
Loop optimization for aggregate array computations�

Yanhong A. Liu and Scott D. Stoller

March 14, 1997

Abstract

An aggregate array computation is a loop that computes accumulated quantities over array
elements. Such computations are common in programs that use arrays, and the array elements
involved in such computations often overlap, especially across iterations of loops, resulting in
signi�cant redundancy in the overall computation. This paper presents a method and algo-
rithms that eliminate such overlapping aggregate array redundancies and shows both analytical
and experimental performance improvements. The method is based on incrementalization, i.e.,
updating the values of aggregate array computations from iteration to iteration rather than com-
puting them from scratch in each iteration. This involves maintaining additional information
not maintained in the original program and performing additionally enabled optimizations. We
reduce various analysis problems to solving inequality constraints on loop variables and array
subscripts, and we apply results from work on array data dependence analysis. Incremental-
izing aggregate array computations produces drastic program speedup compared to previous
optimizations. Previous methods for loop optimizations of arrays do not perform incremental-
ization, and previous techniques for loop incrementalization do not handle arrays.

1 Introduction

We start with an example|the local summation problem in image processing: given an n-by-n
image, compute for each pixel hi; ji the sum sum[i; j] of the m-by-m square with upper left corner
hi; ji. The straightforward program (1) takes O(n2m2) time, while the optimized program (2) takes
O(n2) time.1

for i := 0 to n�m do

for j := 0 to n�m do

sum[i; j] := 0;
for k := 0 to m� 1 do

for l := 0 to m� 1 do
sum[i; j] := sum[i; j] + a[i+k; j+l]

(1)

for i := 1 to n�m do

for j := 1 to n�m do

b[i�1+m; j] := b[i�1+m; j�1] � a[i�1+m; j�1] + a[i�1+m; j�1+m];
sum[i; j] := sum[i�1; j] � b[i�1; j] + b[i�1+m; j]

(2)

Ine�ciency in the straightforward program (1) is caused by aggregate array computations (in the
inner two loops) that overlap as array subscripts are updated (by the outer two loops). We call

�This work is supported by junior-faculty start-up grants from Indiana University. Authors' address: Computer
Science Department, Indiana University, 215 Lindley Hall, Bloomington, IN 47405. Phone: (812)855-f4373,7979g.
Email: fliu,stollerg@cs.indiana.edu. Corresponding author: Yanhong (Annie) Liu.

1For simplicity, initializations of sum and b for the array margins are omitted here.

1

this overlapping aggregate array redundancy. Figure 1 illustrates this: the horizontally �lled square
contributes to the aggregate computation sum[i�1; j], and the vertically �lled square contributes
to the aggregate computation sum[i; j]. The overlap of these two squares re
ects the redundancy
between the two computations. The optimization for eliminating it requires explicitly capturing
aggregate array computations in a loop body and, as the loop variable is updated, updating the
results of the aggregate computations incrementally rather than computing them from scratch. In
the optimized program (2), sum[i; j] is computed e�ciently by updating sum[i�1; j]. Finding
such incrementality is the subject of this paper, and it is beyond the scope of previous compiler
optimizations.

����
����
����

����
����
����
����
����
����

����
����
����

��������
��������
��������
��������

m

m

m

i�1

i

j

Figure 1: The overlap of the two squares shows the redundancy in the straightforward program (1)
for the local summation problem.

There are many applications where programs can be written easily and clearly using arrays
but with a great deal of overlapping aggregate array redundancy. These include problems in im-
age processing, computational geometry, computer graphics, multimedia, matrix computation, list
processing, graph algorithms, distributed property detection [26, 27], serializing parallel programs
[10, 20], etc. For example, in image processing, computing information about local neighborhoods
is common [67, 69, 71, 72]. The local summation problem above is a simple but typical example
[69, 71].

Overlapping aggregate array redundancy can cause severe performance degradation, especially
with the increasingly large data sets that many applications are facing, yet methods for eliminating
overlapping aggregate array redundancy have been lacking. Optimizations similar to incremen-
talization have been studied for various language features, such as strength reduction of arith-
metic operations [4, 14, 30, 31], �nite di�erencing of set and bag operations [49, 50, 52, 51, 70],
and promotion-and-accumulation, �nite di�erencing, and incrementalization of recursive functions
[9, 41, 43, 44, 45, 61], but no systematic technique handles aggregate computations on arrays. At
the same time, many optimizations have been studied for arrays, such as various APL compiler
optimizations [25, 35, 47], loop fusion [3, 5, 28, 64], pipelining [2], and loop reordering for optimizing
and parallelizing compilers [7, 37, 48, 54, 60], but none of them achieves incrementalization.

This paper presents a method and algorithms for incrementalizing aggregate array computa-
tions. The method is composed of algorithms for four major problems: (1) recognizing an aggregate
array computation and how its parameters are updated, (2) transforming an aggregate array com-
putation into an incremental computation with respect to an update, by exploiting array data
dependence analysis and algebraic properties of the primitive operators, (3) determining additional
values not maintained in the original program that need to be maintained for the incrementaliza-
tion, using a method called cache-and-prune, and (4) forming a new loop using incrementalized
array computations, with any additional information needed appropriately initialized and addi-

2

tional optimizations enabled cleanly performed. Each of these components is relatively simple,
and the overall optimization algorithm is modular. Both analytical and experimental results show
drastic speedups that are not achievable by previous compiler optimizations.

Methods of explicit incrementalization [45], cache-and-prune [44], and use of auxiliary infor-
mation [43] were �rst formulated for a functional language [41]. They have been adopted for loop
incrementalization of imperative programs with no arrays, generalizing traditional strength reduc-
tion [42]. The work in this paper is a broad generalization of strength reduction from arithmetics to
aggregates in common high-level languages, such as FORTRAN, rather than to aggregates in special
very-high-level languages, such as SETL [23, 24, 51, 52]. The speedup obtained from incremental-
izing aggregate computations can be enormous compared to what is o�ered by previous compiler
optimizations. Changes in hardware design have reduced the importance of strength reduction on
arithmetic operations, but the ability to incrementalize aggregate computations remains essential,
only more so when programmers are encouraged to write straightforward programs to facilitate
reasoning about them.

The large body of work on high performance computing has dealt with computation-intensive
applications, especially on arrays, via parallelizing compilers. Our method demonstrates a powerful
alternative that is both orthogonal and correlated. It is orthogonal, since it speeds up computations
running on a single processor, whether that processor is running alone or in parallel with others.
It is correlated, since our optimization either allows subsequent parallelization to achieve greater
speedup, or achieves the same or greater speedup than parallelization would while using fewer
processors. In the latter case, resource requirements and communication costs are substantially
reduced. Additionally, for this powerful optimization, we make use of techniques and tools for
array dependence analysis [21, 22, 46, 48, 55, 56, 57, 58] and source-to-source transformation [7,
37, 48, 54, 60] that were developed for parallelizing compilers.

This paper is organized as follows. Section 2 gives the programming language. Sections 3 de-
scribes how to identify and incrementalize aggregate array computations and form incrementalized
loops. Section 4 describes how to maintain additional information to facilitate incrementalization.
Section 5 presents the overall algorithm and discusses relevant issues. Section 6 gives examples
with performance �gures. Section 7 discusses related work.

