Accurate and Efficient Runtime Detection of Atomicity Errors in
Concurrent Programs *

Technical Report DAR-05-26, Sept. 2005

Ligiang Wang Scott D. Stoller
Computer Science Dept. Computer Science Dept.
State University of New York at Stony Brook State University of New York at Stony Brook
ligiang@cs.sunysb.edu stoller@cs.sunysb.edu
Abstract threaded. However, developing multi-threaded programs is diffi-

cult. Concurrency introduces the possibility of errors that do not ex-
ist in sequential programs. Furthermore, multi-threaded programs
execution of a set of transactions is equivalent to some serial exe-M&Y bcre]hzvle glffe(;e?tly fror? IoneFrun to ?notrler, betck?use thtr)eadsf
cution of the same transactions. In multi-threaded programs, exe-2'¢ S’EI e ut? dlr; eterminately. For n;ots tS:yS ?rr]ns, f nu,mberr] o
cutions of procedures (or methods) can be regarded as transactiond?0SSIPI€ SChedules IS énormous, and testing the system's behav-
Correctness in the presence of concurrency often requires atomic- 10" fOr each possible schedule is infeasible. Specialized techniques
ity of these transactions. Tools that automatically detect atomicity &€ Néeded to ensure that multi-threaded programs do not contain

violations can uncover subtle errors that are hard to find with tradi- concurrency-related errors. .
tional debugging and testing techniques. Threads often communicate by sharing data. Concurrent ac-

This paper presents new algorithms for runtime (dynamic) C€SS€S to shared data should be properly synchronized. Two com-
detection of violations of conflict-atomicity and view-atomicity, mon.errorst.are deadllocks tant;l] data races. dNumerodu? static andtr:iyt-
which are analogous to conflict-serializability and view-serializability"@Mic (runtime) analysis techniques are designed to ensure tha
in database systems. In these algorithms, the recorded events ar§oncurrent programs are free of deadlocks and data races. But this
formed into a graph with edges representing the synchronization 9°€S not ensure the absence of all synchronization errors. Consider
within each transaction and possible interactions between transac"® |mple£jentagorcl:oVeggorth SfulT JDK1.4.2, rt).art O];‘t"r’]h'Ch ap-
tions. We give conditions on the graph that imply conflict-atomicity pte?tzs 'E t{gure Pt onsl 1er eto owmgtexetcu lon orthe {Jrogram
and view-atomicity. Experiments show that these new algorithms fa e othom 0 tlgure .tﬁh]:ealdJ c?nsbruc s”.a n(tek\lN vec Otm
are more efficient in most experiments and are more accurate than'oM another vectori with k elements Dy calling the construc-

. : : . . tor for Vector. But before the constructor completadiread_1
revious algorithms with comparable asymptotic complexity. - . .) .
P 9 P ymp plexty. yields execution tahread_2 immediately after statement 1 in the

Categories and Subject DescriptorsD.2.5 [Software Engineer- Vector constructor.thread 2 removes all elements of1, and

Atomicity is an important correctness condition for concurrent sys-
tems. Informally, atomicity is the property that every concurrent

ing]: Testing and Debugging; D.2.&pftware EngineerirfjgSoft- then thread_1 resumes execution at statement 2. The incorrect
ware/Program Verification; D.1.3Pfogramming Techniqugs outcome is thatv2 hask elements, all of which araull, be-
Concurrent Programming cause theelementData array ofv2 is allocated according to the

previous size ofr1. A more subtle error occurs ifthread_2 ex-

ecutesvl.add (o) instead ofvl.removeAllElements (). Then,

Keywords concurrent programming, Java, atomicity, data race, if & < 10, the Igngth ofelementData allocated |nx_12 is smaller_

serializability than the new size of1. Although a larger array is allocated in

toArray to store the elements oft, the array is not returned to

d . the constructor ofr2, thus v2 will incorrectly be full of null

1. Introduction elements. No exception is thrown in these scenarios. Methods

Multi-threading has become a common programming technique. size (), toArray(Object[]), removeAllElements() and

Not only operating systems but also many applications are multi- add(0Object) are synchronized, hence there is no data race in

these examples.

