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Abstract

Role-Based Access Control (RBAC) is a widely used model for expressing access control
policies. In large organizations, the RBAC policy may be collectively managed by many ad-
ministrators. Administrative RBAC (ARBAC) models express the authority of administrators,
thereby specifying how an organization’s RBAC policy may change. Changes by one adminis-
trator may interact in unintended ways with changes by other administrators. Consequently,
the effect of an ARBAC policy is hard to understand by simple inspection. In this paper,
we consider the problem of analyzing ARBAC policies. Specifically, we consider reachability
properties (e.g., whether a user can eventually be assigned to a role by a group of administra-
tors), availability properties (e.g., whether a user cannot be removed from a role by a group
of administrators), containment properties (e.g., every member of one role is also a member of
another role) satisfied by a policy, and information flow properties. We show that reachability
analysis for ARBAC is PSPACE-complete. We also give algorithms and complexity results for
reachability and related analysis problems for several categories of ARBAC policies, defined by
simple restrictions on the policy language. Some of these results are based on the connection
we establish between security policy analysis and planning problems in Artificial Intelligence.

1 Introduction

Background. Role-Based Access Control (RBAC) [SCFY96] is a well known and widely used
model for expressing access control policies. At a high level, an RBAC policy specifies the roles
to which each user has been assigned (the user-role assignment) and the permissions that have
been granted to each role (the permission-role assignment). Users may perform multiple roles in
an organization. For instance, in a university setting, a teaching assistant (TA) for a course may
be enrolled in other courses at the same time. That person has at least two distinct roles in the
university: TA and student. Permissions are associated with these roles; for example, a student can
access only her assignments and grades, while a TA can access assignments submitted by students
in the course. Expressing access control policy using roles eases specification and management of
policies, especially in large organizations.
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pyang@cs.binghamton.edu. Phone: (607)-777-5697. Fax: (607) 777-4729 This work was supported in part by NSF
under Grants CCR-0205376 and CCR-0311512, and by ONR under grant N00014-04-1-0722.



The RBAC policy in a large organization may be collectively managed by many administra-
tors. For instance, a department manager may have authority to determine who is a TA, while
the registrar’s office determines who is a student. Thus, there is a need to specify the authority of
each administrator. Administrative RBAC’97 (ARBAC97) [SBM99] is a model for expressing such
policies. At a high level, an ARBAC policy is specified by sets of rules, including can assign rules
that specify the roles to which an administrator may assign a user, and under what conditions, and
can revoke rules that specify the roles from which an administrator may remove a user, and under
what conditions. The conditions may be positive or negative. For instance, a can assign rule can
be used to specify that a department chair may appoint a user as a TA only if the user is already
a student and is not a research assistant. In short, an ARBAC policy defines administrative roles,
and specifies how members of each administrative role can modify the RBAC policy.

The Problem. It is often hard to understand the effect of an ARBAC policy by simple inspection.
For instance, consider a can assign rule for a department manager that specifies that (1) only
students may be appointed as TAs, and (2) a student in a class cannot be appointed as a TA of the
same class. Thus assignment of a user to the TA role is governed by both a positive precondition (1),
and a negative precondition (2). At first glance it appears as though this ensures that a student
in a class cannot be the TA for that class. However, this desired condition may not hold: the
registrar’s policy for assigning a student role in a course might check only the student’s registration
status and not include conditions regarding TA-ship. This policy would allow the registrar to
add someone to a class after that person’s appointment as a TA for that class by the department
manager. This example illustrates that changes to the RBAC policy by one administrator may
interact in unintended ways with changes by other administrators. The ARBAC policy should
be designed to prevent such unexpected interactions. In large organizations with many roles (e.g.,
[SMJ01] describes a European bank’s policy with over 1000 roles) and many administrative domains,
understanding the ARBAC policy’s implications for such interactions may be difficult.

Analysis of security policies has been long recognized as an important problem, e.g., [HRU76,
LS77, San88, San92, SM02, JR04, LT06, LMW05]. In a role-based policy framework, a natural
analysis problem is to check potential role membership. The reachability (or safety [HRU76]) prob-
lem asks whether a given user u is a member of a given role r in any policy reachable from the
initial (i.e., current) policy by actions of a given set of administrators. The availability [LMW05]
problem asks whether a given user u is a member of a given role r in all policies reachable from
the initial policy by actions of a given set of administrators. Another natural analysis problem is
containment [LMW05]. For example, role-role containment problem asks whether every member
of a given role r1 is also a member of a given role r2 in some (or all) reachable policies.

Contributions. We define miniARBAC, an ARBAC model based closely on ARBAC97 [SBM99];
the main differences are that miniARBAC allows preconditions for revocation and allows explicit
specification of static mutually-exclusive role (SMER) constraints (also called static separation of
duty constraints). We show that the reachability problem (abbreviated as “RE”) for miniARBAC is
PSPACE-complete by relating it to a PSPACE-complete planning problem in Artificial Intelligence
(AI). To the best of our knowledge, our work is the first to study the connection between security
policy analysis and the well-studied area of planning in AI. This complexity result motivates us
to consider restrictions on the policies and two variants of the reachability problem. Our goals
are to better understand the intrinsic complexity of the problem and to identify tractable cases of
practical interest.
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We consider the following restrictions on policies:

1. N : no negative preconditions.

2. EN : no explicit negative preconditions; negative preconditions for role assignment may occur
only in the form of static mutually-exclusive role (SMER) constraints [LTB07] (sometimes
called separation of duty constraints), each of which specifies that a user cannot simultane-
ously be a member of two given roles;

3. CR: every role can be revoked unconditionally; and

4. D: disjunction is not used in the policy’s overall conditions for assignment or revocation of a
role. The precondition in a single rule never contains explicit disjunction, so this restriction
actually requires that there is at most one assignment rule and one revocation rule per role.

We expect that most ARBAC policies satisfy one of these restrictions on negation. Moreover, while
role assignments typically have preconditions, role revocations typically do not, and considering
unconditional revocation of all roles is sufficient for analysis of policies designed primarily to ensure
safety (as opposed to availability). The restriction on disjunction is motivated by results for AI
planning that show that this restriction (called post-uniqueness in the planning literature), in
combination with other restrictions, can reduce the complexity of planning [BK91, BN95].

We also consider two variants of the Reachability problem. One is Bounded Reachability (BRE):
is the goal of adding the given user to the given role reachable using at most a given number of
administrative operations? The other is Existence of a Polynomial-size Plan (EPP) for a class of
policies: is every reachable goal reachable using a sequence of operations whose length is polynomial
in the size of the policy? We consider these variants of reachability analysis primarily to shine some
indirect light on the difficulty of reachability analysis for problem classes for which the complexity
of reachability analysis itself is unknown.

Restricting attention to plans or paths of bounded length is a common idea in bounded-length
planning and bounded model checking [BCC+03]. Generally, the bounded version of the prob-
lem is not of intrinsic interest, but it provides a way to partially or indirectly attack the original
(unbounded) problem when the latter is too difficult. This is the case in our work as well. We estab-
lish complexity results for BRE for some problem classes for which there are no known complexity
results for reachability.

Existence of a polynomial-size plan is a natural property to consider. In addition to the intu-
itive connection that reachability is easier when the plans are shorter (and the plans, regarded as
potential attacks, are more practical), some specific complexity results for reachability follow from
complexity results for EPP. In particular, if EPP for a problem class is true, then Reachability
(i.e., the reachability decision problem) for that problem class is in NP; and if EPP is false for a
problem class, then the plan generation problem for that problem class is not in P.

We explore the complexity of reachability analysis, the above variants of it (BRE and EPP),
and availability analysis under combinations of these restrictions on policies. Some of our results
are corollaries of existing results for AI planning, but most of our results are new. In many cases,
the restricted analysis problem still has high computational complexity. Perhaps the most revealing
of these results is the non-existence of polynomial-size plans for a number of classes of ARBAC
policies. This reflects the difficulty of understanding the implications of ARBAC policies.

In summary, the main contributions of this paper are to:
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• establish that reachability analysis for general miniARBAC policies is PSPACE-complete;

• determine the computational complexity of user-role reachability analysis and the above vari-
ants of it (namely, BRE and EPP) for several categories of miniARBAC policies;

• give algorithms for cases where the analysis problem is solvable in polynomial time;

• give algorithms and complexity results for several other analysis problems, including permission-
role reachability, user-permission reachability, availability, role-role containment, permission-
role containment, and information flow analysis.

• give complexity result for reachability analysis of a variant of miniARBAC that does not
require disjointness of administrative roles and regular roles.

Sections 2 and 3 provide an overview of RBAC and ARBAC policies. Sections 4, 5 and 7
formally define the analysis problems and provide algorithms and complexity results for user-role
reachability analysis. Other analysis problems are considered in Section 6. The related work and
concluding remarks appear in Sections 8 and 9, respectively.

2 Role Based Access Control (RBAC)

The central notion of RBAC is that users are assigned to appropriate roles and roles are assigned
appropriate permissions. Thus, a role serves as an intermediary in correlating users with permis-
sions. In this paper, we study policy analysis only for models of RBAC based on [Ame04]. Since
the policy analysis queries we support are independent of sessions, we consider simplified (“mini”)
models that do not support sessions.

The miniRBAC model is based on the core RBAC model [Ame04].

Definition 1: miniRBAC. A miniRBAC policy γ is a tuple (U,R,P,UA,PA) where

• U , R and P are finite sets of users, roles, and permissions, respectively. A permission repre-
sents authorization to invoke a particular operation on a particular resource.

• UA ⊆ U ×R is the user-role assignment relation. (u, r) ∈ UA means that user u is a member
of role r.

• PA ⊆ P × R is the permission-role assignment relation. (p, r) ∈ PA means that members of
role r are granted the permission p.

Given γ = (U,P,R,UA,PA), define usersγ(r) = {u ∈ U : (u, r) ∈ UA} and permsγ(r) = {p ∈
P : (p, r) ∈ PA}.

Our miniHRBAC model, based on Hierarchical RBAC [Ame04], extends miniRBAC with role
hierarchies, which are a natural means for structuring roles to reflect an organization’s lines of
authority and responsibility.

Definition 2: miniHRBAC. A miniHRBAC policy γh is a tuple (U,R,P,UA,PA,�) where

• U , R, P , UA and PA are as in miniRBAC.

• � ⊆ R×R is a partial order, called the role hierarchy.

4



Committee

Promotion

[Assign

[Use gym]

[Grant tenure]

Univ−Employee

Univ−Member

 grades]
[Assign
 homework
 scores]

[Register for
 courses]

Faculty
Employee

FullTime Teaching
Assistant

Student

PartTime

Employee

[Receive
 health
 benefits]

Figure 1: Example of miniRBAC and miniHRBAC policy.

r1 � r2 means r1 is senior to r2; i.e., every member of r1 is also a member of r2, and every
permission assigned to r2 is also available to members of r1. Thus, r2 inherits all the users of r1,
and r1 inherits all the permissions of r2.

Given γh = (U,P,R,UA,PA,�), we extend the usersγ and permsγ functions to account for
role hierarchy: usersγh(r) = {u ∈ U : ∃r′ ∈ R.r′ � r ∧ (u, r′) ∈ UA}, and permsγh(r) = {p ∈ P :
∃r′ ∈ R.r � r′ ∧ (p, r′) ∈ PA}. We define Senior(r) = {r′ ∈ R : r′ � r}.

Figure 1 gives a simple example of a miniRBAC and a miniHRBAC policy with 8 roles. Consider
the roles Univ-Member, Univ-Employee, and Student. The permissions for each role are shown
below the role. Users in the Univ-Member role are members of the University and have permission
to use University facilities like the gym. The roles Univ-Employee and Student are senior to the
Univ-Member role. Thus, members of these roles are also implicitly members of the Univ-Member

role, and inherit the permission to use the gym.

3 Administrative Role Based Access Control (ARBAC)

Administration of (i.e., changes to) RBAC policies must be carefully controlled. RBAC policies for
large organizations may have over a thousand roles and tens of thousands of users. For scalability, it
is necessary to distribute the task of administering such large policies, by giving each administrator
authority to make specified kinds of changes to specified parts of the policy. This is an access
control policy that, for scalability and ease of administration, can profitably be expressed in a
role-based manner.

ARBAC97 (“Administrative RBAC”) is a model for decentralized administration of RBAC
policies [SBM99]. Changes to the ARBAC policy (e.g., granting permissions to administrative
roles) are not considered in the ARBAC97 model. This is justified by assuming that only a small
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group of fully trusted administrators are allowed to modify the ARBAC policy.
In typical ARBAC policies, there is a single top level administrator role, called the Senior Secu-

rity Officer (SSO) which is the principal administrator of the RBAC policy and which establishes
the ARBAC policy. The SSO partitions the organization’s RBAC policy into different security
domains, each of which is administered by a different Junior Security Officer (JSO). For example,
there may be a JSO role for each department. The ARBAC policy specifies the permissions assigned
to each JSO role; for example, to which normal roles and under what conditions can members of
a JSO role assign users. SSOs can design ARBAC policies that enforce global constraints on the
RBAC policy by allowing JSOs to make only changes that are consistent with the constraints.

There are three main parts in an ARBAC97 policy: the user-role administration (URA) policy,
the permission-role administration (PRA) policy, and the role-role administration (RRA) policy.
They control changes to the user-role assignment UA, the permission-role assignment PA, and the
role hierarchy respectively. In this paper, we consider a slightly modified version of ARBAC97,
which we call miniARBAC. A miniARBAC policy consists of URA, PRA, and RRA policies, de-
fined below.

URA policy. The URA policy controls changes to the user-role assignment UA. Its specification
uses preconditions (called prerequisite conditions in [SBM99]) which are conjunctions of literals,
where each literal is either r or ¬r for some role r. Given a miniRBAC state γ and a user u, u
satisfies a precondition ∧ili, denoted u |=γ ∧ili, iff for all i, either li is a role r and u ∈ usersγ(r),
or li is a negated role ¬r and u /∈ usersγ(r).

Permission to assign users to roles is specified by the can assign ⊆ AR×C ×R relation, where
AR is a finite set of administrative roles and C is the set of all preconditions on R. ARBAC97
requires that AR ∩ R = ∅. A UserAssign(ra, u, r) action specifies that an administrator who is
a member of the administrative role ra adds user u to role r. This action is enabled in state
γ = (U,P,R,UA,PA) iff there exists (ra, c, r) ∈ can assign and u |=γ c. Upon executing the action,
γ is transformed to the state γ′ = (U,P,R,UA ∪ {(u, r)},PA). Note that preconditions are not
invariants; if (ra, r1, r2) ∈ can assign, then a user u in r1 and r2 remains a member of r2 even if
an administrator removes u from r1. If some role r does not appear in the last component of any
tuple in can assign, then no administrator can add users to r, but r could still appear in the initial
role assignment.

Permission to revoke users from roles is specified by the can revoke ⊆ AR×C×R relation, where
AR and C are as above. [SBM99] mentions the option of including preconditions in can revoke but
does not include them in the basic ARBAC97 model. A UserRevoke(ra, u, r) action specifies that an
administrator who is a member of the administrative role ra removes user u from the membership of
role r. This action is enabled in state γ = (U,P,R,UA,PA) iff there exists (ra, c, r) ∈ can revoke and
u |=γ c. Upon executing the action, γ is transformed to the state γ′ = (U,P,R,UA \ {(u, r)},PA).

PRA policy. The PRA policy controls changes to the permission-role assignment PA. Assign-
ment of a permission p to a role r by an administrator in administrative role ra is achieved by the
PermAssign(ra, p, r) action and is controlled by the can assign p relation. Similarly, revocation
of a permission p from a role r by an administrator in administrative role ra is achieved by the
PermRevoke(ra, p, r) action and is controlled by the can revoke p relation. These relations are
defined in the same way as the can assign and can revoke relations above, except that users are
replaced with permissions.

