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Abstract

Transforming recursion into iteration eliminates the use of stack frames during program ex-

ecution. It has been studied extensively. This paper describes a general and powerful method,

based on incrementalization, for transforming general recursion into iteration: identify an in-

put increment, derive an incremental version under the input increment, and form an iterative

computation using the incremental version. Exploiting incrementalization yields iterative com-

putation in a uniform way and also allows additional optimizations to be explored cleanly and

applied systematically, in most cases yielding iterative programs that use constant addition-

al space, reducing additional space usage asymptotically. We summarize major optimizations,

complexity improvements, and performance measurements. Our analyses and measurements

show that some previously considered \optimizations" can actually result in slower programs.

1 Introduction

Recursion refers to computations where the execution of a function or procedure calls itself and
proceeds in a stack fashion. Iteration refers to repeated execution of a piece of code by explicitly
updating a store and performing jumps. Transforming recursion into iteration eliminates the use of
stack frames during program execution. This eliminates the space consumed by the stack frames as
well as the time overhead of allocating and deallocating the frames, yielding signi�cant performance
improvement in both time and space. In terms of time, this may be a signi�cant constant factor,
especially if a program consists of small functions. In terms of space, the saving may be asymptotic.

While recursion is usually coded as recursive functions, iteration is usually programmed as
loops. It is well-known that iteration corresponds to tail recursion, which is a recursion that
performs no computation after the recursive call returns and thus may be implemented by copying
the arguments and then performing a jump. Some programming language speci�cations, such as
Scheme [1], require this implementation. Other languages consider this a compiler optimization. For
example, this is apparently not always safe in Java for security reasons [18] and the current JVM
apprently does not have instructions needed for tail recursion. Regardless of how tail recursion
is implemented, it is just a special case of recursion. It has remained extremely challenging to
develop general and powerful methods for transforming general recursion into iteration (loop or
tail recursion), even though this is widely studied, as discussed at the end.

�This work is supported in part by NSF under grant CCR-9711253 and ONR under grants N00014-99-1-0132
and N00014-99-1-0358. Authors' address: Computer Science Department, Lindley Hall 215, Indiana University,
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A little surprise. Factorial function is probably the most widely-used example for illustrating
and comparing recursion and iteration, e.g., see [41, 16]. Function fac(n), shown below, where
n � 0, directly corresponds to the mathematical de�nition of factorial; it recurses in a stack
fashion, computes multiplications when recursions return, and takes linear stack space. Function
fac1(n) computes the same factorial function in an iterative (tail recursive) fashion; it uses a second
parameter to accumulate the result of multiplications, does nothing when recursions return, and
may take constant space. Using an implementation with tail-recursion optimization, fac1(n) is
expected to run much faster than fac(n), since the overhead of stack allocation and deallocation
in fac(n) is completely eliminated.

fac(n) , if n = 0 then 1
else n � fac(n� 1)

fac1(n) , fact1(n; 1)

fact1(n; r) , if n = 0 then r

else fact1(n� 1; n � r)

To our surprise, measuring the running time of fac(n) and fac1(n) as programs written in
Scheme, we found that the latter is slower than the former, as shown in Figure 1. Why? Notice that
fac(n) computes n�((n�1)�(:::�(3�(2�1)):::)), while fac1(n) computes (((:::(n�(n�1))�:::)�3)�2)�1.
Even though fac(n) and fac1(n) perform an equal number of multiplications, the former performs
them on smaller numbers than the latter. Since the result of factorial may be quite large, arbitrary
precision multiplication is used, and thus multiplying smaller numbers are faster than multiplying
larger numbers. This di�erences outweighs the savings of the tail-recursion optimization. To
con�rm this, we use two new programs sum and sum1 that di�er from fac and fac1, respectively,
only by replacing n� with 1+. Indeed, the tail-recursive version is faster.

To summarize, fac1 reverses the order of the numbers to be multiplied. Deriving fac1 from
fac requires exploiting the associativity of multiplication and produces a slower program.

From recursion to iteration. Our method for transforming recursion into iteration, when
applied to program fac, produces the following program fac2, which uses a third argument i in
the middle that grows from 0 to n:

fac2(n) , fact2(n; 0; 1)

fact2(n; i; r) , if i = n then r

else fact2(n; i+ 1; (i+ 1) � r)

As shown in Figure 1, fac2(n) is faster than fac(n). The optimized program fac2 performs the
same multiplications as fac. No algebraic properties of multiplication are used. The optimization
simply eliminates the stack and guarantees performance improvement.

As an additional note, applying our optimization to program sum, we obtain sum2 that uses
three parameters and is indeed slightly slower than sum1. However, both sum1 and sum2 use
constant space and are much faster than sum. We consider it a separate optimization to reduce
the three arguments of sum2 to the two arguments of sum1 by exploiting associativity.

Even though tail recursion may be implemented eÆciently as loops, loops are more widely
supported in compilers for generating eÆcient code. Therefore, we transform recursive functions
into loops directly. Note that generating tail recursion merely requires di�erent syntax. Figure 1
shows the measurements for fac3, the version of fac2 using loop. Even though there is a small
di�erence between the running times of fac2 and fac3, we think it is small enough to be a random
artifact. The O(n log n) factor for space usage is due to the use of arbitrary-precision integers.

Our transformation is based on incrementalization [37, 35, 36]. The method consists of three
steps: (1) identify an input increment, (2) derive an incremental version under the input increment,
and (3) form an iterative computation using the incremental version. It applies uniformly to
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input n fac(n) fac1(n) fac2(n) fac3(n)

2000 176 182 160 158

4000 722 728 649 636

6000 1558 1688 1468 1438

8000 2862 3050 2716 2642

space O(n2 log n) O(n log n) O(n log n) O(n log n)

Figure 1: Running times (in milliseconds) and space usage of factorial in Scheme.

recursive functions that are non-linear, mutually recursive, and use recursive data structures. We
present the transformation by considering increasingly more general forms: recursions with multiple
base cases, with multiple recursive cases, and with multiple recursive calls in one recursive case, i.e.,
non-linear. We also describe additional optimizations on recursive data structures. The method
has been applied to all examples we found in the literature, addressed previously using a large
variety of di�erent methods, and succeeded in transforming all of them into iteration. In many
cases, we obtain the resulting program in much fewer steps and obtain shorter programs, some not
found previously. Our method guarantees performance improvements and is fully automatable. All
performance measurements shown in this paper are performed on a Sun Ultra 10 with 300MHz
and 124MB memory. Those in Figure 1 used the Chez Scheme compiler. The others used the gcc
compiler; we also measured some of them in Java 1.1 and obtained similar speedups.