* This work was supported in part by NSF under Grant CCR-0205376 and ~ The incorrect behavior reflects a higher-level synchronization

CNS-0509230 and ONR under Grants N00014-02-1-0363 and N0O0014-04- error, namely, lack of atomicity. Atomicity is well known in the

1-0722. context of transaction processing, where it is sometimes csdige
alizability. The methods of concurrent programs are often intended
to be atomic. A set of methods &omicif concurrent invocations
of the methods are always equivalent to performing the invoca-
tions serially (i.e, without interleaving) in some order. The first
scenario of the example in Figure 1 contains two invocations, one
of Vector(Collection) and one ofremoveAllElements(),
which obviously do not have an equivalent serial execution. There-
fore, these methods violate atomicity. Similarly, the second sce-

[copyright notice will appear here] nario also shows a violation of atomicity.

General Terms Reliability, Algorithms

1 2006/2/15

public class Vector extends ... implements ... { By considering the synchronization, the commit-node algorithms
pu?}lc Yectir(cillec:éon z) .{ the field of vo do not merely look for violations of atomicity in the observed exe-
¢ 18 VL, e_ementbount is the tield of ve. cution, but also attempt to determine whether the non-determinism

1 elementCount = c.size(); :
2 elementData = new Object[(int)Math.min(of thread scheduling could allow violations in other executions.

(elementCount*110L) /100, Integer .MAX_VALUE)] ; ~ This commit-node algorithms can check two kinds of atomic-
3 c.toArray(elementData); ity, conflict-atomicity and view-atomicity, which are analogous to
} conflict-serializability and view-serializability in database systems.
public synchronized int size() { return elementCount; } Experiments show that these new algorithms are more efficient
public synchronized Object[] toArray(Object al 1) { in most experiments and are more accurate than previous algo-
if (a.length < elementCount) { rithms with comparable asymptotic complexity.

// i.e. v2.length < vl.elementCount
// this branch will be taken if vl.add is executed. 2 Back d
a = (Object[])java.lang.reflect.Array.newInstance(. ackgroun

a.getClass () .getComponentType (), elementCount); This paper focuses on analyzing Java programs, but the techniques

¥ can be applied to other languages.
System.arraycopy(elementData, O, a, 0, elementCount);
if (a.length > elementCount) Event. Informally, aneventis one step in an execution of a pro-
alelementCount] = null; gram. This paper considers the following operations on events: read
return a; and write escaped variables; acquire and release locks; start and
¥ . . . join threads; start and exit invocations of methods; and the barrier
public synchronized void removeAllElements() { ... } synchronization operation discussed in Section 7.4. For example,
public synchronized boolean add(Object o) { ... J synchronized(l) {body} in Java indicates two events (in addition
to the events performed by the body): acquiring léckt the en-
thread_1 thread_2 try point and releasing it at the exit point. Two distinct accesses
Vector v2 = new Vector(vil); v1.removeAllElements(); (even using the same operation) to a variable are different events.
// vi.add(o); Let held(e) denote the locks held by the thread executing event

whene is executed.

Figure 1. An example showing that the constructor of Transaction Boundaries. Executions of the following code frag-
java.util.Vector in Sun JDK 1.4.2 violates atomicity. ments are considered as transactions by default in this paper: non-
private methods, synchronized private methods, and synchronized
blocks inside non-synchronized private methods; as exceptions,
Flanagan and Qadeer developed a type system for atomicity [8]. the executions of theain () method in which the program starts
It can ensure that methods are atomic in all possible executions.and the executions afun() methods of classes that implement
However, type inference for the type system is NP-complete [6], so Runnable are not considered as transactions, because these execu-
the type system may require manual annotation of the program. tions represent the entire executions of threads and are often not ex-
In [21, 22], we proposed the reduction-based and block-based pected to be atomic. Moreover, start, join and barrier operations are
algorithms for runtime atomicity checking. Runtime analysis is less treated as unit boundarieisg., they separate the preceding events
powerful than static analysis, because it cannot ensure correctnessind following events into different units, and are not contained in
of all unexplored behaviors of the system, but may be more precise any unit. We adopt this heuristic because execution fragments con-
(i.e., give fewer false alarms) for the explored behaviors. Further- taining these operations are typically not atomic and hence are not
more, runtime analysis does not require manual annotations of theexpected to be transactions. The events not in transactions form
code that are often required by type systems; this is a significant non-transactional units. All events in one non-transactional unit
practical advantage. have the same thread period id (introduced in Section 7.3). Note
This paper presents novel algorithms, called commit-node algo- that for nested transactions, we check atomicity of only the outer-
rithms, for runtime checking of atomicity. The algorithms are off- most transactions, since they contain the inner transactions.
line,i.e., when the program terminates, they are applied to recorded
information about the execution. The execution is partitioned into

xngzin/:a%r:ilgrlwsi saasﬁﬂilﬁr:(ﬁag{ e?jvtec)ntbseﬁg(\e/gu;?gn?izaelllilrl]%reetggﬁl-d' trace of (T, E) is an interleaving of events from unitsTuU E that