RRA policy. The RRA policy controls changes to the role hierarchy. Actions that modify the role
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hierarchy include CreateRole(r, rp, rc), which creates a new role r with parent rp and child rc (the
parent and child must be existing roles), DeleteRole(r), which deletes role r, InsertEdge(r1, r2),
which inserts an edge from r1 to r2 (i.e., makes r1 senior to r2), and DeleteEdge(r1, r2), which
deletes the edge from r1 to r2. Permissions to execute these actions are controlled by the can modify
⊆ AR×2R relation. The subsets of R are specified using range notation, similar to standard math-
ematical notation for numeric ranges. A role range has the form (r1, r2), (r1, r2], [r1, r2), or [r1, r2],
where r2 � r1. A parenthesis indicates that the endpoint is not included in the range; a square
bracket indicates that the endpoint is included in the range. For example, [r1, r2) denotes the
{r ∈ R | r2 � r � r1}, where r1 � r2 = r1 � r2 ∧ r1 �= r2. For an administrative role ra and
role range Y of the form (r1, r2), (ra, Y ) ∈ can modify specifies that members of ra can perform
CreateRole(r, rp, rc), DeleteRole(r), InsertEdge(r1, r2), and DeleteEdge(r1, r2) provided that r, rp,
rc, r1, and r2 are in Y and that some additional restrictions hold that ensure the changes to the
role hierarchy are sensible and safe; for example, deletion of roles that are referenced explicitly in
relations in URA, PRA, or RRA (e.g., roles that appear in preconditions in can assign) is prohib-
ited. We adopt these restrictions but omit details of them, because they do not affect our results.
Note that the RRA policy makes sense only in the presence of role hierarchy, i.e., when we are
considering changes to miniHRBAC policies not miniRBAC policies.

Static Mutually Exclusive Roles (SMER) constraints. miniARBAC also includes a set
of 1-2 SMER constraints [LTB07] which are used to enforce separation of duty [CW87]. SMER
constraints are called Static Separation of Duty (SSoD) constraints in [Ame04]; we follow [LTB07]
in referring to them as SMER constraints. A 1-2 SMER constraint is an unordered pair of roles
s = {r1, r2} and is satisfied in a state γ, denoted γ 
 s, iff users(r1) ∩ users(r2) = ∅; i.e., the roles
r1 and r2 do not have any users in common in the RBAC policy γ. γ is said to be valid for a set
of SMER constraints S iff ∀s ∈ S : γ 
 s. SMER constraints specifying disjointness of permissions
assigned to two roles could also be allowed, but it is unclear whether such constraints would be
useful in practice.

Note that a SMER constraint {r1, r2} can be expressed by including ¬r1 in the precondition of
all can assign rules for r2 and roles senior to r2, and vice versa. We choose to explicitly represent
SMER constraints (and not force them to be specified in the URA model using negation), because
this allows us to investigate whether policy analysis is easier if negation is used only in the form of
SMER constraints, which is a common case.

Definition 3: miniARBAC A miniARBAC policy is a tuple ψ =
(AR, �a, can assign, can revoke, can assign p, can revoke p, can modify ,SMER), where AR
is the set of administrative roles, the administrative role hierarchy �a is a partial order on AR,
and the other five relations are as defined above.

In summary, the differences between miniARBAC and ARBAC97, aside from notation, are that,
in miniARBAC: (1) can revoke and can revoke p are extended to allow preconditions for revoca-
tion, (2) SMER constraints can be explicitly specified, and (3) the last component of can assign,
can revoke, can assign p, and can revoke p is a single role, instead of a role range.

A miniARBAC policy specifies a transition relation between miniRBAC policies, which we re-

fer to as “states”. We denote a transition by γ
act→ψ γ′ where act is one of the administrative

actions specified above (namely, UserAssign, UserRevoke, PermAssign, PermRevoke, CreateRole ,
DeleteRole , InsertEdge, or DeleteEdge), and γ and γ′ satisfy the SMER constraints in ψ.
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Examples. We present a few example miniARBAC policies that illustrate features of miniARBAC.
Consider the miniHRBAC policy of Figure 1.

• Positive preconditions: A user can be made member of the Teaching-Assistant (TA)

role by an administrator in role ra only if she is already a member of the Student role. This
policy can be specified by the rule (ra, Student, TA) ∈ can assign.

• Conjunction in preconditions: A user who is a member of both Faculty and
FullTime-Employee roles can serve on the Promotion-Committee. This policy can be spec-
ified by the rule (ra, Faculty ∧ FullTime-Employee, Promotion-Committee) ∈ can assign,
where ra is an appropriate administrative role.

• 1-2 SMER constraints: A user can be a member of at most one of the Faculty

and Student roles. This policy can be specified by the constraint set SMER =
{{Faculty, Student}}.

• Negative preconditions: Negative preconditions in the can revoke relation can be used to
force role revocations to occur in a particular order. We might have a policy that says that
a user can be made member of the TA role only if he is already a member of the Student

role. The policy also requires that when a user ceases to be a Student he also ceases to be
a TA. This policy can be enforced with the following rules : (ra, Student, TA) ∈ can assign,
and (ra,¬TA, Student) ∈ can revoke. The second rule forces an administrator to revoke the
user’s TA role before revoking his Student role.

• Conditional role revocation: Recall that miniARBAC, unlike ARBAC97 [SBM99], allows
preconditions in role revocation. The policy with negative preconditions described above is
also an example of a policy that requires conditional role revocation.

4 Policy Analysis Problems

A miniARBAC policy ψ defines a transition relation between miniRBAC policies and therefore
defines a transition graph. Each vertex of the transition graph is a miniRBAC policy, and each

edge is a transition γ
act→ψ γ′. Usually we are interested in analyzing or restricting the power of

a given set A of administrative roles, so we discard edges labeled with actions by administrative
roles not in A (recall that the administrative role is the first argument of every action), and ask
the following kinds of queries about the resulting graph. Note that A is an implicit parameter of
all these queries.

• User-Role Reachability Analysis: Given a role r and a user u not in r, can u be added
to r (by actions of administrators in administrative roles in A)?

• Permission-Role Reachability Analysis: Given a role r and a permission p not granted
to r, can p be granted to r?

• User-Permission Reachability Analysis: Given a user u and a permission p, does there
exist a role r such that p can be granted to r and u can be added to r (i.e., p is granted to u)?
(If these two administrative operations can be done at all, they can be done simultaneously,
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because miniARBAC does not include any constraints that relate the user-role assignment
and the permission-role assignment.)

• User-Role Availability Analysis [LMW05]: Given a role r and a member u of r, can
u be removed from r ?

• Permission-Role Availability Analysis [LMW05]: Given a role r and a permission p
granted to r, can p be revoked from r?

• Role-Role Containment analysis: Given two roles r1 and r2, are the members of r1 always
(i.e., in the policy at every node) a subset of the members of r2

• Permission-Role Containment analysis: Given two roles r1 and r2, are the permissions
of r1 a subset of the permissions of r2 ?

4.1 Simplifying the Problem

These analysis problems can be simplified by eliminating irrelevant aspects of the RBAC and AR-
BAC policies. This reduces clutter but does not change the algorithmic complexity of the problem.
This section details our simplifications for user-role reachability analysis without role hierarchy
(i.e., for miniARBAC controlling changes to miniRBAC policies, not miniHRBAC policies). Simi-
lar simplifications are possible for other analysis problems.

A user-role reachability query Q has the form: Given a user u, a set A of administrative roles,
a set goal of roles, an initial miniRBAC policy γ, and a miniARBAC policy ψ, can administrators
in administrative roles in A, using the administrative permissions granted to those roles by ψ,
transform γ to another policy γ′ such that u is a member of all roles in goal in γ′?

We simplify the problem as follows.

1. Ignoring permissions: miniARBAC does not include any constraints that relate the user-
role assignment and the permission-role assignment, so the answer to Q is affected only by
the user-role assignment relation and the can assign, can revoke and SMER components of
ψ. The other components of γ and ψ can be ignored when answering Q. This also implies
that only the UserAssign and UserRevoke actions are relevant.

2. Implicit administrative role: Administrative roles not in A are assumed to be inactive
while administrators in administrative roles in A are trying to reach the goal. Thus, admin-
istrative roles not in A have no effect on the answer to Q, so we can remove from ψ every
administrative role that is not in A and is not junior to an administrative role in A. We
also remove all can assign and can revoke rules for the removed administrative roles. Then
Q asks about reachability under actions by all of the (remaining) administrative roles. Thus,
there is no need to distinguish these roles from each other, so we can delete their names. In
other words, we can assume that there is a single implicit administrative role, and we simplify
can assign and can revoke to have the type C ×R (instead of AR× C ×R).

3. Single user: The preconditions for UserAssign(ra, u, r) and UserRevoke(ra, u, r) depend
only on the current role memberships of the target user u. These conditions are independent
of the role memberships of other users. Therefore, when answering a query Q about user u,
we can remove all other users from the policy. Thus, we can assume there is a single implicit
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user, and we can simplify UA to be a subset of R, where r ∈ UA means that the implicit user
is a member of r.

With these simplifications, a (simplified) miniRBAC policy γ is a pair (R,UA) where UA ⊆ R,
an action is UserAssign(r) or UserRevoke(r), and a (simplified) miniARBAC policy ψ is a triple
(can assign, can revoke, SMER) where can assign, can revoke ⊆ C × R. Note that can modify is
omitted because we are not considering role hierarchy. A reachability query for the simplified policy
can be represented as a set goal of roles (since u and A are now implicit). A goal set goal is satisfied
in an RBAC policy state γ = (R,UA), denoted γ 
 goal, iff goal ⊆ UA.

Definition 4: Reachability Analysis Problem Instance. A (simplified) user-role reachability
analysis problem instance is a 3-tuple I = (γ, goal , ψ) where γ is a miniRBAC policy, ψ is a
miniARBAC policy, and goal ⊆ R is a goal set.

Given a reachability analysis problem instance, one natural question is whether an RBAC policy
state satisfying the goal can be reached starting from the initial state of the instance. A closely
related problem is to find a sequence of RBAC policy changes that lead to a state satisfying the
goal. Such a sequence of changes is called a plan, defined formally below.

Definition 5: Plan. Let I = (γ, goal, ψ) be a reachability analysis problem instance. A sequence
of actions act1, act2, . . . , actn where each acti ∈ {UserAssign(r),UserRevoke(r) : r ∈ R} is called a

plan or solution for I if γ
act1→ψ . . .

actn→ψ γ′ and γ′ 
 goal. The length of the plan is the length of
the sequence.

The reachability problem can be expressed in terms of plan existence:

Definition 6: Reachability (RE). Given a problem instance I, the Reachability Problem (RE)
is to determine whether or not there exists a plan for I.

Note that we allow the goal to be a set of roles. It might seem sufficient to take the goal to
be a single role, because reachability of a goal {g1, . . . , gn} can be reduced to reachability of a goal
containing a single role g by adding (g1 ∧ . . . ∧ gn, g) to the can assign relation. However, this
transformation cannot always be used, because it adds a can assign rule with multiple positive
preconditions to the policy, and some of our results in Section 5 depend on restrictions on the
number of preconditions or the number of positive preconditions in each rule. Also note that the
approach of separately checking reachability of g1, . . . , gn does not work, because even if these roles
are reachable individually, they might not be reachable simultaneously, e.g., if two of them are
involved in a SMER constraint.

The Reachability problem is PSPACE-complete in general, as shown below in Section 5. To
understand the problem better and identify efficiently solvable cases of practical interest, we con-
sider several subclasses of problem instances by imposing various structural restrictions on the
miniARBAC policy and the query. For several of these classes, we can tightly characterize the
complexity of the Reachability problem. However, there remain a number of classes for which the
precise complexity of the problem remains unknown. For such classes, it is interesting to consider
a variant of the problem, known as the Bounded Reachability problem, defined below.

Definition 7: Bounded Reachability (BRE). Given a problem instance I and an integer k,
the Bounded Reachability Problem (BRE) is to determine whether or not there exists a plan for I
of length at most k.

10



Note that BRE might be harder than RE for some problem classes—intuitively, this is because
finding a short plan might be more difficult than finding an arbitrary plan. Below, we show that
RE is no harder than BRE:

Lemma 1 For any problem class, BRE is at least as hard as RE.

Proof Sketch: The proof is by reduction from BRE to RE. Let I be a problem instance of RE.
We construct an instance I, k of BRE by choosing a bound k such that there is a plan for I iff
there is a plan of length ≤ k for I. Let |R| be the number of roles in I. It suffices to choose k to be
2|R| because this is an upper bound on the number of reachable states. It is easy to see that there
is a plan for I iff there is a plan for I that goes through each state at most once. O(|R|) bits are
needed to represent this value of k which is linear in the number of bits in the representation of I.

�

When the complexity of BRE and RE are not known with sufficient precision, we can charac-
terize the difficulty of problem instances by considering the lengths of plans for them.

Definition 8: Existence of Polynomial-size Plan (EPP). Given a set S of problem instances,
we say that S has the property of existence of a polynomial-size plan (equivalently, we say that
EPP is true for S) if and only if there is a polynomial f such that for all problem instances I ∈ S,
if I has a plan, then I has a plan with length at most f(|I|).
Definition 9: Size of a Problem Instance. The size |I| of a problem instance I is the sum of
the sizes of all the sets in it.

When EPP is false for a problem instance in a class C, the plan-generation problem for C is not
in P (i.e., not solvable in polynomial time). Note that RE for C may still be solvable in polynomial
time, because RE is a decision problem which does not require explicit generation of a plan. When
EPP is true for a problem class C, then RE for C is in NP, because a non-deterministic Turing
machine can guess the plan and verify it in polynomial time.

4.2 Classification of Problem Instances

Due to the intractability of reachability analysis for ARBAC in the general case, we consider a
variety of restrictions on reachability problem instances. This section defines those restrictions.

We consider four categories of restrictions on ψ. The acronyms for them are summarized in
Figure 2.

• Restricting negation: We say that ψ uses explicit negation if a negative literal appears in
can assign or can revoke, and ψ uses implicit negation if ψ contains a SMER constraint (i.e.,
SMER �= ∅).

– No negation (N): ψ satisfies the N restriction if ψ does not use explicit or implicit
negation.

– No explicit negation (EN ): ψ satisfies the EN restriction if ψ does not use explicit
negation. This restriction is interesting because SMER constraints are more common
than other uses of negation.

• No disjunction (D): ψ satisfies the D restriction if for every role r ∈ R, there is at most
one rule in ψ for assigning/revoking r.

11



• Restricting revocation:

– No revocation (R): ψ satisfies the R restriction if can revoke = ∅. This implies that
once a user is assigned to a role, the user cannot be revoked from the role.

– No conditional revocation (CR): ψ satisfies the CR restriction if for every role r ∈ R,
(true, r) ∈ can revoke. In other words, every role in R can be unconditionally revoked.
This restriction is reasonable, especially when considering powerful administrative roles,
because revocation is generally not controlled as tightly as role assignment, for example,
recall that ARBAC97 does not support preconditions on revocation.

• Size restrictions: ψ satisfies |pre| ≤ k if ∀(c, r) ∈ can revoke, the number of literals
in c is bounded by k and ∀(c, r) ∈ can assign, the number of literals in c is bounded by
k − |{r′ : {r, r′} ∈ SMER}| (if {r1, r2} is a SMER constraint, then ¬r1 is counted as part
of every precondition for r2 in can assign, and vice versa). ψ satisfies |ppre| ≤ k if ∀(c, r) ∈
can assign ∪ can revoke, the number of positive literals in c is bounded by k. ψ satisfies
|SMER(r)| ≤ k if ∀r ∈ R, |{r′ : {r, r′} ∈ SMER}| ≤ k. ψ satisfies |goal| ≤ k if the size of
the goal set is at most k (thus, for a set of problem instances satisfying |goal| ≤ k, the size of
every goal is bounded by k, independent of the number of roles in each problem instance). As
we show below, enforcing one or more of these restrictions greatly simplifies the reachability
analysis problem.

We also consider a restriction EI (empty initial state) on problem instances. A problem instance
(γ, goal, ψ) satisfies EI if the user assignment in γ is the empty set.

A set of restrictions defines a class of reachability analysis problems. For example, the class
[R,D, |pre| ≤ 1] includes all problems (γ, goal, ψ) where ψ satisfies the R, D and |pre| ≤ 1 restric-
tions. When a class has the EN restriction (allow SMER constraints, but not explicit negation),
the |ppre| ≤ k restriction is used instead of the |pre| ≤ k restriction, since preconditions contain
only positive literals. For each class we consider the RE and BRE problems and check whether
EPP is true for every problem instance in the class.

