
Policy Analysis for Administrative Role Based Access
Control without Separate Administration

Ping Yang
Department of Computer Science, State University of New York at Binghamton, USA

Mikhail I. Gofman
Department of Computer Science, California State University at Fullerton, USA

Scott D. Stoller
Department of Computer Science, Stony Brook University, USA

Zijiang Yang
Department of Computer Science, Western Michigan University, USA

Abstract

Role based access control (RBAC) is a widely used approach to access con-
trol with well-known advantages in managing authorization policies. This paper
considers user-role reachability analysis of administrative role based access con-
trol (ARBAC), which defines administrative roles and specifies how members of
each administrative role can change the RBAC policy. Most existing works on
user-role reachability analysis assume the separate administration restriction in
ARBAC policies. While this restriction greatly simplifies the user-role reacha-
bility analysis, it also limits the expressiveness and applicability of ARBAC. In
this paper, we consider analysis of ARBAC without the separate administration
restriction and present new techniques to reduce the number of ARBAC rules and
users considered during analysis. We also present parallel algorithms that speed
up the analysis on multi-core systems. The experimental results show that our
techniques significantly reduce the analysis time, making it practical to analyze
ARBAC without separate administration.

1 Introduction

Role based access control (RBAC) [2] is a widely used approach to access control with
well-known advantages in performing authorization management. An RBAC policy
is a tuple 〈U,R, P,UA,PA〉 where U , R and P are finite sets of users, roles, and
permissions, respectively, UA ⊆ U ×R is the user-role assignment relation, and PA ⊆
P ×R is the permission-role assignment relation. RBAC also supports role hierarchy:
r1 � r2 specifies that r1 is senior to r2 (or r2 is junior to r1), which implies that
every member of r1 is also a member of r2, and every permission assigned to r2 is also
available to members of r1.

1

Administrative role-based access control’97 (ARBAC’97) [17] defines adminis-
trative roles and specifies how members of each administrative role can change the
RBAC policy. One part of ARBAC specifies user-role administration which con-
trols changes to user-role assignments. The policy is expressed by two types of rules:
(1) can assign(ra, c, rt) grants an administrative role ra permission to assign a target
role rt to any user who satisfies the precondition c, and (2) can revoke(ra, rt) grants
an administrative role ra permission to revoke a target role rt from a user. The precon-
dition c is a conjunction of literals, where each literal is either r (positive precondition)
or ¬r (negative precondition) for some role r. A user satisfies a positive (negative) pre-
condition if the user is (is not) a member of the role. A role is called an administrative
role if it has an administrative permission, i.e., if it appears in the first component of a
can assign or a can revoke rule. ARBAC’97 requires separate administration [22],
i.e., administrative roles cannot be target roles in can assign and can revoke rules or
appear in preconditions. In the rest of this paper, we represent the precondition c as
P ∧ ¬N , where P contains all positive preconditions in c and N contains all negative
preconditions in c.

The correctness of ARBAC policies is critical to system security, because any errors
in ARBAC may result in violations of confidentiality or integrity. In large organizations
with complex ARBAC policies, manual inspection of ARBAC policies for correctness
can be impractical, because actions performed by different administrators may interfere
with each other in subtle ways. Thus, automated analysis algorithms are essential to
ensure that an ARBAC policy conforms to desired correctness properties.

This paper considers user-role reachability analysis of ARBAC [22], which asks
queries of the form “given an RBAC policy φ, an ARBAC policy ψ, a set of users U , a
target user ut, and a set of roles (called the “goal”), is it possible for users in U ∪ {ut}
to assign ut to all roles in the goal?”. Several other security analysis problems, such as
user-role availability [16], role containment [16], and weakest precondition [22], can
be reduced to this problem.

User-role reachability analysis is intractable even under various restrictions on the
ARBAC policy [16, 18]. Most existing research on user-role reachability analysis [9,
8, 14] follows the definition of ARBAC’97, which assumes separate administration.
This prohibits an administrative role to serve as the target role in ARBAC rules, so it
is sufficient to consider the user-role assignments of only the target user. However, in
practice, the separate administration restriction does not always hold. For example, a
university ARBAC policy may specify that the role DeptChair can assign a member
of role Faculty to role AdmissionsComittee, which can in turn assign any user to
role Student. Formally, this policy is expressed by rules can assign(DeptChair,
{Faculty}∧¬∅, AdmissionsComittee) and can assign(AdmissionsCommittee,
∅ ∧ ¬∅, Student), which do not satisfy the separate administration restriction.

Analysis of ARBAC without separate administration is significantly more challeng-
ing, because it must consider administrative actions that change the role memberships
of all users, not only the target user. For example, a non-target user u may assign an-
other non-target user u1 to an administrative role, which can in turn change the role

2

assignments of the target user. Stoller et al. [22] tackled this problem by developing
an algorithm that is fixed parameter tractable with respect to the numbers of users and
mixed roles (i.e. roles that appear both negatively and positively in the policy). This
means that the algorithm is exponential in the numbers of users and mixed roles, but
is polynomial in the size of the policy when the numbers of users and mixed roles are
fixed. Since the number of users is large in large organizations, and the algorithm is
exponential in the number of users, the algorithm does not scale well. For example, we
used the implementation in [22] to analyze a university ARBAC policy containing 150
users, and the program failed to terminate within 6 hours for 4 out of the 8 randomly
generated queries.

Contributions This paper presents a number of reduction techniques that improve
the scalability of the algorithm in [22]. Our main contributions are summarized below.

• We propose two static reduction techniques – enhanced slicing (Section 3.1) and
hierarchical rule reduction (Section 3.6) – to reduce the number of ARBAC rules
considered during analysis.

• We develop a user equivalent set reduction technique (Sections 3.3) and several
involved-user reduction techniques (Section 3.4) to reduce the number of users
considered during the analysis.

• We propose two lazy reduction techniques – the subsumed-user reduction and
the delayed revocation reduction – to delay performing unnecessary transitions
(Section 3.5).

• We present several parallel algorithms, which speed up the analysis on multi-core
or multi-processor platforms (Section 4).

• We evaluated the effectiveness of our reduction techniques and our parallel al-
gorithms on an ARBAC policy for university administration. The experimental
results show that our techniques significantly reduce the analysis time.

Organization The rest of the paper is organized as follows. Section 2 describes the
user-role reachability analysis algorithm for ARBAC without separate administration
developed in [22]. Sections 3 and 4 present our reduction techniques and parallel al-
gorithms, respectively. The experimental results are given in Section 5, followed by a
discussion of related research in Section 6. Section 7 concludes the paper.

2 Preliminaries: User-Role Reachability Analysis of ARBAC

User-role reachability queries are introduced in Section 1. Let UA0 be a set of all user-
role assignments in the RBAC policy φ. The user-role reachability query is represented
as a tuple Q = 〈UA0, U, ut, ψ, goal〉.

Stoller et al. [22] presented an algorithm for analyzing ARBAC without separate
administration, which is formalized in Algorithm 1. A role is negative if it appears

3

negatively in some precondition in the policy; otherwise, it is non-negative. A role is
positive if it appears in the goal, appears positively in some precondition in the policy,
or is an administrative role; otherwise, it is non-positive. A role that is both negative
and positive is a mixed role. Note that their algorithm applies to ARBAC without role
hierarchy; role hierarchy can be eliminated using the algorithm in [18]. The algorithm
works as follows.

The algorithm first performs a slicing transformation (function slicing in Line 3),
which back-chains along ARBAC rules to identify roles that are possibly useful for
assigning to users. Such roles are preconditions and administrative roles, directly or
indirectly (i.e., transitively), for assigning the target user to any goal roles. Lines 27–
30 identify can assign rules that are possibly useful for assigning those roles to users,
add their positive preconditions to Rel+, and add their negative preconditions to Rel−.
Lines 31–34 identify possibly useful can revoke rules, i.e. can revoke rules that re-
voke roles in Rel−, and can assign rules for assigning users to administrative roles in
these can revoke rules. The algorithm then computes a set RelRule of all rules that
are possibly useful for assigning the target user to any role in the goal; such rules are
called “relevant rules”. RelRule includes all can assign rules whose targets are in
Rel+ and all can revoke rules whose targets are in Rel−.

Next, the algorithm constructs a reduced state graph G using rules in RelRule.
Each state in G is a set of user-role assignments, and each transition describes an
allowed change to the state defined by the ARBAC policy ψ. A transition is either
ua(ra, u, r) which specifies that an administrative role ra adds user u to role r, or
ur(ra, u, r) which specifies that an administrative role ra revokes user u from role r.
The following reductions are applied: (1) Transitions that revoke non-negative roles
(i.e., roles in Rel+ \Rel−) or add non-positive roles (i.e., Rel− \Rel+) are prohibited
because they do not enable any other transitions; (2) Transitions that add non-negative
roles or revoke non-positive roles are invisible; such transitions will not disable any
other transitions. Transitions that add or revoke mixed roles are visible. Invisible tran-
sitions together with a visible transition form a single composite transition.

The graph G is constructed as follows. First, the algorithm computes
closure(UA0), which is the largest state that is reachable from UA0 by performing
all invisible transitions enabled from UA0 (function closure in Line 3). The algorithm
then computes a set of all states reachable from closure(UA0) (Lines 5–21), and returns
true iff there exists a state s in G such that goal ⊆ {r | (ut, r) ∈ s} (Lines 4, 11, and
18). The worst-case time complexity for constructing the graph isO(2(|MR||U |)|I|c) for
some constant c, where |MR| is the number of mixed roles, |U | is the number of users,
and |I| is the size of the policy [22].

A condition called the hierarchical role assignment (HRA) is defined in [22], under
which analysis of ARBAC without separate administration can be reduced to analysis
of ARBAC with separate administration. An ARBAC policy satisfies HRA if, for all
can assign(ra, P ∧ ¬N, r) where r is an administrative role, ra � r.

Example 1 Consider the following ARBAC policy ψ, and the reachability query
for this policy with the initial RBAC policy UA0 = {(u1, r1), (u1, r3), (u2, r2),

4

Algorithm 1 The User-Role Reachability Analysis Algorithm in [22].
1: Processed = Rel+ = Rel− = ∅; RelRule = ∅;
2: procedure analysis(UA0, U, ut, ψ, goal)

3: (Rel+, Rel−, RelRule) = slicing(UA0, ψ, goal);
4: W = Reached = {closure(U, ut,UA0)};
5: if goal ⊆ {r | (ut, r) ∈ closure(U, ut,UA0)} then return true; end if
6: while W 6= ∅ do
7: remove a state s from W ;
8: for all (user u ∈ (U ∪ {ut})) do
9: for all can assign(ra, P ∧ ¬N, r) ∈ RelRule do

10: if (r ∈ (Rel+ ∩ Rel−), (u, r) 6∈ s, P ⊆ {r | (u, r) ∈ s}, N ∩ {r | (u, r) ∈ s} = ∅,
and (u′, ra) ∈ s for some user u′)

11: then s′ = closure(U, ut, s ∪ {(u, r)}); add transition s
ua(ra,u,r)→ s′ to G;

12: if goal ⊆ {r|(ut, r) ∈ s′} then return true; end if
13: if s′ 6∈ Reached then W =W ∪ {s′}; Reached = Reached ∪ {s′}; end if
14: end if end for end for
15: for all (can revoke(ra, r) ∈ RelRule)
16: for all (user u ∈ (U ∪ {ut}))
17: if ((u, r) ∈ s and (u′, ra) ∈ s for some user u′)

18: then s′ = closure(U, ut, s \ {(u, r)}); add transition s
ur(ra,u,r)→ s′ to G;

19: if goal ⊆ {r | (ut, r) ∈ s′} then return true; end if
20: if s′ 6∈ Reached then W =W ∪ {s′}; Reached = Reached ∪ {s′}; end if
21: end if end for end for
22: end while
23: return false;

24: procedure slicing(UA0, ψ, goal)

25: if goal = ∅ then return (∅, ∅, ∅) end if
26: Processed = Processed ∪ goal; R+ = goal; R− = ∅; Rule = ∅;
27: for all can assign(ra, P ∧ ¬N, r) ∈ ψ where r ∈ goal do
28: (R1, R2, R3) = slicing(UA0, ψ, ({ra} ∪ P) \ Processed); R+ = R+ ∪R1;
29: R− = R− ∪N ∪R2; Rule = Rule ∪ {can assign(ra, P ∧ ¬N, r)} ∪R3;
30: end for
31: RelRev = {can revoke(ra, r) ∈ ψ | r ∈ R−}; Rule = Rule ∪RelRev;
32: for all can revoke(ra, r) ∈ RelRev where ra 6∈ Processed
33: (R4, R5, R6) = slicing(UA0, ψ, {ra}); R+ = R+ ∪R4;
34: R− = R− ∪R5; Rule = Rule ∪R6; end for
35: return (R+, R−, Rule);

36: procedure closure(U, ut, s)
37: s1 = s;
38: for all can assign(ra, P ∧ ¬N, r) ∈ RelRule do
39: for all user u ∈ (U ∪ {ut}) do
40: if (r ∈ (Rel+ \Rel−), (u, r) 6∈ s, P ⊆ {r | (u, r) ∈ s}, N ∩ {r | (u, r) ∈ s} = ∅, and

(u′, ra) ∈ s for some user u′)
41: then s1 = s1 ∪ (u, r); end if end for end for
42: if s == s1 then return s1; else return closure(U, ut, s1);

5

2 r5
2

3

2
2

5

r3r6r4
4

4
3

3 1

¬r3 r1
4

r8
3

1

r2

Figure 1: The graph illustrating the slicing process in Example 1.

