the number of nonces that could be

useful in attacks [Ros98, RB99]. That result assumes that each trustworthy principal participates in at most

a given number of protocol executions at a time. Our reduction does not require such assumptions; indeed,

its purpose is to justify such assumptions.

Lowe proved a reduction for a corrected version of the Needham-Schroeder public-key protocol, hereafter

called the NSL protocol [Low96]. Lowe subsequently proved a reduction for a class of protocols [Low99].

The main limitations of the reduction in [Low99] are that it does not handle agreement requirements or

known-key attacks3 and does not apply to the Otway-Rees, Yahalom, and NSL protocols, due to various

restrictions.

The reduction embodied in Theorems 2 and 3 handles secrecy and agreement requirements, allows known-

key attacks, and applies to some well-known protocols, including the Otway-Rees, Yahalom, and NSL pro-

tocols, after the Otway-Rees and Yahalom protocols have been modi�ed slightly to eliminate forwarding of

ciphertexts. Our reduction provides an upper bound on the number of regular strands that could be useful

in attacks. From this bound and the shallow ciphertext restriction, it is easy to obtain upper bounds on the

number of nonces and the number of penetrator strands that could be useful in attacks.

Athena [Son99] is a model checker based on symbolic backwards state-space exploration. Athena can

eÆciently verify many authentication protocols. Work on Athena does not provide much general insight into

the number of protocol executions that could be useful in attacks, because there is no discussion in [Son99]

of conditions under which Athena terminates.

2 Model of Authentication Protocols

We adopt the strand space model [THG98c], with minor modi�cations. We introduce simple languages for

expressing authentication protocols and correctness requirements.

3Known-key attacks are scenarios in which genvals generated in a previous protocol execution are somehow (not necessarily
through a weakness of the protocol) obtained by the penetrator and used in attacks on subsequent protocol executions [MvOV97,
p. 496].
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2.1 Term, Signed Term, and Trace

The set Prim of primitive terms is the union of the following sets, which are assumed to be disjoint:4

� Text : a set of miscellaneous non-cryptographic values. Name is a distinguished subset of Text con-

taining names of principals.

� Nonce: a set of nonces.

� Keysess : a set of session keys.

� Keysym = fkey(x; y) j x; y 2 Nameg: a set of long-term symmetric keys. Informally, key(x; y) is

intended to be shared by x and y.

� Keyasym = fpubkey(x) j x 2 Nameg [ fpvtkey(x) j x 2 Nameg: a set of long-term asymmetric keys.

pubkey(x) and pvtkey(x) represent x's public and private keys, respectively.

Let Key = Keysym [Keyasym [Keysess .

The set Term of terms is de�ned inductively as follows.

1. Prim � Term.

2. If t 2 Term and k 2 Key , then encr(t; k) 2 Term . ftgk represents encryption of t with k and is

usually written as ftgk.

3. If t1 2 Term and t2 2 Term , then pair (t1; t2) 2 Term . pair (t1; t2) is usually written as t1 �t2.

The function inv 2 Key ! Key maps each key to its inverse: decrypting ftgk with inv(k) yields t.

For a symmetric key k, inv(k) = k. We usually write inv(k) as k�1. We assume perfect encryption, i.e.,

ftgk = ft0gk0 i� t = t0 and k = k0. Distinct primitive terms are assumed to represent distinct values

(e.g., key(A;B) and key(A;S) represent di�erent keys). Recall that elements of Nonce [Keysess are called

generated values, or genvals for short.

For S � Term, the set of genvals that occur in S is

genvals(S) = fg 2 Nonce [Keysess j 9t 2 S : g occurs in tg: (1)

A ciphertext is a term whose outermost operator is encr . A term t0 occurs in the clear in a term t if there

is an occurrence of t0 in t that is not in the scope of encr . For example, in the term fAgk1 �ffBgk1gk2 , the

term fAgk1 occurs in the clear; the term fBgk1 does not.

Let size(S) denote the size of a set S. Let dom(f) denote the domain of a function f . A sequence is a

function from a �nite pre�x of the natural numbers to elements. Let len(�) denote the length of a sequence

�. hha; b; : : :ii denotes a sequence � with �(0) = a, �(1) = b, and so on.

A signed term is +t or �t, where t is a term.5 Positive and negative terms represent sending and

receiving messages, respectively. Let �Term denote the set of signed terms. For a signed term t 2 �Term,

the absolute value of t, denoted abs(t), is t without its sign; for example abs(�A) = A. For S � �Term, let

4Allowing these sets to be di�erent for di�erent systems presents no diÆculties. It would require only that we include the
desired sets in the description of each system. To avoid clutter, we do not do this.

5This piece of strand space terminology can be confusing. A signed term is not a term with a digital signature.
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abs(S) = fabs(t) j t 2 Sg. For brevity, we often refer to signed terms as terms and treat them as terms, for

instance as having subterms.

A trace is a �nite sequence of signed terms. Let (�Term)� denote the set of traces.

2.2 Strand Space

A strand space is a function tr 2 dom(tr) ! (�Term)�, where dom(tr) is an arbitrary set whose elements

are called strands.6

A node of tr is a pair hs; ii with s 2 dom(tr) and 0 � i < len(tr(s)). Let Ntr denote the set of

nodes of tr . We say that node hs; ii is on strand s. Let nodestr (s) denote the set of nodes on strand s in

tr . Let strand(hs; ii) = s, index(hs; ii) = i, and termtr (hs; ii) = tr(s)(i). For S � Ntr , let strand(S) =

fstrand(n) j n 2 Sg and termtr (S) = ftermtr (n) j n 2 Sg. If termtr (n) is positive (or negative), we say that

n is positive (or negative).

The local dependence relation on nodes is de�ned by: n1 ) n2 i� strand(n1) = strand(n2) and

index(n2) = index(n1) + 1.

A term t originates from a node hs; ii in tr i� hs; ii is positive, t is a subterm of termtr (hs; ii),7 and t is

not a subterm of termtr (hs; 0i); termtr (hs; 1i); : : : ; termtr (hs; i� 1i).

A term t uniquely originates from a node n in tr i� t originates from n in tr and not from any other node

in tr . This is the strand space way of expressing freshness of genvals.

For symbols subscripted by the strand space, we elide the subscript when the strand space is evident

from context.

2.3 Role

Let Param be a set of parameters. The set pTerm of parameterized terms is de�ned in the same way as

Term in Section 2.1 but with the addition of a fourth item: Param � pTerm .

A role is a sequence of signed parameterized terms, with a type|i.e., a set of allowed values|associated

with each parameter, and with a subset of the parameters designated as uniquely-originated.8 Informally,

parameters that represent genvals generated by the role (and hence that �rst occur in the role in a positive

term) are so designated, to indicate that values of those parameters must be uniquely-originated. In examples,

uniquely-originated parameters are underlined in the parameter list. Let r:x denote parameter x of role r.

For example, consider the NSL protocol [Low96].

1: A! B : fnA �Agpubkey(B)

2: B ! A : fnA �nB �Bgpubkey(A)

3: A! B : fnBgpubkey(B)

(2)

6Thayer et al. [THG98c] use the symbol � for dom(tr).
7We use the standard notion of subterm, rather than the modi�ed subterm relation v de�ned in [THG98c], in which k is

not necessarily a subterm of ftgk . Our version induces a stronger notion of uniquely-originates that corresponds more closely
to the standard notion of freshness.

8This is essentially the same notion of role as in [Son99] and [CDL+00].
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The roles for the initiator and responder are

InitNSL(i : Name n fPg; r : Name ; ni : Nonce; nr : Nonce) =

hh+fni�igpubkey(r);

�fni�nr �rgpubkey(i);

+fnrgpubkey(r)ii

RespNSL(i : Name ; r : Name n fPg; ni : Nonce ; nr : Nonce) =

hh�fni�igpubkey(r);

+fni�nr �rgpubkey(i);

�fnrgpubkey(r)ii:

(3)

In both roles, parameters i and r hold the names of the initiator and responder, respectively. We exclude

P from the type of InitNSL:i and RespNSL:r, because we interpret P as the name of a dishonest principal

(the penetrator), and we interpret InitNSL:i and RespNSL:r as the name of the principal executing the role,

and all actions of the penetrator are represented by traces for penetrator roles, described in Section 2.5.

Parameters InitNSL:ni and RespNSL:nr are uniquely-originated, because they represent nonces generated

by their respective roles.

A role is well-formed if

1. The type of each parameter is Keysess , Nonce , Key , or a subset of Text .

2. The type of each uniquely-originated parameter is Keysess or Nonce.

3. Genvals do not occur in roles, except in the parameter types.

4. For every role r, for every parameter x of r of type Keysess or Nonce, x is uniquely-originated i� the

�rst occurrence of x in r is in a positive term.

Hereafter, all roles are assumed to be well-formed unless explicitly noted otherwise. The only non-well-

formed roles we consider are Msg in Section 2.5 and Src in Section 2.7.

The �rst well-formedness condition is violated by roles that receive and forward ciphertexts without

decrypting them. Typically, roles that forward ciphertexts do not encrypt the forwarded ciphertexts, so

modifying the protocol to eliminate such forwarding has no impact on the correctness of the protocol, so for

our purposes, it suÆces to analyze the modi�ed protocol. This transformation is also used in [Low99, RB99,

HL99].