5 Complexity Results for User-Role Reachability Analysis With-

out Role Hierarchy

Figure 2 summarizes our complexity results for user-role reachability analysis without role hierarchy
(role hierarchy is considered in Section 7.1). The problem classes, represented by boxes, are divided
into four groups, separated by double lines, based on the complexity of RE and BRE. The problem
classes are arranged in a hierarchy. An edge from class C1 to C2 indicates that C2 is a specialization
of C1. Thus, every hardness result for C2 also applies to C1, and every algorithm for C1 can be
used to solve C2. When multiple top-level problem classes contain the same restriction, the figure
emphasizes this structure using an ellipse representing the restriction with edges to those problem
classes. Different line styles are used for outgoing edges of different ellipses, just to increase the
visual distinction between them. The notation Th〈n〉 means that the result is proved in Theorem
n; for example, Th9 refers to Theorem 9.

Some observations follow.

1. The restriction |goal| ≤ k is relevant only in classes that also have the restriction |pre| ≤ 1. If
a problem class C has the former restriction but not the latter, then given a problem instance
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I = (γ, goal, ψ) with |goal| > k, we can rewrite I to an instance I ′ = (γ′, goal′, ψ′) with
|goal′| = 1, by introducing new roles in γ and adding rules to ψ for modifying them. For
example, if goal = {r1, r2} and C has the restriction |goal| ≤ 1 but not the restriction |pre| ≤ 1,
then introduce a new role rg, add the rule (r1 ∧ r2, rg) to can assign, and take goal′ = {rg}.
The new problem instance is equivalent to the old instance but satisfies |goal| ≤ 1 and is still
in C.

2. The restriction D (no disjunction) makes the Reachability problem easier; Reachability for [R]
is NP-complete whereas for [D,R] it is solvable in polynomial time. Not allowing disjunction
in preconditions reduces the number of possible plans for a problem instance, thereby reducing
the complexity of the Reachability problem.

3. The restriction CR (only unconditional revocation) affects what we can say about the Ex-
istence of Polynomial-size Plan (EPP) problem. EPP for [D,EN , |ppre| ≤ 1, |goal| ≤ k]
is false and hence for [EN , |ppre| ≤ 1, |goal| ≤ k] is false, implying that a polyno-
mial time algorithm for generating a plan for this problem class does not exist. EPP for
[CR,EN , |ppre| ≤ 1, |goal| ≤ k] is true.

4. The restriction R (no revocation) ensures that the answer to the Existence of Polynomial-size
Plan (EPP) problem is true. When role revocation is not allowed, the user can be assigned
to a role at most once in any plan. Thus, the length of a plan is at most the number of roles.

5. For most problem classes (i.e., sets of restrictions) we considered, adding the EN restriction
(allow SMER constraints but not explicit negation) neither lowered the worst-case complexity
of RE or BRE nor changed EPP from false to true. Thus, in general, SMER constraints
do not seem to be easier to analyze than explicit use of negation. Intuitively, this may reflect
the fact that when negation is allowed, even in restricted forms, the analysis problem loses
its monotonic nature. However, there are problem classes for which the effect of adding or
removing the EN restriction remains unknown. For example, we showed that RE is solvable in
polynomial time for the class [CR,EN , |ppre| ≤ 1, |goal| ≤ k], but the worse-case complexity
of RE for the class [CR, |ppre| ≤ 1, |goal| ≤ k] is unknown.

The proof of Theorem 6 provides a polynomial time algorithm for solving Reachability (RE)
for a problem class that is still general enough to be interesting in practice. Theorems 29 and 19
show that even when three or four restrictions are applied simultaneously, reachability may remain
a hard problem, not solvable in polynomial time.

The rest of this section contains proofs for the results in Figure 2. Section 5.1 contains proofs for
PSPACE-completeness results. Section 5.2 contains proofs and algorithms for problem classes for
which user-role reachability analysis can be solved in polynomial time. Sections 5.3 and 5.4 present
proofs for problem classes for which user-role reachability analysis is NP-complete and NP-hard,
respectively.

Reachability has been studied in a variety of settings, such as static program analysis and
model checking, as well as planning. However, work on propositional planning in AI is particularly
relevant to ARBAC policy analysis, because operators considered in planning are similar to RBAC
administrative operations. As a result, some complexity results for ARBAC policy analysis, such
as Theorems 5 and 14 below, can be derived in a fairly direct way from results for planning, by
reductions from planning to policy analysis and vice versa.

13



Th5

N |goal| <= k
CR, EN, |ppre| <= 1

RE : NP−hard or unknown
BRE : NP−hard or unknown 

|SMER(r)|  <= 1
D, CR, EN, |goal|=1

R

constraints in pre−conditions

D : No disjunction: 1 can_assign

|SMER(r)| = max num. of SMER

 CR : Unconditional role

|pre| = number of literals in a 

|goal| = number of roles in goal

revocation (all roles)
N :  No negation in pre−conditions

EN : Negation only as  SMER

R :  No role revocation

|ppre| = number of positive literals

 and 1 can_revoke rule per role

pre−condition

constraints a role is in

in a pre−conditionReduction from result in [Byl94]

RE : PSPACE−complete

BRE :  NP− hard

EPP :  False RE : NP−hard
BRE : NP−hard

|pre| <= 1,  |goal| <= k

|pre| <= 1

RE : P
EPP : True

Th4 RE : P
EPP : True

Th12 RE : P
EPP : True

RE : P       EPP : True
EPP : True
RE : P Th11

Th17

BRE :  NP−hard

EPP :  False Th19

Th28Th29

No restrictions

Reduction from result in [BN95]

RE, BRE : PSPACE−complete
EPP : False 

Th2
Th23

Th18

|goal| = 1
D, EN, |ppre| <= 1

EPP :  False Th22

Th22

EN D CR

D, R
CR, D, |pre| <= 1, EI

D, EN, |ppre| <= 1

RE : polynomial

EPP : True

RE : NP−complete
still NP−hard when |goal|=1

Reduction from result in [Byl94]

|SMER(r)|  <= 1

BRE :  NP−hard Th27

D, CR, EN, |pre|  <= 2

RE : NP−complete

GLOSSARY

RE : Reachability

BRE : Bounded reachability

EPP : Exist Polynomial−size Plan

EI: Empty initial state

RE : NP−complete Th17

R, EN

Reduction from result in [Byl94]

still NP−hard when |goal|=1

EPP : True

Reduction from result in [Byl94]

EPP : True

RE : NP−complete Th17

R, EN,  |pre| <= 1,  |SMER(r)| <= 1

Th6

Figure 2: Complexity of Reachability Analysis

14



5.1 Proofs for PSPACE-Completeness of Reachability Analysis

Theorem 2 is based on complexity results for SAS+ planning described in [BN95]. Below, we
describe the SAS+ planning model of [BN95].

Definition 10 An instance of the SAS+ planning problem is given by the tuple Π = (V,O, s0, s∗)
with components defined as follows.

• V = {v1, v2, . . . , vm} is a set of state variables. Each variable v has an associated domain Dv,
which implicitly defines an extended domain D+

v = Dv ∪{u} where u denotes the undefined
value. Further, the total state space S = Dv1 ×Dv2 × . . . ×Dvm and the partial state space
S+ = D+

v1 × D+
v2 × . . . × D+

vm are implicitly defined. We write s[v] to denote the value of
variable v in state s.

• O is a set of operators of the form (pre, post, prv) where pre, post, prv ∈ S+ denote the
pre, post, and prevail conditions, respectively. Prevail conditions of an operator o are
preconditions of o that remain unchanged by the execution of o. Operators are subject to the
following restrictions: for every operator (pre, post, prv) in O,

(R1) ∀v ∈ V : pre[v] �= u→ pre[v] �= post[v] �= u.

(R2) ∀v ∈ V : post[v] = u or prv[v] = u.

• s0 ∈ S+
V and s∗ ∈ S+

V denote the initial and goal states respectively.

Restriction R1 says that a state variable can never become undefined once it has been defined
by some operator. Restriction R2 says that the prevail condition of an operator must never define
the variable being modified by the operator. If o = (pre, post, prv) is an operator, we write pre(o)
to denote pre, etc.

A plan is a sequence of operators in O. Let α.o denote the sequence α extended with element
o. The state result(s, α) that results from executing plan α from state s is defined recursively by

result(s, 〈〉) = s

result(s, α.o) =

{
result(s, α) ⊕ post(o) if (pre(o) � prv(o)) � result(s, α)
s otherwise (this is an arbitrary choice)

where s⊕ t (state s updated by state t) is defined by

(s ⊕ t)[v] =

{
t[v] if t[v] �= u
s[v] otherwise

and s � t (join of s and t) is defined by

(s � t)[v] =
⎧⎨
⎩
s[v] if t[v] = u
t[v] if s[v] = u
undefined otherwise

and s � t (state s is subsumed by state t) is defined by s � t = (∀v ∈ V. s[v] = u ∨ s[v] = t[v]).
An operator o is admissible in a state s iff (pre(o) � prv (o)) � s. A plan α = 〈o1, . . . , on〉

is admissible in state s iff either α is empty or ok is admissible in result(s, 〈o1, . . . , ok−1〉) for all
1 ≤ k ≤ n.
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Definition 11 The Plan Existence Problem for SAS+ planning is to determine, given a problem
instance Π = (V,O, s0, s∗), whether there exists a plan α such that α is admissible in s0 and
s∗ � result(s0, α).

A SAS+ planning instance Π = (V,O, s0, s∗) satisfies the
• Binary (B) restriction iff for all v ∈ V, |Dv | = 2. Thus, every variable is boolean variable

under the B restriction.

• Unary (U) restriction iff for all operators o ∈ O, post(o)[v] �= u for exactly one v ∈ V. Thus,
an operator can change the state of a single variable under the U restriction.

Theorem 2 Reachability (RE) and Bounded Reachability (BRE) for the problem class without any
restrictions are PSPACE-complete.

Proof: [BN95] shows that Plan Existence for SAS+ planning under the U and B restrictions
is PSPACE-complete. Informally, the U restriction requires actions to have a single effect and
the B restriction requires the effects of every action to be binary. The actions that we consider
here—UserAssign(r) and UserRevoke(r)—are binary actions that have a single effect, since they
either add the user to r or revoke the user from r. We can encode Plan-Existence for a SAS+

planning problem instance that satisfies the U and B restrictions as a miniARBACReachability
problem instance. This establishes that solving Reachability for unrestricted miniARBAC policies
is PSPACE-hard. By Lemma 1, BRE is at least as hard as RE, so BRE is also PSPACE-hard.

RE and BRE for unrestricted ARBAC policies are in NPSPACE, because a non-deterministic
Turing Machine can guess a plan one step at a time, storing at each step only the current state (i.e.,
current miniRBAC policy), whose size is polynomial in the size of the problem instance. These
problems are therefore also in PSPACE, because Savitch’s Theorem implies NPSPACE=PSPACE.
Thus, RE and BRE for unrestricted ARBAC policies are PSPACE-complete.

�

5.2 Proofs for Polynomial-Time Reachability Analysis

Lemma 3 Let I = (γ, ψ, goal) be a reachability analysis problem instance where γ = (R,UA) and
ψ = (can assign, can revoke,SMER). If can revoke = ∅ then if I has a plan, I has a plan of length
at most |R|.
Proof: Since there is no revocation, a plan for I contains only role assignment actions. It is not
useful for a plan to assign the user to the same role multiple times. More precisely, for each role
to which the user is assigned by the plan, keep the first assignment of the user to that role and
delete subsequent assignments (if any) of the user to that role. The length of the resulting plan is
bounded by |R|. �

Theorem 4 RE for the problem class [N ] can be solved in polynomial time. In addition, EPP for
[N ] is true.

Proof: Let I = (γ, ψ, goal) be a reachability analysis problem instance in the problem class
[N ] where γ = (R,UA) and ψ = (can assign, can revoke,SMER). Then, SMER = ∅. Since the
preconditions in can assign do not contain ¬, revoking a role does not help satisfy any precondition,
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so we can assume can revoke = ∅ for reachability analysis. From Lemma 3 it follows that if I has
a plan, then I has a plan of length at most |R|. Thus, EPP for the problem class [N ] is true.

RE for this problem class can be solved by a simple fixed-point algorithm. The algorithm
computes the set S of all reachable roles by starting with S equal to the initial state UA and
repeatedly adding roles to S using any tuple in can assign whose precondition is satisfied by S. It
is easy to see that this algorithm takes polynomial time.

Li and Tripunitara proved a very similar result, namely, that simple safety analysis for the
Assignment and Trusted Users (AATU) problem class is solvable in polynomial time [LT06]. That
result makes the additional assumption that all roles that can be assigned can be unconditionally
revoked (similar to our CR restriction). �

We recall the definition of STRIPS planning and the PLANSAT decision problem [Byl94], and
then prove the next theorem by reduction to PLANSAT.

Definition 12: Propositional STRIPS Planning [Byl94]. An instance of propositional STRIPS
planning is specified by a tuple (P,O,I,G) where:

• P is a finite set of ground atomic formulas, called conditions.

• O is a finite set of operators, where each operator o has the form Pre⇒ Post

– Pre is a satisfiable conjunction of positive and negative conditions, respectively called
the positive preconditions o+ and the negative preconditions o− of the operator.

– Post is a satisfiable conjunction of positive and negative conditions, respectively called
the positive postconditions o+ and the negative postconditions o− of the operator.

• I ⊆ P is the initial state.

• G is a satisfiable conjunction of positive and negative goals, respectively called the positive
goals G+ and the negative goals G−.

A state S is represented as a set containing the conditions that are true in the state. If the
preconditions of an action Pre⇒ Post are satisfied in a state S, then executing this action in state
S leads to the state S ∪ Post.
Definition 13: PLANSAT [Byl94]. PLANSAT is the decision problem: given a propositional
STRIPS planning problem φ = (P,O,I,G), determine whether there exists a sequence of operators
that leads from I to a state that satisfies the goal G. PLANSAT1 is PLANSAT under the restriction
that the precondition of every action contains at most one condition. PLANSAT+ is PLANSAT
under the restriction that all postconditions in φ are positive.

Theorem 5 For the problem class [|pre| ≤ 1, |goal| ≤ k], RE can be solved in polynomial time
and EPP is true.

Proof: The proof is based on a reduction from miniARBAC reachability analysis to STRIPS
planning [Byl94]. The reduction allows us to use a planning algorithm to solve the reachability
analysis problem.

Let I = (γ, goal, ψ) be in the problem class [|pre| ≤ 1, |goal| ≤ k] where γ = (R,UA) and
ψ = (can assign, can revoke,SMER). Without loss of generality, we can assume SMER = ∅,
because SMER constraints can be transformed into negative preconditions, as described in Section
3. Then, |goal| ≤ k, and for each (c, r) ∈ can assign ∪ can revoke, |c| ≤ 1. Construct an instance
φ = (P,O,I,G) of the PLANSAT1 problem as follows.
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• P = R.

• G = goal. Thus |G| ≤ k.

• I = UA.

• O = O+ ∪O−.

• O+ = {UserAssign(r) : (c, r) ∈ can assign.

– pre(UserAssign(r)) = c.

– post(UserAssign(r)) = r.

• O− = {UserRevoke(r) : (c, r) ∈ can revoke.

– pre(UserRevoke(r)) = c.

– post(UserRevoke(r)) = ¬r.

For every operator o ∈ O, pre(o) ≤ 1 since for each (c, r) ∈ can assign ∪ can revoke, |c| ≤ 1.
Thus φ is in PLANSAT1 and the number of goals in φ is limited to a constant k. In addition,
|φ| = O(|I|). It is easy to see that a plan for I is also a plan for φ and vice versa.

From Theorem 3.8 in [Byl94] the PLANSAT1 problem limited to constant number of goals is
solvable in polynomial time. Thus, RE for the problem class [|pre| ≤ 1, |goal| ≤ k] can be solved
in polynomial time and EPP is true. �

Theorem 6 Reachability (RE) for the problem class [CR,D, |pre| ≤ 1,EI ] (only unconditional role
revocation, no disjunction, at most one precondition, empty initial state) is solvable in polynomial
time.

Proof: Let I = (γ, goal, ψ) be a problem instance in the problem class [CR,D, |pre| ≤ 1,EI ],
where γ = (R,UA), ψ = (can assign, can revoke,SMER), and goal is a set of roles. Then, for
every role r ∈ R, (1) there is at most one state change rule (c, r) ∈ can assign, (2) |c| ≤ 1, and
(3) (true, r) ∈ can revoke. Also, since negative preconditions are allowed, we can assume without
loss of generality that SMER = ∅. Note that the definition of the size restriction |pre| ≤ 1 counts
SMER constraints, so transforming SMER constraints into negative preconditions preserves that
restriction.