(u2, r8), (u3, r2), (u3, r8), (ut, r6)}, the target user ut, the set of non-target users
U = {u1, u2, u3}, and the goal {r5}.

1. can assign(r1, {r2} ∧ ¬∅, r3) 2. can assign(r6, {r4, r3} ∧ ¬∅, r5)
3. can assign(r1, {r6} ∧ ¬{r3}, r4) 4. can assign(r2, {r8, r1} ∧ ¬∅, r6)
5. can assign(r2, {r6} ∧ ¬∅, r7) 6. can revoke(r1, r2)
7. can revoke(r1, r3) 8. can revoke(r1, r4)

This policy does not satisfy the separate administration restriction, because role r6
is an administrative role in rule 2 and a target role in rule 4.

First, the algorithm performs slicing to compute Rel+ and Rel−. Initially, Rel+
contains all roles in the goal, i.e. r5, and Rel− is empty. Figure 1 illustrates the slicing
process. Each edge in the figure is labeled with the number of the can assign rule
applied during slicing. Roles in nodes without ¬ are positive preconditions or admin-
istrative roles of the can assign rule applied; such roles are added to Rel+. Roles in
nodes containing ¬ are negative preconditions of the can assign rule applied; such
roles are added to Rel−. The set of mixed roles is computed as Rel+ ∩Rel− = {r3}.
The algorithm then computes the set of rules RelRule that are useful for assigning the
target user to any role in the goal. RelRule contains all can assign rules whose target
roles are in Rel+ and can revoke rules whose target roles are in Rel−, i.e., rules 1, 2,
3, 4, and 7.

Next, the algorithm computes the initial state closure(UA0) and all states reach-
able from closure(UA0) using rules in RelRule. Because (ut, r6) ∈ UA0 and
(ut, r3) 6∈ UA0, rule 3 is applied to assign r4 to ut. Since r4 is non-negative, (ut, r4)
is added to closure(UA0) through an invisible transition. Because (u2, r2) ∈ UA0,
(u3, r2) ∈ UA0, and r3 is a mixed role, rule 1 is applied to assign r3 to u2 and
u3 through visible transitions ua(r1, u2, r3) and ua(r1, u3, r3). Similarly, because
(u1, r3) ∈ UA0 and r3 is a mixed role, rule 7 is applied to revoke r3 from u1 through
a visible transition ur(r1, u1, r3). The algorithm stops when no more transitions can
be computed. The resulting graph appears in Figure 2. Because the graph does not
contain (ut, r5), the goal is not reachable. 2

6

ur(r1,u1,r3)
ua(r1,u2,r3) (u1,r1),(u1,r3),

(u2,r2),(u2,r8),
(u3,r2),(u3,r8),
() ()

(u1,r1),
(u2,r2),(u2,r8),
(u3,r2),(u3,r8),
() ()

(u1,r1),(u2,r2),
(u2,r8),(u2,r3),
(u3,r2),(u3,r8),
() ()

ur(r1,u2,r3)

Initial state

(ut,r6), (ut,r4) (ut,r6), (ut,r4) (ut,r6), (ut,r4)
ua(r1,u3,r3)

(u1,r1),(u2,r2),

ur(r1,u3,r3)
ua(r1,u2,r3)

(u1,r1),(u1,r3),
(u2,r2)(u2,r8),
(u2,r3),(u3,r2),

ua(r1,u3,r3) ur(r1,u2,r3)
ur(r1,u3,r3)

ua(r u r)

ur(r1,u3,r3)

(u1,r1),(u2,r2),
(u2,r8),(u3,r3),
(u3,r2),(u3,r8),
(ut,r6), (ut,r4)

(u2, 3),(u3, 2),
(u3,r8),(ut,r6),

(ut,r4)
(u1,r1),(u1,r3),
(u2,r2)(u2,r8),
(u3,r3),(u3,r2),
(u3,r8),(ut,r6),

(ut,r4) ua(r1,u3,r3) ur(r1,u3,r3)

ua(r1,u3,r3)

ur(r1,u1,r3)

(u1,r1),(u1,r3),
(u2,r2),(u2,r8),
(u2,r3), (u3,r3)
(u3,r2),(u3,r8),
(ut,r6), (ut,r4)

ur(r1,u2,r3)

(1, 3, 3)

(u1,r1),(u2,r2),
(u2,r8),(u2,r3),
(u3,r3),(u3,r2),
(u3,r8),(ut,r6),

(ut,r4)

ur(r1,u1,r3)

(t 6) (t 4)

Figure 2: The state graph constructed in Example 1 using the algorithm in [22].

3 Reduction Techniques

The analysis algorithm described in Section 2 does not scale well for policies contain-
ing a large number of users. Let Q = 〈UA0, U, ut, ψ, goal〉 be a user-role reachability
query. This section presents several techniques for reducing the numbers of users and
ARBAC rules considered during analysis.

3.1 Enhanced Slicing

This section presents an enhanced slicing algorithm to further reduce the number of
roles and rules processed during slicing. Our enhanced slicing has the following fea-
tures. First, because the target user needs to be assigned to all roles in the goal, while
non-target users do not need to be assigned to any role in the goal, the enhanced slicing
treats these two types of users differently. As a result, the size of the sliced policy for
non-target users may be smaller than that for the target user. Second, our enhanced
slicing for the target user eliminates can assign rules whose negative preconditions
contain an irrevocable role assigned to the target user in the initial policy, because such
rules can never be enabled. Third, our enhanced slicing does not process non-negative
and irrevocable administrative roles assigned to some user in the initial RBAC policy,
because such roles can never be revoked and hence do not need to be reassigned to any
user.

Enhanced slicing for the target user We say that a role r is irrevocable in an AR-
BAC policy if the policy does not contain a can revoke rule with target r. Algorithm 2
gives our enhanced slicing algorithm for the target user ut.

The algorithm first identifies roles that are possibly useful for assigning to ut. Such

7

Algorithm 2 An Enhanced Slicing Algorithm for the Target User.
1: procedure targetslicing(UA0, ut, ψ, goal)

2: if goal = ∅ then return (∅, ∅, ∅); end if
3: Processed = Processed ∪ goal; R+ = goal; R− = ∅; Rule = ∅;
4: for all can assign(ra, P ∧ ¬N, r) ∈ ψ where r ∈ goal do
5: if N does not contain an irrevocable role r′ such that (ut, r′) ∈ UA0} then
6: S = {r | r ∈ (P ∪{ra})∧(r is nonnegative or irrevocable) ∧(ut, r) ∈ UA0};
7: (R1, R2, R3) = targetslicing(UA0, ψ, (({ra} ∪ P) \ S) \ Processed);
8: R+ = R+ ∪R1; R− = R− ∪N ∪R2;
9: Rule = Rule ∪ {can assign(ra, P ∧ ¬N, r)} ∪R3;

10: end if
11: end for
12: RelRev = {can revoke(ra, r) ∈ ψ | r ∈ R−}; Rule = Rule ∪RelRev;
13: for all can revoke(ra, r) ∈ RelRev where ra 6∈ Processed do
14: S = {ra | (ra is nonnegative or irrevocable) ∧(ut, ra) ∈ UA0};
15: (R4, R5, R6) = slicing(UA0, ψ, {ra} \ S); R+ = R+ ∪R4;
16: R− = R− ∪R5; Rule = Rule ∪R6;
17: end for
18: return (R+, R−, Rule);

roles are preconditions and administrative roles, directly or indirectly, for assigning ut
to any role in the goal. Lines 4–11 identify can assign rules that are possibly useful
for assigning those roles to ut, add their positive preconditions and administrative roles
to Rel+, and add their negative preconditions to Rel−. The differences between our
enhanced slicing algorithm and the slicing algorithm in [22] are: (1) if administrative
roles or positive preconditions of the aforementioned can assign rules are non-negative
or irrevocable and have already been assigned to ut in the initial RBAC policy UA0,
then we do not add them to Rel+ and do not process them during slicing. This is safe
because such roles will not be revoked during analysis and hence there is no need to
reassign them to ut (Lines 6–7); (2) for every aforementioned can assign rule, we
check if the negative precondition of the rule contains an irrevocable role assigned to
ut in UA0. If so, such a rule can never be enabled and hence will not be applied during
slicing (Line 5).

Lines 12–17 identify can revoke rules that are possibly useful for assigning the
target user to any role in the goal and can assign rules that enable administrative roles
of those can revoke rules. Such rules include can revoke rules that revoke roles in
Rel− and can assign rules that are possibly useful for assigning the target user to
administrative roles of can revoke rules identified. Similar to can assign rules, if ad-
ministrative roles of can revoke rules identified above are non-negative or irrevocable
and are already assigned to the target user, then we do not process such roles during
slicing (Lines 14–15). In addition, since a negative role may become non-negative af-
ter slicing, to further reduce the number of relevant rules computed, we perform slicing
multiple times until the set of all negative roles remains unchanged.

8

Algorithm 3 An Enhanced Slicing Algorithm for Non-target Users.
1: Processed = ∅;
2: procedure nontarslicing(UA0, ut, ψ, goal)

3: if (goal == ∅) then return (∅, ∅, ∅); end if
4: Processed = Processed ∪ goal; R+ = R− = ∅; Rule = ∅;
5: for all can assign(ra, P ∧ ¬N, r) where (ut, r) ∈ goal do
6: if N does not contain an irrevocable role r′ such that (ut, r′) ∈ UA0 then
7: if ((u, ra) ∈ UA0 for some user u and (ra is non-negative or irrevocable)) then
8: R1 = R2 = R3 = ∅;
9: else (R1, R2, R3) = slicing(UA0, ψ, {ra}); end if

10: S = {r | r ∈ P ∧ (r is non-negative or irrevocable) ∧(ut, r) ∈ UA0};
11: (R′1, R

′
2, R

′
3) = nontarslicing(UA0, ψ, (P \ S) \ Processed);

12: R+ = R+ ∪ S ∪R1 ∪R′1; R− = R− ∪R2 ∪R′2; Rule = Rule ∪R3 ∪R′3;
13: end if
14: end for
15: RelRev = {can revoke(ra, r) | r ∈ R−}; Rule = Rule ∪RelRev;
16: for all can revoke(ra, r) ∈ RelRev do
17: if ra 6∈ Processed∧ (ra is negative ∨ra is a non-negative role not assigned to any user

in UA0) then
18: (R4, R5, R6) = slicing(UA0, ψ, {ra} \ Processed);
19: R+ = R+ ∪R4; R− = R− ∪R5; Rule = Rule ∪R6;
20: end if
21: end for
22: return (R+, R−, Rule);

Enhanced slicing for non-target users The algorithm tries to assign non-target
users to administrative roles with permission to assign the target user ut to the goal,
and to roles useful for that purpose. For example, consider the following ARBAC
policy:

1.can assign(r1, {r3, r4} ∧ ¬∅, r5)
2.can assign(r2, {r1, r6} ∧ ¬∅, r3)
3.can assign(r2, {r7, r8} ∧ ¬∅, r4)

When analyzing whether the target user ut can be assigned to all roles in the goal
{r5}, it is not useful to assign non-target users to r5. As a result, it is not useful to
assign non-target users to roles in the positive precondition of rule 1, i.e., r3 and r4.
Instead, it is sufficient to assign non-target users to the administrative role r1 which has
permission to assign ut to r5, and administrative role r2 which has permission to assign
ut to r3 and r4 (i.e., roles in the positive precondition of rule 1).