. A . __is consistent with the original order of events from each thread and
_ple, the sequence of events exe_cuted during a method InVOC‘rJ‘t'Onwith the synchronization events.(j, no lock is held by multiple
is often con_5|de_red asa f[ransactlon. Our_ algorlthrr_ls check Whetherthreads at the same time). A trace(@f, /) must contain all events
every trace (e, |nterleavmg)_ of these units S equivalent to @ S€ from units inT U E unless the trace ends in deadlock. This paper
rial trace, where all events in each transaction of these units are ;csumes thafs contains no synchronization; this aséumption is

consec_:utlve. If. S0, WE Say that the transactionsagoenic if not, a satisfied if synchronized blocks are considered to be transactions.
potential atomicity violation is reported.

The monitor stores the events of each unit (including transac- Initial Read and Final Write. Lete; ande; denote a read event
tions) in a tree structure, called atcess treeEach node in an and a write event to variable, respectively.e is the write-
access tree denotes an access to an escaped vairapéevariable predecessopf e, in a tracetr if e is the last write tox that
accessible to multiple threads), or a synchronization operagign (precedeg, in tr. e}, is called aunit-initial read if e, does not
lock acquire and release). After the program terminates, the rela- have any write-predecessor in its own unit in all traeéss called

Trace. A tracetr is a sequence of events. GivéR, E), wherel’
is a set of transactions, ardis a set of non-transactional units,

tionships between nodes in different trees are analyzedinged atrace-initial readin tracetr if e;, is not preceded by a write to
edgesare added between them to generaferast A node con- x in tr. Its write-predecessor is defined to be an imaginary write
nected with inter-edges are calledmmunication nodéA commu- evente:™"* at the beginning of the trace. A write evesit is called

nication node is called @eemmit nodéf none of its descendants are a unit-final writeif it is the last write tox in its unit; a write event
communication nodes. In a forest, if the access tree for each trans-ey is called arrace-final writein a trace if it is the last write t@ in
action has only one commit node, then the set of units is atomic. the trace.

2 2006/2/15

Conflict-Equivalence. Two tracestr; and ¢ro for (T, F) are R(z) G
conflict-equivalentff (i) they contain the same events, anid (W(z)
for each pair of conflicting events, the two events appear in the Acq(l) w w W,
same order in both traces. This corresponds to conflict equivalence R(y)
in transaction processing in database systems [3]. W(y
on provessng e i) ED @D G
View-Equivalence. Two tracestr, andtr; for (T, E) areview- Rel(l)
equivalentff (i) they contain the same events) each read event
has the same write-predecessor in both traces, idneééch vari- Figure 2. The access tree for a unit All events are shown on the

able has the same trace-final write event in both traces. This corre-left; time increases from top to bottom.
sponds to view equivalence in transaction processing [3]. It is easy
to show that conflict-equivalence implies view-equivalence [3]. But

the converse does not hold. FOR each read evenf

Conflict-Serializability and View-Serializability. Atrace of(T, E) FOR each write event; in a concurrent unit
is serial if the events of each transaction @f form a contigu- addinterEdge(;, e2);

ous subsequence of the trace. Note that the events in each non-

transactional unit of£ are not required to be contiguous. A trace FOR each write event;

of (T, E) is conflict-serializablef it is conflict-equivalent to some FOR each write event”’ in a concurrent unit
serial trace of(T, E). A trace of (T, E) is view-serializableif addinterEdge(”, ¢):
it is view-equivalent to some serial trace ¢1', F). Conflict- e
serializability of a tracer for (T, E') can be decided in polynomial
time [3]. Letg be theserialization grapHor ¢r, which is a directed
graph whose nodes are the unitsiof) E, and which contains an
edge from node; to nodet; if i # j and some event aof; pre-
cedes a conflicting event of in ¢r. ¢r is conflict-serializable iffy
does not contain any cycle containing two or more transactions. In
contrast, checking view serializability is NP-complete [16].