2 Language

This paper considers an imperative language whose data types include multi-dimensional arrays.
The language has variables that can be array references (a[j1; :::; jm]). It has the usual prim-
itive arithmetic and Boolean operations, assignment (v := e), sequencing (s1; s2), conditionals
(if e then s1 else s2), and loops (for v := e1 to e2 do s). To reduce clutter, we use indentation
to indicate syntactic scopes and omit begin and end. We use the following program as a running
example.

Example 2.1 Given an n1-by-n2 array a, the following code computes, for each i in the n1-
dimension, the sum of the m-by-n2 rectangle starting at position i. It takes O(n1n2m) time.

for i := 0 to n1 �m do

s[i] := 0;
for k := 0 to m� 1 do
for l := 0 to n2 � 1 do

s[i] := s[i] + a[i+ k; l]

(3)

Our primary goal is to reduce the running time. Of course, maintaining additional values takes
extra space. Our secondary goal is to reduce the space consumption. We use a[:i:] to denote a

3

reference of array a that contains i in a subscript. We use t[x := e] to denote t with each occurrence
of x in it replaced with e.

3 Incrementalizing aggregate array computations

We �rst show how to identify aggregate array computations and determine how the parameters they
depend on are updated. We then show how to incrementalize aggregate array computations with
respect to given updates, by exploiting properties of the functions involved. Finally, we describe
how to transform a loop with aggregate array computations in the loop body into a new loop with
incrementalized aggregate array computations in the loop body.

3.1 Identifying candidates

Candidates for optimizations are in nested loops, where inner loops compute accumulated quantities
over array elements and outer loops update the subscripts used by the array references.

De�nition 3.1 An aggregate array computation (AAC) is a loop that computes accumulated quan-

tities over array elements. The canonical form of an AAC is

for i := e1 to e2 do v := f(v; g(a[:i:]; : : :)) (4)

where e1 and e2 are any expressions, f is a function of two arguments, g is a function of one or

more arguments, and v is a variable (which may be an array reference) that does not contain i or

a. If v is not an array reference, then v must not occur in the arguments of g; if v is an array

reference s[j1; : : : ; jm], then s must not occur in the arguments of g or in j1; : : : ; jm. An initial

assignment to v may be included in an AAC.

The existence of four items in the loop body identify such a computation. First, an accumulating

variable|v|a variable that holds the accumulated quantity. This variable may itself be an array
reference whose subscripts depend only on variables de�ned outside the loop. Second, a contributing
array reference|a[:i:]|an array reference whose subscripts depend on the loop variable. Third,
a contributing function|g|a function that computes using the contributing array references but
not the accumulating variable. Fourth, an accumulating function|f|a function that updates the
accumulating variable using the result of the contributing function.

More generally, an AAC may contain multiple for clauses, multiple assignments, and multiple
array references. We use the above form only to avoid clutter in the exposition of the algorithms.
Extending the algorithms to allow these additional possibilities is straightforward, and these ex-
tensions are assumed in the examples.

The essential feature of an AAC A is that a set of computations are performed by the contribut-
ing function, and their results are accumulated by the accumulating function. We characterize this
set by the contributing set S(A), which describes the ranges of the subscripts of the contributing
array references. For an AAC of the form (4), the contributing set is S(A) = fha[:i:]i j e1 � i � e2g.
More generally, for an AAC A with contributing array references a1; : : : ; ak,

S(A) = fha1; : : : ; aki jRg; (5)

where R is the conjunction of the constraints de�ned by the ranges of all the loop variables in A.

4

Example 3.1 For the program (3), the loop on k and the loop on l each forms an AAC; we denote
them as Ak and Al, respectively. For both of them, s[i] is the accumulating variable, a[i + k; l] is
the contributing array reference, g(u) = u, and f(v; u) = (v + u). The contributing sets are

S(Ak) = fha[i+ k; l]i j 0 � k < m ^ 0 � l < n2g S(Al) = fha[i + k; l]i j 0 � l < n2g:

De�nition 3.2 A parameter of an AAC A is a variable used in A but de�ned outside A. A

subscript update operation (SUO) for A is a rede�nition of a parameter that, if it appears at all in

the arguments of the contributing function, appears there only in the subscripts of the contributing

array references of A. A SUO for a parameter w is denoted �w; in contexts where it is irrelevant

which parameter is being considered, we simply write �.

Parameters of AACs can be identi�ed using def-use chains [1]. Rede�nitions of parameters that
satisfy the above are SUOs.

The heart of our approach is incrementalization of an AAC with respect to a SUO. For simplicity
of exposition, we consider in this paper only updates to parameters that are themselves loop
variables of loops enclosing the AAC. Since we omitted speci�cation of step size from for loops,
it is implied that the update operation for each parameter is the operation \increment by 1". We
adopt these restrictions here only to simplify and condense the presentation. It is straightforward
to consider updates in a more general way.

Example 3.2 For Ak in program (3), variables i;m; n2 are its parameters, and the update �i is a
SUO. For Al in program (3), i; k; n2 are its parameters, and the updates �i and �k are SUOs.

An AAC A and a SUO �w together form a problem of incrementalization. We use A�w to
denote A with parameter w symbolically updated by �w. For example, if A is of the form (4), w is
the loop variable of a loop enclosing A, and the update operation is \increment by 1", then A�w is

for i := e�w
1

to e�w
2

do v�w := f(v; g(a[:i:]; : : :))�w (6)

where for any t, t�w abbreviates t[w := w + 1].
The goal of incrementalization is to transform A� so that it is computed e�ciently by updating

the result of A rather than by computing from scratch.

Algorithm 3.1 (Identifying candidates in a given loop)

For each loop A contained in the body of the given loop L, do the following.
1. Identify the accumulating variable, contributing array references, contributing function, and

accumulating function (if the loop body of A contains multiple assignments, merge their func-
tionalities to obtain the contributing and accumulating functions). If any of these are absent,
then A is not an AAC, so do not consider it further.

2. Let w denote the loop variable of L. If w is a parameter of A that, if it appears at all in the
arguments of the contributing function, appears there only in the subscripts of the contributing
array references of A, then�w is a SUO for A, so A and�w form a problem of incrementalization.

3.2 Incrementalization

Incrementalization aims to perform an AAC A incrementally as its parameters are updated by a
SUO �. The basic idea is to replace with corresponding retrievals, if possible, subcomputations
of A� that are also performed in A and whose values can be retrieved from the saved results

5

of A. Speci�cally, we consider the e�ect of a SUO on an AAC by considering (i) the ranges of
the subscripts of the array references on which the contributing function is computed and (ii) the
algebraic properties of the accumulating function. These two aspects correspond to the following
two steps.

The �rst step computes the di�erences between the contributing sets of A and A�. These
di�erences are denoted

decS(A;�) = S(A)� S(A�) incS(A;�) = S(A�)� S(A):

Note that S(A�) can be computed from A� by de�nition of S, or it can be obtained from S(A) by
symbolically updating the parameter being considered using �.

Example 3.3 For the program (3), consider incrementalization of Ak with respect to update of i.
A
�i

k is
s[i+ 1] := 0;
for k := 0 to m� 1 do
for l := 0 to n2 � 1 do
s[i+ 1] := s[i+ 1] + a[i+ 1 + k; l]

(7)

and its contributing set is

S(A�i

k) = fha[i+ 1 + k; l]i j 0 � k < m ^ 0 � l < n2g:

To compute the di�erence of two sets represented in the form (5), we formulate the di�erence as
a single set of constraints and then use well-studied methods developed for array data dependence
analysis [21, 22, 46, 48, 55, 56, 57, 58] to simplify those constraints. In particular, the methods and
tools developed by Pugh et al. in the Omega project [55, 56, 57, 58] have been used to produce the
desired output. This approach is embodied in the following algorithm.