Algorithm 3 gives our enhanced slicing algorithm for non-target users. Lines 5–
21 identify can assign and can revoke rules that are possibly useful for assigning the
target user to any role in the goal, add administrative roles of such rules to Rel+, and
apply the slicing algorithm in [22] to process administrative roles. The differences
between our enhanced slicing algorithm for non-target users and the slicing algorithm
in [22] are: (1) our enhanced slicing algorithm does not add roles in the precondition

9

2 r5
2

3

2
2

5

r3r6r4

3

3 1

¬r3 r1
3

1

r2

Figure 3: The graph illustrating the enhanced slicing for the target user in Example 2.

of the aforementioned can assign rules toRel+ since it is not necessary to assign such
roles to non-target users; (2) if administrative roles of the aforementioned can assign

rules identified above are non-negative or irrevocable and have already been assigned
to some user in the initial RBAC policy UA0, then we do not add them to Rel+ and
do not process them during slicing (Lines 7–8); (3) for each of the aforementioned
can assign rules, if the negative precondition of the rule contains an irrevocable role
assigned to the target user in UA0, then such a rule can never be enabled and hence will
not be applied during slicing (Line 6).

Two-stage slicing While computing the initial state using the sliced policy, non-
negative administrative roles that are not in the initial RBAC policy UA0 may be added
to the initial state closure(UA0) through invisible transitions. It is unnecessary to as-
sign such roles to other non-target users during analysis if they do not appear in the
positive precondition of the sliced policy. To further reduce the number of rules ap-
plied during the analysis, we apply the enhanced slicing algorithm twice: before and
after computing the initial state. Our experiments on a university policy show that the
two-stage slicing sometimes significantly reduces the number of relevant rules com-
puted.

Example 2 Consider Example 1. Figure 3 illustrates the enhanced slicing for the tar-
get user. The enhanced slicing is performed from role r5 (i.e., the role in the goal).
Since r5 is the target role of rule 2, roles in the positive precondition of rule 2, i.e.,
r3 and r4, are added to Rel+. Since the administrative role r6 of rule 2 is a non-
negative role and (ut, r6) ∈ UA0, r6 is not processed during slicing. The algorithm
then performs enhanced slicing for the target user ut from r3 and r4, adds r1 and r2 to
Rel+, and adds r3 to Rel−. Therefore, for the target user, Rel+ = {r1, r2, r3, r4, r5},
Rel− = {r3}, and RelRule = {1, 2, 3, 7}. Next, the algorithm performs enhanced
slicing for non-target users. It is sufficient to assign non-target users to administrative
roles that have permissions to assign the target user to the goal, i.e., r1 and r6. Since
r1 and r6 are non-negative, (u1, r1) ∈ UA0, and (ut, r6) ∈ UA0, these roles are not
processed during slicing. As a result, for non-target users, Rel+ = Rel− = ∅ and
RelRule = ∅. This means that there is no need to assign roles to non-target users. The
reduced state graph constructed with the enhanced slicing algorithm contains only one
state {(u1, r1), (u1, r3), (u2, r2), (u2, r8), (u3, r2), (u3, r8), (ut, r6), (ut, r4)}.

10

3.2 Dead-role Reduction

We say that a role r is dead if r is not assigned to any user in the initial RBAC policy
UA0 and cannot be assigned to any user during the analysis. Our dead-role reduction
aims to eliminate rules that are not useful for reaching the goal because they involve
dead roles. The reduction first computes a set dr of roles that are not target roles of any
can assign rule and are not assigned to any user in UA0; such roles are dead. Next,
the reduction eliminates can assign and can revoke rules whose administrative roles
are in dr, and can assign rules whose positive preconditions are in dr, because such
rules are never enabled. This process is repeated until no rules can be eliminated. The
dead-role reduction may turn negative roles to non-negative, and hence may reduce the
size of the state graph.

3.3 User Equivalent Set Reduction

In this section, we show that from each state it is sufficient to perform visible transitions
for the target user and for non-target users assigned distinct sets of roles. Our technique
is based on a notion of user equivalent set. The user equivalent set representation of
a state s is basically an alternative representation of s, in which all users assigned the
same set of roles are grouped together.

Definition 1 The user equivalent set representation of a state s is defined as ue(s) =
{(Uset1 ,Rset1), . . . , (Usetn ,Rsetn)} where Rset1 6= . . . 6= Rsetn , Uset1 ∪ . . . ∪
Usetn = {u|(u, r) ∈ s}, and for every u ∈ Useti , Rseti = {r|(u, r) ∈ s}.

Let Gue be the transition graph constructed using the user equivalent set represen-
tation. There is a transition ue(s) A→ ue(s′) in Gue if and only if there is a transition

s
A→ s′ in G. The goal is reachable in Gue if and only if there exists a state sg ∈ Gue

and (Uset,Rset) ∈ sg such that ut ∈ Uset and goal ⊆ Rset.
Our user equivalent set reduction works as follows. For every state s and every

(Uset ,Rset) ∈ s, we compute only transitions for the target user and transitions for
one randomly selected non-target user in Uset , if Uset contains such users. This is dif-
ferent from Algorithm 1, which computes transitions for all users in Uset. Intuitively,
the user equivalent set reduction is correct because transitions performed on all users
in Uset are the same, and transitions performed on one user in Uset do not disable
transitions performed on other users in Uset . We use Gredue to denote the transition
graph constructed with the user equivalent set reduction.

Given two states s1 and s2, we say that s1 ≡ s2 if there exists a substitution δ =

{u1/u′1, . . . , un/u′n}, where u1 6= . . . 6= un 6= ut and u′1 6= . . . 6= u′n 6= ut, such that
s1δ = s2. Theorem 2 formalizes the correctness of the reduction. We prove a lemma
and then Theorem 2.

Lemma 1 Let Q = 〈UA0, U, ut, ψ, goal〉 be a user-role reachability query, s0 =

ue(closure(UA0)), and Gredue and Gue be reduced state graphs constructed for Q
with and without the user equivalent set reduction, respectively. (a) For every sequence

11

of transitions s0
A0→ s1

A1→ . . .
An−2→ sn−1

An−1→ sn in Gue, there exists a sequence

of transitions s0
A′0→ s′1

A′1→ . . .
A′n−2→ s′n−1

A′n−1→ s′n in Gredue, where si ≡ s′i, Ai =
α(ra, ui, r), A′i = α(ra, u

′
i, r), α = ua/ur, and there exist (Uset,Rset) ∈ si and

(Uset′, Rset′) ∈ s′i such that Rset = Rset′, ui ∈ Uset, and u′i ∈ Uset′. (b) For

every sequence of transitions s0
A1→ s1

A1→ . . .
An→ sn in Gredue, there exists a sequence

of transitions s0
A1→ s1 . . .

An−1→ sn in Gue.

PROOF: We prove part (a) by induction on the length n.
Base Case: When n = 0, both Gue and Gredue contain only one state

ue(closure(UA0)). The lemma holds.
Induction: Assume that the lemma holds when n = k. We prove the lemma for

n = k + 1.
Let s0

A1→ s1
A2→ . . . sk−1

Ak→ sk
Ak+1→ sk+1 be a sequence of transitions in Gue. By

the induction hypothesis,Gredue contains a sequence of transitions s0
A′1→ s′1

A′2→ . . . s′k−1
A′k→ s′k, where si ≡ s′i, Ai = α(ra, ui, r), A′i = α(ra, u′i, r), α = ua/ur, and there exist
(Uset ,Rset) ∈ si and (Uset ′,Rset ′) ∈ s′i such that Rset = Rset ′, ui ∈ Uset , and
u′i ∈ Uset ′.

If Ak+1 = ua(rak+1, ut, rk+1), then there exists (Uset ,Rset) ∈ sk such that ut ∈
Uset . Because sk ≡ s′k, there exists (Uset ′,Rset ′) ∈ s′k such that ut ∈ Uset ′ and

Rset ′ = Rset . Therefore,Gredue contains transition s′k
Ak+1→ s′k+1 and sk+1 ≡ s′k+1. If

Ak+1 = ua(rak+1, uk+1, rk+1) where uk+1 6= ut, then there exists (Uset ,Rset) ∈ sk
such that uk+1 ∈ Uset . Because sk ≡ s′k, there exists (Uset ′,Rset ′) ∈ s′k such that
Rset ′ = Rset . Let u′k+1 be a user in Uset ′. Because u′k+1 and uk+1 are assigned the

same set of roles, we can perform transition s′k
ua(rak+1,u

′
k+1,rk+1)→ s′k+1 and sk+1 ≡

s′k+1. The case where Ak+1 = ur(rak+1, uk+1, rk+1) can be similarly proved. Thus,
part(a) holds.

Part (b) holds because Gredue is a subgraph of Gue. 2

Theorem 2 Let Q = 〈UA0, U, ut, ψ, goal〉 be a user-role reachability query, and
Gredue and Gue be reduced state graphs constructed for Q with and without the user
equivalent set reduction, respectively. The goal is reachable in Gue iff the goal is
reachable in Gredue.

PROOF: Suppose the goal is reachable in Gue. Then there exists a sequence of tran-

sitions s0
A0→ s1

A1→ . . .
An−1→ sg in Gue such that (Uset ,Rset) ∈ sg, ut ∈ Uset , and

goal ⊆ Rset . From Lemma 1(a), there exists a sequence of transitions s0
A′0→ s′1

A′1→ . . .
A′n−1→ s′g in Gredue where si ≡ s′i, Ai = α(ra, ui, r), A′i = α(ra, u

′
i, r), α = ua/ur,

and there exist (Uset,Rset) ∈ si and (Uset ′,Rset ′) ∈ s′i such that Rset = Rset ′,
ui ∈ Uset , and u′i ∈ Uset ′. Because sg ≡ s′g, there exists (Uset ′,Rset ′) ∈ s′g such
that ut ∈ Uset ′ and Rset = Rset ′. As a result, goal ⊆ Rset′ and hence the goal is
reachable in Gredue.

12

ur(r1,u1,r3) ua(r1,u2,r3) ({u1},{r1,r3}),
({u u } {r r })

({u1},{r1}),
({u u } {r r })

({u1},{r1}),
({u3} {r2 r8})

Initial state

({u2, u3},{r2,r8}),
({ut},{r6,r4}) ur(r1,u2,r3)

ua(r1,u2,r3) ur(r1,u2,r3) ua(r1 u3 r3)ur(r1 u3 r3)

({u2,u3},{r2,r8}),
({ut},{r6,r4})

({u3},{r2,r8}),
({u2},{r2,r3,r8}),

({ut},{r6,r4})

1 2 31 2 3

ua(r1,u3,r3)

ua(r1,u3,r3) ur(r1,u3,r3)

({u1},{r1,r3}),
({u3},{r2,r8}),

({u1},{r1}),
({u2 u3},{r2,r3 r8}),({u1},{r1,r3}),

({ } { })

ur(r1,u1,r3)

ur(r1,u3,r3) ({u2},{r2,r3,r8}),
({ut},{r6,r4})

({ 2, 3},{ 2, 3, 8}),
({ut},{r6,r4})({u2,u3},{r2,r3,r8}),

({ut},{r6,r4})

Figure 4: The state graph constructed in Example 3 with the user equivalent set reduc-
tion.