The rest of the paper is organized as follows. Section 2 describes the language and basic concepts.
Section 3 describes the basic idea using recursion with one simple base case and one recursive case
with one recursion call. Section 4 handles multiple base cases, including cases with ranges. Section
5 addresses multiple recursive cases, each with one recursive call. Section 6 discusses recursion on
data structures, with additional optimizations that eliminate stack allocation and heap allocation.
Section 7 handles multiple recursive calls in a recursive case, i.e., non-linear recursion. Section
8 summarizes the entire algorithm and discusses related issues. Section 9 compares with related
work.

2 Preliminaries

We use a simple programming language with the following grammar for expressions and statements:

e ::= v variable
j c(e1; :::; en) data construction
j p(e1; :::; en) primitive operation
j if e1 then e2 else e3 conditional expression
j let v = e1 in e2 end binding expression
j f(e1; :::; en) function application

s ::= return e; return statement
j break ; break statement
j v = e; assignment
j s1 s2 sequential statement
j if (e) fs1g else fs2g conditional statement
j while (e) fs1g loop statement

A program is a set of function de�nitions of the form f(v1; :::; vn) fsg, where s ends with a return

statement, and a function f0 that is to be evaluated with some input. We use a strict semantics,
so this language contains an untyped core subset of many programming languages, including Java,
C, ML, and Scheme. We use Java and C syntax for primitive operations on Booleans and numbers
and for statements. Braces enclosing a non-sequential statement can be omitted. We use Lisp and
Scheme syntax for data construction with constructors nil, cons, and so on and for component
selection with selectors car, cdr, and so on; a constant is simply a constructor of arity 0, and we
write c() as c. We use ML syntax for conditional and binding expressions. For easy of type setting,
we use typewriter font for standalone code below.
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In this paper, we assume that the body of each given function is a return statement. Other
forms of statements are used in the optimized program. Additionally, when transforming recursion
on recursive data structures, optimizations use destructive update, i.e., assignments to components
of compound values (such as car(x) = y). Furthermore, allowing taking addresses (x = &y) and
storing values in addresses (�x = y) yield even clearer and more eÆcient code, as discussed in
Section 6.

Properly-de�ned functions. We introduce important de�nitions that capture when a given
function is properly-de�ned. Given a function f , a static path in f is a sequence of conditions, or
their negations, in the de�nition of f that are evaluated in order. A base case of f is a maximal
static path in f following which f will not be called. A recursive case is a minimal static path
following which f will be called. For example, static path n == 0 in fac is the only base case of
fac, and !(n == 0) is the only recursive case. A static path of f might not be a base case or a
recursive case of f . For example, for function f below, the static path !(n <= 0) is neither a base
case nor a recursive case of f .

f(n) { return if n<=0 then 0 else g(n); }

g(n) { return if n<=10 then n else f(n-5); }

We say that f is properly-de�ned if all static paths of f are base cases or recursive cases. So, fac
is properly-de�ned, and f and g are not. Note that mutually recursive functions can be properly-
de�ned. For example, if function g above were changed to only g(n) { return f(n-5); }, then f and
g would be mutually recursive and properly-de�ned. Note that most functions that arise naturally
are properly-de�ned. This notion allows us to simplify the presentation of our method.

The method we study in this paper applies to all properly-de�ned functions, regardless of
whether they are mutually recursive or non-linear. We start with transforming f0, and repeatedly
transform functions that are called in the resulting program. As a special case, if all static paths in
a function are recursive cases, then we immediately conclude that the function does not terminate
correctly and do not transform it. Of course, if all static paths in a function are base cases, then
we do not need to transform it either.

For ease of analysis and transformation, we assume that a preprocessor gives a distinct name
to each bound variable and lifts bindings so that they are not the arguments of data constructions,
primitive operations, or function applications, and are not in the condition or binding positions
[36]. For example, cons(f(x); let v = e1 in e2) becomes let v = e1 in cons(f(x); e2), and if (let v =

e1 in e2 end) then g(x) else h(x) becomes let v = e1 in if e2 then g(x) else h(x) end. After this preprocessing,
we can easily transform the body of a given function into statements that contain no binding
expressions by repeatedly transforming return let v = e1 in e2 end ; into v = e1; return e2;. This
allows us to produce resulting programs directly in C or Java syntax, which do not have binding
expressions.

For ease of forming initialization code based on the base cases, for base cases, preprocessing
also lifts conditions so that they are not the arguments of data constructions, primitive operations,
or function applications, and are not in the condition or binding positions [36]. For example,
cons(f(x); if e1 then e2 else e3) becomes if e1 then cons(f(x); e2) else cons(f(x); e3). After this, we can
easily transform the base cases into statements that contain no conditional expressions by repeatedly
transforming return if e1 then e2 else e3; into if (e1) return e2; else return e3;.

To simplify the presentation, we describe the transformation for functions with one argument.
However, our general methods can be extended easily to handle multiple arguments.
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3 Basic approach

We consider in this section simple recursion with one base case and one recursive case with one
recursive call. Factorial is a good example for illustrating the basic approach, which consists of
three steps.

fac(n) { return if n==0 then 1 else n*fac(n-1); }

First, identify an input increment by analyzing the arguments of recursive calls. The single
recursive call in fac says that factorial of n recursively computes factorial of n� 1. The increment
on which the computation can be performed is the inverse of change to the argument of the recursive
call. So, the input increment is from n�1 to n, or equivalently from n to n+1; in the former view,
n� 1 � 0 (by de�nition of fac, as shown below), and in the latter, n � 0 (can be shown similarly).