Construct a graph Gψ = (Vψ, Eψ) as follows. The set of vertices Vψ is the set of roles R. There
are two kinds of edges in Eψ, positive and negative. For each (r′, r) ∈ can assign, e = (r′, r) ∈ Eψ,
and label(e) = pos. For each (¬r′, r) ∈ can assign, e = (r, r′) ∈ Eψ and label(e) = neg. Note
that neg edges have reverse direction as the pos edges. Intuitively, edges in Eψ indicate the
order in which roles must be assigned and revoked; if (r, r′) ∈ Eψ, then UserAssign(r) must occur
before UserAssign(r′). Next, we prune the graph Gψ by removing vertices for which there is no
assignment rule and vertices that are reachable through a sequence of positive incoming edges from
such vertices. These vertices are not reachable from the empty initial state because each vertex in
Gψ has at most one positive incoming edge (this follows from |pre| ≤ 1 and D). A cycle is called a
pos cycle if it is composed of only pos edges; neg cycles are defined similarly.

Lemma 7 Let Y be a cycle in Gψ. Then Y is either a pos cycle or a neg cycle.
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Proof: Suppose Y contains a pos edge and a neg edge. Then there exist vertices r, r1 and
r2 in Y such that (r, r1) is a pos edge and (r1, r2) is a neg edge. This means that there are
two assignment rules for r1, (r, r1) ∈ can assign and (¬r2, r1) ∈ can assign, which violates the D
restriction. � Lemma 7

Lemma 8 RE for I = (γ, goal, ψ) where γ = (R, ∅) is false if and only if either (C1) Gψ contains
a pos cycle Y such that Y ∩ goal �= ∅, (C2) Gψ contains a neg cycle Y such that Y ⊆ goal, or (C3)
goal �⊆ Gψ.

Proof: First, we show that if one of the conditions C1, C2, and C3 holds, then RE for I is false.
Case 1: Suppose C1 is true, i.e., Gψ contains a pos cycle Y and r ∈ Y ∩ goal. Then, since we

start in the empty state γ and since ψ satisfies the D restriction, the only way to derive the goal
r is to first derive all roles in the cycle Y , including r itself. Thus, deriving role r entails deriving
itself first, and hence no plan for deriving r exists. Therefore RE for I is false.

Case 2: Suppose C2 is true, i.e., Gψ contains a neg cycle Y and Y ⊆ goal. Let Y = (r1 →
r2 → . . .→ rk → r1). Then, (¬r1, rk) ∈ can assign, and for 1 ≤ i ≤ k − 1, (¬ri+1, ri) ∈ can assign.

Let P be a plan for I; i.e., γ
P→ γ′ and ∀1 ≤ i ≤ k : ri ∈ γ′. Since we start in the empty state

γ, ∀1 ≤ i ≤ k : UserAssign(ri) ∈ P . Without loss of generality assume that UserAssign(rk) is the
last action in P . Since the precondition for UserAssign(rk) is ¬r1, it follows that r1 /∈ γ′ which
contradicts the assumption that P is a plan for I. Thus, RE for I is false.

Case 3: If C3 is true, then there is no assignment rule for at least one of the goals and hence
goal is not reachable.

Next, we show that if RE for I is false, then C1 or C2 or C3 is true. We prove the contrapositive,
i.e., we assume conditions C1, C2 and C3 are false, and we show that RE for I is true, by giving an
algorithm that constructs a plan for I. If all of C1, C2 and C3 are false, then Gψ contains all goals
and one of the following cases holds: (1) Gψ is acyclic, in which case the topological-sort ordering
of Gψ gives the order in which roles must be assigned to reach goal; (2) Gψ contains a neg cycle Y
such that there exists s ∈ Y and s /∈ goal; or (3) Gψ contains a pos cycle Y such that Y ∩ goal = ∅.
We break cycles in (2) by deleting each neg edge e = (r, s) such that r ∈ goal and s /∈ goal. Since
e is a neg edge, we know that (¬s, r) ∈ can assign. Thus, in a plan for I, UserRevoke(s) occurs
between UserAssign(s) and UserAssign(r). We need to ensure that every UserAssign(s′) that has
a precondition s occurs before UserRevoke(s) and hence before UserAssign(r) in the plan. We
add edge (s′, r) to Gψ to ensure this. Regarding case (3), we can simply delete all cycles that do
not contain any goal. With the above transformations, the resulting graph G′

ψ is acyclic, and we
can generate a plan for I by assigning roles (to the user) in the topological-sort order of G′

ψ. The
algorithm is given in Algorithm 1. � Lemma 8

Constructing graph Gψ takes polynomial time, and |Gψ | = |I|. Validity of C1 can be checked
by restricting Gψ to only pos edges. Since ψ satisfies the D (no disjunction) restriction, in this
restricted graph each vertex has at most one incoming edge. This implies that all cycles in the
graph are disjoint and we can use a simple Depth-First Search to find all cycles and check whether
any cycle contains a role not in goal. Validity of condition C2 can be checked by restricting Gψ to
vertices in goal and to neg edges, and checking whether the restricted graph contains a cycle; a
simple Depth-First Search can accomplish this. Validity of condition C3 can be checked by traversing
Gψ at most once. Hence C1, C2 and C3 can be checked in polynomial time. Transforming Gψ to
an acyclic graph G′

ψ takes polynomial time, and |G′
ψ| is O(|Gψ |2), since for each neg edge in Gψ,

at most |Gψ | new edges may be added. Topologically sorting G′
ψ takes polynomial time. Thus,

Reachability for this problem class can be solved in polynomial time. � Theorem 6
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Algorithm 1 Plan generation for problem class [CR,D, |pre| ≤ 1,EI ]

Input: Problem instance I = ((R, ∅), goal, ψ)
Output: Returns the plan if a plan exists for I, else returns false

1: if C1, C2 or C3 is true for Gψ then
2: return false

3: end if
4: Construct graph G′

ψ = (V ′
ψ, E

′
ψ)

5: Construct graph G′′
ψ = comp(G′

ψ, goal)
6: Topologically sort G′′

ψ.
7: Plan P = 〈〉
8: UAnew = ∅
9: for all r ∈ V ′′

ψ in topologically sorted order do
10: (c, r) ∈ can assign
11: if c = ¬s ∧ s ∈ UAnew then
12: P = P.〈UserRevoke(s)〉
13: UAnew = UAnew \ {s}
14: end if
15: P = P.〈UserAssign(r)〉
16: UAnew = UAnew ∪ {r}
17: return P
18: end for

The problem class to which Theorem 6 applies can be expanded by reducing problem instances
that do not satisfy the EI (empty initial state) restriction to problem instances that satisfy EI .
The next two lemmas express such reductions.

Lemma 9 Suppose ψ satisfies CR. RE for ((R,UA), goal, ψ) is true if RE for ((R, ∅), goal, ψ) is
true.

Proof: Since ψ allows unconditional revocation of all roles, we can revoke all roles r ∈ UA to
transform the initial RBAC state to the empty state (R, ∅). We then check if (R, goal) is reachable
from (R, ∅). Thus, if a state (R,UA1) is reachable from the empty state, then it is reachable from
any state. �

Lemma 10 RE for ((R,UA), goal, ψ) is false if RE for ((R, ∅),UA, ψ) is true and RE for
((R, ∅), goal, ψ) is false.

Proof: Let I, I1, and I2 denote the three problem instances in the statement of the lemma, in
the order they appear. The proof is by contradiction. Suppose for contradiction that RE for I is
true, i.e., there is a path P from (R,UA) to (R, goal). Since I1 is true, there is a path P1 from
(R, ∅) to (R,UA). The concatenation of P1 and P is a plan for I2, contradicting the hypothesis
that RE for I2 is false. �

Theorem 11 For the problem class [D,R], RE is solvable in polynomial time and EPP is true.

Proof: Let I = (γ, goal, ψ) be a problem instance that satisfies the [D,R] restriction where
γ = (R,UA), ψ = (can assign, ∅,SMER). Without loss of generality, we assume SMER = ∅.
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For (c, r) ∈ can assign, let post((c, r)) = r, ppre((c, r)) = positive literals in c, and npre((c, r)) =
negative literals in c. We will sometimes refer to elements of can assign as “rules”.

For a role r, let rule(r) be the unique element of can assign with postcondition r, if any,
otherwise ⊥. For convenience, define ppre(⊥) = ⊥.

Let goals be the limit of the following monotonically increasing sequence of subsets of R:
goals0 = goal and goalsi+1 = (goalsi ∪ (∪r∈goalsippre(rule(r)))) \ UA. The D assumption implies
that in every plan for I, all of the roles in goals must be added to the state. If ⊥ ∈ goals, then
return false (i.e., there is no plan for I), because there is no rule to add some role in goals.

Let S = ∪r∈goalsrule(r). The D assumption implies that in every plan for I, every rule in S
must be fired at least once. The R assumption implies that it suffices to fire each rule at most once.
Thus, there exists a plan for I if and only if some linearization of S is a plan for I.

If UA ∩ (∪r∈goalsnpre(r)) �= ∅, then return false. This is because some rule in S has a negative
precondition that cannot be satisfied, regardless of the order in which rules are fired.

Now consider constraints on the order of firing the rules in S. A rule ρ in S must fire before
another rule ρ′ in S, denoted ρ < ρ′, if post(ρ) ∈ ppre(ρ′) or post(ρ′) ∈ npre(ρ). At this point
in the algorithm (i.e., if the algorithm has not already returned false), every plan satisfying these
ordering constraints is feasible. This means that there exists a plan for I iff the graph G = (S,<)
is acyclic.

Constructing G and testing acyclicity takes polynomial time in |I|, so reachability for this
problem class is decidable in polynomial time. If G is acyclic, then any topological sort of G is a
plan for I, and its length is polynomial in |I|. Thus EPP for this problem class is true. �

Theorem 12 RE for the problem class [CR,EN , |ppre| ≤ 1, |goal| ≤ k] (where k is a constant) is
solvable in polynomial time. In addition, EPP for the class is true.

Proof: Let I = (γ, goal, ψ) be a problem instance in the problem class [CR,EN , |ppre| ≤
1, |goal| ≤ k], where γ = (R,UA), ψ = (can assign, can revoke,SMER). Then, for each r ∈ R,
(true, r) ∈ can revoke (i.e., every role can be unconditionally revoked), and if (c, r) ∈ can assign,
then |c| ≤ 1 and c is true or a positive literal.

Algorithm 2 checks plan existence for this problem class. The algorithm starts with the state
goal. At each step it picks an unexplored node and explores it. During the process of exploration,
new states are generated that are then recursively explored. Furthermore, a directed graph Gψ =
(Vψ, Eψ) is constructed during the process of exploration such that Vψ contains all generated states
and Eψ contains explored transitions between those states. Let UA0 be the initial state. When
exploring a state UA, if there exists some role r �∈ UA0 in the state such that the precondition of
every can assign rule for r contains a role that is mutually exclusive with r, then r is not reachable
from UA0. If a state UA ⊆ UA0 is reached, the algorithm returns the graph Gψ and UA. The
CR restriction implies that the state UA is reachable from UA0 simply by revoking all roles in
UA0 \UA.

If plan existence for I is true, then a plan can be generated from Gψ and UA as follows. Let P =
〈e1, e2, . . . , en〉 be a path in Gψ from UA to the final state UAfinal = goal. Let π = A1.A2. . . . .An
where label(ei) = UserAssign(ri), Si = {r′ ∈ R : (ri, r

′) ∈ SMER}, and Ai = {UserRevoke(s) : s ∈
Si}.UserAssign(ri). Note that Ai consists of the indicated UserRevoke actions in arbitrary order,
followed by the indicated UserAssign action. It is easy to see that π is a plan for I.

Each state in Gψ contains at most k roles, because the search starts with the state goal, and the
assignments on lines 15 and 17 ensure that |UAnew| ≤ |UA| . To bound the number of states, note
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Algorithm 2 Reachability for the problem class [CR,EN , |ppre| ≤ 1, |goal| ≤ k]

Input: Problem instance I = ((R,UA0), goal, ψ)
Output: Returns a directed graph and an initial state if a plan exists for I, else returns
false.

1: if ∃ r1, r2 ∈ goal : (r1, r2) ∈ SMER then
2: return false

3: end if
4: Vertex set Vψ = {goal}
5: Edge set Eψ = ∅
6: while There exists an unexplored node in Vψ do
7: Pick an unexplored node UA from Vψ.
8: Mark UA as explored
9: if UA ⊆ UA0 then

10: return (Vψ , Eψ) and UA
11: else
12: for all r ∈ UA do
13: for all (s, r) ∈ can assign do
14: if s == true then
15: UAnew = UA \ {r}
16: else
17: UAnew = (UA ∪ {s}) \ {r}
18: end if
19: S = {r′ ∈ R : (r, r′) ∈ SMER}
20: if UAnew ∩ S �= ∅ then
21: continue
22: end if
23: if UAnew /∈ Vψ then
24: Add UAnew to Vψ and mark it unexplored
25: end if
26: Add edge e = (UAnew,UA) to Eψ and set label(e) = UserAssign(r)
27: end for
28: end for
29: end if
30: end while
31: return false
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that there are
(|R|
k

)
different sets containing exactly k roles, and there are 2k subsets of each of them,

so the total number of states in Gψ is O(2k × (|R|
k

)
), which is O(|I|k) (recall that k is considered

constant). Since the number of explored states is polynomial in |I|, it is easy to see that Algorithm
2 runs in time polynomial in |I|. Thus, RE for the problem class [CR,EN , |ppre| ≤ 1, |goal| ≤ k]
can be solved in polynomial time.

A plan for I is at most the length of the longest path in Gψ times the maximum length of
an Ai. The former length is O(|I|k), and the latter length is O(k), so EPP for the problem class
[CR,EN , |ppre| ≤ 1, |goal| ≤ k] is true. �

5.3 Proofs for NP-Completeness of Reachability Analysis

Theorem 13 For the problem class [R], RE is in NP and EPP is true.

Proof: Let I = (γ, goal, ψ) be a reachability analysis problem in the problem class [R] where γ =
(R,UA) and ψ = (can assign, can revoke,SMER). Since ψ satisfies the R restriction, can revoke
= ∅. From Lemma 3, it follows that if I has a plan, then I has a plan of length at most |R|, and
the plan consists entirely of UserAssign actions. Thus EPP for the problem class [R] is true.

Given a sequence P of UserAssign(ri) actions (ri ∈ R) with |P | ≤ |R|, a Turing Machine can
verify whether P is a plan for I by (1) executing P on γ and transforming it to a state γ′ = (R,UA′),
and (2) checking that goal ⊆ UA′. Both these operations take time polynomial in |I|. Thus, RE
for the problem class R is in NP. �

Theorem 14 RE for the problem classes [R,EN, |pre| ≤ 1, |SMER(r)| ≤ 1] and [R,EN, |goal| =
1, |SMER(r)| ≤ 1] are NP-hard.

Proof: First, we show that RE for the problem class [R,EN, |pre| ≤ 1, |SMER(r)| ≤ 1] is NP-
hard. The proof follows the proof of NP-hardness of the PLANSAT+ problem [Byl94, (Theorem
3.5)]. We reduce 3-SAT to RE for the above problem class. Consider a 3-SAT formula φ =
C1∧C2∧. . .∧Cn containing propositional variables in V = {x1, . . . , xm}, where Ci = li1∨li2∨li3, and
each literal lij is a variable in V or the negation of one. Construct a problem instance I = (γ, goal, ψ)
as follows.

1. The set of roles R is defined as follows. For each literal xi ∈ V there are two roles ti and fi
in R. For each clause Ci, there is a role ci in R.

2. γ = (R, ∅). goal = {c1, c2, . . . , cn}.
3. ψ = (can assign, can revoke,SMER) is defined as follows.

(a) For 1 ≤ i ≤ m : (true, ti) ∈ can assign.

(b) For 1 ≤ i ≤ m : (true, fi) ∈ can assign.

(c) For each clause Ci = li1 ∨ li2 ∨ li3, for 1 ≤ j ≤ 3, if lij is the literal xk then (tk, ci) ∈
can assign, else if lij is the literal ¬xk then (fk, ci) ∈ can assign.

(d) can revoke = ∅.
(e) SMER = {(ti, fi) : xi ∈ V }.

