
Faster Possibility Detection by Combining Two
Approaches�

Scott D. Stoller and Fred B. Schneider

Dept. of Computer Science, Cornell University, Ithaca, NY 14853, USA.
stoller@cs.cornell.edu, fbs@cs.cornell.edu

Abstract. A new algorithm is presented for detecting whether a partic-
ular computation of an asynchronous distributed system satisfies PossΦ
(read “possibly Φ”), meaning the system could have passed through a
global state satisfying Φ. Like the algorithm of Cooper and Marzullo,
Φ may be any global state predicate; and like the algorithm of Garg
and Waldecker, PossΦ is detected quite efficiently if Φ has a certain
structure. The new algorithm exploits the structure of some predicates
Φ not handled by Garg and Waldecker’s algorithm to detect PossΦ
more efficiently than is possible with any algorithm that, like Cooper
and Marzullo’s, evaluates Φ on every global state through which the sys-
tem could have passed. A second algorithm is also presented for off-line
detection of PossΦ. It uses Strassen’s scheme for fast matrix multiplica-
tion. The intrinsic complexity of off-line and on-line detection of PossΦ
is discussed.

1 Introduction

A history of a distributed system can be modeled as a sequence of events in
their order of occurrence. Since execution of a particular sequence of events
leaves the system in a well-defined global state, a history uniquely determines a
sequence of global states through which the system has passed. Unfortunately,
in an asynchronous distributed system, no process can determine the order in
which events on different processors actually occurred. Therefore, no process
can determine the sequence of global states through which the system passed.
This leads to an obvious difficulty for detecting whether a global state predicate
(hereafter simply called a “predicate”) held.

Cooper and Marzullo’s solution to this difficulty involves two modalities,
which we denote by Poss (read “possibly”) and Def (read “definitely”) [CM91].
These modalities are based on logical time [Lam78] as embodied in the happened-
before relation →, a partial order on events that reflects causal dependencies. A
history of an asynchronous distributed system can be approximated by a compu-
tation, which is a set of the events that occurred together with their happened-
before relation. Happened-before is useful for detection algorithms because, using
� This material is based on work supported in part by NSF/DARPA Grant No. CCR-
9014363, NASA/DARPA grant NAG-2-893, and AFOSR grant F49620-94-1-0198.
Any opinions, findings, and conclusions or recommendations expressed in this pub-
lication are those of the authors and do not reflect the views of these agencies.

vector clocks [Fid88, Mat89], it—hence the computation—can be determined by
processes in the system.

Happened-before is not a total order, so it does not uniquely determine the
history. But it does restrict the possibilities. Histories consistent with a com-
putation are exactly those sequences that correspond to total orders containing
the happened-before relation (i.e., sequences such that for all events e and e′,
if e → e′, then e occurs before e′ in the sequence). A computation satisfies
PossΦ iff, in some history consistent with that computation, the system passes
through a global state satisfying Φ. A computation satisfies Def Φ iff, in all
histories consistent with that computation, the system passes through a global
state satisfying Φ.

Cooper and Marzullo give centralized algorithms for detecting PossΦ and
Def Φ for an arbitrary predicate Φ [CM91]. A stub at each process reports the lo-
cal states of that process to a central monitor. The central monitor incrementally
constructs a lattice to represent the set of histories consistent with the compu-
tation. A straightforward search of the lattice reveals whether the computation
satisfies PossΦ or Def Φ.

The generality of Cooper and Marzullo’s approach is attractive. Unfortu-
nately, their algorithms can be expensive. In a system of N processes, the worst-
case size of the constructed lattice is Θ(SN), where S is the maximum number
of steps taken by a single process.2 This worst case comes from the (exponen-
tial) number of histories consistent with a computation in which there is little
communication. Any detection algorithm that constructs the entire lattice—
whether it uses the method in [CM91, MN91] or the more efficient schemes in
[DJR93, JMN95]—has worst-case time complexity that is at least linear in the
size of the lattice. Thus, Cooper and Marzullo’s algorithms for detecting PossΦ
and Def Φ have worst-case time complexity Ω(SN).

Because the time needed to construct the lattice can be prohibitive, re-
searchers have sought faster detection algorithms. One approach has been to
change the problem—for example, detecting a different modality [FR94] or as-
suming that the system is partially synchronous [MN91]. Another approach has
been to restrict the problem and develop efficient algorithms for detecting only
certain classes of predicates [GW92, GW94, TG94].

Our work is inspired by an algorithm of Garg and Waldecker for a restricted
problem [GW94]. Their algorithm detects PossΦ only for Φ a Boolean combina-
tion of local predicates, where a local predicate is defined to be one that depends
on the state of a single process. The worst-case time complexity of their algo-
rithm is Θ(N2S), which is significantly smaller than the worst-case size of the
lattice. The efficiency of Garg and Waldecker’s algorithm makes it ideal when
the property to be detected can be expressed as a Boolean combination of local
predicates. However, many properties can not be so expressed.

In this paper, we show how to combine Garg and Waldecker’s approach with

2 We use standard “order-of-magnitude” symbols O, Ω, and Θ. For definitions, see
[BDG88, sec. 2.2], whose only idiosyncrasy is using Ω∞ for the operator commonly
denoted Ω.

any algorithm that constructs the lattice to detect PossΦ. The result is a new
algorithm that has the best features of both and improves on each. Our algorithm
exploits the structure of some predicates Φ not handled by Garg and Waldecker’s
algorithm to detect PossΦ more efficiently than is possible with an algorithm
that constructs the entire lattice. In addition, our algorithm can detect PossΦ
for any predicate Φ. And, like Garg and Waldecker’s algorithm, our algorithm
detects Boolean combinations of local predicates in time linear in S.