A trace for role r is a pre�x of a trace obtained by substituting for each parameter x of r a term in the

type of x. For example, two traces for InitNSL are

�0 = hh+fni0 �Bgpubkey(A)ii

�1 = hh+fni0 �Agpubkey(B);�fni0 �nr0 �Bgpubkey(A);+fnr0gpubkey(B)ii:

The requirement that parameters be instantiated with terms of the speci�ed types is sometimes called the

strong typing assumption. This assumption is common in protocol analysis, but ensuring that it provides a

reasonable abstraction of a given implementation is non-trivial.
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InitY (i : Name n fPg; r : Name ; ni : Nonce; nr : Nonce; k : Keysess) =
hh+i�ni;
�fr �k �ni�nrgkey(i;S);
+fnrgkii

RespY (i : Name ; r : Name n fPg; ni : Nonce; nr : Nonce ; k : Keysess) =
hh�i�ni;
+r �fi�ni�nrgkey(r;S);
�fi�kgkey(r;S)
�fnrgkii

SrvrY (i : Name; r : Name; ni : Nonce; nr : Nonce; k : Keysess) =
hh�r �fi�ni�nrgkey(r;S);
+fr �k �ni�nrgkey(i;S);
+fi�kgkey(r;S)ii

Figure 1: Yahalom protocol �Y . Forwarding of ciphertexts has been eliminated.

A role r and a trace � for r uniquely determine a mapping, denoted args(r; �), from the set of parameters

of r that appear in r(0); r(1); : : : ; r(len(�) � 1) to Term. For example, dom(args(InitNSL; �0)) = fi; r; nig,

args(InitNSL; �0)(i) = B, dom(args(InitNSL; �1)) = fi; r; ni; nrg, and args(InitNSL; �1)(i) = A.

2.4 Protocol

A protocol is a set of roles. For example, the NSL protocol is �NSL = fInitNSL;RespNSLg, where the roles

are de�ned in (3).

For an example of a symmetric-key protocol, consider the Yahalom protocol [BAN90].

1: A! B : A�nA

2: B ! S : B �fA�nA �nBgkey(B;S)

3: S ! A : fB �k �nA �nBgkey(A;S) �fA�kgkey(B;S)

4: A! B : fA�kgkey(B;S) �fnBgk

(4)

The forwarding of fA�kgkey(B;S) by A is easily eliminated without a�ecting the correctness of the protocol.

The modi�ed protocol �Y appears in Figure 1; the roles are well-formed. In the original version of the

Yahalom protocol, the third and fourth messages of Resp are combined, as are the second and third messages

of Srvr. We split these messages so that the protocol can run to completion by itself. Without the splitting,

the protocol can run to completion only with help from the penetrator (to split and combine pairs); this is

a side-e�ect of elimination of forwarding of ciphertexts.

As another example, consider the Otway-Rees protocol [OR87].

1: A! B : m�A�B �fnA�m�A�Bgkey(A;S)

2: B ! S : m�A�B �fnA�m�A�Bgkey(A;S) �fnB �m�A�Bgkey(B;S)

3: S ! B : m�fnA �kgkey(A;S) �fnB �kgkey(B;S)

4: B ! A : m�fnA �kgkey(A;S)

(5)

After elimination of forwarding of ciphertexts, it can be expressed as the protocol �OR in Figure 2.
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InitOR(i : Name n fPg; r : Name ; ni : Nonce; m : Nonce; k : Keysess) =
hh+m�i�r �fni�m�i�rgkey(i;S);
�m�fni�kgkey(i;S)ii

RespOR(i : Name ; r : Name n fPg; nr : Nonce; m : Nonce; k : Keysess) =
hh�m�i�r;
+m�i�r �fnr �m�i�rgkey(r;S);
�m�fnr �kgkey(r;S)ii

SrvrOR(i : Name ; r : Name ; ni : Nonce; nr : Nonce; m : Nonce; k : Keysess) =
hh�m�i�r �fni�m�i�rgkey(i;S);
�m�i�r �fnr �m�i�rgkey(r;S)
+m�fni�kgkey(i;S);
+m�fnr �kgkey(r;S)ii

Figure 2: Otway-Rees Protocol �OR. Forwarding of ciphertexts has been eliminated.

There is no constraint on the relationship between the roles in a protocol, so one can consider a protocol

that contains roles from multiple \protocols" (in the usual sense of a set of roles designed to work together);

strand spaces for such protocols are sometimes called mixed strand spaces [THG99].

2.5 Penetrator

We consider a penetrator with roughly the same capabilities as in [THG98c]. A penetrator model for a

protocol � is a pair hpik ; compri, where pik � Term and compr is a compromised trace policy for �, as

de�ned below.

2.5.1 Penetrator's Initial Knowledge and Penetrator Roles

The penetrator model is parameterized by a set pik � Term, called the penetrator's initial knowledge.

Typically, we assume there is a single dishonest principal, named P , and take pik � pik keys , where

pik keys = fpvtkey(P )g [ fpubkey(x) j x 2 Nameg

[ fkey(P; x); key (x; P ) j x 2 Name n fPgg:

(6)

Known-key attacks are modeled by including in pik the absolute values of terms appearing in some execu-

tions of the protocol and the genvals generated during those executions. For example, for the NSL protocol,

one might take the penetrator's initial knowledge pikNSL to include pik keys , absolute values of the three

terms in a trace InitNSL(A;B; n0; n1), absolute values of the three terms in a trace RespNSL(A;B; n0; n1)

(which happen to be the same as the terms in the trace for InitNSL), the genvals n0 and n1, and analogous

terms from an execution in which B is the initiator and A is the responder. pikOR and pikY are de�ned

similarly.

�P (pik ), the set of penetrator roles for a penetrator with initial knowledge pik , contains the following
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roles.
Msg(x : Text [ Nonce [Keysess [ pik ) = hh+xii

Pair(x1 : Term ; x2 : Term) = hh�x1; �x2; +x1 �x2ii

Sep1(x1 : Term; x2 : Term) = hh�x1 �x2; +x1ii

Sep2(x1 : Term; x2 : Term) = hh�x1 �x2; +x2ii

Enc(k : Key ; x : Term) = hh�k; �x; +fxgkii

Dec(k : Key ; x : Term) = hh�k�1; �fxgk; +xii

(7)

The Msg role is instantiated only with terms known to, or originated by, the penetrator. Msg is not

well-formed, because, e.g., pik may contain non-primitive terms. No parameters of penetrator roles are

uniquely-originated. For convenience, we assume � \ �P (pik ) = ; for all protocols � and all pik .

2.5.2 Compromised-Trace Policy

Informally, a compromised trace is a trace running the protocol with the penetrator as a partner. For

example, in the Yahalom protocol, a trace � for RespY with args(RespY ; �)(i) = P is compromised. We

formalize this notion in terms of a function that provides a general way of indicating when the penetrator is

involved in a protocol execution.

Let params(�) denote the set of parameters of roles of �. For example, params(�NSL) = fr:x j r 2

�NSL ^ x 2 fi; r; ni; nrgg.

Let Set(S) denote the powerset of a set S.

A compromised-trace policy for a protocol � is a function compr 2 params(�) ! Set(Text [ Keysym [

Keyasym). For example,

comprNSL(x) =

(
fPg if x 2 fInitNSL:r;RespNSL:ig

; otherwise
(8)

comprY (x) =

(
fPg if x 2 fInitY :r;RespY :i; SrvrY :i; SrvrY :rg

; otherwise.
(9)

comprOR is similar to comprY , except with InitY replaced with InitOR, etc.

A trace � for a role r is compromised with respect to a compromised-trace policy compr if there exists

x 2 dom(args(r; �)) such that args(r; �)(x) 2 compr(r:x). If a trace is not compromised, we say that it is

uncompromised.

2.6 System and History

A system is a pair h�; peni, where � is a protocol and pen is a penetrator model for �. For example,

MNSL=h�NSL; hpikNSL; comprNSLii

MY =h�Y ; hpikY ; comprY ii

MOR =h�OR; hpikOR; comprORii:

(10)

A history of a system h�; hpik ; compr ii is a tuple h = htr ;!; rolei, where tr is a strand space, ! is a

binary relation on Ntr , and role 2 dom(tr)! (� [ �P (pik )) such that
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�fnr0gpubkey(B)+fnr0gpubkey(B)

�fni0 �Agpubkey(B)

+fni0 �nr0 �Bgpubkey(A)

+fni0 �Agpubkey(B)

�fni0 �nr0 �Bgpubkey(A)

sR : RespNSLsI : InitNSL

Figure 3: A history of MNSL. The underlined text above each trace has the form strand : role. Vertical
and horizontal arrows represent ) and !, respectively.

1. For all n1; n2 2 Ntr , if n1 ! n2, then there exists t 2 Term such that termtr (n1) = +t and termtr (n2) =

�t. This represents that n1 sends t, and n2 receives t.

2. For all n1 2 Ntr , if termtr (n1) is negative, then there exists exactly one n2 2 Ntr such that n2 ! n1.

3. �h is well-founded (i.e., does not have in�nite descending chains) and acyclic, where �h is the reexive

and transitive closure of (! [ )). Note that �tr is a partial order, originally de�ned by Lamport,

who called it happened-before [Lam78].

4. For all s 2 dom(tr), tr(s) is a trace for role(s)

5. For all s 2 dom(tr), for all x 2 dom(args(role(s); tr(s))), if parameter x is uniquely-originated and

tr(s) is uncompromised with respect to compr , then args(role(s); tr(s))(x) is not in genvals(pik ) and

uniquely originates from hs; ii, where i is the index of the �rst term in r that contains x.9

Let Hist(M) denote the set of histories of a system M.