Then, incrementalize the recursive computation by transforming the function on the increment-
ed input to use the result of the function on the previous input. That is, transform fac(n) to use
the result of fac(n� 1), or equivalently transform fac(n+1) to use the result of fac(n). This pa-
per takes the former of the two equivalent views.1 This yields an incremental version fac0, derived
below. The syntax \return ...;" does not a�ect the derivation and thus is omitted.

fac0(n; r); where r = fac(n� 1), which implies that n� 1 � 0, by de�nition of fac
= fac(n) this is the goal: fac0(n; r) computes fac(n) using r

= if n==0 then 1 else n � fac(n�1) by de�nition of fac
= n � fac(n� 1) by simpli�cations: n==0 �! false, since n�1�0, and if false a b �! b

= n � r by replacement: fac(n� 1) �! r

General methods for deriving incremental programs are described in [37] and summarized in [36].
The simpli�cation needed on primitive arithmetic and Boolean operations can be performed auto-
matically and eÆciently using systems like Omega [45] and MONA [30].

Finally, form an iterative computation by copying the base case and base value and, for the
recursive case, iterating using the incremental version. For factorial, the base case is n = 0 and
fac(0) = 1. We initialize the state with the base case and use i to iterate till n.

fac3(n) { i=0; r=1;

while (i!=n) { i=i+1; r=fac'(i,r); }

return r; }

At the end, fac'(i,r) is inlined, yielding the �nal optimized program.

The basic method. The basic method described above applies to any recursive function f on
x with one simple base-case condition x = x0 and base value b(x0), and with one recursive call in
the only recursive case a(x; f(d(x))):

f(x) { return if x==x0 then b(x0) else a(x,f(d(x))); }

Note that symbols a, b, and so on may denote any pieces of code, not necessarily functions, with
unbound occurrences of their arguments; of course, they should not include other base cases,
recursive cases, or recursive calls to f .

To transform recursive function f into iteration, three steps are performed. Step 1 identi�es
an increment � to the argument of f , i.e., x0 = x � y such that x = prev(x0), where prev(x)

1This view is also taken in a recent paper [34] and is more direct for program optimization using incrementalization.
The alternative view is taken in our previous papers and is more direct for incrementalization alone.
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is based on the arguments of recursive calls. In this case, prev(x) = d(x) and, if d�1 exists,
x � y = d�1(x), where any dummy value, denoted , can be plugged in for y. Step 2 derives an
incremental program f 0(x; r) that computes f(x) eÆciently using the result r of f(prev(x)). In
this case, f 0(x; r) = a(x; r). Step 3 forms an iterative program that initializes using the base case
of f and iterates using f 0. In this case, we set iterating variable x: = x0 and result r = b(x0) and,
as long as x: is not equal to input x repeatedly set x: = x:� and r = f 0(x:; r):

f(x) { x. = x0; r = b(x0);

while (x. != x) { x. = d_inverse(x.); r = a(x., r); }

return r; }

For the simple recursion considered here, the optimization succeeds if Step 1 does, i.e., if d�1

exists. Finding function inverses is a separate topic of research [22]; our general algorithm does not
rely on it, as described in Section 5, but uses it when it is available, as above. It is easy to prove
that the optimized program terminates with a value exactly when the original program terminates
with the same value. The optimized program avoids using the linear stack space that the original
program does, and it runs much faster if d�1 is inexpensive. On a non-terminating input, the
optimized program will be in an in�nite loop while the original program will run out of stack space.

The fact that fac can be transformed into fac3 has been studied by many researchers. What's
new here is the three-step method that is general and powerful, as shown in the following sections.

Exploiting Associativity. When a(x; y) above is of the form a1(a2(x); y) and a1 is associative,
then we could directly form the following iterative program, where no temporary variable x: is
needed:

f(x) { r=b(x0);

while (x!=x0) { r=a_1(r,a_2(x)); x=d(x); }

return r; }

Explicitly exploiting associativity allows us to use this transformed program only if this indeed yields
speedups. For factorial, this amounts to replacing n � ((n� 1) � (n� 2)) by (n � (n� 1)) � (n� 2),
but the latter might be slower due to multiplying bigger numbers. For summation in Section 1,
this amounts to replacing 1 + (1 + 1) by (1 + 1) + 1, which is equally fast, but removing the
additional temporary variable will yield a speedup. For list reversal, this amounts to replacing
append(append(x; y); z) by append(x; append(y; z)), which clearly produces a speedup.

4 Multiple base cases

Consider a recursive function f on x with one or more base conditions c0(x), c1(x), ... and base
values b0(x), b1(x), ..., respectively, and still with one recursive call in the only recursive case
a(x; f(d(x))), for example,

f(x) { return if c0(x) then b0(x) else if c1(x) then b1(x) else if ... else a(x,f(d(x))); }

In general, f may have its base cases and recursive case interleaved, for example,

foo(x) { return if x>1 then if x<=50 then 4 else x*x+foo(x-7) else 20; }

The three steps described in Section 3 apply. Steps 1 and 2 remain exactly the same. The only
problem for Step 3 is that, in general, we don't know which base case to use for initialization.
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Using an initial loop. The general solution is to repeatedly decrement the input and test it
against all base cases, just as the recursive calls would do. Basically, Step 3 forms an initial loop
that decrements the input to the appropriate base case before the loop that computes the result
incrementally:

f(x) { x.=x;

while (true)

if (c0(x.)) { r=b0(x.); break; } else if (c1(x.)) { r=b1(x.); break; } else if ...

else x.=d(x.);

while (x.!=x) { x.=d_inverse(x.); r=a(x.,r); }

return r; }

The general algorithm for forming the initial loop (lines 2-4 above) has three steps. First,
transform the function body into statements that contain no binding expressions, and transform
the base cases into statements that contain no conditional expressions either, as described in Section
2. Then, replace the statement return b(x); that follows each base case with {r=b(x.); break;} and
replace the statement return a(x,f(d(x))); that follows the recursive case with {x.=d(x.);}. Finally,
use the resulting code as the body of a while(true) loop. For function foo, we obtain

while (true) if (x.>1) if (x.<=50) { r=4; break; } else { x.=x.-7; } else { r=20; break; }

The optimization preserves correctness and improves performance exactly as in Section 3.
We see that Section 3 handles a special case. It does not need the initial loop for testing and

decrementing the input, because there is only one simple base case; every terminating computation
must start at this base case.

Loop contraction on constant steps. On integer-valued arguments, if the decrement operation
is the addition or subtraction of a constant, then optimizations can eliminate the �rst loop using a
mod operation. We omit the details here.