Suppose Gredue contains a goal state sg. Then from Lemma 1(b), sg is also a state
in Gue and hence the goal is reachable. Therefore, the theorem holds. 2

Example 3 Consider the user-role reachability query in Example 1. Since non-target
users u2 and u3 are assigned the same set of roles in the initial state, the algorithm
with user equivalent set reduction performs only transitions for u2 or u3, but not both,
from the initial state. In contrast, Algorithm 1 performs transitions for both u2 and u3
from the initial state. The graph constructed with the user equivalent set reduction is
given in Figure 4.

User-counter optimization In our implementation, we reduce the size of states by
replacing Uset in (Uset ,Rset) with a pair (counter, target), where counter records
the number of non-target users in Uset , and target is either 1 (indicating ut ∈ Uset)
or 0 (indicating ut 6∈ Uset). This optimization may significantly reduce the size of
states if many users are assigned the same set of roles. For example, in a university,
thousands of users may be assigned the Student role.

Example 4 Consider the user-role reachability query in Example 1 with an extended
RBAC policy that assigns r1 and r3 to u1, u4, . . . , u1000, r2 and r8 to u2 and u3, and
r6 to ut.

Without the user-counter optimization, the initial state init is
{({u1, u4, . . . , u1000}, {r1, r3}), ({u2, u3}, {r2, r8}), ({ut}, {r6})}, and the fol-

lowing two transitions are enabled from the initial state: init
ua(r1,u2,r3)→

{({u1, u4, . . . , u1000}, {r1, r3}), ({u3}, {r2, r8}), ({u2}, {r2, r3, r8}), ({ut}, {r6})},
and init

ur(r1,u1,r3)→ {({u4, . . . , u1000}, {r1, r3}), ({u1}, {r1}), ({u2, u3}, {r2, r8}),
({ut}, {r6})}.

With the user-counter optimization, the initial state init is
{((998, 0), {r1, r3}), ((2, 0), {r2, r8}), ((0, 1), {r6})}, which specifies that 998
non-target users are assigned roles r1 and r3, 2 non-target users are as-
signed roles r2 and r8, and 1 target user is assigned role r6. The fol-

13

lowing two transitions are enabled from the initial state: init
ua(r1,0,r3)→

{((998, 0), {r1, r3}), ((1, 0), {r2, r8}), (1, 0), {r2, r3, r8}), ((0, 1), {r6})} and

init
ur(r1,0,r3)→ {((997, 0), {r1, r3}), ((1, 0), {r1}), (2, 0), {r2, r8}), ((0, 1), {r6})},

where 0/1 in the transition specifies that the user is a non-target/target user.

3.4 Involved-user Reduction

In Theorem 1 of [5], Ferrari et al. prove that, given a query, if the goal is reachable, then
there exists a run (i.e. a finite sequence of transitions) in which the goal is reachable
and at most |AR| + 1 users change their role-combinations, where AR is a set of
administrative roles in the ARBAC policy and a role combination is the set of roles
assigned to a user (we call it a role set). Based on this theorem, they propose to keep in
the system at most |AR|+ 1 users for each role set during analysis. In this section, we
present three user-oriented reductions – static involved-user, spare-user, and dynamic
involved-user reductions – that extend their work to further reduce the number of users
considered during the analysis. The static involved-user reduction is performed prior
to the construction of the state graph, the spare-user reduction is similar to the static
involved-user reduction, except that it limits the number of non-target users in every
state, not only the initial state, and the dynamic involved-user reduction is performed
during the generation of the state graph.

Static involved-user reduction Our static involved-user reduction improves the re-
duction in [5] by computing a separate and sometimes smaller bound on the number of
users needed for each role set (equivalently, for each set of roles in the user equivalent
set representation) in the initial state, instead of a single bound that applies to all role
sets in the initial state.

Let RS be a role set and descendants(RS) be an upper-bound on the set of roles
that can be assigned to users whose initial role set is RS . Formally, descendants(RS)
is defined as LFP(λS.RS ∪{r | there exists can assign(ra, P ∧¬N, r) in the ARBAC
policy such that P ⊆ S}), where LFP(f) returns the least fixed-point of f . Our
reduction states that the number of non-target users for each role set RS in the initial
state can be limited to |descendants(RS) ∩ AR|, which is an upper-bound on the
number of administrative roles that can be assigned to users with role set RS . We state
a lemma and then prove the correctness of this reduction.

Lemma 3.1 Let RS be a role set. For every user u with the initial role set RS , the set
of roles assigned to u is always a subset of descendants(RS).

Theorem 3.2 (Static involved-user reduction) Let Q = 〈UA0, U, ut, ψ, goal〉 be
a user-role reachability query, UA′0 be a set of user-role assignments obtained
from UA0 by reducing the number of users associated with each role set RS
to |descendants(RS) ∩ AR|, U ′ = {u | (u, r) ∈ UA′0}, and Q′ =

〈UA′0, U ′, ut, ψ, goal〉. (a) If the goal is reachable in Q, then the goal is reachable
in Q′; (b) If the goal is reachable in Q′, then the goal is reachable in Q.

14

Proof sketch: Part (a) is proved based on the proof of Theorem 1 in [5] and
Lemma 3.1. Let G and G′ be the reduced state graph constructed for Q and Q′, re-
spectively. A user u is involved in a sequence of transitions T if u’s role set changes in
T . A user u is essential in a sequence of transitions T if there exists si

Ai→ si+1 in T
such that u is the only user in si+1 assigned the administrative role in Ai.

First, we show that, for every sequence of transitions T in G that contains a goal
state, there exists a sequence of transitions T1 inG that contains a goal state, and at most
|descendants(RS) ∩ AR| non-target users in each role set RS are involved in T1. T1
is constructed as follows. If T contains at least one involved non-target user that is not
essential, then we pick one such user u and remove from T all transitions that change
u’s role set. If all non-target users in T are essential, then we pick one such user u
and remove all transitions that both change u’s role set and are performed after the last
state in which u is essential. The above process is repeated on the resulting sequence of
transitions until no more transitions can be eliminated, which results in T1. Because the
above construction keeps in each state one user among those assigned an administrative
role, the eliminated transitions do not disable transitions in T1. Therefore, T1 is a
sequence of transitions in G. Because all users in T1 are essential and for each user
u with the initial role set RS , the set of roles assigned to u is always a subset of
descendants(RS) (Lemma 3.1), at most |descendants(RS) ∩ AR| non-target users
with initial role set RS change their role sets in T1. T1 contains a goal state because
the above construction does not eliminate transitions performed on the target user.

Next, we construct a sequence of transitions T ′ from T1 such that T ′ is a se-
quence of transitions in G′, and T ′ contains a goal state. We first remove all
users that are not involved in T1 from all states in T1, which results in T2. Let

T2 = s0
α(ra1,u1,r1)→ s1 . . .

α(ran,un,rn)→ sn where α = ua/ur. T ′ is constructed

as closure(UA′0)
α(ra1,σ(u1),r1)→ s′1 . . .

α(ran,σ(un),rn)→ s′n, where σ is a mapping be-
tween users in s0 and users in closure(UA′0) defined below: σ(ui) = ui if ui
is in closure(UA′0); otherwise, σ(ui) = u′i where {r | (ui, r) ∈ s0} = {r |
(u′i, r) ∈ closure(UA′0)} and u′i 6= σ(uj) for all j 6= i. Since T2 contains at most
|descendants(RS)∩AR| non-target users in each role set RS in UA0, the above map-
ping is always possible. Therefore, if the goal is reachable in Q, then the goal is
reachable in Q′.

Part (b) follows directly from the fact that UA′0 is obtained from UA0 by reducing
the number of users associated with each role setRS to |descendants(RS)∩AR|. 2

The static involved-user reduction can be improved by not considering adminis-
trative roles in RS that are non-negative or irrevocable, i.e., limiting the number of
non-target users with role set RS to |(descendants(RS) \ {r | r ∈ RS and r is non-
negative or irrevocable})∩AR|. Such roles will not be revoked during the analysis and
hence do not need to be reassigned to non-target users.

Example 5 Consider the user-role reachability query in Example 1. Our static
involved-user reduction works as follows. The set of administrative roles in the AR-
BAC policy is AR = {r1, r2, r6}. The non-target user u1 is initially assigned role set

15

ur(r1,u1,r3) ua(r1,u2,r3) (u1,r1),(u1,r3),
(u2,r2),(u2,r8),
(u r) (u r)

(u1,r1),
(u2,r2),(u2,r8),
(u r) (u r)

(u1,r1),(u2,r2),
(u2,r8),(u2,r3),
(u r) (u r)ur(r1,u2,r3)

Initial state

(ut,r6), (ut,r4) (ut,r6), (ut,r4) (ut,r6), (ut,r4)ur(r1,u2,r3)

ua(r1,u2,r3)

(u1,r1),(u1,r3),

ur(r1,u2,r3)

(1, 1),(1, 3),
(u2,r2)(u2,r8),
(u2,r3),(ut,r6),

(ut,r4)

Figure 5: The state graph constructed in Example 5 with the static involved-user reduc-
tion.

{r1, r3}. The policy does not contain a rule can assign(ra, P ∧¬N, r) such that P ⊆
{r1, r3}, so descendants({r1, r3}) = {r1, r3} and hence |descendants({r1, r3}) ∩
AR| = 1. This means that we need to keep u1 in the initial state. Non-target users
u2 and u3 are initially assigned role set {r2, r8}. Because the precondition of the
first rule is a subset of {r2, r8}, the rule’s target r3 is a descendant. As a result,
descendants({r2, r8}) = {r2, r3, r8} and |descendants({r2, r8}) ∩ AR| = 1. This
means that we need to keep either u2 or u3, but not both, in the initial state. Assume that
we keep u2 in the initial state. The state graph constructed with the static involved-user
reduction is given in Figure 5.

Spare-user reduction The spare-user reduction is similar to the static involved-user
reduction, except that it limits the number of non-target users in every state, not only
the initial state. Intuitively, the spare-user reduction should perform the same or better
than the static involved-user reduction, since fewer or the same number of users are
considered during the analysis. Our experimental results on a university RBAC and a
university ARBAC policy show that this is true for most cases. However, in some cases,
the spare-user reduction increases the numbers of states and transitions. For example,
if a state s has been processed before a transition s1

A→ s, then removing spare users
from s1 may result in a different target state s′ that, without the spare user reduction,
might never be processed. In this case, the reduction could increase the size of the state
graph.

Dynamic involved-user reduction The dynamic involved-user reduction limits the
number of users whose role sets change in each explored path in the state graph. The
algorithm performs a depth-first search (DFS) to check whether the goal is reachable.
During the DFS, it keeps track of the number of users that change role sets (we call such
users “involved users”) in the run corresponding to the DFS stack. When the number of
users involved in the run on the stack is greater than |AR| + 1, the algorithm explores
only transitions which change role sets of users that are already involved in the trace.

Note that the above algorithm counts users that change role sets only in visible
transitions. Informally, it would be unsound to also count users that change role sets

16

in invisible transitions, because our algorithm always executes invisible transitions as
soon as possible, but the invisible transitions do not necessarily appear in the paths in
the full state graph (i.e., the graph without the invisible transition reduction) that reach
the goal with the minimal number of involved users.

The dynamic involved-user reduction is partly incompatible with the user-count
optimization in Section 3.3. With the user-count optimization, the algorithm does not
keep track of identities of the users, which makes it hard to keep track of how many
users changed role sets. One solution is to introduce identities for users on demand;
we call this the partial user-count reduction. It works as follows. A state s is a set
of tuples of the form 〈Anon,Named ,RS 〉, where Anon is the number of anonymous
users with role set RS , and Named is the set of named users with role set RS . The
target user ut is never anonymous. Thus, ut has role set RS iff ut ∈ Named . In every
state, the algorithm computes transitions only for the named users and one anonymous
user; the anonymous user becomes named in the target state of the transition. The name
is chosen to be 〈RS , i〉, where i is the smallest i such that 〈RS , i〉 does not appear in
Named .

On one hand, the dynamic involved-user reduction may generate smaller state
graphs than the other two reductions presented in this section. On the other hand, track-
ing the involvement of users in the dynamic involved-user reduction imposes additional
performance overhead and is partly incompatible with the user-count optimization. As
a result, the performance of the dynamic involved-user reduction might or might not
be better than other two reductions. In addition, the dynamic involved-user reduction
is incompatible with the current implementation, which uses bread-first search. Conse-
quently, we did not implement this reduction.