As an illustration, consider the predicate

P ∆= φ12(x1, x2) ∧ φ3(x3), (1)

where variable xi is a state component of process i. Garg and Waldecker’s al-
gorithm is inapplicable here, because φ12 is not local. And, since N = 3, the
worst-case time complexity for constructing the entire lattice is Θ(S3). Our al-
gorithm detects PossP with worst-case time complexity Θ(S2) by decomposing
the problem into multiple detection problems, each solvable using Garg and
Waldecker’s algorithm. To see how our algorithm works, note that if the state
of process 1 is frozen, then each conjunct of P depends on the state of exactly
one of the remaining processes, so each conjunct is effectively a local predicate.
Thus, for each of the O(S) states of process 1, PossP can be detected with
time complexity O(S) using Garg and Waldecker’s algorithm. It follows that for
PossP, the worst-case time complexity of our algorithm is Θ(S2).

The remainder of the paper is organized as follows. Section 2 introduces our
model of distributed systems. In Section 3, we specify and give algorithms for off-
line and on-line detection of PossΦ. Example applications of the algorithms are
given in Section 4. Section 5 discusses how to use Strassen’s matrix-multiplication
algorithm for off-line detection of PossΦ when Φ has certain structure. This
algorithm is faster than the more general off-line one described in Section 3, but
we argue that fast matrix-multiplication routines, hence detection algorithms
based on them, probably cannot be made on-line. In Section 6, we show that
detecting PossΦ is NP-complete, even for conjunctions where each conjunct
depends on the states of at most two processes. We also comment on the difficulty
of proving lower bounds for detecting PossΦ.

2 System Model and Notation

A (local) state of a process is a mapping from identifiers to values. A history
of a single process is represented as a sequence of that process’s states. The
αth element of a sequence c is denoted c[α], and the set containing exactly the
elements in a sequence c is denoted U(c). Let [m..n] denote the set of integers
from m to n, inclusive. We use integers [1..N] as process names.

A computation c is represented as histories c1, . . . , cN of the constituent pro-
cesses, together with a happened-before relation → that is a relation on local
states instead of events [GW94]. In particular, define → to be the smallest tran-
sitive relation on

⋃N
i=1 U(ci) such that

1. (∀i ∈ [1..N] : (∀α ∈ [1..(|ci| − 1)] : ci[α] → ci[α+ 1])).
2. For all s and s′ in

⋃N
i=1 U(ci), if the event immediately following s is the

sending of a message and the event immediately preceding s′ is the reception
of that message, then s→ s′.

We always use S to denote max(|c1|, . . . , |cN |). We assume each process has a
distinguished variable τ such that for each local state s, s(τ) is a vector timestamp
[Mat89] and for all local states s and s′, s(τ) < s′(τ) iff s→ s′.

A state of a distributed system is a collection of local states; we represent
such a collection as a function from process names to local states. Thus, for a
state g, the (local) state of process i is g(i), and the value of variable x at process
i is g(i)(x). The domain of a state g is denoted dom(g). A global state specifies
the state of every process; thus, it is a state with domain [1..N]. The set of global
states of a computation c is denoted GS (c).

Two local states s and s′ are concurrent, denoted s ‖ s′, iff neither happened
before the other: s ‖ s′ ∆= s
→ s′ ∧ s′
→ s. Two states g and g′ are concurrent,
denoted g ‖ g′, iff each local state in g is concurrent with all local states in g′:

g ‖ g′ ∆=
∧

i∈dom(g)
j∈dom(g′)

g(i) ‖ g′(j). (2)

A state g is consistent iff its constituent local states are pairwise concurrent. The
set of consistent global states of a computation c, denoted CGS (c), is therefore
characterized by3

g ∈ CGS (c) iff g ∈ GS (c) ∧ (∀i, j ∈ dom(g) : i
= j ⇒ g(i) ‖ g(j)). (3)

Given a computation c and a set F ⊆ [1..N] of processes, the restriction of
c to F , denoted c↓F , is the histories of only those processes in F together with
the restriction of → to

⋃
i∈F U(ci). The restriction of a state g to F , denoted

g↓F , is the state obtained from g by restricting the domain to be dom(g) ∩ F .
An overbar denotes complementation: F ∆= [1..N] \ F .

We regard predicates as Boolean-valued functions. Thus, Φ(g) is the truth
value of predicate Φ in state g. When writing predicates in terms of state vari-
ables (as in (1)), we subscript each variable with the name of the process to
which it belongs. For example, xi is a component of the local state of process
i. The set of processes on whose local states a predicate Φ depends is denoted
Π(Φ). A predicate is defined to be n-local if |Π(Φ)| ≤ n, meaning Φ depends
on the local states of at most n processes. Given a predicate Φ and a set F of
processes, we say that Φ is n-local for F if |Π(Φ) ∩ F | ≤ n, meaning Φ depends
on the local states of at most n processes in F .