5 Multiple recursive cases

Consider a recursive function f with one or more base cases, as in Section 4, and with multiple
recursive cases, each containing one recursive call, for example,

f(x) { return if c0(x) then b0(x) else if c1(x) then b1(x) else if ...

else if t0(x) then a0(x,f(d0(x))) else if t1(x) then a1(x,f(d1(x))) else ...; }

Again, the three steps described in Section 3 apply. Steps 1 and 2 remain exactly the same, except
that each recursive case gives rise to an input increment and an incremental version. The only
additional problem for Step 3 is that, in general, for incrementing the parameter and computing
the result incrementally, we don't know which input increment and incremental version to use in
each iteration.

Using a stack. The general solution is to record information in a stack as the input is repeatedly
decremented in the initial loop, and then to pop this information from the stack for the incremental
computation in the second loop. As a result, Step 3 may yield the following iterative program where
the information pushed and popped is the input parameter:
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f(x) { x.=x; s=nil; //initialize stack, a singly linked list

while (true)

if (c0(x.)) { r=b0(x.); break; } else if (c1(x.)) { r=b1(x.); break; } else if ...

else { s=cons(x.,s); //push onto stack

if (t0(x.)) x.=d0(x.); else if (t1(x.)) x.=d1(x.); else ... }

while (x.!=x) {

x.=car(s); s=cdr(s); //pop from stack

if (t0(x.)) r=a0(x.,r); else if (t1(x.)) r=a1(x.,r); else ... }

return r; }

In general, f may have its base cases and recursive cases interleaved. A general algorithm that
handles this can be given in a similar fashion as in Section 4. In particular, all intermediate values
that are computed before the recursive call are candidates to be pushed together with x: on the
stack; yet, if any of these values, including x:, is not used after the call returns, then it does not
need to be pushed on the stack.

An important point here is that the transformation does not depend on the existence of d�1
i
.

This allows recursive functions on recursive data structures to be handled directly; since additional
optimizations can be done for recursion on recursive data structures, we describe them separately
in Section 6. Essentially, we could transform any linear recursion into iteration without using stack
frames. We will also see in Section 7 that issues arising from non-linear recursion are orthogonal.
So, this is a most general iterative form.

The transformation preserves correctness exactly as in Section 3. It improves the running time
if the times for allocating and deallocating the stack data structure are shorter than the times
for allocating and deallocating stack frames; similarly for space usage. There may be a time-and-
space trade-o�, depending on the language, compiler, and architecture. For example, allocating and
deallocating records in C might be faster than allocating and deallocating stack frames with some C
compilers, though this is not the case in our experiment. This may or may not be true with Scheme
or ML compilers when constructors like cons and function calls are both highly optimized. This
is certainly not true with most Java compilers where object creation is very expensive. Therefore,
this transformation should be applied only if it gives the desired performance improvements based
on the language, compiler, and architecture. Most functions on numbers do have one recursive case
and have an inverse for the decrement operation, so no stack is needed, as in Sections 3 and 4.
All functions on recursive data structures can use additional optimization to remove the stack, as
described in Section 6, and associativity can help further optimize many functions.

We see that Section 4 handles a special case. It does not need a stack, because that there is one
recursive case and the decrement operation has an inverse, based on which the inputs that would
have been kept in the stack can be constructed.

Eliminating redundant tests of recursive cases. A disadvantage of this program is that
conditions ti are tested both in the �rst and the second loops. To eliminate this redundancy, we
can record the indices of the conditions also in the stack as they are tested in the �rst loop, and
use them in the second loop. Clearly, this involves a time-and-space trade-o�. The details are
straightforward to work out.

6 Recursion on linear recursive data structures

We use function sqrlist that squares each element of a list as an example:

sqrlist(x) { return if null(x) then nil else cons(car(x)*car(x), sqrlist(cdr(x))); }
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Again, the three steps apply, exactly as in Section 5 above. Step 1 obtains the decrement operation
prev(x) = cdr(x). Although cdr does not have an inverse, we may think of a corresponding
increment operation x0 = x � y = cons(y; x), so that given y = car(x0) as well as x = cdr(x0), we
can obtain the incremented input x0 = x�y. Step 2 derives sqrlist0 that computes sqrlist(x) using
the result r of sqrlist(prev(x)): sqrlist0(x; r) = cons(car(x) � car(x); r). Step 3 forms an iterative
program that uses a stack to hold the input parameters:

sqrlist0(x) { x.=x; s=nil;

while (true) if (null(x.)) { r=nil; break; } else { s=cons(x.,s); x.=cdr(x.); }

while (x.!=x) { x.=car(s); s=cdr(s); r=cons(car(x.)*car(x.),r); }

return r; }

The input data structure is not updated, so the equality test != can be done in constant time by
pointer comparison.

Elimination of stack allocation using pointer reversal. We need to keep the stack, because
cdr does not have an inverse, but we want to avoid allocating new space. This is possible with
recursion on recursive data structures. The idea is to use the pointers in the input x, reversing the
pointers as we go down the list and reversing them again as we go back up, as in DFS in mark-
and-sweep garbage collection [3]. This is achieved by the following two changes to our algorithm.

In the �rst loop, we essentially want to achieve s = cons(x:; s) by setting cdr(x:) = s and s = x:,
but we must keep cdr(x:) before it is reversed so that we can achieve x: = cdr(x:) that follows. So,
we use a temporary variable tmp to keep it, and then assign it to x:. The result is that we change
s = cons(x:; s); to tmp = cdr(x:); cdr(x:) = s; s = x:; and change x: = cdr(x:); to x: = tmp;. Note
that s is still the stack.

In the second loop, we essentially want to achieve x: = car(s) by setting cdr(s) = x: and x: = s,
but we must keep cdr(s) before it is reversed so that we can achieve s = cdr(s) that follows. So,
we use a temporary variable tmp to keep it, and then assign it to s. The result is that we change
x: = car(s); to tmp = cdr(s); cdr(s) = x:;x: = s; and change s = cdr(s); to s = tmp;. It is easy,
and no surprise, to see the correspondence between this change and the one in the �rst loop. For
sqrlist, we obtain the following iterative program:

sqrlist1(x) { x.=x; s=nil;

while (true) if (null(x.)) { r=nil; break; }

else { tmp=cdr(x.); cdr(x.)=s; s=x.; x.=tmp; }

while (x.!=x) { tmp=cdr(s); cdr(s)=x.; x.=s; s=tmp; r=cons(car(x.)*car(x.), r); }

return r; }

We see that it is simple to achieve potentially complicated pointer reversal by transforming
stack operations. The transformation is general and powerful, and it helps simplify programming
with pointers signi�cantly. Also, correctness of the resulting program is easily seen.