Because can revoke = ∅, I satisfies the R restriction. Also, the can assign rules do not contain
¬, and ti appears only with fi in SMER (and vice versa). Thus the policy satisfies the EN and
|SMER(r)| ≤ 1 restrictions. Furthermore, can assign also satisfies the |pre| ≤ 1 restriction.
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Lemma 15 If RE for I is true then φ = C1 ∧ C2 ∧ . . . ∧ Cn is satisfiable.

Proof: From Theorem 13 we know that I has a plan P = (a1, a2, . . . , am) where each ai is a
UserAssign action and m ≤ |R|. Construct an assignment π to literals in V as follows.

1. If UserAssign(ti) ∈ P then π(xi) = true.

2. If UserAssign(fi) ∈ P then π(xi) = false.

Note that only one of UserAssign(ti) or UserAssign(fi) can occur in P ; (ti, fi) ∈ SMER and
since can revoke = ∅, once either of UserAssign(ti) or UserAssign(fi) occurs in P , the other action
cannot occur in P . Thus π is a well-formed assignment.

Let γ
a1→ γ1

a2→ γ2 . . .
au→ γu, where ∀1 ≤ i ≤ u : γi = (R,UAi). Since P is a plan, ∀ 1 ≤

i ≤ n : ci ∈ UAu. Thus, for each ci, ∃ j ≤ u : aj = UserAssign(ci). Since UserAssign(ci) is
enabled in γj−1, there exists a state change rule (X, ci) ∈ can assign such that X ∈ UAj−1. Thus,
∃ v < j−1 : av = UserAssign(X). From the construction of I it follows that if X = tk then xk ∈ Ci
and π(xk) = true, and if X = fk then ¬xk ∈ Ci and π(xk) = false. Thus, π(Ci) = true. Since
this is true for every 1 ≤ i ≤ n, π(φ) = true. Thus, φ is satisfiable. � Lemma 15

Lemma 16 If φ is satisfiable then RE for I is true.

Proof: Consider a satisfiable assignment π of φ. Construct a sequence of actions P = P ′.P ′′ as
follows. For all literals xi ∈ V , if π(xi) = true then UserAssign(ti) ∈ P ′, and if π(xi) = false

then UserAssign(fi) ∈ P ′. P ′′ = {UserAssign(ci) : 1 ≤ i ≤ n}. We show that P is a plan for I.

Note that every action a ∈ P ′ is enabled in γ. Let γ
P ′→ γ′. For every clause Ci = li1 ∨ li2 ∨ li3,

since π(Ci) = true, ∃ 1 ≤ j ≤ 3 : π(lij) = true. If lij = xk then π(xk) = true and hence
UserAssign(tk) ∈ P ′. Also, (tk, ci) ∈ can assign. Similarly, if lij = ¬xk then π(xk) = false,
UserAssign(fk) ∈ P ′, and (fk, ci) ∈ can assign. Thus all actions UserAssign(ci) ∈ P ′′ are enabled

in γ′. Therefore γ′ P
′′→ γ′′ where γ′′ = (R,UA′′) and ∀1 ≤ i ≤ n : ci ∈ UA′′. Thus P = P ′.P ′′ is a

plan for I. � Lemma 16

From Lemmas 15 and 16 it follows that RE for the problem class [R,EN, |pre| ≤ 1, |SMER(r)| ≤ 1]
is NP-hard.

As discussed in Section 4, reachability of a goal containing multiple roles can be transformed to
reachability of a singleton goal, and the transformation preserves all restrictions except |pre| ≤ k
and |ppre| ≤ k. Therefore, the above proof can directly be applied to show that reachability for
the problem class [R,EN, |goal| = 1, |SMER(r)| ≤ 1] is NP-hard.

� Theorem 14

Theorem 17 For the problem classes [R], [R,EN ], [R,EN, |goal| = 1, |SMER(r)| ≤ 1], and
[R,EN, |pre| ≤ 1, |SMER(r)| ≤ 1], RE is NP-complete and EPP is true.

Proof: Follows immediately from Theorems 13 and 14. �

5.4 Proofs for NP-Hardness of Reachability Analysis

Theorem 18 Reachability (RE) and Bounded Reachability (BRE) for the problem class [|pre| ≤ 1]
are NP-hard.
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Proof: NP-hardness of RE for this problem class is a corollary of Theorem 17, which shows that
RE is NP-complete for a more restricted problem class. NP-hardness of BRE for this problem class
follows from NP-hardness of RE and Lemma 1. �

Theorem 19 EPP for the complexity class [D,CR,EN , |goal| = 1, |SMER(r)| ≤ 1] is false.

Proof: Consider the problem instance In = (γ, goal, ψ) where:

• the set of roles R = {u1, u2, . . . , un, v1, v2, . . . , vn},
• γ = (R, ∅)
• goal = {un}
• ψ = (can assign, can revoke,SMER) where

– SMER = {(ui, vi) : 1 ≤ i ≤ n}
– ∀ 1 ≤ i ≤ n : (true, vi) ∈ can revoke

– ∀ 1 ≤ i ≤ n : (true, vi) ∈ can assign

– ∀ 1 ≤ i ≤ n : (true, ui) ∈ can revoke

– (true, u1) ∈ can assign, (u1, u2) ∈ can assign and ∀ 3 ≤ i ≤ n if i = 2k + 1 then
(v1 ∧ v2 . . . ∧ vi−2 ∧ ui−1, ui) ∈ can assign, else if i = 2k then (u1 ∧ u2 ∧ . . . ∧ ui−1, ui) ∈
can assign.

The can revoke relation specifies that for every role r ∈ R, UserRevoke(r) has a true precon-
dition. Thus, In satisfies the CR restriction (every role can be unconditionally revoked). For every
role r ∈ R, there is a unique state-change rule (c, r) in both can assign and can revoke. Thus In
satisfies the D restriction. The preconditions in can assign and can revoke do not contain negation,
and each role ui appears only with vi in SMER. Thus In satisfies the EN and |SMER(r)| ≤ 1
restrictions.

Define the following sequences.1

• ∀ 1 ≤ i ≤ n : Vi = 〈UserAssign(v1), UserAssign(v2), . . . , UserAssign(vi)〉. Given any state

γ, γ
Vi→ γ ∪ {v1...i}

• V ′
i = 〈UserRevoke(v1),UserRevoke(v2), . . . , UserRevoke(vi)〉. Given any state γ, γ

V ′
i→ γ \

{v1...i}

• U ′
i = 〈UserRevoke(u1),UserRevoke(u2), . . . , UserRevoke(ui)〉. Given any state γ, γ

U ′
i→ γ \

{u1...i}
• U2i = U2i−1.〈UserAssign(u2i)〉, and U2i+1 = U2i.U

′
2i−1.V2i−1.〈UserAssign(u2i+1)〉.V ′

2i−1.U2i−1

• α2i = U2i and α2i+1 = U2i.U
′
2i−1.V2i−1.〈UserAssign(u2i+1)〉

Lemma 20 αn is the minimum size plan for In

1We use angle brackets to denote sequences. x.y denotes the concatenation of sequences x and y.
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Proof: First we show that αn is a plan for In. Define γi = (R, {u1, u2, . . . , ui}). Then γ = γ0. It

is easy to see that γ0
Ui→ γi: γ0

U1→ γ1 is true, and applying induction, if γ0
Ui−1→ γi−1, then

1. if i = 2k then γ2k−1
UserAssign(u2k)→ γ2k. Thus γ0

U2k→ γ2k

2. if i = 2k + 1 then γ2k
U ′
2k−1.V2k−1.〈UserAssign(u2k+1)〉.V ′

2k−1→ γ′ where γ′ = (R, {u2k, u2k+1}).
Because γ0

U2k−1→ γ2k−1, and u2k and u2k+1 does not affect this derivation, γ′
U2k−1→ γ2k+1.

Thus γ0
U2k+1→ γ2k+1.

Also note that un ∈ γn. Therefore, Un is a plan for In. Since αn is a prefix of Un and the last
action in αn is UserAssign(un), αn is a plan for In.

Next we argue that αn is the minimum plan for reaching the goal un. The proof is by induction.
α1 = 〈UserAssign(u1)〉 and α2 = 〈UserAssign(u1),UserAssign(u2)〉 are trivially the minimal plans
for reaching the goals u1 and u2 respectively. Suppose for k < n, 1 ≤ i ≤ k, αi is the minimum
plan for reaching goal ui. We show that αk+1 is the minimum plan for achieving the goal uk+1.

Observation: If i = 2j (i.e., i is even), then since the precondition of UserAssign(u2j) is
u1, u2, . . . , u2j−1, it follows that any path to goal u2j must go through the state
ν2j = (R, {u1, u2, . . . , u2j−1, u2j}). Similarly, if i = 2j+1 (i.e., i is odd), then since the precondition
of UserAssign(u2j+1) is v1, v2, . . . , v2j−1, u2j , it follows that any path to goal u2j+1 must go through
the state ν2j+1 = (R, {v1, v2, . . . , v2j−1, u2j , u2j+1}). Thus, if ν0 = (R, ∅), then since αi is the

shortest path to ui, it follows that ν0
αi→ νi, i.e., αi transforms the initial state ν0 to νi.

Case 1 : k = 2j for some j, i.e., k is even. Any path to the goal u2j+1 must go through
the state ν2j+1. Thus, the shortest path to u2j+1 ends in state ν2j+1. Let P be the shortest path
to u2j+1, and P ends in ν2j+1. Since u2j ∈ ν2j+1, it follows from the above observation that P
goes through the state ν2j . Thus, P = 〈P1, P2〉 where P1 is the shortest path from ν0 to ν2j ,
and P2 is the shortest path from ν2j to ν2j+1. By the induction hypothesis, P1 is α2j . It is clear
that P2 = U ′

2j−1.V2j−1.〈UserAssign(u2j+1)〉. Thus, P = α2j .U
′
2j−1.V2j−1.〈UserAssign(u2j+1)〉 =

α2j+1 = αk+1. Therefore, αk+1 is the minimum plan for achieving the goal uk+1.
Case 2 : k = 2j − 1 for some j, i.e., k is odd. Any path to goal u2j must go through the

state ν2j . Thus, the shortest path to u2j ends in state ν2j. Let P be the shortest path to u2j ,
and P ends in ν2j . Since u2j−1 ∈ ν2j, it follows from the above observation that P goes through
the state ν2j−1. Thus, P = P1.P2 where P1 is the shortest path from ν0 to ν2j−1, and P2 is the
shortest path from ν2j−1 to ν2j . By the induction hypothesis, P1 = α2j−1. It is clear that P2

should first revoke all the v1, v2, . . . , v2j−3 roles before assigning the u1, u2, . . . , u2j−3 roles. After
all the v1, v2, . . . , v2j−3 roles are revoked, P2 must transform the state ν0 to the state ν2j−2. Since
u2j−1 and u2j−2 are in ν2j−1, and reachability of u1, . . . u2j−3 using U2j−3 is not affected by carrying
along u2j−1 and u2j−2 in the state, we conclude that P = α2j−1.V

′
2j−3.U2j−3.〈UserAssign(u2j)〉 =

U2j−1.〈UserAssign(u2j)〉 = α2j . Therefore αk+1 is the minimum plan for achieving the goal uk+1.

From Cases 1 and 2 it follows that αn is the minimum plan for achieving the goal un. � Lemma 20

Lemma 21 |αn| = Ω(2p(n)) where p(n) is a polynomial in n.

Proof: We first show that |Un| = Ω(2n). Note that |U2i+1| = |U2i| + |U2i−1| + ci where ci is
a constant. Also, |U2i| = |U2i−1| + 1. It follows that |U2i+1| = 2|U2i−1| + ci + 1. This implies
|U2i+1| ≥ 2i|U1| = Ω(2i). Thus, |Un| = Ω(2n/2). From the definition of αn, we have |αn| = Ω(2n/2).

� Lemma 21
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Note that |In| is O(n2). Thus, from Lemmas 20 and 21, it follows that the minimum size plan for
In is not polynomial in |In|. Therefore, EPP for the problem class [D,CR,EN , |SMER(r)| ≤ 1] is
false. � Theorem 19

Theorem 22 EPP for the complexity class [D,EN, |ppre| ≤ 1, |goal| = 1] is false.

Proof: Consider the problem instance In = (γ, goal, ψ) where:

• the set of roles R = {r1, r2, . . . , rn}.
• γ = (R, ∅)
• goal = {rn}
• ψ = (can assign, can revoke,SMER) where

– ∀1 ≤ i ≤ n− 2, i+ 2 ≤ j ≤ n : (ri, rj) ∈ SMER

– (true, r1) ∈ can assign and ∀ 2 ≤ i ≤ n : (ri−1, ri) ∈ can assign

– (true, r1) ∈ can revoke and ∀ 2 ≤ i ≤ n : (ri−1, ri) ∈ can revoke

For each role ri, the can assign and can revoke relations have precondition ri−1. Define the
following sequences.

• ∀ 1 ≤ i ≤ n : Si = R′
i.R

′
i−1...R

′
1

• R′
1 = 〈UserRevoke(r1)〉 and ∀ 2 ≤ i ≤ n : R′

i = Ri−1.〈UserRevoke(ri)〉
• R1 = 〈UserAssign(r1)〉, R2 = 〈UserAssign(r1), UserAssign(r2)〉, and ∀ 3 ≤ i ≤ n : Ri =
Ri−1.Si−2.〈UserAssign(ri)〉

It is easy to see that Rn is a plan for In. We can show that Rn is the minimum plan for In
similar to the proof of Theorem 19. In addition, |Rk| = |Rk−1|+|Sk−2|+1 = |Rk−1|+1+Σk−2

i=1 |R′
i| =

k − 1 + |Rk−1|+Σk−3
i=1 |Ri|. Since |Rk| is monotonic in k, it follows that |Rk| > 2|Rk−3|, and hence

|Rn| = Ω(2n/3). Therefore, the minimum plan for In has size exponential in |In|. Thus, EPP for
the problem class [D,EN, |ppre| ≤ 1, |goal| ≤ 1] is false �

Theorem 23 EPP for the problem class with no restrictions is false.

Proof: Follows immediately from Theorem 19 or Theorem 22. �

Lemma 24 Bounded Reachability (BRE) for the problem class [D,CR,EN , |ppre| ≤ 2, |SMER(r)| ≤
1] is NP-hard.

Proof: The proof is by reduction from the CLIQUE problem, which is known to be NP-complete
[Kar72]. The proof is based on the proof of Theorem 4.15 in [BN95], but our construction and
proof are more complicated, because we are dealing with a more restricted problem class. Given
a graph G = (V,E) where V = {v1, . . . vn} and an integer k, the CLIQUE problem asks whether G
has a clique of size k, i.e., whether there is a set C ⊆ V of size k such that there is an edge between
every pair of vertices in C. We construct a problem instance I = (γ, goal, ψ) in the problem class
[D,CR,EN , |pre| ≤ 2, |SMER(r)| ≤ 1] such that G has a clique of size k if and only if I has a plan
of size at most n2+13n−k. The basic idea behind the reduction is to construct an ARBAC policy
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such that the following hold. (1) If the policy has a plan, then the plan can be regarded as an
interleaving of several sequences of actions, with one such sequence of actions corresponding to each
node of G. If a node vi is in a clique of size k or larger, then there are two feasible options—with
different sizes—for the subsequence corresponding to vi. If vi is not in a clique of size k (or larger),
then only one of the options—the longer one—is possible. (2) If the policy has a plan, the size of the
shortest plan is p(n)−mk, where p(n) is some polynomial in n, and m is an integer constant. The
construction is designed to make the plan length anti-monotonic in (i.e., a non-increasing function
of) k, because, if a graph contains a clique of size greater than k, then it also contains a clique of
size k, so considering a larger clique must not make the length of the plan exceed the bound in the
generated BRE problem instance.

Let Ni = {v ∈ V : (v, vi) /∈ E}. Note that |Ni| = 0 if there are edges between vi and all other
vertices in V . Define I = (γ, goal, ψ) where

1. γ = (R,UA), where R =
⋃

1≤i≤n{vi, ai, bi, ci, c̄i, di, d̄i, ei} ∪ ⋃
1≤i,j≤n{gij , hij} and UA =

{ci, di : 1 ≤ i ≤ n}.
2. ψ = (can assign, can revoke,SMER) where

• can assign is defined as

(a) ∀1 ≤ i ≤ n : (true, vi) ∈ can assign

(b) ∀1 ≤ i ≤ n : (c̄i ∧ di, ai) ∈ can assign

(c) ∀1 ≤ i ≤ n : (ci ∧ d̄i, bi) ∈ can assign

(d) ∀1 ≤ i ≤ n : (true, c̄i) ∈ can assign

(e) ∀1 ≤ i ≤ n : (true, d̄i) ∈ can assign

(f1) ∀0 ≤ i ≤ n : (true, hi,0) ∈ can assign

(f2) ∀1 ≤ i ≤ n, 0 ≤ j < |Ni| : (hi,j ∧ Ni,j+1, hi,j+1) ∈ can assign, where Ni,j is the jth
element of Ni, taken in arbitrary order.