We say that a strand s in a history htr ;!; rolei of a system h�; hpik ; comprii is compromised i� trace

tr(s) for role(s) is compromised with respect to compr .

In condition 5, it would be reasonable to omit the antecedent that s is uncompromised; in other words,

it would be reasonable to require that values of uniquely-originated parameters of compromised strands

are uniquely-originated. Including this antecedent simpli�es the reduction, because dealing with uniquely-

originated (fresh) genvals is the trickiest aspect (cf. the �rst paragraph of Section 1.2), so life is easier when

fewer genvals are required to be uniquely-originated. Including this antecedent is safe in the sense that it pro-

vides a slightly more hostile environment for the protocol (e.g., because the penetrator has immediate access

to genvals that originate from compromised strands) and therefore a slightly stricter notion of correctness of

a system (correctness requirements are discussed in Section 2.8).

If role(s) 2 �, then s is called a regular strand for role(s). If role(s) 2 �P (pik ), then s is called a

penetrator strand for role(s). Nodes on regular strands are called regular nodes; nodes on penetrator strands

are called penetrator nodes.

A history of MNSL is illustrated in Figure 3. It contains no penetrator strands; an example of a history

containing penetrator strands appears in Figure 4 (see Section 3.1).

9The requirement that args(role(s); tr(s))(x) 62 genvals(pik) is discussed in Appendix A.
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For convenience, we sometimes use a history instead of a strand space as a subscript. For example, for a

history h = htr ;!; rolei, we sometimes write Nh when we mean Ntr .

The set of predecessors of a node n in a history h is predsh(n) = fn0 2 Nh j n0 �h n ^ n0 6= ng.

A set S of nodes is backwards-closed with respect to a binary relation R i�, for all nodes n1 and n2, if

n2 2 S and n1 R n2, then n1 2 S.

Given a history h = htr ;!; rolei of a systemM, a set S of nodes that is backward-closed with respect to

�h can be regarded as a history, denoted nodesToHist
M
h (S), in a natural way. Speci�cally, nodesToHistMh (S)

is htr1;!1; role1i, where Ntr1 = S, !1=! \(S � S), termtr1(n) = termtr (n) for all n 2 S, and role1(s) =

role(s) for all s 2 strand(S).

2.7 Derivability

Informally, a term t is derivable (by the penetrator) from a set S of nodes if the penetrator can compute t

from term(S) and pik . A formal de�nition follows.

For a genval g that uniquely originates in a history h, let originh(g) denote the node from which g

originates in h.

For a set S of nodes of a history h = htr ;!; rolei of a systemM = h�; peni, let uniqOrigRqrdMh (S) denote

the set of genvals g that are required to be uniquely originated in h by item 5 in the de�nition of history and

that originate from a node in S; formally, this is the set of genvals g such that there exists an uncompromised

strand s 2 dom(tr) and a uniquely-originated parameter x of role(s) such that args(role(s); tr(s))(x) = g

and originh(g) 2 S.

For a set T of terms, the (possibly non-well-formed) role SrcT is de�ned by SrcT (x : T ) = hh+xii. When

the subscript on Src is clear from context, we elide it.

A term t is derivable from a set S of nodes of a history h of a system M = h�; hpik ; comprii, denoted

S `Mh t, if there exists a history h0 = htr 0;!0; role 0i of the system hfSrcabs(termh(S))g; hpik ; comprdii, where

comprd(Srcabs(termh(S)):x) = ;, such that

1. Arguments of strands for Msg in h0 are not in uniqOrigRqrdMh (S); that is, for all s 2 dom(tr 0), if

role 0(s) = Msg and x 2 dom(args(Msg; tr 0(s0))), then args(Msg; tr 0(s0))(x) 62 uniqOrigRqrdMh (S).

2. There exists a node n 2 Ntr 0 with termtr 0(n) = +t.

This is essentially the derivability relation considered by Clarke et al. [CJM98]. Similar relations or functions

have been considered by other researchers, e.g., Paulson's analz and synth functions [Pau96].

2.8 Correctness Requirements

We consider the following correctness requirements, which are based on [WL93]. For a correctness require-

ment �, we say that a system M satis�es � i� every history of M satis�es �. A genval parameter is a

parameter with type Keysess or Nonce.

Genval Secrecy. Informally, genval secrecy says: the values of speci�ed genval parameters are not revealed

to the penetrator. Formally, a genval secrecy requirement for a system h�; peni is speci�ed by a set
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of uniquely-originated genval parameters of �.10 A history h = htr ;!; rolei of a system M satis�es a

genval secrecy requirement G i�, for every r:x 2 G, for every uncompromised regular strand s for r, if

x 2 dom(args(role(s); tr(s))), then Ntr 6`Mh args(role(s); tr(s))(x).

Agreement. Informally, agreement says: if some uncompromised strand executes a certain role to a certain

point with certain arguments, then some strand must have executed a certain role to a certain point

with certain arguments. An agreement requirement for a protocol � has the form \hr1; len1; xs1i

precedes hr2; len2; xs2i", where r1 2 �, r2 2 �, and xs1 and xs2 are sequences of parameters of r1

and r2, respectively, such that len(xs1) = len(xs2) and for j 2 f1; 2g, every parameter in xsj occurs

in rj(0); rj(1); : : : ; rj(lenj � 1). A history htr ;!; rolei of a system h�; peni satis�es that agreement

requirement i�, if tr contains an uncompromised strand s2 such that role(s2) = r2 and len(tr(s2)) �

len2, then tr contains a strand s1 such that role(s1) = r1 and len(tr(s1)) � len1 and

(8i 2 dom(xs1) : args(r1; tr(s1))(xs1(i)) = args(r2; tr(s2))(xs2(i)): (11)

For example,MY might be expected to satisfy the genval secrecy requirement fInitY :nr; InitY :k;RespY :nr;

RespY :k; SrvrY :nr; SrvrY :kg and the agreement requirements

hRespY ; 2; hhi; r; ni; nriii precedes hInitY ; 2; hhi; r; ni; nriii

hInitY ; 3; hhi; r; ni; nr; kiii precedes hRespY ; 4; hhi; r; ni; nr; kiii:

3 Restrictions

Hereafter, we consider only systems h�; hpik ; comprii that satisfy the following static restrictions:

Shallow Ciphertext Restriction: In every parameterized term of every role in � and in every term in

pik , encr does not occur in the scope of encr . This property also holds for every term in every trace

for a well-formed role, because arguments of well-formed roles cannot be ciphertexts.

Unsent Long-Term Keys Restriction: In every parameterized term in every role of � and in every term

in pik n (Keysym [Keyasym ), the operators key , pubkey, and pvtkey occur only in the second argument

of encr . This implies that long-term keys not in pik are not sent in messages.

If a system does not satisfy the shallow ciphertext restriction, applying a transformation that removes some

encryptions might help [HL99].

3.1 Weak Support

Informally, a set S0 of nodes supports a set S of nodes if S0 contains all of the nodes in S and all of the regular

nodes on which nodes in S depend. Note that S and S0 cannot easily be regarded as histories, because S might

lack some necessary regular strands and penetrator strands, and S0 might lack some necessary penetrator

strands. A formal de�nition of support follows.

10Including genval parameters that are not uniquely-originated would be pointless, because a genval secrecy requirement
containing one would be violated by all systems, because values of such parameters are available to the penetrator from strands
for Msg.
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+B �fP �ni0 �nr
0

0gkey(B;S)

+ni0 �ni0

+fB �k0 �ni0 �nr
0

0gkey(P;S)

�B �fP �ni0 �nr
0

0gkey(B;S)

�fP �k0gkey(B;S)

+B �fP �ni0 �nr0gkey(B;S)

�P �ni0

Sep2

�A�ni0 �P

+P �ni0

+A�ni0

Msg

+P

+fP �k0gkey(B;S)

�P �ni0

sR : RespY

s
0

R : RespY

sS : SrvrY

PairsI : InitY

Figure 4: A history of MY . Strand names for penetrator strands are elided.

Let RNM
h denote the set of regular nodes in history h of system M; formally,

RN
h�;peni
htr ;!;rolei = fn 2 Ntr j role(strand(n)) 2 �g: (12)

A set S0 of nodes is a weak support for a set S of nodes in a history h of a system M if

WkSupp1. Nh � S0 � S.

WkSupp2. S0 is backwards-closed with respect to ).

WkSupp3. For all negative nodes n in S0, predsh(n) \ S0 \ RNM
h `Mh termh(n).

For example, in the history hY of MY in Figure 4,

SY = fhs0R; 0i; hs
0
R; 1i; hsS ; 0i; hsS ; 1i; hsS ; 2i; hsR; 0i; hsR; 1i; hsR; 2ig (13)

is a weak support for fhsR; 2ig. hsR; 2i does not depend on hsI ; 0i, in the sense that hsI ; 0i 62 SY , even

though hsI ; 0i �hY hsR; 2i. Informally, the dependence represented by �hY can be ignored here because

nodes in SY receive ni0 from nodes outside SY only in contexts in which ni0 can be replaced with a value

generated by the penetrator. The careful treatment of unique origination in the de�nition of derivability

allows such inessential dependencies to be ignored.

The following lemma says, roughly speaking, that a weak support can be transformed into a history by

adding only penetrator nodes, not adding or changing regular nodes. This shows that the notion of weak

support captures all essential dependencies between regular nodes.