Reversing pointers is a curse when generational garbage collection is used. However, our further
optimizations, as described below, help eliminate garbage creation and collection completely in
many cases. We are also studying automatic space analysis. Our ultimate goal is to exactly predict
and control memory allocation and deallocation, including the use of garbage collection.

Elimination of stack and backtracking on data construction. For incremental computation
that uses the result r only as part of the data constructed, we can even eliminate the stack and
backtracking, i.e., the second loop, completely. This requires that, in the incremental version
obtained from Step 2, every subexpression that contains r be an argument of a data construction,

9



a branch of a conditional expression, or the body of a binding expression. For example, the
incremental computation may be

r=if (e0) triple(e1,r,let v=e3 in cons(r,e4)) else e5;

where none of the ei contains occurrences of r. To eliminate the stack and backtracking, we modify
the forward loop, i.e., the �rst loop, to keep addresses to plug in results from the rest of the
computation.

In a lower-level language like C, this can be done easily and eÆciently. In the forward loop, each
iteration evaluates the right hand of the incremental computation to a data construction, using a
dummy value for occurrence of r, stores it in each address in the list of addresses created in the
previous iteration, and updates the list to contain the addresses (which currently contain dummy
values) of the r's in the right hand side of the incremental version. Before the loop, the list of
addresses contains only the address of r. The base value is assigned at the end of the loop. Now,
we can remove the stack and stack operations, as well as the second loop. For sqrlist, there is only
one address to be passed, so there is no need to create a list to hold it; it is simply held in r:. The
resulting program is

sqrlist2(x) { x.=x; r.=&r;

while (true) if (null(x.)) { *r.=nil; break; }

else { *r.=cons(car(x.)*car(x.), _); r.=&cdr(*r.); x.=cdr(x.); }

return r; }

It is trivial to actually reuse x for x: and eliminate the �rst assignment; we kept x: for easier
comparison with previous versions of sqrlist.

In a higher-level language like Java, this transformation needs a level of indirection. We can't
keep pointers to components of data constructions, i.e., �elds of objects, so we must keep a pointer r:
to hold the enclosing data structure. This also requires the �rst iteration of the loop to be executed
separately, since the pointer r: could not be initialized before entering the loop. We obtain:

sqrlist2-(x) { x.=x;

if (null(x.)) r=nil;

else {

r=cons(car(x.)*car(x.), _); r.=r; x.=cdr(x.);

while (true) if (null(x.)) { cdr(r.)=nil; break; }

else { cdr(r.)=cons(car(x.)*car(x.), _); r.=cdr(r.); x.=cdr(x.); }}

return r; }

A more complicated general algorithm is needed compared with using C above; we need to keep
pointers, components, as well as conditions under which appropriate assignments are done.

Elimination of heap allocation on data destruction. For data construction, reuse of heap
space is desirable for highly eÆcient computation. This is an area of separate study, with a lot of
existing work, e.g., see [24, 27, 51], but it has been diÆcult to design general and powerful methods.
When forming iterative programs based on incrementalization, we can achieve reuse of heap space
easily in a special but common case. In the incremental version, if all accesses to a given data
construction c(e1; :::; en) are selections of its components, and a data construction of c is needed,
then the given construction of c can be reused. We simply let the result refer to this data structure,
and we assign the new �elds directly in it. The optimized program updates its argument in-place,
and therefore is usable only if there are no other pointers to the argument.

For sqrlist example, x: is only referred to using car(x:) and cdr(x:), so the cons cell it corre-
sponds to can be reused, i.e., the construction �r = cons(car(x:) � car(x:); ); can be changed to
�r = x:; car(x:) = car(x:) � car(x:).
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sqrlist3(x) { x.=x; r.=&r;

while (true) if (null(x.)) { *r.=nil; break; }

else { *r.=x.; car(x.)=car(x.)*car(x.); r.=&cdr(*r.); x.=cdr(x.); }

return r; }

This simple replacement completely eliminates heap allocation. Further analysis enables the elim-
ination of r:.

input size n sqrlist sqrlist0 sqrlist1 sqrlist2 sqrlist3

200 0.35 0.44 0.25 0.22 0.02

600 1.01 1.36 0.74 0.69 0.06

1000 1.71 2.26 1.24 1.16 0.10

space O(n) O(n) O(n) O(n) O(1)

Figure 2: Running times (in milliseconds) and space usage of sqrlist in C

Examples. Function sort performs selection sort, selecting the minimum value to put at the
beginning, and recursively sorting the rest of the list.

sort(x) { return if null(x) then nil

else let v = least(x) in

cons(v,sort(rest(v,x))); }

least(x) { return if null(cdr(x)) then car(x)

else let v = least(cdr(x))

in if car(x)<v then car(x) else v; }

rest(i,x) { return if i==car(x) then cdr(x)

else cons(car(x), rest(i,cdr(x))); }

We obtain the following functions, where we used elimination of stack and backtracking for sort3,
elimination of stack allocation for least3, and elimination of stack, backtracking, and heap allocation
for rest3. Figure 3 contains measurements of the running times.

sort3(x) { x.=x; r.=&r;

while (true) if (null(x.)) { *r.=nil; break; }

else { v=least3(x.); *r.=cons(v,_); r.=&cdr(*r.); x.=rest3(v,x.); }

return r; }

least3(x) { x.=x; s=nil;

while (true) if (null(cdr(x.))) { r=car(x.); break; }

else { tmp=cdr(x.); cdr(x.)=s; s=x.; x.=tmp; }

while (x.!=x) { tmp=cdr(s); cdr(s)=x.; x.=s; s=tmp; r=if (car(x.)<r) car(x.) else r; }

return r; }

rest3(i,x) { x.=x; r.=&r;

while (true) if (i==car(x.)) { *r.=cdr(x.); break; }

else { *r.=x.; r.=&cdr(*r.); x.=cdr(x.); }

return r; }

In sort3, functions least and rest can be inlined, with renaming of local variables. For least we
could form only a forward loop by exploiting the associativity of a1(x; y) = if x < y then x else y;
we used this version here to show the power of pointer reversal. Because rest3 modi�es its input,
so does sort3.
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input size n sort sort3 least least3 rest rest3

200 41 1.49 0.1 0.02 0.32 0.01

600 379 11.63 0.32 0.02 0.97 0.03

1000 1109 31.48 0.55 0.04 1.64 0.09

space O(n2) O(n) O(n) O(1) O(n) O(1)

Figure 3: Running times (in milliseconds) and space usage of sorting, etc., in C

7 Multiple recursive calls

Consider a general recursive function where a recursive case may have multiple recursive calls with
di�erent arguments. Fibonacci function is a simple example of this:

fib(n) { if (n==0) return 1;

else if (n==1) return 1;

else return fib(n-1) + fib(n-2); }

Once again, the three steps apply, except that Steps 1 and 2 need more general and powerful
methods, and Step 3 may form a further optimized program.