Algorithm 3.2 (Di�erence of two contributing sets)

Input: S1 = fha11; : : : ; a1ki jR1g and S2 = fha21; : : : ; a2ki jR2g, where each aij is an array reference,
and Ri is a conjunction of range constraints.

Output: The set di�erence S1 � S2.

1. Let �u be a tuple of all the constrained variables in S2. Let �u
0 be an equal-length tuple of fresh

variables. Note that S2 = fha21[�u := �u0]; : : : ; a2k[�u := �u0]i jR2[�u := �u0]g.
2. Let S = fha11; : : : ; a1ki jR1^:(9�u

0 : (a11 = a21[�u := �u0]^ � � �^a1k = a2k[�u := �u0]^R2[�u := �u0])g.
3. Simplify the constraints in S using the techniques studied by Pugh et al. [55, 56, 57, 58].

Example 3.4 For incrementalization of Ak with respect to �i in the running example, the set
di�erences are computed as follows:

incS(Ak;�i) = S(A�i

k)� S(Ak)
= fha[i+ 1 + k; l]i j (0 � k < m ^ 0 � l < n2) ^ :(9hk0; l0i : i+ 1 + k = i+ k0 ^ l = l0 ^ 0 � k0 < m ^ 0 � l0 < n2)g
= fha[i+ 1 + k; l]i j k = m� 1 ^ 0 � l < n2g
= fha[i+m; l]i j 0 � l < n2g

decS(Ak;�i) = S(Ak)� S(A�i

k)
= fha[i+ k; l]i j (0 � k < m ^ 0 � l < n2) ^ :(9hk0; l0i : i+ k = i+ 1 + k0 ^ l = l0 ^ 0 � k0 < m ^ 0 � l0 < n2)g
= fha[i+ k; l]i j k = 0 ^ 0 � l < n2g
= fha[i; l]i j 0 � l < n2g

6

The second step in incrementalization uses the properties of the accumulating function to de-
termine how a new AAC can be performed e�ciently by updating the result of the old AAC. The
goal is to update the result of A by removing the contributions from decS(A;�) and inserting the
contributions from incS(A;�). To remove contributions, the accumulating function f must have
an inverse f�1 with respect to its second argument, i.e., f�1 and f must satisfy f�1(f(v; c); c) = v.

We say that a set of array references is at the end of A if it is empty or it contains array
references corresponding to a su�x of the iterations by A; for example, incS(Ak;�i) is at the end
of A�i

k , but decS(Ak;�i) is not at the end of Ak. If decS(A;�) is not at the end of A or incS(A;�)
is not at the end of A�, then we must also require that f be associative and commutative.

If these requirements are satis�ed, A� of the form (6) can be transformed into an incrementalized
version of the form

v� := v;
for i := last(decS(A;�)) downto first(decS(A;�)) do v� := f�1(v�; g(a[:i:]; : : :));
for i := first(incS(A;�)) to last(incS(A;�)) do v� := f(v�; g(a[:i:]; : : :))

(8)

where v contains the result of the previous execution of the AAC, and i is a re-use of the loop
variable of the outermost loop in A. If f is not associative or not commutative, in which case
decS(A;�) must be at the end of A, then the contributions from the elements of decS(A;�) must
be removed from v in the opposite order from which they were added; this is why downto is used
in (8).

The structure of the code in (8) is somewhat schematic, since the actual loop structure needed to
iterate over decS(A;�) and incS(A;�) depends on the form of the simpli�ed constraints in them,
which depends on the ranges of the loops in A and on subscripts in the contributing references.
In particular, if all of these are linear expressions over the loop variables of the loops in A, then
the constraints in decS(A;�) and incS(A;�) can be simpli�ed into a set of inequalities giving
upper and lower bounds on constrained variables; these inequalities are easily converted into loops
that iterate over decS(A;�) and incS(A;�), using a tool like Omega. When the size of the set
decS(A;�) or incS(A;�) is zero, the corresponding for loop can be omitted; when the size is a
small constant, the corresponding for loop can be unrolled.

Example 3.5 For the running example, to incrementalize A�i

k in (7). Since + has an inverse �,
and since + is associative and commutative, we obtain the following incrementalized AAC:

s[i+ 1] := s[i];
for l := 0 to n2 � 1 do
s[i+ 1] := s[i+ 1]� a[i; l];

for l := 0 to n2 � 1 do
s[i+ 1] := s[i+ 1] + a[i+m; l]

(9)

The transformation from (6) to (8) is worthwhile only if the total cost of (8) is not larger than
the total cost of (6). The costs of f and f�1 and the sizes of the contributing sets together provide
good estimates of the total costs.

Consider the asymptotic time complexity. If f�1 is asymptotically at least as fast as f , and
jdecS(A;�)j + jincS(A;�)j is asymptotically less than jS(A�)j (these quantities are all functions
of the size of the input), then the transformed program is asymptotically faster than the original
program. For the running example, this condition holds, since f and f�1 are both constant-time,
jdecS(Ak;�i)j+ jincS(Ak;�i)j is O(n2), and jS(A�i

k)j is O(n2m).
Asymptotic time complexity is an important but coarse metric; statements about absolute

running time are also possible. If f�1 is at least as fast as f in an absolute sense, and if
jdecS(A;�)j + jincS(A;�)j is less than jS(A�)j, then the transformed program (8) is faster than

7

the original program (6) in an absolute sense. For the running example, this condition holds when
m > 2. This speedup is supported by our experimental results.

Theorem 3.1 The transformation from (6) to (8) is correct, and if the above conditions on (asymp-

totic) time complexity hold, then the transformed program is (asymptotically) faster than the original

program.

Algorithm 3.3 (Incrementalization of A with respect to �w)

1. Obtain A�w from A by symbolically updating w.
2. Compute the contributing sets S(A) and S(A�w).
3. Compute decS(A;�w) and incS(A;�w), using Algorithm 3.2.
4. If (i) decS(A;�w) = ;, or f has an inverse, (ii) decS(A;�w) is at the end of A and incS(A;�w)

is at the end of A�, or f is associative and commutative, and (iii) the condition on complexity
holds, then construct an incremental version of A�w , of the form (8).

3.3 Forming incrementalized loops

To use incrementalized AACs, we transform the original loop. The basic idea is to unroll the �rst
iteration of the original loop to form the initialization and, for the remaining iterations, replace
AACs with their corresponding incremental versions. While incrementalized AACs are formulated
to compute values of the next iteration based on values of the current iteration, we use them to
compute values of the current iteration based on values of the previous iteration. This is straight-
forward for any for loop. For the particular SUO �w that is \increment by 1", we just symbolically
decrement w in the incremental version by 1. Thus, we replace w by w� 1 and replace w+1 by w.

Example 3.6 For the running example, using the incrementalized AAC in (9), we obtain the
following program, which takes O(n1n2) time and no additional space.

init using
Ak in (3)
with i = 0

for clause

inc using
code (9)

with i dec 1

2
64

s[0] := 0;
for k := 0 to m� 1 do
for l := 0 to n2 � 1 do

s[0] := s[0] + a[k; l]
for i := 1 to n1 �m do2

6664

s[i] := s[i�1];
for l := 0 to n2 � 1 do

s[i] := s[i]� a[i�1; l];
for l := 0 to n2 � 1 do

s[i] := s[i] + a[i�1 +m; l]

(10)

4 Maintaining additional information

The above incrementalization is possible only when the results of AACs are stored in the program,
so that they are available from one iteration to the next. Such results, if not stored already, and,
often, additional information need to be maintained for e�cient incremental computation [44, 43].
Such information often comes from intermediate results computed in the middle of the original
computation [44]. It may also come from auxiliary information that is not computed at all in
the original computation [43]. The central issues are how to �nd, use, and maintain appropriate
information.