Example 6 Consider a user-role reachability query which is the same as that in Ex-
ample 1, except that all administrative roles in the ARBAC policy are replaced with
r1. Without any reduction, the state graph is the same as that in Figure 2. Because
AR = {r1}, |AR| + 1 = 2. Therefore, with the dynamic involved-user reduction, the
number of users that change role sets in each path of the state graph is limited to 2.
Figure 6 gives the state graph constructed with the dynamic involved-user reduction.

Example 7 As a small example of a query for which the dynamic involved-user re-
duction is more effective than the static involved-user reduction, consider a user-role
reachability query which is the same as that in Example 1, except that all administra-
tive roles in the ARBAC policy are replaced with r1, u2 is assigned only r2 (instead of
both r2 and r8), and the ARBAC policy contains one more rule can assign(r1, {r2} ∧
¬{r8}, r1). With no reduction, there are 8 states. The static involved user reduction
does not eliminate any states because the number of users associated with each role set
in the initial RBAC policy is 1 and for each role setRS, |descendants(RS)∩AR| = 1.
The dynamic involved user reduction reduces the number of states to 7.

17

ur(r1,u1,r3)
ua(r1,u2,r3) (u1,r1),(u1,r3),

(u2,r2),(u2,r8),
(u3,r2),(u3,r8),
() ()

(u1,r1),
(u2,r2),(u2,r8),
(u3,r2),(u3,r8),
() ()

(u1,r1),(u2,r2),
(u2,r8),(u2,r3),
(u3,r2),(u3,r8),
() ()

ur(r1,u2,r3)

Initial state

(ut,r6), (ut,r4) (ut,r6), (ut,r4) (ut,r6), (ut,r4)
ua(r1,u3,r3)

(u1,r1),(u2,r2),

ur(r1,u3,r3)
ua(r1,u2,r3)

(u1,r1),(u1,r3),
(u2,r2)(u2,r8),
(u2,r3),(u3,r2),

ua(r1,u3,r3) ur(r1,u2,r3)
ur(r1,u3,r3) ur(r1,u3,r3)

(u1,r1),(u2,r2),
(u2,r8),(u3,r3),
(u3,r2),(u3,r8),
(ut,r6), (ut,r4)

(u2, 3),(u3, 2),
(u3,r8),(ut,r6),

(ut,r4)
(u1,r1),(u1,r3),
(u2,r2)(u2,r8),
(u3,r3),(u3,r2),
(u3,r8),(ut,r6),

(ut,r4) ua(r1,u3,r3) ur(r1,u3,r3)

ur(r1,u1,r3)

(u1,r1),(u1,r3),
(u2,r2),(u2,r8),
(u2,r3), (u3,r3)
(u3,r2),(u3,r8),
(ut,r6), (ut,r4)

ur(r1,u2,r3)

(1, 3, 3)

(t 6) (t 4)

Figure 6: The state graph constructed with the dynamic involved-user reduction.

3.5 Lazy Reduction

This section describes two lazy reduction techniques that reduce the size of the state
graph by delaying transitions.

Subsumed-user reduction Let roleset(u, s) = {r | (u, r) ∈ s}. The subsumed-
user reduction works as follows. Given a state s, for every non-target user u, if
there exists a user u′ other than u such that (1) roleset(u, s) ⊂ roleset(u′, s) and
(2) (roleset(u′, s) \ roleset(u, s)) ∩ Rel− = ∅ (i.e. all roles in roleset(u′, s) \
roleset(u, s) are non-negative), then we do not perform transitions on u from s. Such
transitions will be performed later when one of the above conditions does not hold.

Intuitively, this reduction is sound because every transition enabled on u in s is
also enabled on u′ in s (since non-negative roles do not disable any transitions), and
transitions performed on u′ do not disable transitions enabled on u.

Given states s and s′, we say that s′ is a superstate of s, denoted as s′ w s,
if roleset(ut, s′) = roleset(ut, s), and for every non-target user u in s, there
exists a non-target user u′ in s′ such that roleset(u, s) ⊆ roleset(u′, s′) and
(roleset(u′, s′) \ roleset(u, s))∩Rel− = ∅. For example, if r3 is a non-negative role,
then {(u, r1), (u, r3), (u′, r1), (u′, r2), (u′, r3)} w {(u, r1), (u, r3), (u′, r1), (u′, r2)}.

Below, we prove one Lemma and then the correctness of the reduction.

Lemma 3 Let Q = 〈UA0, U, ut, ψ, goal〉 be a user-role reachability query, s0 =

closure(UA0), and Gsub and G be reduced state graphs constructed for Q with
and without the subsumed-user reduction, respectively. (a) For every sequence of
transitions s0

A1→ s1
A2→ . . .

An→ sn in Gsub, there exists a sequence of transitions
s0

A1→ s1
A2→ . . .

An→ sn inG. (b) For every sequence of transitions s0
A1→ s1

A2→ . . .
An→ sn

in G, there exists a sequence of transitions s0
A′1→ s′1

A′2→ . . .
A′m→ s′m in Gsub, such that

s′m w sn.

18

Proof: Part (a) follows from the fact that, in every state, the algorithm with the sub-
sumed user reduction explores a subset of the enabled transitions.

The proof of part (b) is by induction on n.
Base case: When n = 0, both G and Gsub contain only state s0. Therefore, the

lemma holds.
Induction hypothesis: Assume that the lemma holds for n = k, i.e., for every

sequence of transitions s0
A1→ s1

A2→ . . .
Ak→ sk inG, there exists a sequence of transitions

s0
A′1→ s′1

A′2→ . . .
A′m→ s′m in Gsub such that s′m w sk. We now prove the lemma for n =

k+1. Assume that there is a transition sk
ua(ra,u,r)→ sk+1 in G. If u = ut, then because

s′m w sk, roleset(ut, sk) = roleset(ut, s
′
m) and s′m contains all administrative roles in

sk. Therefore, Gsub contains a transition s′m
ua(ra,ut,r)→ s′m+1 such that s′m+1 w sk+1.

Otherwise, since for every non-target user u in sk, there exists a non-target user u′ in
s′m such that roleset(u, sk) ⊆ roleset(u′, s′m) and (roleset(u′, s′m)\roleset(u, sk))∩
Rel− = ∅, Gsub contains a transition s′m

ua(ra,u′,r)→ s′m+1 such that s′m+1 w sk+1. The
case where the transition is a ur transition can be similarly proved. Therefore, part (b)
holds. 2

Theorem 4 Let Q = 〈UA0, U, ut, ψ, goal〉 be a user-role reachability query, s0 =

closure(UA0), and Gsub and G be reduced state graphs constructed for Q with and
without the subsumed-user reduction, respectively. The goal is reachable in G iff the
goal is reachable in Gsub.

Proof: The “if” part follows immediately from part (a) of Lemma 3.
Next, we prove the “only if” part. Suppose G contains a sequence of transitions

s0
A1→ s1

A2→ . . .
An→ sg, such that goal ⊆ roleset(ut, sg). From part (b) of Lemma 3,

Gsub contains a sequence of transitions s0
A1→ s′1

A′2→ . . .
A′m→ s′m, such that s′m w sg. The

latter implies roleset(ut, sg) = roleset(ut, s
′
m) and hence goal ⊆ roleset(ut, s′m).

2

Example 8 Consider Example 1, except with the initial RBAC policy UA0 = {(u2, r1),
(u2, r2), (u2, r8), (u3, r2), (u3, r8), (ut, r6)}. Figures 7(a) and 7(b) give the state
graph computed without and with the subsumed-user reduction, respectively. In the
initial state, the role sets of u2 and u3 are {r1, r2, r4, r6, r8} and {r2, r8}, respec-
tively, and r1, r4, and r6 are non-negative roles. Therefore, with the subsumed-user
reduction, the algorithm does not compute transitions for u3 from the initial state. Sim-
ilarly, ur(r1, u3, r3) is not performed from state {(u2, r1), (u2, r2), (u2, r3), (u2, r4),
(u2, r6), (u2, r8), (u3, r2), (u3, r3), (u3, r8), (ut, r4), (ut, r6)} and ua(r1, u3, r3) is not
performed from state {(u2, r1), (u2, r2), (u2, r3), (u2, r4), (u2, r6), (u2, r8), (u3, r2),
(u3, r8), (ut, r4), (ut, r6)}.

Delayed revocation A ur transition can be delayed if the transition can neither enable

new transitions in s nor be disabled by any transitions. Formally, a transition s
ur(ra,u,r)→

s′ is not performed from s (i.e. is delayed) if

19

()() ()
(u2,r1),(u2,r2),
() ()

Initial state

ua(r1,u2,r3) (u2,r1),(u2,r2),
(u2,r4),(u2,r6),

(u2,r8),(u3,r2),(u3,r8),
(ut,r6), (ut,r4)

(u2,r3), (u2,r4),
(u2,r5),(u2,r6),(u2,r8),

(u3,r2), (u3,r8),
(ut,r6), (ut,r4) ua(r1,u3,r3)

(u2,r1),(u2,r2),
ur(r1,u3,r3)

()

ua(r1,u2,r3)

ur(r1,u2,r3)

(u2,r1),(u2,r2),
(u2,r3), (u2,r4),

(u2,r5),(u2,r6),(u2,r8),
(u3,r2), (u3,r3),(u3,r8),

(ut,r6), (ut,r4)

ua(r1,u3,r3)

(u2,r1),(u2,r2),
(u2,r4),(u2,r6),(u2,r8),

ur(r1,u3,r3)

ur(r1 u2 r3)ua(r1 u2 r3)

ua(r1,u2,r3)

(u3,r2), (u3,r3),(u3,r8),
(ut,r6), (ut,r4)

ur(r1,u2,r3) ua(r1,u2,r3)

(u2,r1),(u2,r2),
(u2,r4),(u2,r5),(u2,r6),

(u2,r8),(u3,r2),
(u3,r3),(u3,r8),
() ()

ua(r1,u3,r3)

ur(r1,u3,r3)

(u2,r1),(u2,r2),
(u2,r4),(u2,r5),(u2,r6),

(u2,r8),(u3,r2),
(u3,r8), (ut,r6), (ut,r4)

u (1,u3, 3)(u3, 8),
(ut,r6), (ut,r4)

(a)

()() ()
(u2,r1),(u2,r2),
() ()

Initial state

ua(r1,u2,r3) (u2,r1),(u2,r2),
(u2,r4),(u2,r6),

(u2,r8),(u3,r2),(u3,r8),
(ut,r6), (ut,r4)

(u2,r3), (u2,r4),
(u2,r5),(u2,r6),(u2,r8),

(u3,r2), (u3,r8),
(ut,r6), (ut,r4)

ua(r1,u3,r3)

(u2,r1),(u2,r2),
(u2 r3) (u2 r4)ua(r1,u2,r3)

ur(r1,u2,r3)
(u2,r3), (u2,r4),

(u2,r5),(u2,r6),(u2,r8),
(u3,r2), (u3,r3),(u3,r8),

(ut,r6), (ut,r4)

ur(r1,u2,r3)
ua(r1,u2,r3)

(u2,r1),(u2,r2), (u2,r1),(u2,r2),

ua(r1,u2,r3)

(u2,r4),(u2,r5),(u2,r6),
(u2,r8),(u3,r2),
(u3,r3),(u3,r8),
(ut,r6), (ut,r4)

ur(r1,u3,r3)
(u2,r4),(u2,r5),(u2,r6),

(u2,r8),(u3,r2),
(u3,r8),(ut,r6), (ut,r4)

(b)

Figure 7: The state graph constructed in Example 8: (a) without the subsumed-user
reduction, (b) with the subsumed-user reduction.

1. trans(s) ⊇ trans(s′) ∪ {ur(ra, u, r)}, where trans(s) and trans(s′) are sets
of all visible transitions enabled from s and s′, respectively,

2. s′ \ s = ∅,

3. trans(s) contains at least one ua transition, and

4. ra is non-negative or irrevocable.