Given a strand space tr , a strand s 2 dom(tr), and a set S of nodes of tr that is backwards-closed with

respect to ), S contains nodes on a pre�x of tr(s); let pre�xtr (s; S) denote that pre�x. For example, for

the history in Figure 4, pre�xtr (sR; fhsR; 0i; hsI ; 0ig) = hh�P �ni0ii.

Lemma 1. If S0 is a weak support for S in a history h = htr ;!; rolei of a system M = h�; hpik ; comprii,
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then there exists a history h0 = htr 0;!0; role 0i of M such that

(8s 2 strand(S0) : s 2 dom(tr 0) ^ tr 0(s) = pre�xtr (s; S
0) ^ role 0(s) = role(s))

^ (8s 2 dom(tr 0) n strand(S0) : role 0(s) 2 �P (pik ))
(14)

Proof: A witness h0 can be constructed as follows. Let S0neg denote the set of negative nodes in S0. For

each n 2 S0neg , let hn = htrn;!n; roleni be a history that witnesses the truth of predsh(n)\ S
0 \RNM

h `Mh
termtr (n). Let outn be a node in Ntrn such that termtrn(outn) = +abs(termtr (n)). For each strand s

for Src in hn, let witnessn(s) be a node in predsh(n) \ S0 \ RNM
h such that abs(termtr (witnessn(s))) =

args(Src; trn(s))(x); the de�nitions of weak support and derivability together imply that such a node exists.

Rename strands, if necessary, so that dom(trn) \ dom(tr) = ; and dom(trn1) \ dom(trn2) = ; for n1 6= n2.

We de�ne h0 in two steps. The �rst step merges S0 and all the hn (for n in S0neg), yielding htr1; role1;!1i.

The second step eliminates strands for Src, yielding h0.

dom(tr1) = strand(S0) [
[

n2S0

neg

dom(trn)

tr1(s) =

(
pre�xtr (s; S

0) if s 2 strand(S0)

trn(s) if s 2 dom(trn) for some n 2 S0neg

role1(s) =

(
role(s) if s 2 strand(S0)

rolen(s) if s 2 dom(trn) for some n 2 S0neg

!1 = !\ (S0 � S0) [
[

n2S0

neg

!n [ fhoutn; nig

dom(tr 0) = fs 2 dom(tr1) j role1(s) 6= Srcg

tr 0(s) = tr1(s)

role 0(s) = role1(s)

sourcen(s) =

(
witnessn(s) if termtr (witnessn(s)) is positive

outwitnessn(s) if termtr (witnessn(s)) is negative

!0 = !1 \ (Ntr 0 �Ntr 0)

[
S
n2S0

neg
fhsourcen(s); n1i j s 2 dom(tr1) ^ role1(s) = Src ^ hs; 0i !1 n1g

htr 0;!0; role 0i being a history of M follows from h and all the hn being histories of the appropriate systems

and from the following observations. For acyclicity of !0, note that witnessn(s) ! n. For the unique-

origination condition, we need to show that for every regular strand s 2 strand(S0), for every parameter

x 2 dom(args(role 0(s); tr 0(s))), if x is uniquely-originated and s is uncompromised, then the genval g =

args(role 0(s); tr 0(s))(x) does not occur in pik and uniquely originates from hs; ii, where i is the index of the

�rst term in r that contains x. Note that role 0(s) = role(s), tr 0(s) = pre�xtr (s; S
0), g 2 uniqOrigRqrdMh (S0),

and hs; ii 2 S0. h is a history of M, so g does not occur in pik and does not originate from any node other

than hs; ii in S0. It remains to show that g does not originate from any penetrator node in tr 0. By inspection

of �P (pik ), a genval that originates from a penetrator node must originate from a strand for Msg. The

de�nitions of weak support and derivability imply that tr 0 does not contain strands for Msg from which

genvals in uniqOrigRqrdMh (S0) originate.
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Continuing the above example, a history of MY that witnesses that SY is a weak support for fhsR; 2ig

in the history in Figure 4 can be obtained from the history in Figure 4 by deleting sI and the strand for

Sep2 and adding a strand for Msg with argument ni0. This witness can be produced by the construction in

the proof of Lemma 1; we say \can be" because the construction depends on the choice of the histories hn,

which are not uniquely determined.

3.2 Support

Weak supports are not compositional, in the sense that Lemma 2 (below) does not hold for weak supports.

We introduce a stronger notion that is compositional.

A set S0 of nodes is a support for a set S of nodes in a history h of a system M if

Supp1. S0 is a weak support of S in history h of M.

Supp2. For all g 2 genvals(termh(S
0)) \ (uniqOrigRqrdMh (Nh) n uniqOrigRqrd

M
h (S0)),

g occurs in the clear in termh(originh(g)).

If S0 is a support for S, we say that S0 supports S. For a strand s, if S0 supports nodes(s), we say that S0

supports s.

Lemma 2. If S00 and S01 support S0 and S1, respectively, in a history h = htr ;!; rolei of a systemM, then

S00 [ S
0
1 supports S0 [ S1 in history h of M.

Proof: We need to show that Supp1 (equivalently, WkSupp1{WkSupp3) and Supp2 are satis�ed. Wk-

Supp1, WkSupp2, and Supp2 follow easily from the corresponding condition holding in the hypotheses. For

WkSupp3, consider i 2 f0; 1g, and consider a negative node n in S0i. Let h0 = htr 0;!0; role 0i be a his-

tory that witnesses predsh(n) \ S0i \ RN
M
h `Mh termh(n). Suppose termh(n) does not contain a genval in

uniqOrigRqrdMh (S0(i+1)%2) n uniqOrigRqrd
M
h (S0i); then h0 also witnesses predsh(n) \ (S00 [ S01) \ RN

M
h `Mh

termh(n). Suppose termh(n) contains a genval g in uniqOrigRqrdMh (S0(i+1)%2) n uniqOrigRqrd
M
h (S0i); then

h0 might not witness predsh(n)\ (S
0
0 [S

0
1)\RN

M
h `Mh termh(n), because h

0 might contain strands for Msg

with argument g, violating the �rst condition in the de�nition of derivable. Note that originh(g) 2 S0(i+1)%2,

and originh(g) �h n (because g uniquely originates from originh(g) in h, and termh(n) contains g), and

originh(g) 2 RNM
h (because penetrator roles do not have uniquely-originated parameters). Thus, we can

construct a history h00 = htr 00;!00; role 00i that witnesses predsh(n)\(S
0
0[S

0
1)\RN

M
h `Mh termh(n) by start-

ing with h0 and, for each i 2 f0; 1g and each genval g in uniqOrigRqrdMh (S0(i+1)%2) n uniqOrigRqrd
M
h (S0i),

1. Add a strand sSrc for Src with argument abs(termh(originh(g))). Note that termh00(hsSrc; 0i) =

termh(originh(g)).

2. Add strands for Sep1 and Sep2, if necessary, to select g from termh00(hsSrc; 0i), so h00 contains a node

ng with term(ng) = +g. This selection is possible because Supp2 implies that g occurs in the clear in

termh(originh(g)).

3. For each strand sMsg for Msg with argument g, delete sMsg from h00 and, for each negative node nneg

such that hsMsg; 0i !0 nneg , let ng !00 nneg . This does not create cycles in �h00 ; the main point is that

sSrc contains no negative nodes, so hsSrc; 0i is �h00-minimal.
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Continuing the example in Section 3.1, SY is a support for fhsR; 2ig in the history in Figure 4, because

ni0 occurs in the clear in term(hsI ; 0i).

3.3 Bounded Support Restriction

A strand count for a protocol � is a function from � to the natural numbers. The strand count of a

set S of nodes of a history h = htr ;!; rolei of a system h�; peni, denoted SC
h�;peni
h (S), is de�ned by:

SC
h�;peni
h (S)(r) = size(fs 2 strand(S) j role(s) = rg) for r 2 �. We say that a history h of a system M has

strand count SCMh (Nh).

De�ne a partial order on strand counts for a protocol �: f1 �SC f2 i� (8r 2 dom(f1) : f1(r) � f2(r)).

Given a strand count f for �, a history h of a system M = h�; peni satis�es the bounded support

restriction for strand count f , abbreviated BSR(f), i� for every regular strand s in h, there exists a support

S for s in history h of M such that SCMh (S) �SC f . A system satis�es BSR(f) i� all of its histories do.

Table (15) lists some systems and, for each system, a strand count f for which the system satis�es

BSR(f). In principle, using Theorem 2 in Section 5, these results can be obtained automatically through

state-space exploration of histories with bounded strand counts. In practice, using the bounds in Section 7,

this is feasible for some of the protocols but perhaps not all of them. The results in (15) were proven by

hand. The proof for the NSL protocol appears in Appendix B. The proofs for the other protocols involve

similar patterns of reasoning.

System f(Init) f(Resp) f(Srvr)

MNSL (Needham-Schroeder-Lowe) 1 1 none

MY (Yahalom) 1 2 1

MOR (Otway-Rees) 1 1 1

(15)

The history of MY in Figure 4 illustrates why f(Resp) > 1 for Yahalom; every support for sR contains

nodes from sR and s0R.

There are systems that do not satisfy BSR(f) for any f . An example is the systemMus = h�us ; hpik keys ;

comprusii, where �us = fI; Rg and

I(n : Nonce) = hh+fngkey(A;B)ii

R(n : Nonce; n0 : Nonce) = hh�fngkey(A;B);+fn
0gkey(A;B)ii

(16)

and comprus(x) = ; for x 2 params(�us). Let role(s0) = I and tr(s0) = I(n0). For i > 0, let role(si) = R

and tr(si) = R(ni�1; ni). Let != fhhs0; 0i; hs1; 0iig [ fhhsi; 1i; hsi+1; 0ii j i > 0g. It is easy to see that

h = htr ;!; rolei is a history of Mus. Every support for si in h contains 
(i) nodes.