3 CGS(c) could also be defined directly in terms of histories: g ∈ CGS(c) iff the system
passes through g in some history consistent with c. The definition of CGS(c) in terms
of ‖ is more convenient for reasoning about detection algorithms, so we take it as
primary.

3 Detection Algorithm

3.1 Specification

The formal definition of PossΦ is [CM91]

c |= PossΦ iff (∃g : g ∈ CGS (c) ∧ Φ(g)). (4)

The off-line detection problem for Poss is: given a computation c and a predicate
Φ, determine whether c |= PossΦ holds.

In the on-line problem, the detection algorithm is initially given the predicate
but not the computation. Local states arrive at the monitor one at a time. For
each process, the local states of that process arrive in the order they occurred.
However, there is no constraint on the relative arrival order of local states of dif-
ferent processes. Detection must be announced as soon as local states comprising
a CGS satisfying Φ have arrived.

3.2 Off-line Algorithm

The basis of our approach is to decompose the detection problem by partitioning
the set of processes. The following lemma shows how CGS (c) decomposes.

Lemma1. For all computations c, all F ⊆ [1..N], and all global states g of c,
g ∈ CGS (c) iff (g↓F ∈ CGS (c↓F))∧ (g↓F ∈ CGS (c↓F))∧ ((g↓F) ‖ (g↓F)).

Proof.

g ∈ CGS (c)
= 〈〈Definition (3) of CGS (c) 〉〉
g ∈ GS (c) ∧ (∀i ∈ [1..N] : (∀j ∈ [1..N] : i
= j ⇒ g(i) ‖ g(j)))

= 〈〈Definition of ↓F , [1..N] = F ∪ F , and Range Partitioning Law for ∀ 〉〉
(g↓F ∈ GS (c↓F)) ∧ (∀i ∈ F : (∀j ∈ F : i
= j ⇒ g(i) ‖ g(j)))
∧ (g↓F ∈ GS (c↓F)) ∧ (∀i ∈ F : (∀j ∈ F : i
= j ⇒ g(i) ‖ g(j)))
∧ (∀i ∈ F : (∀j ∈ F : i
= j ⇒ g(i) ‖ g(j)))
∧ (∀i ∈ F : (∀j ∈ F : i
= j ⇒ g(i) ‖ g(j)))

= 〈〈Definition (3) of CGS , and i ∈ F ∧ j ∈ F implies i
= j 〉〉
(g↓F ∈ CGS (c↓F)) ∧ (g↓F ∈ CGS (c↓F))
∧ (∀i ∈ F : (∀j ∈ F : g(i) ‖ g(j))) ∧ (∀i ∈ F : (∀j ∈ F : g(i) ‖ g(j)))

= 〈〈By symmetry of ‖, the last two conjuncts are equivalent 〉〉
(g↓F ∈ CGS (c↓F)) ∧ (g↓F ∈ CGS (c↓F)) ∧ (∀i∈F : (∀j ∈F : g(i) ‖ g(j)))

= 〈〈Definition (2) of ‖ 〉〉
(g↓F ∈ CGS (c↓F)) ∧ (g↓F ∈ CGS (c↓F)) ∧ ((g↓F) ‖ (g↓F)) ✷

To decompose PossΦ, we define a predicate that is a variant of Φ specialized
with respect to the states of some processes. Given a state g1 with domain F ,
let Φg1 denote the following predicate on states g2:

Φg1(g2) ∆= Φ(g1 ⊕ g2) ∧ (g1 ‖ g2) (5)

for each g1 in CGS(c↓F) do

if c↓F |= PossΦg1 then (∗)
return("detected")

fi

rof

return("not detected")

Fig. 1. Possibility Detection Decomposition Algorithm (PDDA).

where g1 ⊕ g2 is the global state whose values on processes in dom(g1) are given
by g1, and whose values on other processes are given by g2.

Lemma2. For all computations c, all F ⊆ [1..N], and all predicates Φ,

c |= PossΦ iff (∃g1 : (g1 ∈ CGS (c↓F)) ∧ (c↓F |= PossΦg1)).

Proof.

c |= PossΦ
= 〈〈Definition (4) of c |= PossΦ 〉〉

(∃g : g ∈ CGS (c) ∧ Φ(g))
= 〈〈Lemma 1 〉〉

(∃g : (g↓F ∈ CGS (c↓F)) ∧ (g↓F ∈ CGS (c↓F)) ∧ ((g↓F) ‖ (g↓F)) ∧ Φ(g))
= 〈〈Take g1 = g↓F and g2 = g↓F 〉〉

(∃g1, g2 : (g1 ∈ CGS (c↓F)) ∧ (g2 ∈ CGS (c↓F)) ∧ (g1 ‖ g2) ∧ Φ(g1 ⊕ g2))
= 〈〈Definitions of Φg1 and Poss 〉〉

(∃g1 : (g1 ∈ CGS (c↓F)) ∧ (c↓F |= PossΦg1)) ✷

This lemma suggests the algorithm in Figure 1.4Any algorithms for com-
puting CGS (c↓F) and c↓F |= PossΦg1 can be used as subroutines. PDDA
is correct for all choices of F , but it is faster than evaluating Φ on every el-
ement of CGS (c) only if F is chosen in a way that facilitates computation of
c↓F |= PossΦg1 . In particular, if Φg1 is a conjunction of predicates that are each
1-local for F , in which case we say that F is a fixed set for Φ, then PossΦg1

can be detected efficiently using Garg and Waldecker’s algorithm. Thus, if F
is a fixed set for Φ, then fixing the states of processes in F yields a predicate
in which each conjunct depends on the state of at most one of the remaining
processes.
4 It is natural to consider extending our ideas to detection of Def Φ and look for a
way to decompose detecting Def Φ into easier subproblems. However, this does not
seem promising. Detecting Def Φ is equivalent to determining whether the set of
consistent global states satisfying Φ is a (⊥,�)-vertex separator for the lattice of
consistent global states. Being a vertex separator is a rather global property of the
lattice, so decomposing it seems difficult.