Conditions 1 and 2 specify that s
ur(ra,u,r)→ s′ does not enable new visible and in-

visible transitions, respectively. Conditions 3 and 4 specify that s
ur(ra,u,r)→ s′ cannot

20

be disabled by other transitions. Requiring trans(s) to contain at least one ua transi-
tion ensures that not all transitions from s will be delayed, which in turn ensures that
the delayed ur transitions can be executed later. This condition can be relaxed by not
delaying one ur transition that is enabled in s, if no ua transitions are enabled in s.

The correctness of the delayed revocation reduction is formalized in Theorem 6.
We prove one lemma and then Theorem 6. Let v denote the subsequence notation.

Lemma 5 Let Q = 〈UA0, U, ut, ψ, goal〉 be a user-role reachability query, s0 =

closure(UA0), and Gdr and G be reduced state graphs constructed for Q with and
without the delayed revocation reduction, respectively. (a) For every sequence of
transitions s0

A1→ s1
A2→ . . .

An→ sn in G, there exists a sequence of transitions

s0
A′1→ s′1

A′2→ . . .
A′m→ s′m in Gdr such that 〈A′1, . . . , A′m〉 v 〈A1, . . . , An〉, and

s′m = sn ∪ {(u, r) | ur(, u, r) ∈ 〈A1, . . . , An〉 \ 〈A′1, . . . , A′m〉}. (b) For every

sequence of transitions s0
A1→ s1

A2→ . . .
An→ sn in Gdr, there exists a sequence of

transitions s0
A1→ s1

A2→ . . .
An→ sn in G.

PROOF: Part (a) is proved by induction on the length n.
Base Case: If n = 0, then both G and Gdr comprise only one state s0. The lemma

holds.
Induction: Assume the lemma holds for n = k. Below, we prove the lemma for

n = k + 1. Suppose there is a sequence of transitions s0
A1→ s1

A2→ . . .
Ak+1→ sk+1 in G.

By the induction hypothesis, there is a sequence of transitions s0
A′1→ s′1

A′2→ . . .
A′j→ s′j

in Gdr such that 〈A′1, . . . , A′j〉 v 〈A1, . . . , Ak〉, and s′j = sk ∪ {(u, r) | ur(, u, r) ∈
〈A1, . . . , Ak〉 \ 〈A′1, . . . , A′j〉}.

First, we consider the case where Ak+1 is not a delayed ur transition in sk. Since
at least one ua transition is enabled from s and ra is non-negative or irrevocable, de-
layed ur transitions do not disable Ak+1. In addition, sk differs from s′j only by con-
taining user-role pairs removed from sk by delayed ur transitions. As a result, tran-

sition s′j
Ak+1→ s′j+1 can be executed where s′j+1 = sk+1 ∪ {(u, r) | ur(, u, r) ∈

〈A1, . . . , Ak, Ak+1〉 \ 〈A′1, . . . , A′j , Ak+1〉}. If Ak+1 is a delayed ur transition in sk,
then s′j = sk+1 ∪ {(u, r) | ur(, u, r) ∈ 〈A1, . . . , Ak, Ak+1〉 \ 〈A′1, . . . , A′j〉}.

Part (b) follows from the fact that Gdr is a subgraph of G. Thus, the lemma holds.

Theorem 6 Let Q = 〈UA0, U, ut, ψ, goal〉 be a user-role reachability query, s0 =

closure(UA0), and Gdr and G be reduced state graphs constructed for Q with and
without the delayed revocation reduction, respectively. The goal is reachable in G iff
the goal is reachable in Gdr.

PROOF: If the goal is reachable in G, then there exists a sequence of transitions
s0

A1→ s1
A2→ . . .

An→ sg in G such that goal ⊆ roleset(ut, sg). From Lemma 5(a), there

exists a sequence of transitions s0
A′1→ s′1

A′2→ . . .
A′m→ s′m in Gdr such that sg ⊆ s′m, so

goal ⊆ roleset(ut, s′m). Thus, the goal is reachable in Gdr.
If Gdr contains state sg such that goal ⊆ sg, then from Lemma 5(b), sg is also in

G and hence the goal is reachable. Therefore, the theorem holds.

21

ua(r1,u2,r3) (u1,r1),(u1,r3),
(u2,r2),(u2,r8),
(u3,r2),(u3,r8),
() ()

(u1,r1),
(u2,r2),(u2,r8),
(u3,r2),(u3,r8),
() ()

(u1,r1),(u2,r2),
(u2,r8),(u2,r3),
(u3,r2),(u3,r8),
() ()

ur(r1,u2,r3)
ua(r1,u2,r3)

Initial state

(ut,r6), (ut,r4) (ut,r6), (ut,r4) (ut,r6), (ut,r4)
ua(r1,u3,r3)

ur(r1,u3,r3)
(u1,r1),(u1,r3),
(u2,r2)(u2,r8),
() ()

ua(r1,u3,r3)

ur(r1,u2,r3)
ur(r1,u3,r3)

ua(r1,u3,r3)

ur(r1,u3,r3)

(u1,r1),(u2,r2),
(u2,r8),(u3,r3),
(u3,r2),(u3,r8),
(ut,r6), (ut,r4)

(u2,r3),(u3,r2),
(u3,r8),(ut,r6),

(ut,r4)
(u1,r1),(u1,r3),
(u2,r2)(u2,r8),
(u3,r3),(u3,r2),
(u3,r8),(ut,r6),

(ut,r4) ua(r1,u3,r3) ur(r1,u3,r3)

ua(r1,u3,r3)

(u1,r1),(u1,r3),
(u2,r2),(u2,r8),
(u2,r3), (u3,r3)
(u3,r2),(u3,r8),
(ut,r6), (ut,r4)

ur(r1,u2,r3)
(u1,r1),(u2,r2),
(u2,r8),(u2,r3),
(u3,r3),(u3,r2),
(u3,r8),(ut,r6),

(ut,r4)

ur(r1,u1,r3)

(t 6) (t 4)

Figure 8: The state graph constructed in Example 9 with the delayed revocation reduc-
tion.

Example 9 Consider the user-role reachability query in Example 1. Since the
ur(r1, u1, r3) transition does not enable new transitions from the initial state and r1 is
non-negative, with delayed revocation reduction, this transition is not performed from
the initial state. Similarly, ur(r1, u1, r3) is also not performed from state {(u1, r1),
(u1, r3), (u2, r2), (u2, r8), (u3, r2), (u3, r3), (u3, r8), (ut, r6), (ut, r4)} and state
{(u1, r1), (u1, r3), (u2, r2), (u2, r3), (u2, r8), (u3, r2), (u3, r8), (ut, r6), (ut, r4)}. The
graph constructed with the delayed revocation reduction is given in Figure 8.

3.6 Hierarchical Rule Reduction

Hierarchical rule reduction avoids considering rules whose administrative roles are
junior to non-negative or irrevocable administrative roles in UA0. Formally, the hi-
erarchical rule reduction eliminates rules can assign(ra, ,) such that there exists
(, r′) ∈ UA0 such that r′ � ra and r′ is non-negative or irrevocable. This is safe
because senior roles inherit all administrative permissions of their junior roles, and
non-negative/irrevocable roles are never revoked during analysis. Note that, the hierar-
chical rule reduction does not reduce the size of the transition graph, but may reduce
the analysis time, since fewer rules are applied during analysis.

Consider the user-role reachability analysis query in Example 1 with the role hier-
archy r1 � r2. The following three rules are added when the policy is transformed into
a non-hierarchical policy: can assign(r1, {r8, r1} ∧ ¬∅, r6), can assign(r1, {r6} ∧
¬∅, r7), and can assign(r1, {r1} ∧ ¬∅, r3). Since r1 is a non-negative role, r1 will
never be revoked during analysis. As a result, rules 4 and 5 in Example 1 are not nec-
essary for reaching the goal (since administrative roles of these two rules are r2, which
is junior to r1), and hence will not be applied during analysis with this reduction.

22

Algorithm 4 Integrating all reductions.
1: procedure allreduct(UA0, U, ut, ψ, goal)

2: ψ1 = deadrole(UA0, ψ, goal);
3: (tarRel+, tarRel−, ψt) = targetslicing(UA0, ut, ψ1, goal);
4: (ntarRel+, ntarRel−, ψnt) = nontarslicing(UA0, ut, ψ1, goal);
5: init = {closure1(U, ut,UA0, tarRel+, tarRel−, ψt, ntarRel+, ntarRel−, ψnt)};
6: (tarRel1+, tarRel1−, ψ1t) = targetslicing(init, ut, ψ1, goal);
7: (ntarRel1+, ntarRel1−, ψ1nt) = nontarslicing(init, ut, ψ1, goal);
8: (ψ2t, ψ2nt) = hierarchicalRuleReduction(init, ψ1t, ψ1nt);
9: init′ = staticInvolvedUserReduction(init, ut, ψ2t, ψ2nt);

10: W = {init′};
11: while W 6= ∅ do
12: remove a state s from W ;
13: for each (Uset ,Rset) ∈ s do
14: if subsume(s, ut, Uset, Rset) 6= true then
15: W =W ∪ userEquivReduction(s, ut, ψ2t, ψ2nt, goal);
16: end if
17: end for
18: end while

3.7 Integrating All Reductions

Integrating all reductions needs to be done carefully to achieve the best performance,
since the order of the reductions may significantly affect the performance of the algo-
rithm. Let Q = 〈UA0, U, ut, ψ, goal〉 be a user-role reachability query. Algorithm 4
describes the integration process.

1. Perform the dead role analysis to eliminate ARBAC rules involving dead roles
(line 2) and store the rest of rules in ψ1.

2. Perform the enhanced slicing (lines 3–4) on ψ1, and store the sliced policies for
the target user and non-target users in ψt and ψnt, respectively. The order of
steps 1 and 2 is not significant.

3. Compute the initial state init from the initial RBAC policy UA0; invisible tran-
sitions for the target user are computed using rules in ψt and invisible transitions
for non-target users are computed using rules in ψnt (line 5). Note: this step is
performed after steps 1 and 2, because steps 1 and 2 reduce the number of rules
applied to compute the initial state and hence may reduce the size of the initial
state.

4. Perform the second-stage slicing on ψ1 and init, and store the sliced policies
for the target user and non-target users in ψ1t and ψ1nt, respectively (lines 6–7).
Note: this step is performed after step 3 because it depends on init computed in
step 3.

5. Perform the hierarchical rule reduction on ψ1t and ψ1nt, and store the resulting
policies in ψ2t and ψ2nt (line 8). Note: this step is performed after steps 1–4,

23

because a negative administrative role in the original policy may become non-
negative after dead role analysis and two-stage slicing, which may improve the
effectiveness of the hierarchical rule reduction.

6. Perform the static involved user reduction (line 9) to keep in the system the target
user and at most |AR| non-target users for each role set, where AR is the set of
administrative roles that may possibly be assigned to non-target users during
analysis, computed as the intersection of administrative roles in ψ2t and target
roles in ψ2nt. Note: step 6 is performed after steps 1–5, because steps 1–5 may
reduce the number of rules considered and hence may reduce the number of roles
in AR.

7. During the analysis, for every state s and every user equivalent set (Uset ,Rset)
in s, apply the subsumed-user reduction to check whether s contains a user equiv-
alent set (Uset ′,Rset ′) such that Rset ⊆ Rset ′ and Rset ′ \ Rset contains only
non-negative roles (function subsume). If so, do not explore transitions for users
in Uset ; otherwise, explore transitions from s for users in (Uset ,Rset) using the
user equivalent set reduction (lines 10–18).

Note that, even if the enhanced slicing alone reduces the number of states and
transitions computed, integrating the enhanced slicing and the user-equivalent set re-
duction does not always reduce the number of states and transitions. This is because,
sometimes, when fewer roles are assigned to users, the state may contain more user
equivalent sets. In our experiments, the integration reduces the number of states and
transitions for most policies, but increases the number of states and transitions for a
few policies.

4 Parallel Version of User-Role Reachability Analysis Algo-
rithm in [22]

Multi-core processors are becoming pervasive. To benefit from this, it is important to
parallelize algorithms. This section modifies the algorithm from [22] (Algorithm 1 in
this paper) to perform analysis in parallel. The basic idea is to create multiple threads,
each of which repeatedly removes and processes states from the workset. Since more
than one thread may access the workset and the set of processed states concurrently,
we explored techniques to efficiently synchronize and reduce contention on these two
sets. Pseudocode for the parallel algorithm is given in Algorithm 5.