8

General methods have been proposed and formulated for a functional language [41, 44, 43].
Here we apply them to AACs, using a variant of the cache-and-prune method [44]. We proceed in
three stages: (I) transform the code for AACs to store all intermediate results and related auxiliary
information not stored already, (II) incrementalize the resulting AACs from one iteration to the
next based on the results stored in Stage I, and (III) prune out stored values that were not useful
in the incrementalization in Stage II.

4.1 Stage I: Caching results of all AACs

We consider saving and using results of all AACs. This allows much greater speedup than saving
and using results of primitive operations.

After every AAC, we save in fresh variables the intermediate results that are not saved already.
Since we consider AACs that are themselves performed inside loops, we must distinguish interme-
diate results obtained after di�erent iterations. To this end, for each AAC A, we introduce a fresh
array variable subscripted with the loop variables of all loops enclosing A; immediately after A, we
add an assignment that stores the value computed by A in the corresponding element of the fresh
array.

Example 4.1 In the program (3), to save intermediate results computed by Al, we introduce an
array s1 subscripted by i and k, and immediately after the loop on l, we copy the value of s[i] into
s1[i; k].

s[i] := 0;
for k := 0 to m� 1 do

for l := 0 to n2 � 1 do
s[i] := s[i] + a[i + k; l];

s1[i; k] := s[i]

A related class of auxiliary information can be obtained to facilitate incrementalization if the
accumulating function f is associative and has a zero element 0 (i.e., f(v; 0) = f(0; v) = v). In
this case, we save in a fresh array values of the AAC starting from 0, rather than from any other
previous result, and we accumulate these values into the original accumulating variable immediately
after the AAC.

Example 4.2 For the program (3), storing such auxiliary information yields a program that, for
each value of k, accumulates separately in s1[i; k] the sum computed by Al starting from 0, and
then accumulates that sum into the accumulating variable s[i]:

s[i] := 0;
for k := 0 to m� 1 do

s1[i; k] := 0;
for l := 1 to n2 do

s1[i; k] := s1[i; k] + a[i+ k; l];
s[i] := s[i] + s1[i; k]

(11)

Essentially, this class of auxiliary information is obtained by chopping intermediate results into
independent pieces based on the associativity of g. These values are not computed at all in the
original program and thus are called auxiliary information. This auxiliary information helps reduce
the analysis e�ort in later stages, since the value of an aggregate computation is directly maintained
rather than being computed as the di�erence of two subsequent intermediate results of the larger
computation.

9

Another optimization at this stage that helps simplify analyses in the later stages and reduce
the space consumed by the additional information is to avoid generation of redundant subscripts
for the fresh arrays. Redundancies arise when the same value is computed in multiple iterations
and therefore stored in multiple entries in that array. To detect such redundancies, we proceed
as follows. Let �w be the subscript vector of the fresh array for an AAC A, i.e., �w is the tuple of
the loop variables of all loops enclosing A. We de�ne two tuples �w1 and �w2 to be equivalent for A

(denoted �A) if they lead to the same contributing set, hence to the same auxiliary information,
i.e., �w1 �A �w2 i� S(A)[�w := w1] = S(A)[�w := �w2].

Example 4.3 For Al in (11), we have

hi1; k1i �Al
hi2; k2i i� (fha[i1 + k1; l]i j 0 � l < n2g = fha[i2 + k2; l]i j 0 � l < n2g)

i� (i1 + k1 = i2 + k2): (12)

To avoid saving the same value in multiple entries in the array, we choose a canonical element of
each equivalence class, and replace accesses to equivalent subscripts with accesses to that canonical
element. This makes the array sparser, and, if the canonical elements are chosen so that some block
of the array is unused, then we can save space by eliminating that part of the array. Speci�cally,
we exploit this equivalence by observing that the simpli�ed expression for �A is always of the form

�w1 �A �w2 i� (e1[�w := �w1] = e1[�w := �w2]) ^ � � � ^ (eh[�w := �w1] = eh[�w := �w2]) (13)

for some expressions e1; : : : ; eh. This implies that the values of e1; : : : ; eh together distinguish the
equivalence classes, so we can take the fresh array to be h-dimensional and use e1; : : : ; eh as its
subscripts.

Example 4.4 For Al in (11), the equivalence �Al
in (12) is of the form (13) with h = 1 and

e1 = i+ k, so we take s1 to be a 1-dimensional array with subscript i+ k, obtaining the extended
AAC

s[i] := 0;
for k := 0 to m� 1 do

s1[i+ k] := 0;
for l := 0 to n2 � 1 do

s1[i+ k] := s1[i+ k] + a[i+ k; l];
s[i] := s[i] + s1[i+ k]

(14)

The auxiliary information now occupies O(n1 +m) space, compared to O(n1m) space in (11).

Algorithm 4.1 (Caching additional information for an AAC A)
1. If the result of A is available in some variable, then don't maintain any additional information

for A. Otherwise, do Step 2 or 3.
2. If the accumulating function is not associative, then introduce a fresh array variable u, subscript

u with the loop variables of all the loops enclosing A, and add an assignment after A that copies
the value of the accumulating variable into u.

3. If the accumulating function is associative, then introduce a fresh variable u, avoid redundant
subscripts using the method described above, add an assignment before A to initialize u (with
appropriate subscripts) to zero, accumulate values computed in A into u instead of the original
accumulating variable, and add an assignment after A that accumulates the value of u into the
original accumulating variable.

10

4.2 Stage II: Incrementalization

Stage II incrementalizes the AACs from one iteration to the next based on the results stored by
Stage I. Section 3.2 describes how to incrementalize an AAC with respect to a SUO. In general, we
want to perform all AACs in an iteration e�ciently using all stored results of the previous iteration.
As a basic case, we avoid performing AACs whose values have been computed completely in the
previous iteration. This can be done by keeping track of all the AACs and the variables that store
their values. We incrementalize other AACs using the algorithms in Section 3.2.

Example 4.5 Incrementalize the AACs Ak and Al in (14) with respect to �i. First, we avoid
performing AACs that have been performed in the previous iteration. Thus, we only need to
compute Al for elements in the set di�erence fs1[i+1+k] j 0 � k � m�1g � fs1[i+k] j 0 � k �
m�1g = fs1[i+1+k] j k = m�1] = fs1[i+m]g. Then, we incrementalize Ak with respect to �i. We have
decS(Ak;�i) = fs1[i+k] j k = 0g = fs1[i]g and incS(Ak;�i) = fs1[i+1+k] j k = m�1g = fs1[i+m]g.
These sets both have size 1, so we unroll the loops over them and obtain the incrementalized AAC

s1[i+m] := 0;
for l := 0 to n2 � 1 do

s1[i+m] := s1[i+m] + a[i+m; l];
s[i+ 1] := s[i]� s1[i] + s1[i+m]

(15)

Algorithm 4.2 (Incrementalization)

1. Compute the set of AACs in the new iteration that are not computed in the previous iteration.
2. Incrementalize them with respect to the SUO using Algorithm 3.3.