To express this condition more explicitly, assume Φ has the form Φ ∆=
∧n

α=1 φα

for n ≥ 1. Since we allow n = 1, this entails no loss of generality. We consider
the two pieces of Φg1 separately. The conjuncts in Φ(g1 ⊕ g2) are, by definition,
1-local for F iff

(∀α ∈ [1..n] : |Π(φα) ∩ F | ≤ 1). (6)
The conjuncts in g1 ‖ g2 are 1-local for F independently of F , because, by
inspection of the definition (2) of ‖, each conjunct depends on exactly one local
state of g1 and exactly one local state of g2, and by definition of g1, dom(g1) = F ,
so processes in dom(g1) are not in F . Thus, F is a fixed set for Φ iff condition
(6) holds.

For example, consider predicate P in (1). Take F = {1}. Expanding the
definition gives

Pg1(g2) = φ12(g1(1)(x1), g2(2)(x2)) ∧ φ3(g2(3)(x3))
∧g1(1)
→ g2(2) ∧ g2(2)
→ g1(1)
∧g1(1)
→ g2(3) ∧ g2(3)
→ g1(1).

Each conjunct of Pg1 depends on at most one process in F , so F is a fixed set
for P.

A fixed set exists for every Φ—just take F = [1..(N−1)]. However, this choice
of F is not always the best. The following analysis shows that a minimum-sized
fixed set should be used. The set CGS (c↓F) can be built with worst-case time
complexity O(|F | · |CGS (c↓F)| + |F |3S2) using the algorithm in [DJR93], or
slightly faster using the algorithm in [JMN95]. For each state g1 in CGS (c↓F),
Garg and Waldecker’s algorithm detects c↓F |= PossΦg1 with worst-case time
complexity O(|F |2S). Let PDDAGW denote the specialized version of PDDA
that always uses Garg and Waldecker’s algorithm to detect PossΦg1 ; note that
PDDAGW requires F to be a fixed set for Φ. The cost of PDDAGW is the cost
of building CGS (c↓F) plus the cost of running Garg and Waldecker’s algorithm
|CGS (c↓F)| times. Thus, the worst-case time complexity of PDDAGW is

O((|F |2S + |F |)|CGS (c↓F)| + |F |3S2),
not including the cost of finding a fixed set (which is discussed in the next
subsection). Note that the cost of finding a fixed set depends on the size of the
formula and therefore is dominated by the cost analyzed above.

Since the worst-case size of CGS (c↓F) is Θ(S|F |), the worst-case time com-
plexity of PDDAGW is Θ(|F |2S|F |+1 + |F |S|F | + |F |3S2). Thus, for fixed N
and F , PDDAGW runs in O(S|F |+1) time. This is asymptotically less than the
worst-case size Θ(SN) of CGS (c) whenever |F | < N − 1.

3.3 Finding a Fixed Set

We have not given an algorithm for finding minimum-sized fixed sets. The linear-
time reductions in the following theorem show that finding a minimum-sized
fixed set for a formula is equivalent to finding a minimum-sized vertex cover for
a graph, a well-known NP-complete problem. If N is small, an exact solution
can be found by exhaustive search; otherwise, an approximation algorithm can
be used [GJ79, pp. 133-134].

Theorem3. The problem of finding a minimum-sized fixed set is NP-complete.

Proof. We give linear-time reductions in both directions between finding a fixed
set for a formula and finding a vertex cover for an undirected graph. Since finding
a minimum-sized vertex cover is NP-complete [GJ79], it follows that finding a
minimum-sized fixed set is also NP-complete.

Given an instance
∧n

α=1 φα of finding a fixed set, define the edges of an
undirected graph G′ ∆= ([1..N], E′) by E′ ∆= {{i, j} | i
= j ∧ (∃α ∈ [1..n] : {i, j} ⊆
Π(φα))}. The following proof shows that (6) is equivalent to the definition of
vertex cover. Thus, F ⊆ [1..N] is a fixed set for

∧n
α=1 φα iff F is a vertex cover

for G′.