(f3) ∀1 ≤ i ≤ n, |Ni| ≤ j < n : (hi,j , hi,j+1) ∈ can assign.

(g1) ∀1 ≤ i ≤ n : (true, gi,1) ∈ can assign

(g2) ∀1 ≤ i ≤ n,∀1 ≤ j ≤ n− 1 : (gi,j , gi,j+1) ∈ can assign.

(h) ∀1 ≤ i ≤ n : (vi ∧ gi,n, ci) ∈ can assign

(i) ∀1 ≤ i ≤ n : (hi,n, di) ∈ can assign

(j) ∀1 ≤ i ≤ n : (true, ei) ∈ can assign

• can revoke is defined as

(a) ∀r ∈ R : (true, r) ∈ can revoke

• SMER is defined as

(a) ∀1 ≤ i ≤ n : (ci, c̄i) ∈ SMER

(b) ∀1 ≤ i ≤ n : (di, d̄i) ∈ SMER

(c) ∀1 ≤ i ≤ n : (vi, ei) ∈ SMER

3. goal = {ai, bi, c̄i, d̄i, ei : 1 ≤ i ≤ n}.
bi serves as a flag that (when present in the state) indicates that the plan passed through a state

containing ci and di. ai serves as a flag indicating that the plan passed though a state containing
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ci and di. hi,n serves as a flag indicating that a plan passed through a state containing all nodes
vj that are not neighbors of vi. This means that if all vj not in any clique of size k are reachable,
then hi,n are reachable for all vi in the clique. For example, suppose that V = {v1, v2, v3, v4, v5}
and the maximum clique is C = {v1, v2, v3}; then for every s ∈ [4..5], there exists t ∈ [1..3] such
that (vs, vt) �∈ E. From the definitions of hi,j and Ni, it follows that roles h1,n, h2,n, and h3,n
can be added after roles v4 and v5 have been added. Roles gi,j are introduced for the purpose of
constructing a plan with size anti-monotonic to k.

Note that, starting from the initial state, ci must be revoked in order to add ai, and di must be
revoked in order to add bi. This means that in order to reach the goal, 1) after ai is added, ci must
be added in order to add bi, and 2) after bi is added, di must be added in order to add ai. Since vi
and gi,n are the preconditions of ci, and hi,n is the precondition of di, if there exists a plan, then gi,n
and vi must appear between UR(ci) and UA(ci) in the plan, and hi,n must appear between UR(di)
and UA(di) in the plan, where UA and UR abbreviate UserAssign and UserRevoke, respectively.

Each role has a precondition of size at most 2, so I satisfies the |pre| ≤ 2 restriction. Each role
has at most one state change rule in can assign and can revoke, so I satisfies the D restriction.
Each role is allowed to be unconditionally revoked, so I satisfies the CR restriction. Negation is
specified only as SMER constraints, so I satisfies the EN restriction. Each role appears in at most
one SMER constraint, so I satisfies the |SMER(r)| ≤ 1 restriction. Thus, I is in the problem class
[D,CR,EN , |pre| ≤ 2, |SMER(r)| ≤ 1].

Lemma 25 Suppose G = (V,E) has a clique of size k. Then I has a plan of size n2 + 13n − k or
less.

Proof: Let C be a clique inG of size k. Consider the sequence of actions P = P1.P2.P3.P4.P5.P6.P7.P8

where UA(〈r1, . . . , rn〉) abbreviates UA(r1) . . .UA(rn).
1. P1 is the concatenation of the sequences 〈UR(ci),UA(c̄i),UA(ai)〉 for vi ∈ V − C. Note:

|P1| = 3n− 3k.

2. P2 is the concatenation of the sequences 〈UR(di),UA(d̄i),UA(bi)〉 for vi ∈ C. Note: |P2| = 3k.

3. P3 is the concatenation of the sequences 〈UA(vi)〉 for vi ∈ V − C. Note: |P3| = n− k.

4. P4 is the concatenation of the sequences 〈UA(Hi)〉 for vi ∈ C, where Hi = 〈hi,0, hi,1, . . . , hi,n〉.
Note : |Hi| = n+ 1, so, |P4| = (n+ 1)× k.

5. P5 is the concatenation of the sequences 〈UR(d̄i),UA(di),UR(ci),UA(c̄i),UA(ai), UR(di),UA(d̄i)〉
for vi ∈ C. Note: |P5| = 7k.

6. P6 is the concatenation of the sequences 〈UA(Gi)〉 for Vi ∈ V−C, whereGi = 〈gi,1, gi,2, . . . , gi,n〉.
Note : |Gi| = n, thus, |P6| = n× (n− k).

7. P7 is the concatenation of the sequences 〈UR(c̄i),UA(ci),UR(di),UA(d̄i),UA(bi), UR(ci),UA(c̄i)〉
for vi ∈ V − C. Note: |P7| = 7n− 7k.

8. P8 is the concatenation of the sequences 〈UR(vi)〉 for vi ∈ V − C. Note: |P8| = n− k.

9. P9 is the concatenation of the sequences 〈UA(ei)〉 where vi ∈ V . Note: |P9| = n.
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The order of P1 and P2 can be switched. From the definition of the can assign relation for the
roles hi,j, it follows that for every vi ∈ C, the sequence of actions UA(Hi) can be executed in a
state where ∀vm ∈ V − C : (vi, vm) �∈ E is true. This means that UA(Hi) for all vi ∈ C can be
executed in a state where every vm ∈ V − C is true. The sequence of actions UA(Gi) can be
executed from any state. Thus, P4 is a feasible subsequence of P . Finally, ei are added to the plan
for all vi ∈ V , signaling the end of the plan. It is straightforward to verify that P is indeed a plan
for I and |P | = n2 + 13n − k. � Lemma 25

Lemma 26 Suppose there exists a plan for I of length n2 + 13n− k or less. Then G has a clique
of size k.

Proof: Let P be a plan for I such that |P | ≤ n2 + 13n− k.
For all 1 ≤ i ≤ n, P must contain UA(ei) and also, based on UA and the pre-conditions in the

can assign rules, either

〈UR(ci), . . . ,UA(c̄i), . . . ,UA(ai), . . . ,UR(c̄i), . . . ,UA(Gi),UA(ci), . . . ,UR(di), . . . ,
UA(d̄i), . . . ,UA(bi), . . . ,UR(ci), . . . ,UA(c̄i)〉 (1)

or
〈UR(di), . . . ,UA(d̄i), . . . ,UA(bi), . . . ,UR(d̄i), . . . ,UA(Hi),UA(di), . . . ,UR(ci), . . . ,
UA(c̄i), . . . ,UA(ai), . . . ,UR(di), . . . ,UA(d̄i)〉. (2)

Let W be the set of vertices vi such that P contains UA(vi). P must also contain UR(vi) in
order to add ei.

For vt ∈ V −W , P does not contain UA(vt), so the precondition for UA(ct) in the sequence (1)
is never satisfied, so P contains the sequence (2).

Let vs ∈ V − W . If there is no edge between vs and vt (i.e., (vs, vt) /∈ E), then from the
definition of can assign, vs is in the precondition of UA(Ht). Since UA(Ht) ∈ P , it follows that
UA(vs) ∈ P contradicting that vs ∈ V −W . Thus, there is an edge (vs, vt) ∈ E. Since this is true
for all vs and vt in V −W , V −W is a clique.

The length of each sequence of the form (1) is 10+|V |, because |UA(ci)| = |UA(di)| = |UA(ci)| =
|UA(di)| = |UA(ai)| = |UA(bi)| = |UR(ci)| = |UR(di)| = |UR(ci)| = |UR(di)| = 1 and |UA(Gi)| =
|V |.

The length of each sequence of the form (2) is 10 + (|V | + 1), because |UA(ci)| = |UA(di)| =
|UA(ci)| = |UA(di)| = |UA(ai)| = |UA(bi)| = |UR(ci)| = |UR(di)| = |UR(ci)| = |UR(di)| = 1 and
|UA(Hi)| = |V |+ 1.

Let p denote the sum of the lengths of the above sequences that appear in P . P contains a
sequence of type (2) for each vertex in V −W , and a sequence of type (1) or (2) for each vertex in
W . To obtain a lower bound on |P |, we suppose that P contains the shorter of these two kinds of
sequences (namely, the former) for each vertex in W .

Therefore, the sum of the lengths of these sequences in P is (10+|V |)|W |+(10+|V |+1)|V −W |.
P must also contain a UA(ei) for each vertex in V , and |UA(vi)| and |UR(vi)| for each vertex in
W , so |P | ≥ (10 + |V |)|W |+ (10 + |V |+ 1)|V −W |+ |V |+ 2|W |. The right side can be simplified
to (recall that n = |V |) n2 + 12n + |W |, which can be rewritten as n2 + 13n − (n − |W |), which
equals n2 + 13n − |V −W |. Thus, we have |P | ≥ n2 + 13n − |V −W |.

By assumption, |P | ≤ n2+13n− k. Combining these two inequalities, we have n2+13n−|V −
W | ≤ |P | ≤ n2 + 13n− k, so |V −W | ≥ k. Thus, G contains a clique of size k. � Lemma 26
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From Lemmas 25 and 26 it follows that BRE for the class [D,CR,EN , |ppre| ≤ 2, |SMER(r)| ≤
1] is NP-hard. � Lemma 24

Theorem 27 Bounded Reachability (BRE) for the problem class [D,CR,EN , |pre| ≤ 2, |SMER(r)| ≤
1] is NP-hard.

Proof: The proof is very similar to that of Lemma 24. The theorem can be easily proven by
replacing the can assign rules for vi and ci with the following rules:

• ∀1 ≤ i ≤ n : (gi,n, vi) ∈ can assign

• ∀1 ≤ i ≤ n : (vi, ci) ∈ can assign

�

Theorem 28 Bounded Reachability (BRE) for the problem class [D,EN,CR, |goal| = 1, |SMER(r)| ≤
1] is NP-hard.

Proof: As discussed in Section 4, reachability of a goal containing multiple roles can be trans-
formed to reachability of a singleton goal, and the transformation preserves all restrictions except
|pre| ≤ k and |ppre| ≤ k. Therefore, the proof of Lemma 24 can directly be applied to show that
reachability for the problem class [D,EN,CR, |goal| = 1, |SMER(r)| ≤ 1] is NP-hard. �

Theorem 29 Bounded Reachability (BRE) for the problem class [D,EN, |ppre| ≤ 1] (no dis-
junction, SMER constraints allowed but no explicit negation, at most one positive literal in pre-
requisites) is NP-hard.

Proof: The proof is by reduction from the CLIQUE problem, which is known to be NP-complete
[Kar72]. The proof is similar in structure to the proof of Theorem 4.15 in [BN95], but our con-
struction and proof are significantly more complicated, because we are dealing with a significantly
more restricted problem class. Given a graph G = (V,E) where V = {v1, . . . , vn} and an integer
k, we construct a reachability problem instance I that is in the problem class [D,EN, |ppre| ≤ 1]
and show that G has a clique of size k if and only if I has a plan of size at most 15n − 2k.

Define I = (γ, goal, ψ) where

1. γ = (R,UA). Corresponding to each vertex vi ∈ V there is a role vi ∈ R, and for each such
role vi there are additional roles ai, bi, ci, di, ei, fi, gi, hi. Thus R = {vi, ai, bi, ci, di, ei, fi, gi, hi :
1 ≤ i ≤ n}, and UA = {ci, di : 1 ≤ i ≤ n}.

2. ψ = (can assign, can revoke,SMER) where

• can assign is defined as

(a) ∀1 ≤ i ≤ n : (true, vi) ∈ can assign

(b) ∀1 ≤ i ≤ n : (di, ai) ∈ can assign

(c) ∀1 ≤ i ≤ n : (ci, bi) ∈ can assign

(d) ∀1 ≤ i ≤ n : (true, ci) ∈ can assign

(e) ∀1 ≤ i ≤ n : (true, di) ∈ can assign

(f) ∀1 ≤ i ≤ n : (ai, ei) ∈ can assign

(g) ∀1 ≤ i ≤ n : (bi, fi) ∈ can assign
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(h) ∀1 ≤ i ≤ n : (true, gi) ∈ can assign

(i) ∀1 ≤ i ≤ n : (true, hi) ∈ can assign

• can revoke is defined as

(a) ∀1 ≤ i ≤ n : (true, vi) ∈ can revoke

(b) ∀1 ≤ i ≤ n : (vi, ai) ∈ can revoke

(c) ∀1 ≤ i ≤ n : (vi, bi) ∈ can revoke

(d) ∀1 ≤ i ≤ n : (true, ci) ∈ can revoke

(e) ∀1 ≤ i ≤ n : (true, di) ∈ can revoke

• SMER is defined as

(a) ∀1 ≤ i ≤ n : (di, bi) ∈ SMER

(b) ∀1 ≤ i ≤ n : (ai, ci), (vi, ci) ∈ SMER

(c) ∀1 ≤ i, j ≤ n, (vi, vj) /∈ E : (di, vj) ∈ SMER

(d) ∀1 ≤ i ≤ n, (ai, gi) ∈ SMER

(e) ∀1 ≤ i ≤ n, (bi, hi) ∈ SMER

3. goal = {vi, ei, fi, gi, hi : 1 ≤ i ≤ n}.
Note that all the roles have positive preconditions of size at most 1, Thus, I satisfies the

|ppre| ≤ 1 restriction. Because each role r ∈ R has at most one state change rule in can assign and
can revoke, I satisfies the D restriction. Because negation is specified only as SMER constraints,
I satisfies the EN restriction. Thus, I is in the problem class [D,EN, |ppre| ≤ 1].

Lemma 30 If G has a clique of size k, then I has a plan of size 15n − 2k.

Proof: Let C be a clique in G of size k. Consider the sequence of actions
P = P1.P2.P3.P4.P5.P6.P7.P8, P9.P10.P11.P12.P13.P14 whereUA and UR abbreviate UserAssign and
UserRevoke respectively.

1. P1 is the concatenation of the sequences 〈UR(ci),UA(ai),UA(ei)〉 where vi ∈ V − C. |P1| =
3n− 3k.

2. P2 is the concatenation of the sequences 〈UR(di),UA(bi),UA(fi)〉 where vi ∈ C. |P2| = 3k.

3. P3 is the concatenation of the sequences 〈UR(di)〉 where vi ∈ V − C. |P3| = n− k.

4. P4 is the concatenation of the sequences 〈UR(ci)〉 where vi ∈ C. |P4| = k.

5. P5 is the concatenation of the sequences 〈UA(vi)〉 for all 1 ≤ i ≤ n. |P5| = n.

6. P6 is the concatenation of the sequences 〈UR(ai)〉 where vi ∈ V − C. |P6| = n− k.

7. P7 is the concatenation of the sequences 〈UR(bi)〉 where vi ∈ C. |P7| = k.

8. P8 is the concatenation of the sequences 〈UR(vi)〉 where vi ∈ V − C. |P8| = n− k.

9. P9 is the concatenation of the sequences 〈UA(ci),UA(bi),UA(fi),UR(ci)〉 where vi ∈ V −C.
|P9| = 4n− 4k.
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10. P10 is the concatenation of the sequences 〈UA(di),UA(ai),UA(ei),UR(di)〉 where vi ∈ C.
|P10| = 4k.

11. P11 is the concatenation of the sequences 〈UA(vi)〉 where vi ∈ V − C. |P11| = n− k.

12. P12 is the concatenation of the sequences 〈UR(ai)〉 where vi ∈ C. |P12| = k.

13. P13 is the concatenation of the sequences 〈UR(bi)〉 where vi ∈ V − C. |P13| = n− k.

14. P14 is the concatenation of the sequences 〈UA(gi)UA(hi)〉 where 1 ≤ i ≤ n. |P14| = 2n.

It is easy to see that P is a plan for I and that |P | = 15n− 2k. � Lemma 30

Lemma 31 Suppose I has a plan of length at most 15n− 2k. Then G has a clique of size k.