4.3 Stage III: Pruning

Some of the additional information saved in Stage I might not be useful for the incrementalization
in Stage II. Stage III analyzes dependencies in the incrementalized computation and prunes useless
information in both the AACs that store all the additional information and the incrementalized
AACs that maintain all the additional information.

The analysis starts with the uses of such information in computing the original accumulating
variables and follows dependencies back to the de�nitions of such information. The dependencies are
transitive [44] and can be used to compute all the information that is useful. Pruning then eliminates
useless information, saving both space and time. Pruning of unused intermediate results presents
no special di�culties. If the accumulating function is associative, and if auxiliary information was
added and turns out to be useless, then associativity of the accumulating function will be needed
to justify elimination of that information, since the caching transformation integrates it into the
original computation.

After pruning, we obtain AACs that store only useful additional information and incremental-
ized AACs that use and maintain only the useful additional information.

4.4 Forming incrementalized loops

The incrementalized loop is formed as in Section 3.3, except that the useful additional information
needs to be initialized and maintained. In particular, in the unrolled �rst iteration, we replace the
original AACs with AACs that store useful additional information, and in the rest of the itera-
tions, we replace the original AACs with incrementalized AACs that maintain the useful additional
information.

11

Example 4.6 From the code in (14) and its incremental version in (15) that together compute and
maintain useful additional information, we obtain the optimized program below that takes O(n1n2)
time and O(n1) additional space. Compared with the program in (10), this program eliminates a
constant factor of 2 in the execution time, and thus is twice as fast. Our experimental results also
support this speedup.

init
using
(14)
with
i = 0

for clause

inc using
code (15)

with i dec 1

2
666664

s[0] := 0;
for k := 0 to m� 1 do

s1[k] := 0;
for l := 0 to n2 � 1 do

s1[k] := s1[k] + a[k; l];
s[0] := s[0] + s1[k];

for i := 1 to n1 �m do2
64

s1[i�1+m] := 0;
for l := 0 to n2 � 1 do

s1[i�1+m] := s1[i�1+m] + a[i�1+m; l];
s[i] := s[i�1] � s1[i�1] + s1[i�1+m]

(16)

Further optimizations to the resulting loop may be enabled by the incrementalization, as de-
scribed in [42]; these optimizations include folding initialization, replacing termination test, and
minimizing information maintained in the loop. While it is the explicit incrementalization, which
often relies on exploiting additional information, that can give drastic speedup, further optimiza-
tions may reduce space consumption and code size.

5 The optimization algorithm

The overall optimization algorithm aims to incrementalize aggregate array computations in every
loop of a program. For nested loops, it considers them from inner to outer.

Algorithm 5.1 (Optimization to eliminate overlapping aggregate array redundancies)

Consider nested loops from inner to outer and, for each loop L encountered, perform Steps 1-5.
1. Let w denote the loop variable of L. Identify all loops in the loop body of L that are AACs and

for which �w is a SUO, using Algorithm 3.1.
2. Extend these AACs to save all appropriate additional information in variables, if not saved

already, using Algorithm 4.1.
3. Incrementalize these AACs with respect to �w, using Algorithm 4.2. If any of these AACs are

nested, consider them from inner to outer.
4. Prune additional information that is not useful for the incrementalization.
5. If incrementalization is performed, then form incrementalized loops using incrementalized AACs,

as described in Section 4.4.

The optimization algorithm we just described is expensive but automatic. A number of opti-
mizations can be made to this algorithm. For example, Step 1 needs to consider only AACs whose
contributing array references depend on the current loop variable. For another example, since we
consider nested loops from inner to outer, Step 2 only needs to consider saving results of AACs
outside of loops considered already.

Our optimization can achieve drastic program speedup, often by exploiting appropriate addi-
tional information. We have described conditions that guarantee the running time improvement by
the resulting programs. The additional space consumption may look worrisome, since it may a�ect

12

cache performance for large data sets. While our optimization eliminates redundant computation,
it also eliminates redundant data access, so it generally preserves or increases cache locality. In
general, however, more rigorous study is needed for analysis of space as well as various trade-o�s.

We have also established the correctness of our optimizations. It is based on the usage of an
exact inverse function f�1 when it is needed. Inverse function f�1 is always exact for integer
computations. For
oating-point computations, even if the inverse is exact in principle, it might
be computed only approximately. In such cases, the optimized program may produce less accurate
results than the original program. Further study is needed to quantify and mitigate this e�ect.

6 Examples and performance results

The following examples and performance results show that our method achieves more substantial
optimizations than otherwise possible. The �gures are obtained from running the original and the
corresponding optimized programs, coded in FORTRAN, on a dedicated Sparc 4. The programs
were compiled using Sun Microsystems' f77 compiler, with optimization
ags -O4 and -fast.

6.1 Partial sum

Partial sum is a simple but interesting and illustrative example. Given an array a[1::n] of numbers,
for each index i (line [1]), compute the sum of elements 1 to i (lines [2] to [4]). The straightforward
program (17) takes O(n2) time.

[1] for i := 1 to n do

[2] s[i] := 0;
[3] for j := 1 to i do

[4] s[i] := s[i] + a[j]

(17)

It can be optimized using our algorithm. First, consider the inner loop. Its loop body does not
contain any AACs. Now, consider the outer loop. Step 1. Its loop body contains an AAC Aj, where
s[i] is the accumulating variable, and its loop increment is a SUO �i. Step 2. No additional values
need to be saved. Step 3. decS(A;�i) = ; and incS(A;�i) = fha[i + 1]ig. Thus, the computation
of s[i+1] is incrementalized by accumulating to the value of s[i] the only contribution a[i+1]. We
obtain s[i + 1] := s[i] + a[i + 1]. Step 4. Pruning leaves the code unchanged. Step 5. Initializing
s[1] to a[1] and forming the rest of the loop for i = 2::n, we obtain the program (18).

s[1] := a[1];
for i := 2 to n do

s[i] := s[i�1] + a[i]
(18)

This program takes only O(n) time. Running times for programs (17) and (18) are plotted in
Figure 2; one can see that the rate of increase of the running time of the optimized program is
extremely small.

When code is written as in (17), previous techniques can recognize that each inner loop is
independent. On a single processor machine, these techniques result in better pipelining but still
leave the code running in quadratic time. On a parallel machine with n processors, iterations of
the inner loop can be computed completely in parallel, and the program uses only linear time,
but due to the additional communication cost, the result would still come out slower than with
our optimized sequential code. An additional advantage of our optimized code is that parallelizing
compilers can more easily recognize that it is the pre�x sums problem and, on a parallel machine
with n processors, compute the result in only O(log n) time.

13

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20
n (in thousands)

unoptimized b

b b b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

boptimized ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Figure 2: Running time (in seconds) for partial sums problem.

6.2 Local neighborhood problems

This problem was introduced in Section 1. We show that applying our optimization algorithm to
the straightforward program (1) yields the e�cient program (2) with appropriate initializations of
the array margins.

First, consider the innermost loop Ll on l. There is no AAC in its body.
Next, consider the loop Lk on k. Its loop body Ll is an AAC Al, and its loop increment is a SUO

�k. Array analysis yields decS(Al;�k) = S(Al) and incS(Al;�k) = S(A�k

l), so incrementalization
is not worthwhile. The algorithm leaves the code unchanged.