(∀α ∈ [1..n] : |Π(φα) ∩ F | ≤ 1)
= 〈〈Definitions of intersection and cardinality 〉〉

(∀α ∈ [1..n] : ¬(∃i, j ∈ Π(φα) : i
= j ∧ {i, j} ⊆ F))
= 〈〈De Morgan’s Laws 〉〉

(∀α ∈ [1..n] : (∀i, j ∈ Π(φα) : i
= j ⇒ {i, j}
⊆ F))
= 〈〈Definition of subset 〉〉

(∀α ∈ [1..n] : (∀i, j ∈ Π(φα) : i
= j ⇒ i ∈ F ∨ j ∈ F))
= 〈〈Definition of subset 〉〉

(∀α ∈ [1..n] : (∀i, j ∈ [1..N] : i
= j ∧ {i, j} ⊆ Π(φα) ⇒ i ∈ F ∨ j ∈ F))
= 〈〈 If x is not free in q, (∀x : p⇒ q) ≡ ((∃x : p) ⇒ q) 〉〉

(∀i, j ∈ [1..N] : i
= j ∧ (∃α ∈ [1..n] : {i, j} ⊆ Π(φα)) ⇒ i ∈ F ∨ j ∈ F)
= 〈〈Definition of E′ 〉〉

(∀{i, j} ∈ E′ : i ∈ F ∨ j ∈ F)

The last formula is the standard definition of a vertex cover.
Given an undirected graph G = ([1..N], E), the corresponding instance of

finding a fixed set is Φ(g) ∆=
∧

{i,j}∈E′ φij(g(i), g(j)), where E′ ∆= {{i, j} ∈
E | i
= j}. Note that F ∪ {i ∈ [1..N] | {i, i} ∈ E} is a vertex cover for G iff
F is a vertex cover for G′ ∆= ([1..N], E′). The above proof, read from bottom to
top, and with the bottom hint changed to “Definition of Φ”, shows that F is a
vertex cover for G′ iff F is a fixed set for Φ. ��

3.4 The Benefit of Disjunctive Normal Form

The work needed to detect PossΦ sometimes can be reduced by transforming Φ
into a logically equivalent formula with a smaller minimum-sized fixed set. We
show below that this is accomplished by putting Φ in disjunctive normal form
(DNF), a canonical form where disjunctions are the outermost operators. Let
DNF (Φ) denote the DNF for Φ. For example, for

D ∆= (φ12(x1, x2) ∨ φ3(x3)) ∧ φ4(x4),

DNF (D) is (φ12(x1, x2) ∧ φ4(x4)) ∨ (φ3(x3) ∧ φ4(x4)).
To see the benefit of putting a formula in DNF, first note that Poss dis-

tributes over disjunction:

Lemma4. For all computations c and all predicates φ1, . . . , φn,

c |= Poss
n∨

α=1

φα iff
n∨

α=1

(c |= Possφα).

Proof. See [GW94]. ��
Thus, each disjunct of a formula can be detected separately. To describe how

this fact is reflected in the complexity, we define a function f on formulas by:
if Φ is a disjunction

∨n
α=1 φα, then f(Φ) is max(f(φ1), . . . , f(φn)); otherwise,

f(Φ) is the size of a minimum-sized fixed set for Φ. By detecting each disjunct
of Φ separately using PDDAGW, PossΦ can be detected in O(Sf(Φ)+1) time.
Now we demonstrate the benefit of DNF.

Lemma5. For all formulas Φ, f(DNF (Φ)) ≤ f(Φ).

Proof. Structural induction on formulas. ��
Theorem6. Among all formulas equivalent to Φ using rules of propositional
calculus, DNF (Φ) has the minimal value of f .

Proof. Let DNF (Φ) =
∨n

α=1 φα. Suppose the theorem is false. Then there is
some formula Φ′ equivalent to Φ using rules of propositional calculus, such that
f(Φ′) < f(DNF (Φ)). Since Φ and Φ′ are equivalent, DNF (Φ) equals DNF (Φ′),
so f(DNF (Φ)) = f(DNF (Φ′)), and therefore the preceding inequality contra-
dicts Lemma 5. ��
Thus, the best complexity of PDDAGW obtainable using propositional manipu-
lation of Φ is achieved by forming DNF (Φ) and detecting its disjuncts separately.
Consider, for example, formula D defined above. Any fixed set for D must contain
at least two of the three processes mentioned in the first conjunct, so f(D) = 2.
By similar reasoning, minimum-sized fixed sets for the first and second disjuncts
of DNF (D) have size 1 and 0, respectively, so f(DNF (D)) = 1.

3.5 Enhancements

This subsection describes enhancements that speed up PDDA and PDDAGW in
some cases but do not change the worst-case complexity.

Fixed Conjuncts. A conjunct φ with Π(φ) ⊆ F is called a fixed conjunct for F . If
Φ contains a fixed conjunct φ for F , then for each g1 in CGS (c↓F), the enhanced
algorithm first evaluates φ(g1), then evaluates c↓F |= PossΦg1 only if φ(g1)
holds. More formally, the condition in line (∗) of PDDA in Figure 1 is replaced
with φ(g1) && (c↓F |= PossΦg1), where && is short-circuiting conjunction (as in
C). For example, consider the predicate

Q ∆= (x2 > 0) ∧ (x4 > 0) ∧ (x1 + x2 < 4) ∧ (x3 + x4 < 5).

A minimum-sized fixed set for Q is F = {2, 4}, so Q can be detected in O(S3)
time. The first two conjuncts of Q are fixed conjuncts for F , so if x2 or x4 is
frequently non-positive, this technique will significantly speed up the detection.

It may be feasible to introduce new fixed conjuncts, regardless of whether Φ
contains any. Simple predicate-logic reasoning shows that Φ(g) ≡ Φ(g) ∧ (∃g2 ∈
GSF : Φ((g↓F) ⊕ g2)), where GSF is the set of all states with domain F . The
new conjunct is, by construction, a fixed conjunct for F . If this new conjunct
can be simplified, then it can be used as described above. For example, another
minimum-sized fixed set for Q is F ′ = {1, 3}. Q contains no fixed conjuncts for
F ′. Introducing a new conjunct as described above and simplifying yields the
equivalent predicate

Q̂ ∆= (x1 < 4) ∧ (x3 < 5) ∧ (x2 > 0) ∧ (x4 > 0) ∧ (x1 +x2 < 4) ∧ (x3 +x5 < 5).