3.4 Revealed Genval Restriction

Informally, the revealed genval restriction (RGR) says: the penetrator learns a genval g that uniquely

originates on a regular strand only if the protocol \directly reveals" g. RGR prevents genvals from being

revealed to the penetrator indirectly, e.g., by encrypting one genval with another and then directly revealing

the latter genval. Without RGR, obtaining a simple static bound on the dependence width (see Section 4)

would be diÆcult.
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A node n directly reveals a term t in a history h of a system M i� n is a positive regular node and

fng `Mh t.

Formally, a history htr ;!; rolei of a systemM satis�es RGR i� for every regular strand s 2 dom(tr) and

every parameter x 2 dom(args(role(s); tr(s))) of role(s), if x is uniquely-originated, s is uncompromised,

and Ntr `Mh args(role(s); tr(s))(x), then Ntr contains a node that directly reveals args(role(s); tr(s))(x). A

system satis�es RGR i� all of its histories do.

The systems in (10) satisfy RGR. As in Section 3.3, these results were proven by hand (the proofs are

straightforward), although using Theorem 2 in Section 5, they can in principle be obtained automatically

through state-space exploration of histories with bounded strand counts.

4 Dependence Width

Informally, the dependence width of a negative parameterized term r(i) in a role r of a system M is

the maximum number of \additional" positive regular nodes needed in any history h of M to provide the

penetrator with enough knowledge to produce the term received by any node hs; ii of h such that role(s) = r.

\Additional" here means \beyond those needed for the penetrator to produce negative terms that occur

earlier in the same strand". The concept of dependence width is used in the proof of Theorem 2 (in Section

5) to bound the number of strands involved in a violation of the bounded support restriction. A formal

de�nition of dependence width follows.

For a set S of numbers, let min(S) and max(S) denote the minimum and maximum element of S,

respectively. We de�ne min(;) = 0 and max(;) = 0.

A revealing set for a term t at a node n in a history h of a systemM is a set R of positive regular nodes of

tr such that R � predsh(n) and R `Mh t. Intuitively, the main di�erence between \revealing set for term(n)

at n" and \weak support for fng" is, roughly, that the former considers only one step of dependency, while

the latter implicitly considers a transitive closure of dependencies.

The revealing set min-size of a term t at a node n in a history h of a system M is

rvlSetMinSz(t; n; h;M) = min(fsize(R n nodesh(strand(n))) j

R is a revealing set for t at n in h of Mg)

(17)

Nodes in R that are on strand(n) are not counted in the revealing set min-size ( and hence not in the

dependence width, de�ned by (18)), because in the proof of Theorem 2|speci�cally, in equation (27)|those

nodes appear in supportMh0 (s0) and hence are excluded from the index set of the rightmost union, and the

dependence width is designed to bound the size of that index set.

Note that, if there are no revealing sets for t at n in history h of system M (i.e., t is not known to the

penetrator at that point), then rvlSetMinSz(t; n; h;M) = 0.

Let r be a role in (the protocol in) a system M, and let i be the index of a negative term in r. The

dependence width of hr; ii in M is

DW(hr; ii;M) = max(frvlSetMinSz(termtr (hs; ii); hs; ii; htr ;!; rolei;M) j

htr ;!; rolei 2 Hist(M) ^ hs; ii 2 Ntr ^ role(s) = rg)

(18)
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The dependence width of a system h�; peni is

DW(h�; peni) = max(fDW(hr; ii; h�; peni) j r 2 � ^ r(i) is negativeg) (19)

The proof of Theorem 2 relies on an upper bound on the dependence width of a system. It is convenient

to obtain this bound based on the syntactic structure of the protocol. This is diÆcult if a protocol sends

terms of the forms fggk1 , fk1gk2 , fk2gk3 , : : :, fki�1gki , ki; in this case, a minimum-size revealing set for g

might contain i+ 1 nodes. RGR prohibits such behavior.

The RGR dependence width of hr; ii in M, denoted DWRGR(hr; ii;M), is de�ned by (18) with DW

replaced with DWRGR and Hist(M) replaced with fh 2 Hist(M) j h satis�es RGRg.

The RGR dependence width of a system M, denoted DWRGR(M), is de�ned by (19) with DW replaced

with DWRGR.

For a role r and i 2 dom(r), let genPrm(r; i) be the set of genval parameters of r that occur in r(i). Let

genPrmClr(r; i) = fx 2 genPrm(r; i) j x occurs in the clear in r(i)g (20)

genPrmClr(r; 0::i) =
[

j2[0::i]

genPrmClr(r; j): (21)

Theorem 1. LetM = h�; hpik ; compr ii be a system satisfying the shallow ciphertext and unsent long-term

keys restrictions. Let r 2 �. If r(i) is negative and contains at most one occurrence of encr , then

DWRGR(hr; ii;M) � max(fsize(genPrm(r; i) n genPrmClr(r; 0::i� 1));

size(genPrmClr(r; i) n genPrmClr(r; 0::i� 1)) + 1g)

(22)

Proof: Consider a history h = htr ;!; rolei for h�; hpik ; compr ii. Consider a node hs; ii such that role(s) = r.

We bound the size of a revealing set for term(hs; ii) at hs; ii in history h (ofM). By hypothesis, r(i) contains

at most one occurrence of encr , and arguments of well-formed roles do not contain ciphertexts, so term(hs; ii)

contains at most one occurrence of encr .

Suppose term(hs; ii) contains one occurrence of encr and hence one ciphertext ftegk. Let E be the set of

primitive terms that occur in te. Let C be the set of primitive terms that occur in the clear in term(hs; ii).

Some observations: (O1) The de�nition of history implies that all primitive terms are available to the

penetrator from strands for Msg except long-term keys not in pik and genvals in uniqOrigRqrdMh (Nh). (O2)

The unsent long-term keys restriction implies that E and C do not contain long-term keys not in pik .

Consider cases based on where ftegk originates.

case 1: ftegk originates from a penetrator node in predsh(hs; ii). In other words, the penetrator can

perform an encryption that produces ftegk. Let

S = uniqOrigRqrdMh (Nh) \ (C [ E [ fkg): (23)

The unsent long-term keys restriction implies that the penetrator does not learn long-term keys, so if k is

a long-term key, then k 2 pik , and ; is a revealing set for k at hs; ii in h. This, together with observations

(O1) and (O2), implies that the union of revealing sets at hs; ii in h for the genvals in S is a revealing
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set for term(hs; ii) at hs; ii in h. r is assumed to be well-formed, so size(S) � size(genPrm(r; i)).

case 2: ftegk does not originate from a penetrator node in predsh(n). Then ftegk originates from

some regular node n0 2 predsh(hs; ii). The shallow ciphertext restriction implies fn0g is a revealing

set for ftegk at hs; ii in h. Let

S = uniqOrigRqrdMh (Nh) \ C: (24)

Observations (O1) and (O2) imply that the union of fn0g and revealing sets at hs; ii in h for the

genvals in S is a revealing set for term(hs; ii) at hs; ii in h. r is assumed to be well-formed, so

size(S) � size(genPrmClr(r; i)).

For each genval g 2 S, note that g is known to the penetrator at hs; ii in h, i.e., predsh(hs; ii) `
M
h

args(role(s); tr(s))(x) (in case 1, for genvals in S\(E[fkg), this follows from the fact that the ciphertext orig-

inates from a penetrator node), so RGR applied to nodesToHistMh (predsh(hs; ii)) implies that predsh(hs; ii)

contains a regular node that directly reveals g, so g has a revealing set of size 1 at hs; ii in h.

A genval that occurs in the clear in a term in termtr (fhs; 0i; : : : ; hs; i � 1ig) does not contribute to the

RGR dependence width of term(hs; ii) at hs; ii in h, because nodes on the same strand as hs; ii are not

counted in (17). This justi�es excluding genval parameters in genPrmClr(r; 0::i�1) from S. Thus, in case 1,

the RGR dependence width of term(hs; ii) at hs; ii in h is at most size(genPrm(r; i) n genPrmClr(r; 0::i� 1)),

and in case 2, it is at most size(genPrmClr(r; i) n genPrmClr(r; 0::i� 1)) + 1.

Suppose termh(hs; ii) contains 0 occurrences of encr . The proof is the same as above, except there is

no contribution from a ciphertext, so the RGR dependence width of term(hs; ii) at hs; ii in h is at most

size(genPrm(r; i) n genPrmClr(r; 0::i� 1)).

Applying Theorem 1 to the systems in (10) yields

DWRGR(MNSL) � 2 DWRGR(MY ) � 2 DWRGR(MOR) � 2 (25)

For example, the bound on the RGR dependence width of hInitY ; 1i is

max(fsize(fk; ni; nrg n fnig); size(; n fnig) + 1g);

which simpli�es to 2.

Theorem 1 applies only to terms containing at most one ciphertext. Generalizing it to apply to terms

containing multiple ciphertexts (in protocols that satisfy the shallow ciphertext restriction) requires con-

sidering cases corresponding to which subset of the ciphertexts originate from penetrator nodes. This is

not conceptually diÆcult, but it complicates the counting, since genval parameters that occur in multiple

ciphertexts should be counted at most once.