For Step 1, note that an input increment operation should re
ect how a computation may
proceed in an incremental fashion. In general, a function may have multiple ways of proceeding,
even if there is only one recursive call, e.g., proceeding at di�erent step sizes. The idea is to analyze
the arguments of all recursive calls and use a minimal input change. For Fibonacci, prev(x) = x�1
and x� y = x+ 1.

A general algorithm for computing the increment operation is described in [34]. The basic
ideas are to represent arguments of recursive calls so that the di�erences between them and x are
explicit, and then extract minimal di�erences that cover all these arguments. The partial ordering
on di�erences is: a di�erence involving fewer parameters is smaller; a di�erence in one parameter
with smaller magnitude is smaller; other di�erences are incomparable. A set of di�erences covers
a recursive call if the argument to the call can be obtained by repeated application of the given
di�erences. For Fibonacci, the arguments of recursive calls are x�1 and x�2; trivially, x�1 gives
rise to a smaller di�erence than x� 2; and the argument x� 2 can be obtained by applying x� 1
twice. We have applied this simple method on all the examples we know, including all dynamic
programming examples found in standard algorithm textbooks [34], and succeeded in all of them.

For Step 2, note that in the general problem of computing f(x) using f(prev(x)), one may use
not only the value of f(prev(x)) [37], but also intermediate results computed in f(prev(x)) [36] and
auxiliary information not computed by f(prev(x)) at all [35]. This yields functions ~f and ~f 0, where
~f(x) returns f(x) tupled with other information needed for eÆcient incremental computation, and
~f 0(x; ~r) computes ~f(x) eÆciently using the result ~r of ~f(prev(x)). That is, if f(x) = r, then
1st( ~f(x)) = r, where 1st retrieves the �rst component of a tuple, and if ~f(prev(x)) = ~r and
f(x) = r0, then ~f 0(x; ~r) = ~f(x) and 1st( ~f 0(x; ~r)) = r0. Furthermore, the method of [37, 36, 35]
ensures that ~f 0(x; ~r) is at least as fast as ~f(x). For Fibonacci, that method yields the following
program [36], where tuple is a constructor of variable arity, and 1st, 2nd, and so on retrieve the
corresponding components of a tuple.

fib~(n) { return if n==0 then tuple(1)

else if n==1 then tuple(1)

else let v=fib(n-1) in tuple(v+fib(n-2),v); }

fib~'(n,r~) { return if n==0 then tuple(1)
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else if n==1 then tuple(1)

else if n==2 then tuple(2,1)

else tuple(1st(r~)+2nd(r~),1st(r~)); }

General algorithms for obtaining ~f and ~f 0 that use information other than the return value of
f are described in [36, 35]. The basic idea is to determine what to cache based on how cached
values may be used in the incremental computation. The approach is to decompose an ambitious
transformation into several simple transformations and dependence analyses. Since these include
eliminating useless computations, which may be sources of nontermination, we may obtain incre-
mental programs that terminate more often then the original program. Therefore, the general
algorithm preserves semantics in the sense that, if the original program terminates with a value,
then the incremental version terminates with the same value and computes asymptotically at least
as fast.

For Step 3, we may form an iterative program as before, except that: the initialization is based
on the base cases of ~f rather than f ; the loop body uses ~f 0 rather than f 0 for the incremental
computation; and 1st(~r) rather than r is returned. Actually, since the incremental version ~f 0

handles base-case inputs as well, we can simply initialize using the smallest input and omit using
the loop for decrementing the input; the decrementing loop is a little complicated and is of little
practical bene�t. For Fibonacci, this yields following program:

fib1(n) { i=0; r~=tuple(1);

while (i!=n) { i=i+1; r~=fib~'(i,r~); }

return 1st(r~); }

Note that ffib
0

could be inlined.

Additional optimizations. Step 3 can be enhanced to form a further optimized program direct-

ly. Note that ~f 0(x; ~r) computes ~f(x) regardless of whether ~r is available, i.e., ffib
0

(n; ~r) computes
ffib(n) for the base cases as well. However, when using ~f 0 in a loop, the base cases are needed
before the loop, not inside the loop. Thus, when forming an iterative program, the initialization
can be based on the base cases of ~f 0, and the loop body can use only the other cases of ~f 0. For
Fibonacci, this yields

fib2(n) { if(n==0) {i=0;r~=tuple(1);} else if(n==1) {i=1; r~=tuple(1);} else {i=2;r~=tuple(2,1);}

while (i!=n) { i=i+1; r~=tuple(1st(r~)+2nd(r~),1st(r~)); }

return 1st(r~); }

Another nice implication of optimization based on incrementalization is that we know that the
space for ~r can be reused from iteration to iteration, and thus no memory allocation or deallocation
is needed in the loop. Static analysis can be used to determine the space and variables needed [32].
For Fibonacci, two variables, a and b, are used to hold the two components of ~r, where 1st(~r) is a,
yielding

fib3(n) { if (n==0) { i=0; a=1; } else if (n==1) { i=1; a=1; } else { i=2; a=2; b=1; }

while (i!=n) { i=i+1; a.=a; b.=b; a=a.+b.; b=a.; }

return a; }

Note that even the optimized version fib1 gives drastic eÆciency improvements over the original
function; it takes linear time and requires constant space. In our previous work, which focuses on
the derivation of ~f and ~f 0, we formed worse programs, which use recursion, not iteration, and still
observed drastic speedup. There, a recursive case for f(x) is let r = f(prev(x)) in f 0(x; r). For
Fibonacci, we obtained the following two versions that correspond to fib1 and fib2 above:
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fib1rec(n) { return 1st(fib1~(n)); }

fib1~(n) { return if n==0 then tuple(1)

else let r~=fib1~(n-1) in fib~'(n,r~); }

fib2rec(n) { return 1st(fib2~(n)); }

fib2~(n) { return if n==0 then tuple(1) else if n==1 then tuple(1)

else if n==2 then tuple(2,1)

else let r~=fib2~(n-1) in tuple(1st(r~)+2nd(r~),1st(r~)); }

Note that fib1 and fib2 could also be obtained by optimizing fib1rec and fib2rec, respectively,
using the method in this paper. Figure 4 shows the measurements.