Next, consider the loop Lj on j. Step 1. Its loop body contains two AACs, Al and Ak, and its
loop increment is a SUO �j. Step 2. Since the accumulating function + is associative, saving the
values of Al in an array b yields a new loop body

sum[i; j] := 0;
for k := 0 to m�1 do

b[i+k; j] := 0;
for l := 0 to m�1 do

b[i+k; j] := b[i+k; j] + a[i+k; j+l];
sum[i; j] := sum[i; j] + b[i+k; j]

(19)

Step 3. Incrementalizing Al in the body of the loop on k with respect to �j, we have decS(Al;�j) =
fha[i+k; j+ l]i j l = 0g = fha[i+k; j]ig and incS(Al;�j) = fha[i+k; j+1+ l]i j l = m � 1g =
fha[i+k; j+m]ig. Incrementalizing Ak with respect to �j, we have decS(Ak;�j) = S(Ak) and

incS(Ak;�j) = S(A
�j

k), so incrementalization is not worthwhile. We obtain

sum[i; j+1] := 0;
for k := 0 to m�1 do

b[i+k; j+1] := b[i+k; j]� a[i+k; j] + a[i+k; j+m];
sum[i; j+1] := sum[i; j+1] + b[i+k; j+1]

(20)

Step 4. Pruning (20) leaves the code unchanged. Step 5. Initialize using (19) with j = 0 and form

14

loop for j = 1::n�m using (20) as loop body. We obtain

init
using
(19)
with
j = 0

for clause

inc using
code (20)

with j dec 1

2
666664

sum[i; 0] := 0;
for k := 0 to m�1 do

b[i+k; 0] := 0;
for l := 0 to m�1 do

b[i+k; 0] := b[i+k; 0] + a[i+k; l];
sum[i; 0] := sum[i; 0] + b[i+k; 0];

for j := 1 to n�m do2
64

sum[i; j] := 0;
for k := 0 to m�1 do

b[i+k; j] := b[i+k; j�1] � a[i+k; j�1] + a[i+k; j�1+m];
sum[i; j] := sum[i; j] + b[i+k; j]

(21)

Finally, consider the outermost loop Li. Step 1. Its loop body is now (21); the �rst half contains
AACs Ak and Al, and the second half contains, in the body of the loop on j, incrementalized AAC
of b[i + k; j] and AAC Ak0 of sum[i; j] by the loop over k. Its loop increment is a SUO �i. Step
2. No additional values need to be saved. Step 3. Incrementalize AACs in (21) with respect to �i.
In the �rst half, only Al in fb[i+1+k; 0] j k = m�1g = fb[i+m; 0]g needs to be computed; also,
decS(Ak;�i) = fhb[i+k; 0]i j k = 0g = fhb[i; 0]ig and incS(Ak;�i) = fhb[i+1+k; 0]i j k = m�1g =
fhb[i+m; 0]ig. In the second half, in the body of the loop on j, only Ak0 in fb[i+1+k; j] j k =
m�1g = fb[i+m; j]g needs to be computed; also, decS(Aj ;�i) = fhb[i+k; j]i j k = 0g = fhb[i; j]ig
and incS(Aj ;�i) = fhb[i+1+k; j]i j k = m�1g = fhb[i+m; j]ig. We obtain

b[i+m; 0] := 0;
for l := 0 to m�1 do

b[i+m; 0] := b[i+m; 0] + a[i+m; l];
sum[i+1; 0] := sum[i; 0]� b[i; 0] + b[i+m; 0];
for j := 1 to n�m do

b[i+m; j] := b[i+m; j�1] � a[i+m; j�1] + a[i+m; j�1+m];
sum[i+1; j] := sum[i; j] � b[i; j] + b[i+m; j]

(22)

Step 4. Pruning (22) leaves the code unchanged. Step 5. Initialize using (21) with i = 0 and form
loop for i = 1::n�m using (22) as loop body. We obtain the optimized code in (23). If we assume
that the array margins are appropriately initialized, we can obtain the code in (2).

init
using
(21)
with
i = 0

for clause

inc using
code (22)

with i dec 1

2
666666666666664

sum[0; 0] := 0;
for k := 0 to m�1 do

b[k; 0] := 0;
for l := 0 to m�1 do

b[k; 0] := b[k; 0] + a[k; l];
sum[0; 0] := sum[0; 0] + b[k; 0];

for j := 1 to n�m do

sum[0; j] := 0;
for k := 0 to m�1 do

b[k; j] := b[k; j�1] � a[k; j�1] + a[k; j�1+m];
sum[0; j] := sum[0; j] + b[k; j];

for j := 1 to n�m do2
6666664

b[i�1+m; 0] := 0;
for l := 0 to m�1 do

b[i�1+m; 0] := b[i�1+m; 0] + a[i�1+m; l];
sum[i; 0] := sum[i�1; 0]� b[i�1; 0] + b[i�1+m; 0];
for j := 1 to n�m do

b[i�1+m; j] := b[i�1+m; j�1]� a[i�1+m; j�1] + a[i�1+m; j�1+m];
sum[i; j] := sum[i�1; j]� b[i�1; j] + b[i�1+m; j]

(23)

15

The cost analysis in both incrementalization steps (20) and (22) ensures that the transformations
are worthwhile when m > 2, which is usually the case. Essentially, in the resulting code (23), only
four � operations are performed for each pixel, independent of m. Thus, the optimized code takes
O(n2) time. Running times for programs (1) and (23) are shown in Figure 3. As expected, the
running time for the optimized program is approximately independent of m.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10
n (in hundreds)

unoptimized b

b

b

b

b

b

b

b

b

b

b

optimized ?

? ? ?
?

?
?

?
?

?
?

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30
m

unoptimized b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

optimized ?

? ? ? ? ? ? ? ? ? ? ? ? ? ??

Figure 3: Running time (in seconds) for the local summation problem. For the graph on the left,
m = 10. For the graph on the right, n = 1000.

7 Related work and conclusion

The basic idea of incrementalization is at least as old as Babbage's di�erence machine in the
nineteenth century [29]. Strength reduction is the �rst realization of this idea in optimizing compilers
[4, 14, 30, 31, 62]. The idea is to compute certain multiplications in loops incrementally using
additions. Our work extends traditional strength reduction from arithmetic operations to aggregate
array computations.

Finite di�erencing generalizes strength reduction to handle set operations in very-high-level
languages like SETL [17, 23, 24, 49, 50, 52]. The idea is to replace aggregate operations on sets
with incremental operations. Similar ideas are also used in the language INC [70], which allows
programs to be written using operations on bags, rather than sets. Our work exploits the semantics
underlying �nite di�erencing to handle aggregate computations on arrays, which are more common
in high-level languages and are more convenient for expressing many application problems.

APL compilers optimize aggregate array operations by performing computations in a piece-wise
and on-demand fashion, avoiding unnecessary storage of large intermediate results in sequences of
operations [25, 35, 47, 68]. The same basic idea underlies techniques such as fusion [3, 5, 13, 28, 64],
deforestation [63], and transformation of series expressions [65, 66]. These optimizations do not
aim to compute each piece of the aggregate operations incrementally using previous pieces and thus
cannot produce as much speedup as our method can.

Specialization techniques, such as data specialization [34, 38], run-time specialization and code

generation [15, 39, 40], and dynamic compilation and code generation [6, 18], have been used in

16

program optimizations and achieved certain large speedups. These optimizations allow subcompu-
tations repeated on �xed dynamic values to be computed once and reused in loops or recursions.
Our optimization exploits subcomputations whose values can be e�ciently updated, in addition to
directly reused, from one iteration to the next. Thus, it allows far more speedup.