Generalizing Theorem 1 to eliminate the shallow ciphertext restriction is also possible. This would

entirely eliminate the need for this restriction, which is not used directly in proofs of other theorems. This

requires extending the proof of Theorem 1 to consider values that are revealed by sequences of decryptions

applied to nested ciphertexts. The resulting bounds on RGR dependence width of protocols that do not

satisfy the shallow ciphertext restriction are larger and hence less useful in practice.
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5 Reduction for Dynamic Restrictions

The following lemma says, roughly, that constructing a history h0 from a support S0 of a set S of nodes of a

history h does not create new supports for S.

Lemma 3. Suppose S0 supports S in a history h of a systemM. Let h0 be a history ofM whose existence

is implied by Lemma 1 applied to S0. Suppose S1 supports S in history h0 ofM. Then S1 \RN
M
h supports

S in history h of M.

Proof: It is easy to show that WkSupp1, WkSupp2, and Supp2 hold. For WkSupp3, we need to show

that for every negative node n in S1, predsh(n) \ S1 \ RN
M
h `Mh termh(n). S1 supports S in h0, so

predsh0(n) \ S1 \ RN
M
h0 `Mh0 termh0(n). By de�nition of h0, termh0(n1) = termh(n1) for all n1 2 S1,

and predsh0(n) � predsh(n), and RN
M
h0 � RNM

h , so predsh0(n) \ S1 \ RN
M
h0 � predsh(n) \ S1 \ RN

M
h .

Derivability is monotonic (with respect to �) in its leftmost argument. Thus, predsh(n) \ S1 \ RN
M
h `Mh

termh(n).

For a strand count f and a system M, de�ne a strand count �(f;M) by

�(f;M)(r) = max(fDWRGR(M) + 1; 3g)f(r): (26)

Theorem 2. Let M = h�; peni be a system satisfying the shallow ciphertext and unsent long-term keys

restrictions. Let f be a strand count for �. M satis�es BSR(f) and RGR i� all histories of M with strand

count �(f;M) do.

Proof: The forward direction ()) of the \i�" follows immediately from the de�nitions. For the reverse

direction ((), we prove the contrapositive, i.e., we suppose there exists a history h of M that violates

BSR(f) or RGR, and we construct a history ofM with strand count at most �(f;M) that violates the same

property.

BSR(f) and RGR are safety properties [AS85] satis�ed by histories with zero nodes, and �h is well-

founded, so there exists a �h-minimal node n0 such that

� nodesToHistMh (predsh(n0)) satis�es BSR(f) and RGR.

� nodesToHistMh (predsh(n0) [ fn0g) violates BSR(f) or RGR.

The de�nitions of BSR and RGR imply that n0 is a regular node. Let h0 = nodesToHistMh (predsh(n0)). Let

s0 = strand(n0) and i0 = index(n0). Note that n0 62 Nh0 .

For a history h0 of M that satis�es BSR(f), for a regular strand s of h0, let supportMh0 (s) denote a

support for s in h0 that has strand count at most f and contains no penetrator nodes (the intersection with

RNM
h in WkSupp3 implies that if S0 supports s in h0, then so does S0 \ RNM

h0 ).

Consider cases based on the sign of n0.

case 1: n0 is a negative node. n0 cannot cause a violation of RGR, so n0 causes a violation of BSR(f)

in h. Suppose i0 > 0. n0 directly depends on hs0; i0 � 1i and on a revealing set R for term(n0) at n0;

more precisely, for all S0, if S0 supports fhs0; i0 � 1ig [R in h, then S0 [ fn0g supports fn0g in h. Let

S1 = fn0g [ supportMh0 (s0) [
[

n2Rnnodestr0 (s0)

supportMh0 (strand(n)); (27)
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h0 satis�es RGR, so Theorem 1 implies size(R n nodesh0(s0)) � DWRGR(M). h0 satis�es BSR(f), so

each support in (27) has strand count at most f . n0 is on s0, so it does not increase the strand count

of S1. Thus, S1 has strand count at most �(f;M).

Lemma 2 implies that S1 n fn0g supports fhs0; i0 � 1ig [R in h; thus, S1 supports fn0g in h. Lemma

1 implies that S1 can be transformed into a history h1 of M by adding penetrator nodes. Adding

penetrator nodes does not a�ect the strand count, so h1 has strand count at most �(f;M). We show

by contradiction that n0 also causes a violation of BSR(f) in h1. Suppose n0 does not cause such a

violation. Then there exists a support S0 for fn0g in h1 with strand count at most f . Lemma 3 implies

that S0 \ RNM
h is a support for fn0g in h with strand count at most f , a contradiction.

Suppose i0 = 0. The proof in this case is similar to the case i0 > 0, except n0 directly depends only on

R, so we omit supportMh0 (s0) from the de�nition of S1, and Lemma 2 implies that S1 n fn0g supports

R in h.

case 2: n0 is a positive node. n0 cannot cause a violation of BSR(f), so n0 causes a violation of RGR

in h. Let gs be the set of genvals g such that g 2 uniqOrigRqrdMh (Nh), predsh(n0) 6`
M
h g, predsh(n0)[

fn0g `Mh g, and no node in predsh(n0) [ fn0g directly reveals g. nodesToHistMh (predsh(n0) [ fn0g)

violates RGR, so gs is non-empty. There exists a g0 in gs that can be computed by the penetrator

before the other elements of gs; more precisely, for some g0 in gs, there is a history h0 that witnesses

predsh(n0) [ fn0g `
M
h g0 and that does not contain any strand for Dec (the penetrator's decryption

role) whose �rst argument is in gs. If such a g0 and h0 did not exist, then there would be circular

constraints on the order in which elements of gs can be computed by the penetrator, and none of

the elements of gs would be derivable from predsh(n0) [ fn0g, a contradiction. No node in h directly

reveals g0, so g0 does not occur in the clear in termh(n0). Thus, every history hd = htrd;!d; roledi

that witnesses derivability of g0 from predsh(n0) [ fn0g contains a strand sd for Dec with arguments

kd = args(Dec; trd(sd))(k) and td = args(Dec; trd(sd))(x) such that g0 occurs in the clear in td, and

ftdgkd originates from a node on a strand for Src in hd and from a regular node nc 2 predsh(n0)[fn0g

in h. Let hd be a history that witnesses derivability of g0 from predsh(n0) [ fn0g such that the

corresponding kd is not in gs; the above choice of g0 ensures that such a history exists. In all of the

following cases, a set S1 of nodes is de�ned that satis�es SCMh (S1) �SC �(f;M) and S1 `Mh g0 and

originh(g0) 2 S1.

case 2.1: kd is a long-term key. The unsent long-term keys restriction implies kd 2 pik . This

implies fncg `Mh g0. Let S1 = supportMh0 (strand(nc)) [ supportMh0 (strand(originh(g0))).

case 2.2: kd is not a long-term key. Then kd 2 Keysess .

case 2.2.1: kd 62 uniqOrigRqrdMh (Nh). kd is available to the penetrator from strands for Msg,

so fncg `Mh g0. Let S1 = supportMh0 (strand(nc)) [ supportMh0 (strand(originh(g0))).

case 2.2.2: kd 2 uniqOrigRqrdMh (Nh).

case 2.2.2.1: predsh(n0) `
M
h kd. ThenNh0 `

M
h0

kd. h0 satis�es RGR, so there is a node nk

that directly reveals kd. Let S1 = supportMh0 (strand(nc))[support
M
h0
(strand(originh(g0)))[

supportMh0 (strand(nk)).

case 2.2.2.2: predsh(n0) 6`
M
h kd. The existence of strand sd in hd implies predsh(n0) [

fn0g `Mh kd. If kd is not directly revealed by n0, then kd is in gs (because it satis�es
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all of the conditions), a contradiction; thus, kd is directly revealed by n0. Let S1 =

supportMh0 (strand(nc)) [ supportMh0 (strand(originh(g0))) [ supportMh0 (strand(n0)) [ fn0g.

In all the above cases (within case 2) except 2.2.2.2, S1 is a union of supports (of various strands), so

Lemma 2 implies that S1 is a support of some set of nodes (e.g., itself), so Lemma 1 implies that S1

can be transformed into a history h1 of M by adding penetrator nodes. In case 2.2.2.2, this reasoning

applies to S1 n fn0g, and it is easy to see (because n0 is positive) that adding n0 yields a history of

M, so in this case, too, S1 can be transformed into a history h1 of M by adding penetrator nodes.

Adding penetrator nodes does not a�ect the strand count, so h1 has strand count at most �(f;M).

By construction, originh(g0) 2 S1, so g0 2 uniqOrigRqrdMh1 (Nh1). By construction, S1 `Mh g0, which

implies Nh1 `
M
h1

g0. Removing nodes in Nh nNh1 and adding penetrator nodes preserves the fact that

no node directly reveals g0. Thus, n0 causes a violation of RGR in h1.

6 Reduction for Correctness Requirements

Given a strand count f for a protocol �, de�ne a strand count dbl(f) for � by: dbl(f)(r) = 2f(r).

Theorem 3. Let M = h�; peni be a system satisfying the shallow ciphertext and unsent long-term keys

restrictions. Let f be a strand count for �. Let � be a genval secrecy or agreement requirement. Suppose

all histories of M with strand count �(f;M) satisfy BSR(f) and RGR. M satis�es � i� all histories of M

with strand count dbl(f) do.

Proof: The forward direction ()) of the \i�" follows immediately from the de�nitions. For the reverse

direction ((), we prove the contrapositive, i.e., we suppose there exists a history h = htr ;!; rolei of M

that violates �, and we construct a history of M with strand count at most dbl(f) that violates �.