input n fib(n) fib1rec(n) fib2rec(n) fib1(n) fib2(n) fib3(n)

40 26.91s 1.48 1.39 1.11 0.98 0.03

80 >200s 2.94 2.82 2.21 2.02 0.05

120 >200s 4.40 4.31 3.36 3.11 0.08

space O(n) O(n) O(n) O(n) O(n) O(1)

Figure 4: Running times (in milliseconds) and space usage of Fibonacci in C

The resulting program preserves correctness in the sense that, if the original program terminates
with a value, then the optimized program terminates with the same value.

8 Summary and discussion

We have described a general method by starting with the basics and gradually generalizing it. Each
previous case has a restricted feature and can be considered as an optimization of a latter case.
For each of the cases, we described characterization for the classes of programs, the optimizations,
and the speedups. We also measure performance improvements.

We summarize the entire transformation algorithm, including all the optimizations. The algo-
rithm starts with transforming function f0 and repeatedly transforms functions that are called in
the resulting program until all those called are transformed. To transform a function f , it performs
the following three steps (the parenthesis after each step includes the section that describes the
details).

Step I. Analyze f to identify base cases and recursive cases (Sec. 2). Note this can be done
easily by analyzing f only because f is properly de�ned. If f has only base cases, then f needs not
be transformed; if f has only recursive cases, then we conclude that f does not terminate and do
not transform it either. In both cases, we are done with f . Otherwise, continue with Step II.

Step II. For each recursive case of f , we do the following two substeps. First, identify an input
increment (Sec. 7). Second, derive an incremental version (Sec. 7). Continue with Step III.

Step III. Form iterative program. There are two cases. Case 1, f has one recursive case and
the decrement operation has an inverse. If f has one base case input, then initialize using it and
iterate based on the increment operation (Sec. 3). Otherwise, f has more than one base case input,
then use an initial loop to decrement the input before initialize and iterate using the increment
operation (Sec. 4). Case 2, f has more than one recursive case or an decrement operation has no
inverse. If f is not on recursive data structures, then form an iterative program that uses the stack
explicitly if it is more eÆcient than using stack frames during the execution (Sec. 5). Otherwise,
f is on recursive date structures, then form an iterative program that uses the stack explicitly
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(Sec. 5) and then optimize using pointer reversal and, if possible, eliminate backtracking and heap
allocation (Sec. 6).

Continuing Step III, for both Cases 1 and 2, after transformation to iterations, two additional
optimizations can be performed. First, if additional information is cached in incremental compu-
tation, then perform additional optimizations (Sec. 7). Second, if f is already tail recursive, then
the incremental version will be an identity function, so eliminate the stack and the incremental
computation. This �nishes the transformation from recursion to iteration.

The optimizations succeed in most cases. The only failure case is when (i) f has more than
one recursive case or an decrement operation has no inverse, (ii) no associativity that guarantees
speedups can be exploited, (iii) f is not on recursive data structures, and (iv) allocating and
deallocating a node in a singly linked list is more expensive than allocating and deallocating stack
frames during the execution. We have applied the algorithm to all examples we found in the
literature and it succeed in transforming all of them into iterations. Note that mutual recursions
are handled uniformly; for an example, see the matrix-chain multiplication problem [34]

These optimizations guarantee that if the original program terminates with a value, then the
optimized program terminates with the same value. When no elimination of useless computations is
performed, non-termination is preserved as well, as seen in Sections 4, 5, and 6. These optimizations
eliminate the use of stack frames and, for most cases, the use of stack space completely so the
optimized program takes only constant additional space and runs signi�cantly faster.

The entire transformation can be performed fully automatically. Step I needs a simple static
analysis of a single function. Step II needs to identify input increments and derive incremental ver-
sions. Identifying input increments is straightforward for linear recursion; for non-linear recursion,
the algorithm we use [34] is fully automatable and is e�ective on all examples we know, and fur-
thermore, it enabled us to derive better programs than by previous methods. For example, for the
Hanoi tower problem, we obtain a program that is half the size and uses half of the variables as that
derived by Pettorossi and Proietti [44]. Deriving incremental versions is fully automatic modulo
equality reasoning and timing analysis, but limiting both to use fully automatable techniques, we
are able to incrementalize all examples we know, which include all dynamic programming examples
in [2, 46, 13]. Step III consists of all transformations described in this paper, all of which are
straightforward rewrites based on simple syntax analysis.

Transforming recursion to iteration is an extremely rich subject. This paper simply followed
the observation that incremental computation gives rise to iterative computation, essentially for
free, even if starting at non-linear recursions, and summarizes major optimizations that can be
performed when forming the iterative computation. More cases and optimizations are also being
formalized, notably recursion on tree-structured data, but the general idea of forming iteration
using incremental computation, as well as optimizing stack-fashioned data structure traversal using
pointer reversal, remains the same. Another form of iteration, as discussed below in related work,
is to explore the use of arrays, rather than linked lists, for the stack data structures. Based
on our previous implementation of incrementalization [31], a prototype implementation of the
transformations presented here is under way.

9 Related work

Transforming recursion into iteration, often called recursive removal, as well as general relationships
between recursion and iteration, have been studied extensively from theory to practice. We compare
with major related works here; additional references can be found following each work.