First, we perform slicing to eliminate irrelevant roles, as we do in Algorithm 1. We
then compute the initial state init of the transition graph and add init to a workset
W (Line 5). Next, we create n threads t0, . . ., tn (Line 6; || represents the concurrent
execution of threads). Typically, n is greater than the number of cores in order to keep
all cores busy. Finally, each thread ti removes one state from the workset W , com-
putes transitions enabled from the state using Lines 7 –10 and 14–17 of Algorithm 1,
and adds the target states to W and the set of reachable states Reached if the target

24

Hash value :h1 S11 S12 S1k……Reached(h1)

Hash value: h2 S21 S22 S2r……Reached(h2)

……

Hash value: h m Sm1 Sm2 Smt……Reached(h) Hash value: h m Sm1 Sm2 Smt……Reached(hm)

Figure 9: Implementation of the set of reachable states Reached.

Algorithm 5 User-Role Reachability Analysis Algorithm in [22].
1: Reached =W = Rel+ = Rel− = ∅; RelRule = ∅; done = 0;
2: procedure mcanalysis(UA0, U, ut, ψ, goal)

3: (Rel+, Rel−, RelRule) = slicing(UA0, ψ, goal); init = closure(U, ut,UA0);
4: if goal ⊆ {r | (ut, r) ∈ init} then return true; end if
5: W = Reached(h(init)) = {init};
6: start(t1) || . . . || start(tn);

7: procedure start(ti)
8: while !done do
9: if(W == ∅ and all threads are idle) then done = 1; end if

10: while (W 6= ∅)
11: lock(W); remove a state s from W ; unlock(W);

12: for all transitions s
ua(ra,u,r)→ s′

13: if goal ⊆ {r | (ut, r) ∈ s′} then return true; end if
14: lock(Reached(h(s′));

15: if (Reached(h(s′)) does not exist)
16: Reached(h(s′)) = {s′}; unlock(Reached(h(s′)));
17: lock(W); W =W ∪ {s′}; unlock(W);
18: else if (s′ 6∈ Reached(h(s′)))
19: Reached(h(s′)) = Reached(h(s′)) ∪ {s′}; unlock(Reached(h(s′)));
20: lock(W); W =W ∪ {s′}; unlock(W);
21: else unlock(Reached(h(s′))); end if
22: end if end for end while
23: end while
24: return false;

states are not already in Reached (Lines 11–21). Since multiple threads may access
Reached concurrently, synchronization is needed to prevent interference between con-
current accesses. To reduce contention on Reached, we implemented Reached as a
hashtable with a separate lock for each bucket (i.e. each collision chain), shown in
Figure 9. As usual, Reached(h) stores a set of states whose hash values are h. After
a thread computes a transition s α→ s′, it computes the hash value h(s′) of s′, locks
Reached(h(s′)), adds s′ to Reached(h(s′)) if s′ is not already in Reached(h(s′)),
and unlocks Reached(h(s′)). Our experimental results show that locking each bucket
instead of the entire hashtable significantly improves the performance, because threads

25

access Reached very frequently and checking whether a state is in Reached is rela-
tively expensive. The algorithm terminates if the goal is reached, or if W is empty and
all threads are not performing any computation.

To reduce contention on the workset W , we modify the algorithm so that each
thread has its own workset. Below, we present three approaches to synchronization for
the workset.

• NoLock: In this approach, a thread never accesses other threads’ worksets. Ev-
ery time a thread computes a transition, it stores the target state in its own work-
set, if the target state is not already in Reached. This approach eliminates all
locking for worksets, but may result in idle threads (due to empty worksets).

• FullLock: In this approach, a thread t is allowed to access other threads’ work-
sets to remove a state to process, if t’s workset is empty. The thread t will access
other threads’ worksets one by one until it finds a non-empty workset, when it
removes one or more states from the workset. This approach provides better
load balancing, but it requires locking the workset every time it is accessed. A
challenge is to decide how many states a thread should remove from another
thread’s workset at a time. If a thread takes one state at a time, then the thread
is likely to run out of work again relatively soon. Another approach is to take
a fixed fraction of the states in the workset. In our implementation, we pick
max(0.5 ∗ sizeof(workset),maxTake) states, where sizeof(workset) is the
size of the workset and maxTake is a user-specified bound.

• PartialLock: In this approach, after a thread ti computes a fixed number of
transitions, it checks if thread t(i−1) mod n is idle. If so, it locks the workset
of thread t(i−1) mod n, adds the target state to the workset, unlocks the workset,
and starts thread t(i−1) mod n. The advantage of this approach is that locking
is needed only when thread ti adds a state to thread t(i−1) mod n’s workset. A
challenge is to decide how many transitions a thread should compute before it
checks if a thread is idle. If the number is small, then each thread ti has to
frequently check if t(i−1)modn is idle. If the number is large, then a thread may
be idle for long time.

Other designs: It may be possible to improve performance by replacing mutual exclu-
sion locks on buckets in Reached with reader-writer locks. However, our experiments
show that this does not yield performance improvement. In fact, it often causes per-
formance degradation, because multiple threads rarely access the same bucket simulta-
neously, and reader-writer locks, due to their complexity, incur greater overhead than
mutual exclusion locks.

We also considered using a lock-free data structure to implement the workset. To
evaluate the potential benefit of this approach, we measured the overhead of the mutual
exclusion lock by comparing running times of one thread with and without locking.
Our experimental results show that locking incurs negligible overhead. This implies
that a lock-free data structure would not appreciably improve the performance.

26

5 Performance Results

This section evaluates the effectiveness of our reduction techniques and parallel algo-
rithms using the university ARBAC policy developed in [22] and the university RBAC
policy developed in [7].

The university RBAC and ARBAC policies contain 845 users, 32 roles (including
13 administrative roles), 329 can assign rules, and 78 can revoke rules, after being
converted to the corresponding non-hierarchical policies. The policies include rules
for assignment of users to various student and employee roles. Student roles include
undergraduate student, graduate student, teaching assistant, research assistant, honors
student, etc. Employee roles include president, provost, dean, department chair, fac-
ulty, honors program director, etc. A sample can assign rule is: the honors program
director can assign an undergraduate student to the honors student role. A sample
user-role reachability query is: can a user who is a member of the department chair
role and a user who is a member of the undergraduate student role assign the latter
user to the honors student role? Details of the university ARBAC policy are available
from [21].

The university ARBAC policy does not satisfy the separate administration restric-
tion. In addition, the policy has hierarchical role assignment w.r.t all administrative
roles except those for assigning users to roles “honors student” and “graduate student”.
This means that if the goal contains these two roles, then we cannot directly apply
the algorithm for analyzing ARBAC with separate administration to carry out analysis.
In our experiments, we randomly select one target user ut, one role r, and n non-
target users {u1, . . . , un}. We then apply analysis algorithms to check whether users
in {u1, . . . , un, ut} together can assign ut to both honors student role and role r.

Each data point reported in this section is an average over 8 randomly generated
queries. These 8 queries were generated as follows. First, we randomly generated 100
queries. Next, we ran the analysis program without reduction for the university policy
containing 50 users and chose the first 8 policies in which the program generated at
least 30 states. This eliminates very easy queries. The sets of non-target users were
generated incrementally, so that each set of non-target users is a superset of the sets of
non-target users generated for smaller n.

Effectiveness of reduction techniques Figures 10(a)–(d) report the number of states,
the number of transitions, the execution time, and the number of timeout policies (i.e.,
policies for which the analysis does not complete within 5 hours) for the program
without reduction (NoReduct) and with each of the four least effective reductions:
the dead-role reduction (DeadRole), the delayed revocation reduction (DelayedRev),
the subsumed-user reduction (Subsumed), and the static involved-user reduction (In-
volved). Figure 11 reports the same for NoReduct and the five most effective re-
ductions: the enhanced slicing (EnhancedSlicing), the user equivalent set reduction
(UserEquiv), the spare-user reduction (Spare), all reductions in [24] (AllReduct in
[24]) and all reductions in this paper (AllReduct). The reported data were obtained
on a 2.5GHz Pentium machine with 4GB RAM running Ubuntu 12.04.

27

0 100 200 300 400 500 600 700 800
Number of Users

0

10000

20000

30000

40000

N
um

be
r

of
 S

ta
te

s

NoReduct
DelayedRev
Subsumed
Involved
DeadRole

0 100 200 300 400 500 600 700 800
Number of Users

0

50000

100000

150000

200000

250000

N
um

be
r

of
 T

ra
ns

iti
on

s

NoReduct
DelayedRev
Subsumed
Involved
DeadRole

(a) (b)

0 100 200 300 400 500 600 700 800
Number of Users

0

2000

4000

6000

8000

10000

12000

T
im

e
(S

ec
.)

NoReduct
DelayedRev
Subsumed
Involved
DeadRole

0 100 200 300 400 500 600 700 800
Number of Users

0

1

2

3

4

5

N
um

be
r

of
 T

im
eo

ut
 P

ol
ic

ie
s

NoReduct
DelayedRev
Subsumed
Involved
Deadrole

(c) (d)

Figure 10: Experimental results of NoReduct and four least effective reductions; error
bars indicate that the reported average is a lower bound on the actual average.

In our experiments, a run terminates as soon as the goal is reached (when the anal-
ysis result is true) or no more transitions can be computed (when the analysis result
is false). We do not include the hierarchical rule reduction in the figures as this re-
duction itself is not effective in our experiments, because all administrative roles in
the university ARBAC policy that have junior roles are mixed roles. In addition, the
static involved-user reduction and the spare-user reduction cannot be applied together.
AllReduct in Figure 11 uses the static involved-user reduction, which generates slightly
fewer states and transitions than using the spare-user reduction for the reason given in
Section 3.4.

The timeout threshold in our experiments is 5 hours. If a run on a particular query
does not terminate in 5 hours, then we use the smallest number of states and transitions
that had been explored when the timeout occurred in the computation of the average
numbers of states and transitions explored for the current set of queries (corresponding
to a given number of users and combination of reductions). Thus, in those cases, the
reported averages are lower bounds on the actual averages that would have been ob-
tained if we let the program always run to completion. In Figures 10 and 11, we use the
error bar to indicate that the reported average is a lower bound on the actual average.

28

0 100 200 300 400 500 600 700 800
Number of Users

0

10000

20000

30000

40000

N
um

be
r

of
 S

ta
te

s

NoReduct
enhancedSlicing
UserEquiv
Spare
AllReduct in [24]
AllReduct

0 100 200 300 400 500 600 700 800
Number of Users

0

30000

60000

90000

120000

150000

180000

210000

240000

N
um

be
r

of
 T

ra
ns

iti
on

s

NoReduct
enhancedSlicing
UserEquiv
Spare
AllReduct in [24]
AllReduct

(a) (b)

0 100 200 300 400 500 600 700 800
Number of Users

0

2000

4000

6000

8000

10000

12000

T
im

e
(S

ec
.)

NoReduct
enhancedSlicing
UserEquiv
Spare
AllReduct in [24]
AllReduct

0 100 200 300 400 500 600 700 800
Number of Users

0

1

2

3

4

5

N
um

be
r

of
 T

im
eo

ut
 P

ol
ic

ie
s

NoReduct
EnhancedSlicing
UserEquiv
Spare
AllReduct in [24]
AllReduct

(c) (d)

Figure 11: Experimental results of NoReduct and four most effective reductions; error
bars indicate that the reported average is a lower bound on the actual average.

For example, we see from Figures 10(d) and 11(d) that, when the number of users is
200 or more, all variants except AllReduct timeout for 1 to 5 out of 8 policies.

While all reductions improve the performance, their effectiveness varies for dif-
ferent queries. The user equivalent set reduction performs the best for most policies
and the subsumed-user reduction is the least effective (effective for only 75 and 100
users). Our experimental results also show that, although the static involved-user re-
duction does not reduce the number of states and transitions for 50 users, the execution
time is less, because no transitions are performed on users who are eliminated. In addi-
tion, applying the spare-user reduction alone is more effective than applying the static
involved-user reduction alone.