General program transformations [12, 36] can be used for optimization, as demonstrated in
projects like CIP [8, 11, 53]. In contrast to such manual or semi-automatic approaches, our opti-
mization of aggregate array computations can be automated. Our method for maintaining addi-
tional information is an automatic method for strengthening loop invariants [16, 32, 33, 59].

Our optimizations are based on the idea of explicit incremental computation, for which a general
systematic transformational approach has been studied and formulated for a functional language
[41, 43, 44, 45]. The idea has been used in optimizing imperative programs that do not use arrays
[42]. The optimizations for arrays described here greatly extend the scope of that work, since arrays
are widely used in so many application domains.

Loop reordering [7, 37, 48, 54, 60], pipelining [2], and array data dependence analysis [21, 22, 46,
48, 55, 56, 57, 58] have been studied extensively for optimizing|in particular, parallelizing|array
computations. While they aim to determine dependencies among uses of array elements, we further
seek to determine exactly how subcomputations di�er from one another. We reduce our analysis
problem to symbolic simpli�cation of constraints on loop variables and array subscripts, so methods
and techniques developed for such simpli�cations for parallelizing compilers can be exploited. In
particular, we have used tools developed by Pugh's group [55, 56, 57, 58]. Interestingly, ideas of
incrementalization are used for optimizations in serializing parallel programs [19].

In conclusion, this work describes a method and algorithms that allow more drastic optimiza-
tions of aggregate array computations than previous methods. Besides achieving optimizations
not previously possible, our techniques fall out of one general approach, rather than simply being
yet another new but ad hoc method. Future work includes implementation, faster optimization
algorithms, and more general classes of aggregate computations.

Applying incrementalization to loop optimization on arrays will enable us to study important
issues of cost, performance, and trade-o�s of time, space, and locality more explicitly, precisely,
and empirically than before. This is due to the large body of previously studied and implemented
techniques and the availability of benchmarks for optimizing and parallelizing compilers.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques, and Tools. Addison-Wesley, Reading,
Massachusetts, 1986.

[2] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. Software pipelining. ACM Computing Surveys, 27(3):366{
432, September 1995.

[3] F. E. Allen and J. Cocke. A catalogue of optimizing transformations. In R. Rustin, editor, Design and Opti-
mization of Compilers, pages 1{30. Prentice Hall, 1971.

[4] F. E. Allen, J. Cocke, and K. Kennedy. Reduction of operator strength. In S. S. Muchnick and N. D. Jones,
editors, Program Flow Analysis, chapter 3, pages 79{101. Prentice-Hall, Englewood Cli�s, New Jersey, 1981.

[5] J. R. Allen. Dependence Analysis for Subscripted Variables and Its Application to Program Transformations.
PhD thesis, Rice University, 1983.

[6] J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and B. N. Bershad. Fast, e�ective dynamic compilation.
In Proceedings of the ACM SIGPLAN '96 Conference on PLDI, pages 149{159, Philadelphia, Pennsylvania, May
1996.

[7] U. Banerjee. Unimodular transformations of double loops. In Proceedings of the Workshop on Advances in
Languages and Compilers for Parallel Processing, pages 192{219, August 1990.

[8] F. L. Bauer, B. M�oller, H. Partsch, and P. Pepper. Formal program construction by transformations|Computer-
aided, intuition-guided programming. IEEE Transactions on Software Engineering, 15(2):165{180, February
1989.

17

[9] R. S. Bird. The promotion and accumulation strategies in transformational programming. ACM Transactions
on Programming Languages and Systems, 6(4):487{504, October 1984.

[10] M. Bromley, S. Heller, T. McNerney, and G. L. S. Jr. Fortran at ten giga
ops: The Connection Machine
convolution compiler. In Proceedings of the ACM SIGPLAN '91 Conference on PLDI, pages 145{156, June
1991.

[11] M. Broy. Algebraic methods for program construction: The project CIP. In P. Pepper, editor, Program Trans-
formation and Programming Environments, pages 199{222. Springer-Verlag, Berlin, 1984.

[12] R. M. Burstall and J. Darlington. A transformation system for developing recursive programs. Journal of the
ACM, 24(1):44{67, January 1977.

[13] W.-N. Chin. Safe fusion of functional expressions. In Proceedings of the 1992 ACM Conference on LFP, pages
11{20, June 1992.

[14] J. Cocke and K. Kennedy. An algorithm for reduction of operator strength. Communications of the ACM,
20(11):850{856, November 1977.

[15] C. Consel and F. No�el. A general approach for run-time specialization and its application to C. In Conference
Record of the 23rd Annual ACM Symposium on POPL, St. Petersburg Beach, Florida, January 1996.

[16] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall Series in Automatic Computation. Prentice-Hall,
Englewood Cli�s, New Jersey, 1976.

[17] J. Earley. High level iterators and a method for automatically designing data structure representation. Journal
of Computer Languages, 1:321{342, 1976.

[18] D. R. Engler. VCODE: A retragetable, extensible, very fast dynamic code generation system. In Proceedings of
the ACM SIGPLAN '96 Conference on PLDI, pages 160{170, Philadelphia, Pennsylvania, May 1996.

[19] M. D. Ernst. Practical �ne-grained static slicing of optimized code. Technical Report MSR-TR-94-14, Microsoft
Research, Advancded Technology Division, One Microsoft Way,Redmond,WA 98052, July 1994.

[20] M. D. Ernst. Serializing parallel programs by removing redundant computation. Master's thesis, MIT, August
1992, Revised August 1994.

[21] P. Feautrier. Parametric integer programming. Operationnelle/Operations Research, 22(3):243{268, September
1988.

[22] P. Feautrier. Data
ow analysis of array and scalar references. International Journal of Parallel Programming,
20(1), February 1991.

[23] A. C. Fong. Inductively computable constructs in very high level languages. In Conference Record of the 6th
Annual ACM Symposium on POPL, pages 21{28, San Antonio, Texas, January 1979.

[24] A. C. Fong and J. D. Ullman. Inductive variables in very high level languages. In Conference Record of the 3rd
Annual ACM Symposium on POPL, pages 104{112, Atlanta, Georgia, January 1976.

[25] O. I. Franksen. Mr. Babbage's Secret : The Tale of a Cypher and APL. Prentice Hall, Englewood Cli�s, New
Jersey, 1985.

[26] V. K. Garg. Principles of Distributed Systems. Kluwer, 1996.

[27] V. K. Garg and J. R. Mitchell. An e�cient algorithm for detecting conjunctions of general global predicates.
Technical Report TR-PDS-1996-005, University of Texas at Austin, 1996.

[28] A. Goldberg and R. Paige. Stream processing. In Conference Record of the 1984 ACM Symposium on LFP,
pages 53{62, August 1984.

[29] H. H. Goldstine. Charles Babbage and his analytical engine. In The Computer from Pascal to von Neumann,
chapter 2, pages 10{26. Princeton University Press, Princeton, New Jersey, 1972.

[30] A. A. Grau, U. Hill, and H. Langmaac. Translation of ALGOL 60, volume 1 of Handbook for automatic
computation. Springer, Berlin, 1967.

[31] D. Gries. Compiler Construction for Digital Computers. John Wiley & Sons, New York, 1971.

[32] D. Gries. The Science of Programming. Springer-Verlag, New York, 1981.