Program schematology [42, 17, 49, 19] studies program behaviors and equivalences based on
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schemas with uninterpreted function symbols. Special program schemas are identi�ed, and equiva-
lences or inequivalences between them are proved. For example, it is shown that general recursive
scheme is more powerful than while scheme, and a linear recursive scheme is equivalent to a while
scheme [42]. The equivalence results may be used for program transformation, but only for the
matched schemas, and the results are not specially aimed at performance improvements. For exam-
ple, Paterson and Hewitt [42] show that any O(n) time linear recursion can be realized in a O(n2)
time while program using two memory cells. Our approach is to design a general method of program
optimization by exploiting the semantics of each language construct. Thus it is fundamentally dif-
ferent from schema-based approach, where function symbols are uninterpreted, even though it can
produce the same optimized forms when applied to given program schemas. The method is based
on incrementalization, with a general principle aimed at improving the performance of repeated
computations, following which important optimizations fall out. Furthermore, we explicitly use
time-and-space analyses, guaranteeing performance improvement as well as correctness.

Burstall and Darlington [10] �rst studied transforming recursive functions, including recursion
removal, using a set of transformation rules and certain strategies, notably unfold, fold, and eureka
de�nitions. The generality and 
exibility in using these rules allow many programs to be derived
in one way or another but also cause individual derivations to be ad hoc, rather than systematic.
Their implementation of recursion removal [14] is completely based on a set of schemas. Others
have tried to make these transformations more systematic by exploiting certain principles; many of
these are summarized by Partsch [41]. In particular, Wegbreit [53] studied program analysis and
goal-directed transformations; Wand [50] studied the use of continuation in transforming a number
of examples; Scherlis used internal specialization [47]; Cohen [12] explicitly addressed classes of
redundant recursive calls; Pettorossi [43, 44] exploited tupling. These methods are more systematic
but are still either not automatable or not powerful enough to derive many examples.

Backus proposed FP [5, 6] where algebraic laws can be used in forming theorems concerning
transforming certain program schemas, including recursion removal. Kieburtz and Shultis [29]
followed this approach and proved more general theorems, thus allowing the transformation of
a bigger class of program schemas. Bauer and Wossner [7] discussed an extensive set of linear
functions, even though not formalized in FP, that can be turned into iterative forms. Harrison and
Khoshnevisan again followed the FP approach, proving theorems for transforming a certain class
of non-linear functions into linear forms [20] and transforming linear recursion into loops [21]. FP-
based approach could be easier for algebraic reasoning but at the same time is diÆcult to be applied
to conventional programs. The resulting schema-based transformations are diÆcult to implement,
requiring at least second-order patter matching [25], as well as ability of proving preconditions of
the theorems.

Several other works involve transforming recursion to iteration, exploring special properties or
being in the context of other studies. Associativity allows a kind of reversal of the order of computa-
tion and is used by many in transforming recursion to iteration [4, 41, 9], but none addresses possible
slowdown, as we found for the factorial function. We consider it as a separate optimization, and a
simple analysis is used to guarantee performance improvement. Waters [52] studied transforming
series expressions into loops in the context of their program synthesis project. Its underlying idea
is the same as incrementalization, but series expressions consist of operations on aggregates, not
through recursion, so it is easier to use rules for each aggregate operation. Harrison [23] studied
parallelization of Scheme programs in his dissertation work by compiling recursions to iterations
using stacks that are compiled as vectors. Interprocedural analysis are used for determining stack
allocation and deallocation in the presence of side e�ects. His techniques can handle only linear
recursion. No optimizations for contracting the decrementing loop, removing the stack, eliminating
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heap allocation, and so on are studied. Furthermore, running times are given for a few Scheme
programs with no comparison to anything else.

It is know that conversion to continuation-passing style (CPS) can turn recursions into tail
forms [16]. However, a transformed program accumulates parameters in closures so it has the same
asymptotic space behavior as the recursive program. Furthermore, it may be slower by a constant
factor, since if closures are allocated on the heap, the overhead of garbage collection needs to be
added. When callcc is not allowed, closures created by CPS transformation can be allocated on
the stack, and this overhead may be eliminated; even so, there is still the overhead of closure
allocation compared with simple iteration. Filinski also formulated the fact that in Scheme-like
languages with �rst-class continuation, recursion can be characterized as a particular pattern of
iteration [15]. Again, no optimizations are achieved by such transformation. It merely indicates that
higher-order-ness gives rise to more expressiveness, which is precisely characterized and compared
with one another by Jones [26]. Transforming recursion into iteration and comparing them at
higher-orders have also been studied by Kfoury [28] in the framework of program schematology.

EÆciency of iterative programs very much depends on the eÆcient use of low-level data struc-
tures, such as linked list. Despite of various works on data structure selection in program re�nement
and program synthesis [39, 41, 48, 8], few works in transforming recursion to iteration address op-
timizations that arise naturally in this setting. As an example, Darlington and Burstall [14] brie
y
discussed reusing discarded cells. To our knowledge, no previous work achieves pointer reversal
by correctness-preserving transformations as we do. Another possible optimization when forming
iterative programs is to use arrays instead of linked lists. Paige [39] has studied when linked list
representation can be implemented eÆciently using arrays, together with automatic data structure
selection in general; this is for eÆcient implementation of sets and maps when compiling very-
high-level language SETL [40, 11]. Odersky [38] recently proposed programming with functional
variables; their eÆcient implementation will depend heavily the usage of eÆcient data structures.

We have previously studied general methods for incrementalization that exploits the return
value [37], the intermediate results [36], and auxiliary information [35] in a previous computation.
Incrementalization is used here but is simpli�ed: a standalone incremental version needs to compute
the value for base cases, while an incremental version as used in the loop body only needs to
consider the case where a previous value is used, since the base cases can be separated out in
the resulting program. Incrementalization has been used for optimizing recursions, improving
exponential-time programs to polynomial-time programs [34], but the optimized programs were
still recursive, not iterative. This work gives rise to further drastic performance improvement
in time, but more importantly in space. As a �nal note, loops can be further improved using
incrementalization [32, 33].

Acknowledgment. The authors are grateful to the following people. Anil Nerode pointed out
that incrementalization simply turns recursion into iteration several years back. Allen Brown �rst
brought up the work on program schematology. Alberto Pettorossi �rst provided reference [42].
Steve Johnson pushed to see how to derive tail recursion from general recursion. Andrew Appel
pointed out reference [23]. Colin Runciman suggested a reference that led to references [20] and
[21]. Neil Jones explained in details his new complexity results regarding recursion, tail recursion,
and higher-order types [26] and provided good insights into several related works.
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