Proof: The proof is similar to the proof of Lemma 26. � Lemma 31
From Lemmas 30 and 31 it follows that G has a clique of size k if and only if I has a plan of

size at most 15n − 2k. Thus, BRE for [D,EN, |ppre| ≤ 1] is NP-hard. � Theorem 29

6 Other Analysis Problems

6.1 Reachability, Availability, and Containment Analysis Problems

In this section, we consider the following analysis problems: permission-role and user-permission
reachability, user-role availability, role-role containment, and permission-role containment.

Permission-Role Reachability Analysis. Consider queries of the form “Can administrators in
administrative roles in A assign a permission p to all roles in goal?”. miniRBAC and miniARBAC
specifications for the user-role and permission-role assignment relations are symmetrical, except that
miniARBAC does not include an analogue of SMER constraints for permissions, so permission-role
reachability analysis can be performed in exactly the same manner as user-role reachability analysis
with SMER = ∅. Thus, the results of Section 5 apply directly.

We now consider a more general case: “Can administrators in administrative roles in A assign
permissions {p1, . . . , pn} to all roles in goal?”. Note that role assignments for different permissions
are independent, just as role assignments for different users are independent (cf. the Single User
simplification in Section 4.1). Thus, this analysis problem is true if and only if the administrators
in administrative roles in A can assign every permission pi to all roles in goal. All complexity
results for permission-role reachability analysis with single permission carry over to permission-role
reachability analysis with multiple permissions.

User-Permission Reachability Analysis. Consider queries of the form “Can administrators
in administrative roles in A grant user u permission p?”. Such a query can be answered by checking
whether there exists a role r such that (1) user u is initially a member of r or the administrators
can add u to r, and (2) permission p is already granted to r or administrators can grant p to r.
Thus, the problem can be transformed into a polynomial number of user-role and permission-role
reachability analysis problems that satisfy the same structural restrictions (N , D, etc.) as the
original problem. This implies that results in Section 5 showing user-role reachability for a problem
class is in P, NP, or PSPACE also apply to user-permission reachability (for a single permission)
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for that problem class. To show that the NP-hardness and PSPACE-hardness results in Section 5
also carry over, we sketch a polynomial-time reduction from permission-role reachability analysis to
user-permission reachability analysis (for a single permission). Recall from above that complexity
results for user-role reachability carry over to permission-role reachability. Given a permission-role
reachability query involving permission p, role r, and administrative roles in A, we add a new user
u0 to the policy, make u0 a member of role r in the initial state, delete all the can assign and
can revoke rules (keeping the can assign p and can revoke p rules unchanged), and ask whether
permission p can be granted to user u0 by administrators in roles in A. u0 is always a member of
r and of no other roles, so p can be granted to u0 iff p can be granted to r.

We now consider a more general user-permission query with multiple permissions: “Can ad-
ministrators in A give user u permissions {p1, . . . , pn}?”. To solve this problem, we first perform
permission-role reachability analysis to compute, for i = 1..n, the set Ri of roles that can be granted
permission pi by administrators in A. Next, we perform user-role reachability analysis to check
if there exist g1 ∈ R1, . . . , gn ∈ Rn such that u can be assigned all roles in {g1, . . . , gn}. The
given set of permissions is reachable iff such g1, . . . , gn exist. Note that role assignments for differ-
ent permissions are independent, just as role assignments for different users are independent (cf.
the Single User simplification in Section 4.1), so each gi can be selected independently from Ri.
Thus, user-permission reachability analysis for n permissions can be transformed into O(|R| × n)
permission-role reachability analysis problems and O(|R|n) user-role reachability analysis problems
that satisfy the same structural restrictions as the original problem. It follows that the PSPACE-
completeness result for user-role reachability in Section 5 carries over to user-permission reachability
with multiple permissions.

Availability Analysis. User-role availability analysis checks whether a given user u is a member
of a given role r in all policies reachable from the initial policy by actions of a given set of admin-
istrators A. The problem can be simplified in the same ways as user-role reachability (cf. Section
4.1). A simplified user-role availability analysis problem instance has the form I = (γ, goal, ψ)
where γ = (R,UA) is a simplified miniRBAC policy, ψ =(can assign, can revoke,SMER) is a sim-
plified miniARBAC policy, and goal is a set of roles. The answer to I is true iff in every state γ′

reachable from γ via ψ (i.e., γ →∗
ψ γ′), the user is a member of at least one role in goal in state

γ′. I can be solved as follows.

1. Suppose goal ∩UA = ∅; i.e., no role in goal is in the initial state. Then the answer is false.

2. Suppose ψ satisfies the CR restriction (every role can be unconditionally revoked). The
answer is false, because u’s membership in every role in goal can be revoked.

3. Otherwise we transform the user-role availability analysis problem instance I to a user-role
reachability analysis problem instance I ′ = (γ′, goal′, ψ′) as follows.

• goal′ = {r̄ : r ∈ goal} where each r̄ is a new role.

• Let γ′ = (R′,UA) where R′ = R ∪ goal′.
• ψ′ =(can assign′, can revoke′,SMER′) where

(1) can assign′ = can assign ∪{(true, r̄) : r̄ ∈ goal′},
(2) can revoke′ = can revoke ∪{(true, r̄) : r̄ ∈ goal′}, and
(3) SMER′ = SMER ∪ {(r, r̄) : r ∈ goal}.
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We show that I and I ′ have opposite answers. Suppose the answer to I ′ is true. Then there
exists a state γ′ = (R,UA′) such that γ →∗

ψ′ γ′ and goal′ ⊆ UA′. For each r ∈ goal, (r̄, r) ∈ SMER′,
so r /∈ γ′. Thus, goal ∩ γ′ = ∅. This implies that the answer to I is false. Conversely, it is easy to
show that if the answer to I ′ is false, then the answer to I is true. Thus, availability analysis can be
reduced to reachability analysis in polynomial time, and the transformation preserves restrictions
EN,CR,D, |goal| ≤ k, |pre| ≤ k, and |ppre| ≤ k. Thus, several of the complexity results and
algorithms in Section 5 carry over to availability analysis. For example, availability analysis for the
problem classes [CR,EN, |ppre| ≤ 1, |goal| ≤ k] and [|pre| ≤ 1, |goal| ≤ k] are in P.

Containment Analysis A role-role containment problem instance has the form [LT06]: given
a set A of administrative roles, an initial miniRBAC policy γ, and miniARBAC policy ψ, is every
member of role r1 also a member of role r2 in every state reachable from γ by actions of admin-
istrators in A allowed by ψ? Let Ic = (γ,A, r1 , r2 , ψ) denote this role-role containment analysis
instance.

Theorem 32 Role-role containment analysis for the problem class without any restrictions is
PSPACE-complete.

Proof: Recall from Theorem 2 that RE for the problem class without any restrictions is PSPACE-
hard. We give a polynomial-time reduction from reachability analysis to role-role containment
analysis; this implies that role-role containment analysis is also PSPACE-hard. Given a (simplified)
reachability problem instance I = (γ, {g1, . . . , gn}, ψ), we first transform it to a reachability problem
instance with a singleton goal {g}, as described in Section 4. Let I1 = (γ1, {g}, ψ1) denote the
resulting reachability problem instance. Next, we transform I1 to a role-role containment analysis
problem Ic = (γ2, g, r2, ψ2), where r2 is a new role, γ2 is obtained from γ1 by adding r2 to the set of
roles (but not the user-role assignment), and γ2 and ψ2 are “unsimplified” (cf. the simplifications
in Section 4.1) by adding dummy values for the implicit user, the implicit administrative role, and
the relations related to permissions. Note that r2 is unreachable, because r2 is not in the initial
user-role assignment in γ2, and there are no can assign rules for r2. Based on this, it is easy to see
that the answer to the original reachability problem instance I is true iff the answer to Ic is false.

We show that role-role containment analysis is in PSPACE, by showing that it is in co-
NPSPACE, and recalling that PSPACE = co-NPSPACE (this is a corollary of Savitch’s theorem).
Role-role containment analysis is in co-NPSPACE, because a non-deterministic Turing Machine
can show that the answer to a role-role containment problem instance Ic = (γ,A, r1, r2, ψ) is false
by guessing, one step at a time, a plan that leads to a miniRBAC state that contains r1 but not r2.
At each step, the Turing Machine stores only the current state (i.e., current miniRBAC policy),
whose size is polynomial in the size of the problem instance. �

Theorem 33 Role-role containment analysis for the problem class [R] is co-NP-complete.

Proof: Recall that a language is co-NP-complete if its complement is NP-complete, so we need to
show that the complement of role-role containment analysis for [R] is NP-complete. It is NP-hard
because reachability analysis for [R] is many-one reducible to it, using the same reduction as in
the first half of the proof of Theorem 32, and reachability analysis for [R] is NP-hard, according to
Theorem 17. It is in NP by the same reasoning as in the second half of the proof of Theorem 32,
together with the observation that guessing and checking the plan can be done polynomial time,
because in the absence of revocation, the length of the plan is bounded by the number of roles,
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because the plan contains only UserAssign actions, and repeating a UserAssign action has no effect.
�

A permission-role containment problem instance has the form: in every state reachable from the
initial state, is every principal who has permission p also a member of at least one role in Role? An
example is: is every user with permission [assignGrade,GradeBook] a member of TA or Faculty?
The permission-role containment analysis problem can be reduced to the negation of the following
problem instance: does there exist a state, a user u and a role r �∈ Role such that u is a member of
r and r has permission p? This problem can be transformed into a polynomial number of user-role
reachability and role-permission reachability analysis problems by first computing a set of roles R1

to which an administrator can grant p and then checking if there exist a role r ∈ (R1 −Role) and
a user u such that r is reachable from {r1|(u, r1) ∈ UA}. If so, the containment analysis result is
false and true otherwise. The above reduction does not change the policy. Thus the permission-
role containment problem is in P for policies where can assign and can assignp each satisfy the
restrictions defining one of the problem classes (in Figure 2) for which user-role reachability is in
P.

Role-permission and permission-permission containment analysis problems are not common in
practice and hence are not considered in this paper.

6.2 Information Flow Analysis of miniARBAC

An information flow analysis query asks: given a miniRBAC policy γ, a miniARBAC policy ψ, a
set A of administrative roles, and objects (i.e., resources) o1 and o2, can information flow from o1
to o2 by administrative actions of administrators in roles in A and normal actions of all users?

Our solution to this analysis problem builds on Osborn’s definition of an information flow graph
for an RBAC policy γ [Osb02]. Each node in the graph represents an object. There is an edge
o1 → o2 in the graph if information can flow directly from object o1 to object o2, i.e., if there exists
a user u that has permission in γ to read from o1 and write to o2. For simplicity, we assume the
only operations on objects are read and write; other permissions can be represented as read and
write permissions for the purposes of information flow analysis. Note that [Osb02] considers only
RBAC, not ARBAC.

Our algorithm constructs a graph called the information flow transition graph. Each state in
the graph is a pair (γ,O) where γ is an RBAC policy and O is a set of objects; the state means
that the system can reach a state in which the miniRBAC policy is γ and information has flowed
from o1 to the objects in O.

The graph contains a labeled edge (transition) (γ1, O1)
α
↪→ (γ2, O2), where α is an administrative

action permitted by ψ for an administrative role in A, if γ2 is obtained from γ1 by execution of α,
and O2 is the set of objects reachable from O1 in the information flow graph for γ2. Our algorithm
starts from (γ,O), where O is the set of objects reachable from o1 in the information flow graph for
the initial miniRBAC policy γ, and computes the reachable states. The answer to the information
flow query is true iff there exists a reachable state whose second component contains o2. As an
optimization, it is sufficient to consider only users with distinct sets of roles in the initial miniRBAC
policy.

The following theorems establish the complexity of information-flow analysis for miniARBAC
for some problem classes.

36



Theorem 34 Information flow analysis for miniARBAC without any restrictions is PSPACE-
complete.

Proof: Recall that user-role reachability analysis of ARBAC without any restrictions is PSPACE-
complete (Theorem 2). Below, we show that information flow analysis for the problem class without
any restriction is PSPACE-hard by giving a polynomial-time reduction from user-role reachability
analysis to information-flow analysis. Given a user-role reachability problem instance, we first
transform it to a user-role reachability problem instance with a singleton goal {g}, as described in
Section 4. We then introduce two new objects o1 and o2, and modify the initial permission-role
assignment to grant to role g permissions to read from o1 and write to o2. Note that no users are
members of role g in the initial user-role assignment. It is easy to see that information can flow
from o1 to o2 iff role g is reachable.

Information flow analysis of miniARBAC is in PSPACE by similar reasoning as in the proof
that user-role reachability analysis is in PSPACE (Theorem 2). The main point is that a non-
deterministic Turing Machine can guess a path in the information-flow transition graph, one step
at a time, storing only the current state (node) after each step. The size of each node is polynomial
in the size of the problem instance. �

Theorem 35 Information flow analysis for the problem class [N ] can be solved in polynomial time.

Proof: We describe a simple polynomial algorithm to solve the problem, based on the observation
that, without negative preconditions, revocation is not useful for achieving any information flow
goal. First, the algorithm computes the maximal set of roles that can be assigned to each user,
by starting from the initial RBAC policy and repeatedly assigning roles until no more roles can be
assigned. Next, the algorithm in [Osb02] is used to construct an information flow graph G based
on these sets of roles. The information flow analysis problem is true if and only if there exists a
path from the given source object o1 to the given target object o2 in G. �

Theorem 36 Information flow analysis problem for the problem classes [R], [R,EN ], and
[R,EN, |goal| = 1, |SMER(r)| ≤ 1] is NP-complete.

Proof: NP-hardness of information flow analysis for these problem classes is proved from NP-
hardness of user-role reachability analysis for these problem classes (see Theorem 17), using the same
reduction as in the proof of Theorem 34. That reduction preserves the restrictions R,EN, |goal| =
1, and |SMER(r)| ≤ 1. The problem is in NP because, after guessing a sequence P of UserAssign(ri)
actions, a Turing Machine can check in polynomial time whether P is allowed by the miniARBAC
policy and whether P allows information to flow from a given source object to a given target
object. It is sufficient to consider polynomial-length sequences P , because without revocation, it is
sufficient to add each role at most once. �

7 Extensions

In this section, we consider user-role reachability analysis for two extensions of miniARBAC. The
first extension allows role hierarchy, and the second extension allows a role to be both a regular
role and an administrative role.
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7.1 User-Role Reachability Analysis in Hierarchical RBAC

In this subsection, we first discuss reachability analysis for miniARBAC controlling changes to
miniHRBAC policies with fixed role hierarchy, and then consider changes to the role hierarchy.
Fixed role hierarchy means that the can modify relation is empty, so the role hierarchy does not
change.

Reachability analysis with fixed role hierarchy. It is easy to show, based on our results
for non-hierarchical policies, that reachability analysis for miniARBAC with fixed role hierarchy is
PSPACE-hard.

Theorem 37 For miniARBAC policies controlling changes to miniHRBAC policies with fixed role
hierarchy (i.e., the can modify relation is empty), Reachability (RE) is PSPACE-complete.

Proof: PSPACE-hardness of RE for this problem class is a corollary of Theorem 2, because
miniRBAC is a restricted case of miniHRBAC with a fixed role hierarchy. Reachability for this
problem class is in PSPACE by similar reasoning as in Theorem 2: a non-deterministic Turing
Machine can guess a plan one step at a time, storing at each step only the current state. �

To extend other complexity results from the non-hierarchical case to the hierarchical case, we
show how to transform reachability analysis problems for hierarchical policies into reachability
analysis problems for non-hierarchical policies. The transformation makes the effects of inherited
membership explicit; in the original problem, the effects of inherited membership are implicit in
the semantics of preconditions.

Our transformation assumes that the SMER constraints do not conflict with the role hierarchy.
Two kinds of conflicts are identified in [AH07]. A SMER constraint (r1, r2) conflicts with the role hi-
erarchy if (1) r1 and r2 have a common senior role, or (2) r1 is senior to r2 or vice versa. For example,
consider a policy in which Manager is senior to Employee1 and Employee2 . The SMER constraint
(Employee1,Employee2 ) contains a conflict of type (1); intuitively, this reflects the fact that this
SMER constraint forces Manager to be empty, because any member of Manager would be an im-
plicit member of both Employee1 and Employee2 . The SMER constraint (Employee1,Manager )
contains a conflict of type (2); this reflects the fact that it also forces Manager to be empty, for
similar reasons.