The first two conjuncts of Q̂ (i.e., the new conjuncts) are fixed conjuncts for F ′.
Whether it is better to detect Q using fixed set F or to detect Q̂ using fixed set
F ′ depends on the application. For example, if x2 and x4 are usually positive,
and x1 and x3 are usually large, then the latter is preferable.

Constraining the Search of c↓F . Given a state g1 of c↓F , one can compute for
each process in F the maximal range of local states of that process that are
concurrent with g1 [BM93, sec. 4.14.3]. This information can be exploited in
PDDA by restricting the search of c↓F so that only local states in these ranges
are examined.

3.6 On-line Algorithm

The algorithms in [DJR93, JMN95] for computing CGS (c) have on-line versions
with the same time complexities as given above. The same is true of Garg and
Waldecker’s algorithm. It is straightforward to use the on-line versions of these
algorithms to obtain on-line versions of PDDA and PDDAGW having the same
time complexities as above.

4 Examples of Applications

Load Balancing. Consider a system with three processors. Processors 1 and 2
are servers. Processor 3 is used as a server when the load is heavy and for other
tasks when the load is light. PDDAGW can be used to detect the conditions
for switching processor 3 between server mode and “other tasks” mode. The
conditions are

Server ∆= (load1 + load2) > a ∧ avail3 ∧ ¬srvr3

Other ∆= (load1 + load2) < a ∧ srvr3

where load i is the load on processor i, a is a constant, srvr3 indicates whether
processor 3 is in server mode, and when processor 3 is not in server mode, avail3
indicates whether it is available for immediate use as a server. When Server
becomes true, processor 3 switches to server mode; when Other becomes true,
processor 3 finishes servicing requests it has already received then switches to

other tasks. Note that {1} is a fixed set for each of these predicates, so PDDAGW

detects them in O(S2) time, while the worst-case time complexity of a detection
algorithm that constructs CGS (c) is Ω(S3), since N = 3.

Debugging Partitioned Databases. Consider a system with three processors that
manage a database. Processor 1 stores an index of the entire database; the
database contents are partitioned between processors 2 and 3. Each processor i
stores a cutoff value in a local variable αi. Processor 2 is responsible for records
with keys less than or equal to α2; processor 3 is responsible for records with
keys greater than α3. Processor 1 uses α1 to decide where to forward updates.

Processor i ∈ {2, 3} may change the cutoff by setting local variable changing i

to true, sending appropriate messages to the other processors, then setting
changing i to false when the operation is completed. The system is expected
to satisfy the invariant

(¬changing2 ∧ ¬changing3) ⇒ (α1 = α2 ∧ α2 = α3). (7)

PDDAGW can be used to detect and report violations of this invariant. We want
to detect the negation of (7). This can be done in O(S2) time by putting the
negation of (7) in DNF and using PDDAGW to detect each disjunct separately.
For comparison, the worst-case time complexity for a detection algorithm that
constructs CGS (c) is Ω(S3), since N = 3.

Sorting Arrays. Consider a system of N processors that maintains an array of
size B · N in sorted order. The array is distributed in contiguous blocks of
size B, with the ith block Ai allocated to processor i. The array is sorted if
(
∧N

i=1 Sorted i) ∧ (
∧N−1

i=1 Ai[B] ≤ Ai+1[1]) holds, where Sorted i
∆= (∀j ∈ [1..(B−

1)] : Ai[j] ≤ Ai[j + 1]). Periodically, the values of some elements in the array
change, and the system re-sorts the array. States in which the array is sorted
can be detected using PDDAGW with fixed set {1, 3, 5, . . . , N −1} in O(SN/2+1)
time, where for convenience we assume N is even. For comparison, the worst-
case time complexity of a detection algorithm that constructs CGS (c) is Ω(SN).
Note that the exponent of S in the complexity of PDDAGW is smaller by an
amount directly proportional to N—not just by a constant.

5 Faster Off-line Detection using Matrix Multiplication

In this section, we describe how fast matrix-multiplication algorithms allow faster
off-line detection of PossΦ for certain predicates Φ. For convenience, we describe
the technique as it applies to predicates of the form

M ∆= φ12(x1, x2) ∧ φ23(x2, x3) ∧ φ13(x1, x3), (8)

and then discuss other classes of formulas to which it applies. The basic idea is to
represent the values of each predicate φij in computation c as an S×S Boolean
matrix φ′ij . We also encode the happened-before relation in these matrices:

φ′ij(α, β) ∆= φij(ci[α], cj [β]) ∧ ci[α] ‖ cj [β]. (9)

From the definition of Poss, we see that c |= PossM iff Ψ, where

Ψ ∆= (∃α1, α2, α3 ∈ [1..S] : φ′12(α1, α2) ∧ φ′23(α2, α3) ∧ φ′13(α1, α3)).

Let ψ13(α1, α3) ∆= (∃α2 ∈ [1..S] : φ′12(α1, α2) ∧ φ′23(α2, α3)). Then

Ψ = (∃α1, α3 ∈ [1..S] : ψ13(α1, α3) ∧ φ′13(α1, α3)).