Genval secrecy and agreement are safety properties [AS85] satis�ed by histories with zero nodes, and �h

is well-founded, so there exists a �h-minimal node n0 such that

� nodesToHistMh (predsh(n0)) satis�es �.

� nodesToHistMh (predsh(n0) [ fn0g) violates �.

By hypothesis, all histories of M with strand count �(f;M) satisfy BSR(f) and RGR, so Theorem 2

implies thatM satis�es BSR(f) and RGR. Thus, there exists a support S0 for strand(n0) in history h ofM

with strand count at most f .

Suppose � is a genval secrecy requirement G. n0 causes a violation of �, so there exists a genval g

such that g is the value of some parameter in G for some strand sg and g 2 uniqOrigRqrdMh (predsh(n0))

(because genval secrecy requirements contain only uniquely-originated parameters) and predsh(n0) 6`
M
h g and

predsh(n0) [ fn0g `
M
h g. RGR applied to nodesToHistMh (predsh(n0) [ fn0g) implies that there is a node in

predsh(n0)[fn0g that directly reveals g. No node in predsh(n0) directly reveals g (because predsh(n0) 6`
M
h g),

so n0 directly reveals g. M satis�es BSR(f), so there exists a support Sg for sg in history h of M with

strand count at most f . Lemma 2 implies that S0[Sg is a support for nodesh(strand(n0))[nodesh(sg) with

strand count at most dbl(f). Lemma 1 implies that S0 [ Sg can be transformed into a history h0 of M by

adding penetrator nodes. originh(g) is in S0 [ Sg , so g 2 uniqOrigRqrdMh0 (Nh0). Thus, n0 directly reveals g

in h0 and thereby causes a violation of � in h0.
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Suppose � is an agreement requirement: hr1; len1; xs1i precedes hr2; len2; xs2i. n0 causes a violation of

� in h, so strand(n0) is an uncompromised strand for r2, and index(n0) = len2 � 1. Lemma 1 implies that

S0 can be transformed into a history h0 of M by adding penetrator nodes. Note that n0 2 Nh0 . Removing

nodes in Nh n Nh0 and adding penetrator nodes preserve strand(n0) being uncompromised and preserves

the lack of a node hs1; len1i such that role(s1) = r1 and the equality (11) (with s2 replaced with s0) holds.

Thus, h0 violates �.

7 Bounds for Sample Protocols

Based on Theorems 2 and 3, bounds on the strand counts of histories that need to be explored to check

correctness of the systems in (10) can be computed from (15), (25), and (26). The results are

System Init Resp Srvr

MNSL (Needham-Schroeder-Lowe) 3 3 none

MY (Yahalom) 3 6 3

MOR (Otway-Rees) 3 3 3

(28)

For a role consisting only of negative terms followed by positive terms, there is no need to allow instances

of that role to be concurrent. Server roles typically have this form. For example, when model-checking the

Yahalom protocol, the three instances of the server role can be represented by a single process that executes

a loop that iterates three times, where the body of the loop is the server role. This reduces the number of

global states.

Our restrictions are designed to hold for correct systems but hold for some awed systems as well. For

example, the Otway-Rees protocol does not ensure key agreement [THG98a] but satis�es our restrictions,

so our reduction can be used with state-space exploration to verify that it satis�es some weaker agreement

properties.

8 Computing Small Supports

De�ne a partial order on sets of nodes of a history h of a systemM: S1 �
M;h
SC S2 i� SCMh (S1) �SC SCMh (S2).

To check the bounded support restriction automatically, small supports need to be computed during

state-space exploration. It is easy to devise a brute-force algorithm that computes a �M;h
SC -minimal support

of a given set S of nodes in a given history h of a systemM by testing whether each subset of Nh is a support

for S. A faster algorithm that computes suÆciently small supports for protocols of interest is preferable,

even if it does not always compute �M;h
SC -minimal supports.

We describe a simple polynomial-time algorithm that computes suÆciently small supports for the systems

we have considered; e.g., for all regular strands in all histories ofMNSL, it computes a support containing at

most one strand for each role. The algorithm assumes the protocol satis�es the shallow ciphertext restriction

and the unsent long-term keys restriction, and that the history h satis�es RGR (otherwise, the hypotheses

of the reduction are violated, so computing a support is unnecessary).

The discussion in the proof of Theorem 1 implies that, if Nh � S0 � S and S0 is backward closed with

respect to ) and S0 is not a weak support for S, then there exist a node nu 2 S0, a node nd 2 Nh, and a
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subterm tu of termh(n) such that predsh(nu) \ S0 \ RNM
h 6`Mh tu and nd directly reveals tu in h (if tu is

a genval in uniqOrigRqrdMh (S0), this follows from RGR; if tu is a ciphertext, this follows from the shallow

ciphertext restriction). For such an S0, let needMh (S0) denote a function call that returns a �h-minimal

such node nd (nu and tu are not needed in the algorithm). For the systems we have considered, suÆciently

small supports are obtained regardless of which nu, tu, and nd are chosen. In fact, for each nu and tu, there

is in most cases only a single possible nd (intuitively, this is because authentication protocols are designed

to use unambiguous messages), and in such cases, the order in which di�erent nu and tu are considered is

insigni�cant.

For a set S of nodes, let backClosure(S) denote the least superset of S that is backward-closed with

respect to ).

S0 := backClosure(S)

while :(S0 is a weak support for S in h)

S0 := backClosure(S0 [ fneedMh (S0)g)

if (S0 is a support for S in h) return S0

else abort;

(29)

Checking whether a given set of nodes is a weak support or a support for another given set of nodes can

be done in polynomial time; the only non-trivial aspect is checking derivability of terms, which can be done

using the approach in [CJM98]. The simple treatment in (29) of Supp2 (i.e., abort if Supp2 is not satis�ed)

is suÆcient for the systems we have considered.

For example, consider using algorithm (29) to compute a support for fhsR; 2ig in the history ofMY in Fig-

ure 4. The algorithm starts with S0 = backClosure(fhsR; 2ig), which evaluates to S0 = fhsR; 0i; hsR; 1i; hsR; 2ig.

S0 is not a weak support for S, due to nu = hsR; 2i, tu = fP �k0gkey(B;S), nd = hsS ; 2i. Inserting hsS ; 2i in

S0 and taking the backward closure yields S0 = fhsS ; 0i; hsS ; 1i; hsS ; 2i; hsR; 0i; hsR; 1i; hsR; 2ig. S0 is not a

weak support for S, due to nu = hsS ; 0i, tu = fP �ni0 �nr00gkey(B;S), nd = hs0R; 1i. Inserting hs
0
R; 1i in S0 and

taking the backward closure yields SY , which is a weak support and a support for fhsR; 2ig, so the algorithm

returns SY .

The eÆciency of algorithm (29) can be improved by maintaining auxiliary data structures. The primary

goal of this paper is to bound the number of strands and thereby limit exponential state-space explosion, so

optimizations to polynomial-time algorithms are not explored here.

9 Discussion of Strand Counts

We do not have formal guidelines for choosing a strand count f for verifying a given system. Let fi denote the

strand count such that fi(r) = i for every role r. In principle, one could do an iterative search, starting with

f = f1 and repeatedly increasing f until state-space exploration of histories with strand count �(f;M) either

�nds an attack or shows that the protocol satis�es BSR(f) and RGR. This is a semi-decision procedure,

because it diverges for systems like Mus in Section 3.3. This semi-decision procedure is more powerful than

a semi-decision procedure that simply searches for attacks using more and more strands (in the manner

of iterative deepening), because the former can both �nd attacks and verify correctness, while the latter

diverges for all correct protocols and hence cannot verify correctness. In practice, iterative search for an

appropriate f seems largely unnecessary, because it appears that correct protocols of interest here satisfy
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BSR(f2).
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A Uniquely-Originated Genvals in pik

The de�nition of history requires that values of uniquely-originated parameters for uncompromised strands

are not in genvals(pik ). This reects the intuition that uniquely-originated genvals are fresh. However, it

might seem surprising to require that values of uniquely-originated parameters in a history htr ;!; rolei satisfy

a (slightly) stronger requirement than that they be uniquely-originated in tr . Consider a modi�ed de�nition

obtained by omitting the requirement that values of uniquely-originated parameters for uncompromised

strands are not in genvals(pik ); this de�nes a weak history. We show that the two de�nitions are equivalent

from the perspective of correctness of systems.

Lemma 4. Let h = htr ;!; rolei be a weak history of a system h�; hpik ; compr ii. Suppose there is an

uncompromised regular strand s in h and a uniquely-originated parameter x 2 dom(args(role(s); tr(s)))
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such that the genval g = args(role(s); tr(s))(x) is in genvals(pik ). Let h1 be obtained from h by replacing

all occurrences of g with a genval g1 that is not in genvals(termh(Nh) [ pik ). Then h1 is a weak history of

h�; hpik ; comprii.

Proof: All of the conditions on weak histories are trivially preserved by the replacement except the strong

typing assumption for strands for Msg and regular strands (note that compromisedness is preserved because

genvals are excluded from the range of compromised-trace policies). Regarding strands for Msg, the unique-

origination condition in the de�nition of weak history implies that h does not contain a strand sMsg for Msg

such that g occurs in termh(hsMsg; 0i), so the replacement does not change the arguments of strands for

Msg, so the strong typing assumption holds for all strands for Msg in h1. For all regular strands s and all

x 2 dom(args(role(s); tr(s))), we need to show that replacing g with g1 in args(role(s); tr(s))(x) yields a

term in the type of x. The roles of � are assumed to be well-formed, and the �rst well-formedness condition

on roles implies that the type of every parameter of a well-formed role is closed under substitutions that

replace one genval with another genval.