Let Ih = (γh, goalh, ψh) be a reachability problem instance for hierarchical RBAC with γh =
(R,UA,�), ψh =(can assignh, can revokeh,SMERh), and goalh = {g1, g2, . . . , gk}. Define a set of
reachability problem instances for non-hierarchical RBAC as follows.

• Let γ = (R,UA).

• The can assign and can revoke relations are generated in two steps from can assignh and
can revokeh.

1. For each (c, r) ∈ can assignh, and for each ¬t ∈ c, replace ¬t with
∧
s∈Senior(t) ¬s.

Transform the can revokeh relation in a similar manner. Let can assign′ and can revoke′

denote the transformed relations.

2. For each (c+∧c−, r) ∈ can assign′, where c+ is a conjunction r1∧. . .∧rk of positive roles,
and c− is a conjunction of negative roles, generate the Cartesian product PosConjunct =
Senior(r1) × . . . × Senior(rk). For each (r′1, . . . , r

′
k) ∈ PosConjunct such that there is
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no role that appears in both (r′1, . . . , r
′
k) and c−, add the rule (r′1 ∧ . . . ∧ r′k ∧ c−, r) to

can assign. Generate can revoke from the can revoke′ in the same manner.

• Let SMER = {(r, s) : (r′, s′) ∈ SMERh ∧ r � r′ ∧ s � s′}.
• Goals = Senior(g1)× Senior(g2)× . . . × Senior(gn).

Note that transforming the goal {g1, . . . , gn} into Goals ensures that if a role senior to gi is
reachable, then gi is reachable. As a result, we do not need to transform the postconditions in
can assign and can revoke rules. The answer to Ih is true if and only if there exists a goal ∈ Goals
such that the answer to I = (γ, goal, ψ) is true. Moreover, it is easy to show that any plan for Ih
is also a plan for I, and vice versa.

Starting from our results for analysis of non-hierarchical policies, we can derive results for
analysis of a class of hierarchical policies, defined by some restrictions on the policies, by determining
(1) the restrictions satisfied by the transformed policies, (2) the size of a transformed policy relative
to the size of the original (hierarchical) policy, and (3) the number of transformed problem instances,
i.e., the number of transformed goals. We consider these issues in turn.

The restrictions N , EN , R, CR, |ppre| ≤ 1, and |goal| ≤ k are preserved by the transformation;
the proofs are straightforward. The transformation may invalidate other restrictions. Specifically,
steps 1 and 2 in the transformation may invalidate the restrictions |pre| ≤ 1 and D, respectively,
and the transformation from SMERh to SMER may invalidate the |SMER(r)| ≤ 1 restriction.

The size of the transformed policy might not be polynomial in the size of the original policy
because, in the worst case, the Cartesian product Senior(r1)× . . .×Senior(rk) in step 2 may result
in addition of O(h|ppre|) rules, where h is a bound on the number of senior roles for each role, and
|ppre| is a bound on the number of positive preconditions in each can assign rule. Therefore, in
general, the transformation may increase the size of the policy by a factor exponential in |ppre|.
This implies, for example, that results giving polynomial-time algorithms for a problem class do
not carry over to analysis of hierarchical policies, unless |ppre| is bounded. We do expect that
in practice, the number of positive preconditions in each can assign rule is bounded by a small
constant.

The transformed goals are defined by a Cartesian product Senior(g1) × Senior(g2) × . . . ×
Senior(gn). In the worst case, the number of transformed goals is O(h|goal|), where h is as in the
previous paragraph. For problem classes with the restriction |goal| ≤ k, the number of transformed
goals is polynomial in the size of the original policy.

For example, recall that reachability analysis for the problem class [EN ,CR, |ppre| ≤ 1, |goal| ≤
k] for non-hierarchical policies can be solved in polynomial time. Based on the above observations,
we conclude that reachability analysis for the problem class [EN ,CR, |ppre| ≤ 1, |goal| ≤ k] for
hierarchical policies can also be solved in polynomial time.

As an optimization, we can compute dependencies between roles (based on preconditions) and
transform only the part of the role hierarchy relevant to the goal.

Analysis for some classes of hierarchical policies can be solved more efficiently by a direct
algorithm than by the above transformation. For example, reachability analysis for hierarchical
policies that satisfy the N restriction can always be solved in polynomial time, using a fixed-point
algorithm similar to the algorithm for reachability analysis for non-hierarchical policies satisfying
this restriction.
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Reachability allowing changes to role hierarchy. Next, we show that user-role reachability
analysis is PSPACE-complete when changes to the role hierarchy are allowed. Recall from Section 3
that changes to the role hierarchy � are controlled by the RRA policy (note that the administrative
role hierarchy �a is fixed). When considering changes to the role hierarchy, we also adopt a modified
definition of URA and PRA in which the third component of each tuple in can assign, can revoke,
can assign p, and can revoke p is a set of roles expressed using range notation, like in the second
component of can modify. We refer to this modified version as miniARBAC with role ranges.
Actually, this matches the original definition of ARBAC97 [SBM99]. Our use of a single role in
the third component of those relations in other sections of this paper is a simplification that has
essentially no effect on our results when the role hierarchy is fixed, but it would have an effect here.
When new roles may be added, use of range notation is significant, because it allows existing tuples
in can assign, can revoke, etc., to apply to newly added roles that fall in the specified range.

Theorem 38 When changes to the role hierarchy are allowed, user-role reachability analysis for
miniARBAC with role ranges is PSPACE-complete.

Proof: PSPACE-hardness of this problem is a corollary of Theorem 2. The proof that the
problem is in PSPACE relies on the following lemma.

Lemma 39 Let R be the set of roles in a miniRBAC policy γ, and let r be a role in R. If r is
reachable from γ under a miniARBAC policy ψ, then r is reachable from γ by a plan that adds at
most |R|2 roles.

Proof: A new role is related to roles in R only by the specification of its parent and child
in the role hierarchy, and there are at most |R|2 distinct choices for these among roles in R.
Creating additional roles with the same parent and child in R has no additional effect on inheritance
relationships between (or membership of) roles in R. Creating multiple roles between roles r1 and
r2 in R (e.g., creating r and r′ with r2 � r′ � r � r1) is always unnecessary for reaching a role
membership goal, because the same inheritance relationship between r1 and r2 can be produced by
creating a single role between them. �Lemma 39

To see that the problem is in PSPACE, note that a non-deterministic Turing Machine can guess
a plan one step at a time, storing at each step only the current state. The size of the state is
polynomial in the number of roles. Based on Lemma 39, the non-deterministic Turing machine
guesses only plans that add at most a quadratic number of roles, so the number of roles (and hence
the size of the state) is polynomial in the size of the problem instance. �Theorem 38

7.2 Beyond the Separate Administration Restriction

miniARBAC, like ARBAC97, requires that administrative roles and regular roles are separate, i.e.,
AR ∩ R = ∅. We call this requirement the separate administration restriction. In this subsection,
we consider user-role reachability analysis for a variant of miniARBAC without this restriction. In
this subsection, we do not consider hierarchical RBAC (in other words, the miniARBAC policies
control changes to miniRBAC policies not miniHRBAC policies), and we do not consider changes
to the role hierarchy (i.e., we assume can modify is empty).

Without the separate administration restriction, reachability analysis must consider plans that
may contain administrative actions that change the role membership of any user. Consider the
following ARBAC policy: can assign = {(ra1, true, ra2), (ra2, true, r)}. Let UA = ∅, goal = {r},
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and ut be the target user. Observe from the policy that, a user with administrative role ra1 cannot
directly assign role r to ut, but ua can assign him/herself to ra2 and then assign role r to ut. Thus,
we cannot assume “single user” and “implicit administrative role” (cf. Section 4.1) in this context.

Theorem 40 Reachability (RE) for miniARBAC without the separate administration restriction
is PSPACE-complete.

Proof: PSPACE-hardness of reachability for this problem class is a corollary of Theorem 2.
Reachability for this problem class is in PSPACE, because a non-deterministic Turing Machine can
guess a plan one step at a time, storing at each step only the current state. The size of the state
is polynomial in the numbers of users and roles, which do not grow, so the size of the state is
polynomial in the size of the problem instance. �

8 Related Work

We classify related work on security policy analysis into three categories, which focus on different
and complementary analysis problems.

The first category is analysis (including enforcement) of a fixed security policy. We mention
some representative papers in this category. Jajodia, Samarati, and Subrahmanian [JSS97] propose
a policy language that can express positive and negative authorizations and derived authorizations
(similar to delegation), and they give polynomial-time algorithms to check consistency and com-
pleteness of a given policy. Cholvy and Cuppens [CC97] use SOL-deduction to check consistency of
a security policy that expresses positive and negative permissions and obligations. Bandara, Lupu,
and Russo [BLR03] use abductive logic programming to detect conflicts in a policy expressed in a
language based on Event Calculus that can express positive and negative authorizations, obliga-
tions, and refrain conditions. Jaeger et al. [JEZ03, JSZ03] give algorithms to check integrity and
completeness of a Security-Enhanced Linux (SELinux) policy. Guttman et al. [GHRS05] describe
a technique to analyze information flow in a SELinux policy.

The second category is analysis of a single change to a fixed policy or, similarly, analysis of the
differences between two fixed policies. Jha and Reps [JR04] present analysis algorithms, based on
push-down model checking, to check properties of a given SPKI/SDSI policy and to analyze the
effects of a given change to a given policy. Fisler et al. [FKMT05] consider policy analysis for
a subset of XACML. They give decision-diagram-based algorithms to check properties of a given
policy and to compute the semantic difference of two given policies and check properties of the
difference.

Work in the first two categories differs significantly from our work (and other work in the third
category) by not considering the effect of sequences of changes to the policy.

The third category is analysis that considers the effect of sequences of changes to a policy;
the allowed changes are determined by parts of the policy that we call “administrative policy”.
Harrison, Ruzzo, and Ullman [HRU76] present an access control model based on access matrices,
which can express administrative policy, and show that the safety analysis problem is undecidable
for that model. Following this, a number of access control systems were designed in which safety
analysis is more tractable, e.g., [LS77, San88, San92]. While each of these papers proposes a specific
model designed with tractable analysis in mind, we start with the ARBAC97 model [SBM99] and
explore the difficulty of policy analysis in a range of models obtained by combinations of simple
restrictions on the policy language. Also, we consider features not considered in those papers, such
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as negative preconditions, and we consider availability as well as safety (i.e., reachability). Guelev,
Ryan, and Schobbens [GRS04] present a low-level access control model and an algorithm to check
properties of the policies; they note that the worst-case complexity of their algorithm is high and
non-optimal, and they leave identification of problem classes for which it has lower complexity as
future work.

Schaad and Moffett [SM02] express RBAC and ARBAC97 in Alloy, a relational modeling lan-
guage, and use the Alloy analyzer [JSS00] to check separation of duty properties. They do not
consider preconditions for any operations; this greatly simplifies the analysis problem. They do not
present any analysis algorithms or complexity results. The Alloy analyzer translates bounded-size
problem instances into SAT problems, and solves them with a SAT solver.

Li and Tripunitara [LT06] introduce two restricted versions of ARBAC97, called AATU and
AAR, and give algorithms and complexity results for various analysis problems—primarily safety,
availability, and containment—for those two models. The results are based on Li, Mitchell, and
Winsborough’s results for analysis of trust management policies [LMW05]. Our work goes signif-
icantly beyond theirs by considering negative preconditions and SMER (static mutually exclusive
roles) constraints. They do not consider these features. Since we consider these features, we are
driven to consider other restrictions, such as bounds on the size of preconditions, that they do not
consider.

Jha et al. also studies reachability analysis of URA97 [JLT+08]. One difference is that we
allow preconditions in the can revoke relation (Section 3 gives an example of a policy that requires
conditional role revocation), and they do not; as a result, their proof that reachability analysis
for URA97 is PSPACE-hard is stronger than our PSPACE-hardness result, while our proof that
reachability analysis for URA97 with conditional role revocation is in PSPACE is stronger than
their “in PSPACE” result. Also, while they consider a few problem classes that we do not (for
example, they show that reachability analysis for ARBAC with no explicit negative preconditions is
PSPACE-complete), we consider numerous problem classes not considered in [JLT+08]. Specifically,
we consider restrictions on |SMER(r)|, |pre|, |ppre|, and |goal|, as well as the Polynomial-size Plan
(EPP) and Bounded Reachability (BRP) problems, while they do not. This implies that they do
not prove the results in our Theorems 5, 6, 11, 12, 18, 19, 22, 27, 28, and 29. In addition, we
consider reachability analysis without the separate administration restriction, availability analysis,
containment analysis, and information flow analysis, while they do not.

Stoller et al. [SYRG07] present two algorithms for reachability analysis of a variant of URA97,
and use parameterized complexity theory to show that each algorithm is efficient for policies that
may be large overall but are small with respect to certain metrics. In contrast, in this paper, we
consider a much wider range of problem classes defined by various restrictions rather than metrics.
Also, we consider availability analysis and information flow analysis, while [SYRG07] does not.

Sistla and Zhou [SZ08], like [LMW05], consider trust management policies changing in accor-
dance with role restrictions that indicate, for each role, whether arbitrary rules defining that role
may be added, and whether they may be removed. The administrative policies we consider are
finer-grained than such role restrictions.

Munawer and Sandhu [MS99] shows that Augmented Typed Access Matrix Model (ATAM) can
be simulated by appropriate configuration of RBAC96 [SCFY96] components. The undecidability
of reachability analysis of ATAM suggests that reachability analysis for RBAC may be undecidable
when a complicated administrative model (similar in expressiveness to ATAM) is used.

Crampton shows undecidability of the safety problem—specifically, user-role reachability analysis—
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for RBAC96/ARBAC97 [Cra02, Chapter 5]. However, Crampton’s definition of reachability is
different than ours. Our definition is based closely on ARBAC: the transitions are exactly those
permitted by a given ARBAC policy. In contrast, Crampton’s definition of reachability is based
on [HRU76]: the transitions are exactly those obtained by executing a given set of commands,
where a command consists of a pre-condition and a sequence of administrative operations. The
commands used in Crampton’s undecidability proof are not expressible as ARBAC97 policies for
several reasons: some of the preconditions of commands are not expressible in the form allowed in
URA and PRA policies in ARBAC97, some commands use administrative operations that change
the ARBAC97 policy (specifically, the can assign relation), and the commands define sequences
of several administrative operations that must be performed atomically. Therefore, Crampton’s
undecidability result does not apply to reachability analysis as defined in this paper.

This paper extends our workshop paper [SYSR06] in several ways. It provides detailed proofs
of the results in [SYSR06]. It adds results for reachability analysis when changes to role hierarchy
are allowed and when the separate administration restriction is removed (Section 7). It also adds
results for several other analysis problems, namely, permission-role and user-permission reachability
for goals containing multiple permissions, role-role containment, permission-role containment, and
information flow analysis (Section 6).

9 Conclusion

We considered the problem of analyzing the consequences of sequences of changes to RBAC policies
that are allowed by miniARBAC policies. We found that the general analysis problem is intractable,
and remains so even when a number of fairly strong syntactic restrictions are imposed on the
ARBAC policies. For example, safety (reachability) analysis remains NP-hard even when revocation
of roles is not allowed. It also remains NP-hard even when each role assignment has at most
one precondition. We identified a few combinations of syntactic restrictions under which safety
analysis can be done in polynomial time. More experience is needed to determine how often
these restrictions are satisfied in practice. We expect that the restrictions CR (all roles can be
unconditionally revoked) and EN (negation is used only for specifying mutual exclusion of roles,
i.e., separation of duty) are satisfied reasonably often in practice. Other restrictions, such as the
absence of disjunction and restrictions on the number of preconditions, may be harder to satisfy in
practice. We also expect that in many cases, when one of these restrictions is violated, the policy
mostly satisfies the restriction, for example, only a few role assignment rules have more than one
precondition.

This work is a step towards a deeper understanding of policy analysis for ARBAC. An important
direction for future work is to study the effect of more global properties of the policy (as opposed to
syntactic restrictions), for instance, to determine whether the analysis problem becomes tractable
when dependencies between roles are acyclic. Another interesting direction for future work is to
extend our results to trust management policies [BFL96, LM03].
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