Using Strassen’s matrix-multiplication algorithm, the matrix representing ψ13

can be computed with time complexity Θ(Slog2 7) [Str69, AHU74].5By the naive
algorithm, the truth of Ψ can then be determined in Θ(S2) time. Thus, this
algorithm detects PossM with worst-case time complexity Θ(Slog2 7 + S2), or
approximately Θ(S2.81). The worst-case time complexity of PDDAGW on such
predicates is Θ(S3), so PDDAGW is not optimal on this class of predicates.

This matrix-multiplication translation is not limited to predicates of the
form (8). For example, it can be used with any predicate containing conjuncts
φij(xi, xj) and φjk(xj , xk), provided no single conjunct contains xi, xj and xk.

Fast On-line Matrix Multiplication Considered Unlikely. This matrix-multipli-
cation technique for off-line detection of PossM does not extend to an on-
line algorithm. To understand why, recall that Strassen’s matrix-multiplication
algorithm computes C = A ·B by re-writing it in partitioned form as(

C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
,

computing seven intermediate matrix products involving the submatrices of A
and B, and expressing the submatrices of C as linear combinations of these inter-
mediate results. Strassen’s expressions for the submatrices of C involve cancella-
tions, so these expressions cause spurious dependencies. For example, expanding
the expression for C11 yields C11 = · · ·+A22B22 + · · ·−A22B22 + · · ·. Thus, A22

and B22 must be known in order to compute C11 using Strassen’s method. By
definition, C11 = A11B11 + A12B21, so C11 does not actually depend on A22 or
B22. Such spurious dependencies can cause delays in detection, thereby violating
the specification of on-line detection.

6 Complexity of Poss

Detection algorithms are proliferating, but little has been proved about their
optimality. To obtain useful results, the complexity of the problem must be
painted with a sufficiently fine brush. If one considers only the problem of de-
tecting PossΦ for arbitrary predicates Φ, then the worst-case time complexity
is Ω(SN), since a detection algorithm can do no better than to evaluate an ar-
bitrary N -ary primitive relation on every possible consistent global state. This
5 Any matrix-multiplication algorithm can be used. We phrase our remarks in terms
of Strassen’s algorithm, even though asymptotically faster algorithms exist [CW87],
because Strassen’s algorithm is relatively simple and well-known.

analysis does not distinguish algorithms that are asymptotically faster on cer-
tain predicates. For example, to characterize the advantage of PDDAGW over
Cooper and Marzullo’s algorithm, one must consider the worst-case complexity
of both algorithms on various classes of predicates. At best, one might find a
detection algorithm that is optimal for every class of predicates. As shown in
Section 5, PDDAGW is not optimal for predicates like (8), so the off-line version
of PDDAGW is not optimal in the strongest sense.

To check optimality of any algorithm for detecting PossΦ, we must deter-
mine the intrinsic complexity of the problem. Chase and Garg took a step in
this direction by proving that detecting PossΦ is NP-complete even when re-
stricted to communication-free computations with S ≤ 2 [CG94]. We advocate
characterizing the complexity of detecting PossΦ for particular classes of for-
mulas Φ. Since conjunctions of 1-local predicates can be detected in polynomial
time [GW94], it is natural to ask about the complexity of detecting conjunctions
of 2-local predicates. We show that this problem is NP-complete by giving a
reduction from the k-partite clique problem, which is defined as follows.

Input: A k-partite undirected graph G, i.e., disjoint sets V1, . . . , Vk of nodes
and an edge relation E such that (∀{v, w} ∈ E : (∀i ∈ [1..k] : {v, w}
⊆ Vi)).

Output: Does G have a k-clique?

Lemma7. The k-partite clique problem is NP-complete, even with the restric-
tion that |Vi| ≤ 3 for i ∈ [1..k].

Proof. This problem is a special case of the clique problem, which is in NP, so this
problem is also in NP. The reduction from satisfiability to the clique problem
given by Aho, Hopcroft, and Ullman [AHU74, pp. 384-386] has the property
that it maps all instances of 3-satisfiability into instances of the clique problem
in which the graph is k-partite with |Vi| ≤ 3. Thus, their reduction shows that
the k-partite clique problem with |Vi| ≤ 3 is NP-hard. ��

Theorem8. Detecting PossΦ is NP-complete, even when restricted to commu-
nication-free computations with S ≤ 3 and to predicates Φ that are conjunctions
of 2-local predicates.

Proof. We give linear-time reductions in both directions between this restricted
detection problem and the k-partite clique problem. Both transformations satisfy
|Vi| = |ci| and k = N . The desired result follows immediately from Lemma 7.

Given an instance of c |= PossΦ, we define an N -partite graph as follows.
Since Φ is a conjunction of 2-local predicates, it can be written in the form

∧
1≤i<j≤N

φij(g(i), g(j)). (10)

Let Vi
∆= {i}×U(ci), and let E ∆= {{〈i, α〉, 〈j, β〉} | φij(ci[α], cj [β])∧ ci[α] ‖ cj [β]}.

It is easy to show that the N -partite graph (
⋃N

i=1 Vi, E) has an N -clique iff
c |= PossΦ.