Note that the execution time of most variants for 400 users is smaller than that for
300 users. This is because the newly added users enable new transitions, which turns
the analysis result for one of the 8 policies from “false” to ”true” and the program
terminates as soon as the goal is reached. For the same reason, the execution time of
most variants for 500 users is smaller than that for 400 users, and the execution time
for 700 users is smaller than that for 600 users.

Integrating all reductions leads to a very effective solution. When the problem be-

29

comes difficult for the baseline algorithm to solve, AllReduct achieves an improvement
of four orders of magnitude in execution time and terminates in all experiments. Our
experimental results also show that AllReduct performs slightly better than Allreduct
in [24] for 50–150 users and performs significantly better than Allreduct in [24] for
200–800 users. Further, integrating the two-stage slicing with the spare-user reduction
reduces the number of administrative roles that need to be assigned to non-target users
during analysis from 13 to 2-4.

Performance results of parallel algorithms Figure 12 gives the execution time of
our parallel analysis algorithms without reductions – SharedWorkset (Algorithm 5),
NoLock, PartialLock(1), PartialLock(50), FullLock(1), and FullLock(5) – with 15
and 30 threads. FullLock(n) represents FullLock with the user-specified bound n.
PartialLock(n) represents PartialLock in which a thread checks whether its neighbor
is idle after computing every n transitions. The number atop each bar is the speedup
of the corresponding parallel algorithm over the sequential algorithm. For example,
Figure 12(a) shows that, with 50 users and 15 threads, SharedWorkset is 2.9 times
faster than the sequential algorithm. Each The reported data were obtained on a com-
puter with two 2.4GHz Quad-Core AMD Opteron Processors and 16GB RAM running
Ubuntu 3.2.0. A 32-bit Ubuntu kernel was installed, so each process is limited to access
only 4GB memory.

On average, FullLock performs the best, followed by PartialLock, NoLock, and
SharedWorkset. The running times of FullLock(1) and FullLock(5) are almost the
same. PartialLock(50) performs slightly better than PartialLock(1) for 50 and 75 users,
but slightly worse for 100 users. FullLock and SharedWorkset with 30 threads outper-
form those with 15 threads, because the threads often wait for locks to access work-
sets in FullLock and SharedWorkset, and hence more CPU cores are utilized with 30
threads than 15 threads. The running times of NoLock and PartialLock with 15 threads
are close to those with 30 threads.

We have also measured the total number of times a thread accesses other threads’
workset in FullLock. Our experimental results show that with 15 threads, the number of
accesses to other threads’ worksets is significantly less than that with 30 threads (by a
factor of 64.65% to 83.59%). This is because, with fewer threads, there are more states
in each workset and hence the chance that the workset becomes empty is smaller. Our
experimental results also show that, with 30 threads, allowing a thread to take more
than one state significantly reduces the average number of accesses to other threads’
worksets (reduced by 4.97% − 64.39%), but does not have a significant effect on the
running time. This indicates that only a small fraction of the total execution time is
spent in accessing other threads’ worksets.

6 Related Work

A number of researchers have studied user-role reachability analysis of ARBAC.
Schaad et al. [19] applied the Alloy analyzer [12] to check the separation of duty prop-
erties for ARBAC97; they did not consider preconditions for any operations. Li et al.

30

15 threads 30 threads
0

0.2

0.4

0.6

0.8

1

Ex
ec

uti
on

 T
im

e (
Se

c.)

Sequential
SharedWorkset
NoLock
FullLock(1)
FullLock(5)
PartialLock(1)
PartialLock(50)

2.9x

2.4x

3.1x

3.1x
3x

2.3x

3.2x
3.4x

1.9x

2.2x

3x
2.7x

(a) 50 users

15 threads 30 threads
0

5

10

15

20

25

30

35

Ex
ec

uti
on

 T
im

e (
Se

c.)

Sequential
SharedWorkset
NoLock
FullLock(1)
FullLock(5)
PartialLock(1)
PartialLock(50)

5.2x 5.2x
6.9x6.8x

5.1x5.6x 5.9x
4.9x

6.8x6.9x
5.2x5.4x

(b) 75 users

15 threads 30 threads
0

400

800

1200

1600

2000

2400

Ex
ec

ut
io

n T
im

e (
Se

c.)

Sequential
SharedWorkset
NoLock
FullLock(1)
FullLock(5)
PartialLock(1)
PartialLock(50)

2.2x

4.6x
5.4x

5.2x4.6x 4.3x

3x

4.4x

6x 6.2x

4.4x 4.3x

(c) 100 users

Figure 12: Execution time of parallel algorithms.

31

[16] presented algorithms and complexity results for various analysis problems for two
restricted versions of ARBAC97, called AATU and AAR; they did not consider neg-
ative preconditions. Jayaraman et al. [14] presented an abstraction refinement mecha-
nism for detecting errors in ARBAC policies. Alberti et. al [1] developed a symbolic
backward algorithm for analyzing Administrative Attribute-based RBAC policies, in
which the policy and the query are encoded into a Bernays-Shonfinkel-Ramsey first
order logic formulas. Becker [3] proposed a language DYNPAL for specifying dynamic
authorization policies, which is more expressive than ARBAC, and presented tech-
niques for analyzing DYNPAL. Sasturkar et al. [18] showed that user-role reachability
analysis of ARBAC is PSPACE-complete, and presented algorithms and complexity
results for ARBAC analysis subject to a variety of restrictions. Stoller et al. [20] pre-
sented algorithms for analyzing parameterized ARBAC. Gofman et al. [9] presented
algorithms for analyzing evolving ARBAC. Uzun et al. [23] developed algorithms for
analyzing temporal role-based access control models. However, none of the above
works consider analysis of ARBAC without separate administration.

Several researchers have considered analysis of ARBAC without separate admin-
istration. Stoller et al. [22] provided fixed-parameter tractable algorithms for ARBAC
with and without the separate administration restriction. Their algorithm for analyzing
ARBAC without separate administration is exponential in the number of users in the
policy, which is usually large in practice. Our work significantly improves the scala-
bility of their algorithm by reducing the number of ARBAC rules and users considered
during analysis. Ferrara et al [4] converted ARBAC policies to imperative programs
and applied abstract-interpretation techniques to analyze the converted programs. How-
ever, if the goal is reachable, their approach cannot produce a trace which shows how
the goal is reachable. Later, the same authors showed that if the goal is reachable in an
ARBAC policy, then there exists a run of S with at most |AR| + 1 users in which the
goal is reachable [5]. In this paper, we present three reductions that extend their work to
further reduce the number of users considered during the analysis; our other reductions
are different from their. In addition, none of the above works present parallel analysis
algorithms.

A number of researchers considered analysis of fixed security policy [13, 15, 10,
11], analysis of a single change to a fixed policy, or analysis of differences between two
fixed policies [15, 6]. However, none of these works consider analysis of ARBAC.

7 Conclusion and Future Work

This paper considers user-role reachability analysis without the separate administra-
tion restriction, which was shown to be PSPACE-complete in general. We present new
analysis techniques with the goal of finding an efficient solution to the problem. Our
techniques focus on reducing the number of ARBAC rules and users considered during
analysis and delaying unnecessary computations. We also present parallel algorithms
that speed up the analysis on multi-core systems. Experiments with a university AR-
BAC policy show that our techniques significantly reduce the analysis time. In the

32

future, we plan to develop symbolic analysis algorithms to implicitly search the state
space with a potential to further improve the performance of the analysis.

Acknowledgement: This work was supported in part by NSF Grants CNS-0855204
and CNS-0831298. We thank Kyoung-Don Kang for providing feedback on parallel
algorithms and Dulcinea Chau for her contribution to the implementation of parallel
algorithms.

References

[1] F. Alberti, A. Armando, and S. Ranise. Efficient symbolic automated analysis of
administrative attribute-based RBAC-policies. In ACM Symposium on Informa-
tion, Computer and Communications Security, pages 165–175, 2011.

[2] A. N. S. I. (ANSI). Role-based access control. ANSI INCITS Standard 359-2004,
Feb. 2004.

[3] M. Y. Becker. Specification and analysis of dynamic authorisation policies. In
22nd IEEE Computer Security Foundations Symposium (CSF), pages 203 – 217,
2009.

[4] A. L. Ferrara, P. Madhusudan, and G. Parlato. Security analysis of role-based
access control through program verification. In IEEE Computer Security Founda-
tions Symposium (CSF), pages 113–125, 2012.

[5] A. L. Ferrara, P. Madhusudan, and G. Parlato. Policy analysis for self-
administrated role-based access control. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), pages 432
– 447, 2013.

[6] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification
and change-impact analysis of access-control policies. In International Confer-
ence on Software Engineering (ICSE), pages 196–205, 2005.

[7] M. Gofman, R. Luo, J. He, Y. Zhang, and P. Yang. Incremental information flow
analysis of role based access control. In International Conference on Security and
Management (SAM), pages 397–403, 2009.

[8] M. Gofman, R. Luo, A. Solomon, Y. Zhang, P. Yang, and S. Stoller. RBAC-PAT:
A policy analysis tool for role based access control. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pages 46–49, 2009.

[9] M. Gofman, R. Luo, and P. Yang. User-role reachability analysis of evolving
administrative role based access control. In European Symposium on Research in
Computer Security (ESORICS), pages 455 – 571, 2010.

33

[10] J. D. Guttman, A. L. Herzog, J. D. Ramsdell, and C. W. Skorupka. Verifying in-
formation flow goals in Security-Enhanced Linux. Journal of Computer Security,
13(1):115–134, 2005.

[11] K. Irwin, T. Yu, and W. H. Winsborough. On the modeling and analysis of obli-
gations. In ACM Conference on Computer and Communications Security (CCS),
pages 134–143, 2006.

[12] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the alloy constraint analyzer. In
International Conference on Software Engineering (ICSE), pages 730–733, June
2000.

[13] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for expressing
authorizations. In IEEE Symposium on Security and Privacy, pages 31–42, 1997.

[14] K. Jayaraman, M. Tripunitara, V. Ganesh, M. Rinard, and S. Chapin. Mo-
hawk: Abstraction-refinement and bound-estimation for verifying access con-
trol policies. ACM Transaction on Information and System Security (TISSEC),
15(4):18:1–18:28, Apr. 2013.

[15] S. Jha and T. Reps. Model-checking SPKI-SDSI. Journal of Computer Security,
12:317–353, 2004.

[16] N. Li and M. V. Tripunitara. Security analysis in role-based access control. ACM
Transactions on Information and System Security (TISSEC), 9(4):391–420, Nov.
2006.

[17] R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for role-
based administration of roles. ACM Transactions on Information and Systems
Security (TISSEC), 2(1):105–135, Feb. 1999.

[18] A. Sasturkar, P. Yang, S. D. Stoller, and C. Ramakrishnan. Policy analysis for
administrative role based access control. Theoretical Computer Science (TCS),
412(44):6208–6234, 2011.

[19] A. Schaad and J. D. Moffett. A lightweight approach to specification and analysis
of role-based access control extensions. In ACM Symposium on Access Control
Models and Technologies (SACMAT), pages 13–22, 2002.

[20] S. D. Stoller, P. Yang, M. I. Gofman, and C. Ramakrishnan. Symbolic reachability
analysis for parameterized administrative role-based access control. Journal of
Computers & Security, pages 148–164, 2011.

[21] S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I. Gofman. An ARBAC policy
for a university, http://www.cs.sunysb.edu/˜stoller/ccs2007/
university-policy.txt, 2007.

34

[22] S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I. Gofman. Efficient policy
analysis for administrative role based access control. In 14th ACM Conference on
Computer and Communications Security (CCS), pages 445–455, 2007.

[23] E. Uzun, V. Atluri, S. Sural, J. Vaidya, G. Parlato, A. L. Ferrara, and
M. Parthasarathy. Analyzing temporal role based access control models. In ACM
Symposium on Access Control Models and Technologies (SACMAT), pages 177–
186, 2012.

[24] P. Yang, M. Gofman, and Z. Yang. Policy analysis for administrative role based
access control without separate administration. In 27th IFIP WG 11.3 Conference
on Data and Applications Security and Privacy (DBSEC), pages 49–64.

35