[33] D. Gries. A note on a standard strategy for developing loop invariants and loops. Science of Computer Pro-
gramming, 2:207{214, 1984.

[34] B. Guenter, T. B. Knoblock, and E. Ruf. Specializing shaders. In Proceedings of ACM SIGGRAPH '95 (Computer
Graphics Proceedings, Annual Conference Series), pages 343{349, 1996.

[35] L. Guibas and K. Wyatt. Compilation and delayed evaluation in APL. In Conference Record of the 5th Annual
ACM Symposium on POPL, pages 1{8, January 1978.

[36] S. Katz. Program optimization using invariants. IEEE Transactions on Software Engineering, SE-4(5):378{389,
November 1978.

[37] W. Kelly and W. Pugh. Finding legal reordering transformations using mappings. In Proceedings of the 7th
Annual Workshop on Programming Languages and Compilers for Parallel Computing, volume 892 of Lecture
Notes in Computer Science, Ithaca, New York, August 1994.

18

[38] T. B. Knoblock and E. Ruf. Data specialization. In Proceedings of the ACM SIGPLAN '96 Conference on PLDI,
Philadelphia, Pennsylvania, June 1996.

[39] M. Leone and P. Lee. A declarative approach to run-time code generation. In Workshop on Compiler Support
for System Software (WCSSS), February 1996.

[40] M. Leone and P. Lee. Optimizing ML with run-time code generation. In Proceedings of the ACM SIGPLAN '96
Conference on PLDI, pages 137{148, Philadelphia, Pennsylvania, May 1996.

[41] Y. A. Liu. Incremental Computation: A Semantics-Based Systematic Transformational Approach. PhD thesis,
Department of Computer Science, Cornell University, Ithaca, New York, January 1996.

[42] Y. A. Liu. Principled strength reduction. In Proceedings of the IFIP Working Conference on Algorithmic
Languages and Calculi, Le Bischenberg, France, February 1997. Chapman & Hall.

[43] Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Discovering auxiliary information for incremental computation.
In Conference Record of the 23rd Annual ACM Symposium on POPL, pages 157{170, St. Petersburg Beach,
Florida, January 1996.

[44] Y. A. Liu and T. Teitelbaum. Caching intermediate results for program improvement. In Proceedings of the
ACM SIGPLAN Symposium on PEPM, pages 190{201, La Jolla, California, June 1995.

[45] Y. A. Liu and T. Teitelbaum. Systematic derivation of incremental programs. Science of Computer Programming,
24(1):1{39, February 1995.

[46] V. Maslov. Lazy array data-
ow dependence analysis. In Conference Record of the 21th Annual ACM Symposium
on POPL, January 1994.

[47] J. A. Mason. Learning APL : an array processing language. Harper & Row, New York, 1986.

[48] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array data-
ow analysis and its use in array privatization.
In Conference Record of the 20th Annual ACM Symposium on POPL, January 1993.

[49] B. Paige and J. T. Schwartz. Expression continuity and the formal di�erentiation of algorithms. In Conference
Record of the 4th Annual ACM Symposium on POPL, pages 58{71, January 1977.

[50] R. Paige. Transformational programming|Applications to algorithms and systems. In Conference Record of
the 10th Annual ACM Symposium on POPL, pages 73{87, January 1983.

[51] R. Paige. Symbolic �nite di�erencing|Part I. In Proceedings of the 3rd ESOP, volume 432 of Lecture Notes in
Computer Science, pages 36{56, Copenhagen, Denmark, May 1990. Springer-Verlag, Berlin.

[52] R. Paige and S. Koenig. Finite di�erencing of computable expressions. ACM Transactions on Programming
Languages and Systems, 4(3):402{454, July 1982.

[53] H. A. Partsch. Speci�cation and Transformation of Programs|A Formal Approach to Software Development.
Springer-Verlag, Berlin, 1990.

[54] W. Pugh. Uniform techniques for loop optimization. In International Conference on Supercomputing, pages
341{352, Cologne, Germany, June 1991.

[55] W. Pugh. The Omega Test: A fast and practical integer programming algorithm for dependence analysis.
Communications of the ACM, 31(8), August 1992.

[56] W. Pugh and D. Wonnacott. Going beyond integer proramming with the omega test to eliminate false data
dependences. Technical Report CS-TR-3191, Department of Computer Science, University of Maryland, College
Park, Maryland, December 1992. An earlier version of this paper appeared at the ACM SIGPLAN '92 Conference
on PLDI.

[57] W. Pugh and D. Wonnacott. An exact method for analysis of value-based array data dependences. In Proceedings
of the 6th Annual Workshop on Programming Languages and Compilers for Parallel Computing, volume 768 of
Lecture Notes in Computer Science, Portland, Oregon, August 1993.

[58] W. Pugh and D. Wonnacott. Nonlinear array dependence analysis. Technical Report CS-TR-3372, Department
of Computer Science, University of Maryland, College Park, Maryland, November 1994.

[59] J. C. Reynolds. The Craft of Programming. Prentice-Hall, Englewood Cli�s, New Jersey, 1981.

[60] V. Sarkar and R. Thekkath. A general framework for iteration-reordering loop transformations. In Proceedings
of the ACM SIGPLAN '92 Conference on PLDI, pages 175{187, San Francisco, California, June 1992.

[61] D. R. Smith. KIDS: A semiautomatic program development system. IEEE Transactions on Software Engineering,
16(9):1024{1043, September 1990.

[62] B. Ste�en, J. Knoop, and O. R�uthing. E�cient code motion and an adaption to strength reduction. In
Proceedings of the 4th International Joint Conference on TAPSOFT, volume 494 of Lecture Notes in Computer
Science, pages 394{415, Brighton, U.K., 1991. Springer-Verlag, Berlin.

[63] P. Wadler. Deforestation: Transforming programs to eliminate trees. In Proceedings of the 2nd ESOP, volume
300 of Lecture Notes in Computer Science, pages 344{358, Nancy, France, March 1988. Springer-Verlag, Berlin.

[64] J. Warren. A hierarchical basis for reordering transformations. In Conference Record of the 11th Annual ACM
Symposium on POPL, pages 272{282, January 1984.

19

[65] R. Waters. E�cient interpretation of synchronizable series expressions. In Proceedings of the SIGPLAN '87
Symposium on Interpreters and Interpretive Techniques, pages 74{85, June 1987.

[66] R. C. Waters. Automatic transformation of series expressions into loops. ACM Transactions on Programming
Languages and Systems, 13(1):52{98, January 1991.

[67] J. Webb. Steps towards architecture-independent image processing. IEEE Computer, February 1992.

[68] B. Wegbreit. Goal-directed program transformation. IEEE Transactions on Software Engineering, SE-2(2):69{
80, June 1976.

[69] W. M. Wells, III. E�cient synthesis of Gaussian �lters by cascaded uniform �lters. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(2):234{239, March 1986.

[70] D. M. Yellin and R. E. Strom. INC: A language for incremental computations. ACM Transactions on Program-
ming Languages and Systems, 13(2):211{236, April 1991.

[71] R. Zabih. Individuating Unknown Objects by Combining Motion and Stereo. PhD thesis, Department of Computer
Science, Stanford University, Stanford, California, 1994.

[72] R. Zabih and J. Wood�ll. Non-parametric local transforms for computing visual correspondence. In J.-O.
Eklundh, editor, 3rd European Conference on Computer Vision, volume 801 of Lecture Notes in Computer
Science, pages 151{158. Springer-Verlag, 1994.

20