Given an instance of the k-partite clique problem, let N = k, let each ci be
some total ordering of Vi, let → be the union of those total orderings, and for
1 ≤ i < j ≤ N let φij(ci[α], cj [β]) ∆= ({ci[α], cj [β]} ∈ E). It is easy to show that
c |= PossΦ iff the given k-partite graph has a k-clique. ��

Theorem 8 characterizes the dependence of the complexity of detectingPossΦ
on N but says nothing about the dependence on S. Since detection problems
typically have S $ N , the dependence on S is crucial. Unfortunately, proving
lower bounds on the complexity in terms of S appears difficult. For example, one
might conjecture that the worst-case complexity of detecting conjunctions of 2-
local predicates (i.e., formulas of form (10)) is Ω(SN). This conjecture places an
exponential lower bound on an NP-complete problem, so proving it is as hard
as proving P
= NP .

Complexity of On-line Detection. Optimality of the on-line version of PDDAGW

for almost all classes of predicates is an open question. The matrix-multiplication
technique of Section 5 does not extend to the on-line case, so we do not know of
any class of predicates on which the on-line version of PDDAGW is not optimal.
Showing optimality requires proving a lower bound, which appears to be difficult
in the on-line case as well.6

Acknowledgments. We thank Dexter Kozen, Monika Rauch Henzinger, and
Moshe Vardi for their comments on lower bounds.

References

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and
analysis of computer algorithms. Addison Wesley, 1974.

[BDG88] José Luis Balcázar, Josep Dı́az, and Joaquim Gabarró. Structural Complexity
I. Springer-Verlag, 1988.

[BM93] Özalp Babaoğlu and Keith Marzullo. Consistent global states of distributed
systems: Fundamental concepts and mechanisms. In Sape Mullender, editor,
Distributed Systems, chapter 5, pages 97–145. Addison Wesley, 2nd ed., 1993.

[CG94] Craig M. Chase and Vijay K. Garg. On techniques and their limitations
for the global predicate detection problem in distributed systems. Techni-
cal Report ECE-PDS-1994-04, Parallel and Distributed Systems Laboratory,
University of Texas at Austin, 1994.

[CM91] Robert Cooper and Keith Marzullo. Consistent detection of global predicates.
In Proceedings of the ACM/ONR Workshop on Parallel and Distributed De-
bugging, 1991. Appeared as ACM SIGPLAN Notices 26(12):167-174, Decem-
ber 1991.

6 There are non-linear lower bounds for dynamic (i.e., on-line) graph connectivity
problems [FH94]. However, the proofs of these lower bounds depend crucially on the
fact that edges can be both added and deleted, while in the on-line version of our
clique problem, edges are added but never deleted.

[CW87] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-
gressions. In Conference Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, pages 1–6, 1987.

[DJR93] Claire Diehl, Claude Jard, and Jean-Xavier Rampon. Reachability analysis
on distributed executions. In J.-P. Jouannaud and M.-C. Gaudel, editors,
TAPSOFT ’93: Theory and Practice of Software Development, volume 668 of
Lecture Notes in Computer Science, pages 629–643. Springer-Verlag, 1993.

[FH94] Michael L. Fredman and Monika Rauch Henzinger. Lower bounds for dy-
namic connectivity problems in graphs. Technical Report TR 94-1420, Cornell
University, April 1994. Also appeared in extended abstract: Monika Rauch.
Improved Data Structures for Fully Dynamic Biconnectivity. In Proc. 26th
Annual Symposium on Theory of Computing (STOC ’94), pages 686-695,
1994.

[Fid88] C. Fidge. Timestamps in message-passing systems that preserve the partial
ordering. In Proceedings of the 11th Australian Computer Science Conference,
pages 56–66, 1988.

[FR94] Eddy Fromentin and Michel Raynal. Inevitable global states: a concept to
detect properties of distributed computations. Internal Publication PI-842,
IRISA, June 1994.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company,
New York, 1979.

[GW92] Vijay K. Garg and Brian Waldecker. Detection of unstable predicates in
distributed programs. In Proceedings of the 12th International Conference
on Foundations of Software Technology and Theoretical Computer Science,
volume 652 of Lecture Notes in Computer Science, pages 253–264. Springer-
Verlag, 1992.

[GW94] Vijay K. Garg and Brian Waldecker. Detection of weak unstable predicates
in distributed programs. IEEE Transactions on Parallel and Distributed Sys-
tems, 5(3):299–307, 1994.

[JMN95] R. Jegou, R. Medina, and L. Nourine. Linear space algorithm for on-line
detection of global predicates. To appear in Proc. International Workshop on
Structures in Concurrency Theory (STRICT ’95), 1995.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–564, 1978.

[Mat89] Friedemann Mattern. Virtual time and global states of distributed systems.
In M. Corsnard, editor, Proceedings of the International Workshop on Parallel
and Distributed Algorithms, pages 120–131. North–Holland, 1989.

[MN91] Keith Marzullo and Gil Neiger. Detection of global state predicates. In Pro-
ceedings of the 5th International Workshop on Distributed Algorithms, volume
579 of Lecture Notes in Computer Science, pages 254–272. Springer-Verlag,
1991.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathe-
matik, 13:354–356, 1969.

[TG94] Alexander I. Tomlinson and Vijay K. Garg. Monitoring functions on global
states of distributed programs. Technical Report TR-PDS-1994-006, Parallel
and Distributed Systems Laboratory, University of Texas at Austin, 1994.

This article was processed using the LaTEX macro package with LLNCS style