Lemma 5. For every system M and every correctness requirement �, all weak histories of M satisfy � i�

all histories of M satisfy �.

Proof: The forward direction ()) of the \i�" follows immediately from the fact that the set of histories of

M is a subset of the set of weak histories of M. For the reverse direction ((), we show the contrapositive,

i.e., we suppose M has a weak history h that violates � and show that M has a history h1 that violates �.

h1 is obtained from h by performing the replacement described in Lemma 4 to every genval to which it is

applicable. It is easy to show using Lemma 4 that h1 is a history of M. It remains to show that h1 violates

�. This is straightforward if � is an agreement requirement. Suppose � is a genval secrecy requirement, and

h violates � by revealing a genval g. If g was replaced with a di�erent genval g1 during construction of h1,

then h1 reveals g1 and thereby violates �; otherwise, h1 reveals g and thereby violates �.

We adopt the stronger de�nition of history, because it simpli�es some proofs (by factoring out the above

reasoning). For example, Lemma 1 were expressed using weak histories, then for a weak history htr ;!; rolei

that satis�es the hypotheses of Lemma 4 for some uncompromised strand s and some uniquely-originated

parameter x of role(s), the proof of Lemma 1 would need to consider the possibility that some trn contains

a strand for Msg from which the genval args(role(s); tr(s))(x) originates, which would cause a violation of

the unique-origination condition in tr 0.

B Proof that Needham-Schroeder-Lowe Protocol Satis�es BSR(f1)

Lemma 6. Every regular strand s in every history h = htr ;!; rolei for MNSL has a weak support in h

with strand count at most f1, where f1(r) = 1 for all r 2 �NSL.

Proof: We assume len(tr(s)) = len(role(s)), because shorter traces have smaller supports. Consider cases

based on role(s).

case 1: role(s) = InitNSL. Let iI ; rI ; niI ; nrI denote the arguments of InitNSL in s (i.e., iI =

args(InitNSL; tr(s))(i), and so on).
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case 1.1: s is compromised, i.e., rI = P . Then nodesh(s) is a weak support for s with

strand count at most f1, because hs; 1i is the only negative node on s, nrI and niI are not

in uniqOrigRqrdMNSL

h (nodesh(s)), and the other subterms of termh0(hs; 1i) are always available

to the penetrator from strands for Msg.

case 1.2: s is uncompromised. Let S be a �-minimal weak support for s in h. Let h0 =

htr 0;!0; role 0i be a history whose existence is implied by Lemma 1 applied to S. Note that

role 0(s) = role(s) for all regular strands in h0. hs; 1i is the only negative node on s. Consider

cases based on whether the ciphertext received by node hs; 1i originates from a regular node in

h0. That ciphertext has the form ft1 �t2 �t3gt4 , where the ti are primitive terms.

case 1.2.1: there exists a positive regular node hsR; jRi 2 predsh0(hs; 1i) with abs(termh0(hsR; jRi)) =

abs(termh0(hs; 1i)). Traces for InitNSL do not contain positive terms with subterms of the

form ft1 �t2 �t3gt4 , so role 0(sR) = RespNSL and jR = 1. Let iR; rR; niR; nrR denote the ar-

guments of RespNSL in sR. The equality abs(termh0(hsR; jRi)) = abs(termh0(hs; 1i)) implies

niI = niR ^nrI = nrR ^ rI = rR. S and Ntr 0 contain nodesh(s)[fhsR; 0i; hsR; 1ig (they also

contain a weak support for hsR; 0i). Consider cases based on whether the ciphertext received

by hsR; 0i originates from a regular node in h0.

case 1.2.1.1: there exists a positive regular node hs0; j0i 2 predsh0(hsR; 0i) with abs(termh0(hs0;

j0i)) = abs(termh0(hsR; 0i)). Traces for RespNSL do not contain positive terms with sub-

terms of the form ft1 � t2gt3 , where the ti are primitive terms, so role 0(s0) = InitNSL

and j0 = 0. Let i0; r0; ni0; nr0 denote the arguments of InitNSL in s0. The equality

abs(termh0(hs0; j0i)) = abs(termh0(hsR; 0i)) implies ni0 = niR^i0 = iR^r0 = rR. ni
0 = niR

and niI = niR together imply ni0 = niI . InitNSL:ni is uniquely-originated, so s0 = s or

s and s0 are compromised. In case 1.2, s is uncompromised, so s0 = s. S is �-minimal,

so len(tr 0(sR)) = jR, so hsR; 2i 62 Nh0 . Thus, S = nodesh(s) [ fhsR; 0i; hsR; 1ig is a weak

support for s in h with strand count at most f1.

case 1.2.1.2: there does not exist a positive regular node hs0; j0i 2 predsh0(hsR; 0i)

with abs(termh0(hs0; j0i)) = abs(termh0(hsR; 0i)). Then there exists a positive penetra-

tor node hs0; j0i 2 predsh0(hsR; 0i) such that abs(termh0(hs0; j0i)) = abs(termh0(hsR; 0i)),

role 0(s0) = Enc, and tr 0(s0) = Enc(niR �iR; pubkey(rR)). We show that this case is im-

possible. hs0; 0i is a negative penetrator node in which niR occurs in the clear. niR =

niI , so Nh0 `MNSL

h0 niI . MNSL is known to satisfy the genval secrecy requirement

fInitNSL:ni; InitNSL:nr;RespNSL:ni;RespNSL:nrg, so s is compromised, contradicting

the hypothesis of case 1.2.

case 1.2.2: there does not exist a positive regular node hsR; jRi 2 predsh0(hs; 1i) with

abs(termh0(hsR; jRi)) = abs(termh0(hs; 1i)). Then there exists a positive penetrator node

hs0; j0i 2 predsh0(hs; 1i) such that abs(termh0(hs0; j0i)) = abs(termh0(hs; 1i)), role 0(s0) = Enc,

and tr 0(s0) = Enc(niI �nrI �rI ; pubkey(iI)). We show that this case is impossible. As in case

1.2.1.2, genval secrecy implies s is compromised, a contradiction.

case 2: role(s) = RespNSL. Let iR; rR; niR; nrR denote the arguments of RespNSL in s.

case 2.1: s is compromised, i.e., iR = P . By reasoning similar to that in case 1.1, nodesh(s) is a

weak support for s.
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case 2.2: s is uncompromised. Consider cases based on whether the ciphertext received by hs; 2i

originates from a regular node.

case 2.2.1: there exists a positive regular node hsI ; jIi 2 predsh0(hs; 2i) with abs(termh0(hsI ; jIi)) =

abs(termh0(hs; 2i)). Traces for RespNSL do not contain positive terms with subterms of the

form ft1gt2 , where the ti are primitive terms, so role 0(sI) = InitNSL and jI = 1. Let

iI ; rI ; niI ; nrI denote the arguments of InitNSL in sI . The equality abs(termh0(hsI ; jIi)) =

abs(termh0(hs; 2i)) implies nrI = nrR ^ rI = rR. If sI were compromised (i.e., rI = P ), then

rR = P , which is impossible, because the type of RespNSL:r does not contain P . Thus, sI is

uncompromised.

Let S be a �-minimal weak support for sI . Consider cases based on whether the ciphertext

received by hsI ; 1i originates from a regular node in h0.

case 2.2.1.1: there exists a positive regular node hs0; j0i 2 predsh0(hsI ; 1i) with abs(termh0(hs0;

j0i)) = abs(termh0(hsI ; 1i)). Then sI falls in case 1.2.1, so (as argued there) role 0(s0) =

RespNSL and j0 = 1. Let i0; r0; ni0; nr0 denote the arguments of RespNSL in s0. Case

1.2.1.2 is impossible, so sI falls in case 1.2.1.1, i.e., the ciphertext received by hs0; 0i origi-

nates from a regular node (namely, hsI ; 0i) in h0. The equality abs(termh0(hs0; j0i)) =

abs(termh0(hsI ; 1i)) implies nr0 = nrI . nr0 = nrI and nrI = nrR together imply

nr0 = nrR. RespNSL:nr is uniquely-originated, so s
0 = s or s and s0 are compromised. In

case 2.2, s is uncompromised, so s0 = s. It is easy to show that nodesh(sI )[ nodesh(s) is

a weak support for both sI and s in h with strand count f1.

case 2.2.1.2: there does not exist a positive regular node hs0; j0i 2 predsh0(hsI ; 1i) with

abs(termh0(hs0; j0i)) = abs(termh0(hsI ; 1i)). This case is impossible, because sI falls in

case 1.2.2, which is impossible.

case 2.2.2: there does not exist a positive regular node hsI ; jIi 2 predsh0(hs; 2i) with abs(termh0(hsI ;

jI i)) = abs(termh0(hs; 2i)). We show that this case is impossible. By reasoning similar to

that in case 1.2.1.2, genval secrecy implies s is compromised, a contradiction.

Lemma 7. MNSL satis�es BSR(f1).

Proof: This follows from Lemma 6 and the observation that, the set over which g ranges in condition

Supp2 is empty, mainly because no genvals that are required to be uniquely-originated are revealed to the

penetrator, i.e., MNSL satis�es the genval secrecy requirement fInitNSL:ni;RespNSL:nrg.
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