/* add appropriate inter-edges between nodes of the units
containinge ande’. e ande’ access the same variable.*/
PROCEDURE addinterEdge(e’){
IF (held(e) N held(e") = 0) {
add an inter-edge between the access node for
and the access node fefr,

} ELSE{
Conflict-Atomicity and View-Atomicity. (T, E) is conflict-atomic [* there must be a common lock kreld(e) andheld(e’),
if every trace of(T, E) is conflict-serializable(T, E) is view- so the next statement finds a suitable nodé
atomicif every trace of(T, E) is view-serializable. It is easy to starting at the root node of the unit that containgo
show that conflict-atomicity implies view-atomicity, but the con- down the tree along the path ¢puntil reaching a node
verse does not hold. As an example, consider, t2}, 0), where n corresponding to a synchronization block for a léck
t1 is Wi(z) Wa(z), andts is W(x). Whent,. W (z) happens in held(e');
betweent;.Wi(z) and ¢1.W2(x), the trace does not have any IF ((e is a write)V (e is read and not preceded by a write
conflict-equivalent serial trace, hen¢ft1,t2},) is not conflict- to the same variable in the subtree rooted)at{
atomic; but the trace is view-equivalent to a serial tracél (z) * otherwise,e is a read and there is a write to the
t1.Wi(z) t1.Wa(x), and all the other possible traces are serial, same variable in the subtree rootedrgtsoe cannot
hence({t1,t2}, 0) is view-atomic. read the write ok’ because of lock*/

n' = the outermost ancestor &f corresponding to
a synchronization block for lock
add an inter-edge betweerandn’;

Potential for Deadlock. (T, E) haspotential for deadlock some

trace of (T, E) ends in deadlock. A trace that ends in deadlock

with some thread in the middle of a transaction is not equivalent M
to any serial trace. Therefore, this paper assumes(fiat’) has
no potential for deadlock. This can be checked using the goodlock Figure 3. The algorithm to add inter-edges for an arbitrary escaped
algorithm [10] or an extension of it [2]. variablez in the conflict-forest.

3. Access Forest and Commit-Node Reduction _ _ _
7.4 describes a happen-before analysis to determine whether two

3.1 Access Tree units are concurrent. The edges inside each tree are dadled
During execution of the instrumented program, the monitor records edgesNodes with an incident inter-edge are caltegnmunication

all events for each unit into aaccess treeln such a tree, each nodesthey denote a potential interactions between the correspond-
leaf node is called amccess nod@nd denotes an access to an ing units. Checking conflict-atomicity and view-atomicity require
escaped variable. Each non-leaf node except for the root is calleddifferent inter-edges. The access forest used for checking conflict-
a synchronization nodand denotes a synchronization block. The atomicity is callecconflict-forest the access forest used for check-
root node denotes the whole unit. The local orders of events within ing view-atomicity is called/iew-forest

a unit are denoted by the order of branches in the tree. An example

appears in Figure 2, whet(v) andW (v) (v is = ory) denotea 3.2.1 Conflict-Forest

read event and a write event tg respectivelyacq(l) andrel(l) In the conflict-forest, there are two kinds of relationships denoted
denote an acquire and a release of loclespectively. Since each py inter-edges between two concurrent units. The first kind of
node in an access tree denotes a set of events, a node and the set g|ationship is between a node associated with a write in one of
events it denotes are used interchangeably in our description. the units and a concurrent node associated with a read to the
same variable in the other unit, if the read can read the written
value by the write in some trace. The second kind of relationship
An access forestonsists of a set of access trees and edges called connects two concurrent nodes associated with two writes to the
inter-edgesbetween access trees from concurrent units. Section same variable in the two.

3.2 Access Forest

3 2006/2/15

o 6 FOR each read evenf,
S(ez) =0

FOR each write evenrt; in a concurrent unit
CAcg()Rel(ID------------ CAcq(D)Rel (D addinterEdge(, e);

@ @ FOR each unit-final write everrt;

. . . 7. .
AN N @)/ ,/ FOR each unit-final write evemt! in a concurrent unit

U)/ .

. , addinterEdge(;, e¥);

* Note thate ande’ access the same variable. */
Figure 4. A conflict-forest. The inter-edges are shown as dotted PROCEDURE addinterEdge(e’){

lines. IF (held(e) N held(e") = D){

add an inter-edge between the access node &od
the access node fef;

ELSE
We say “associated with” above because the inter-edge is not }startiné{ at the root node of the unit that containgo

necessarily added directly between the access nodes representing down the tree along the path ¢ountil reaching a node
those two accesses. Instead, for each pair of accesses satisfying j, corresponding to a synchronization block for a léck
the above conditions, if there is at least one lock that is held when held(e');

both operations are performed, then we find the outermost of those | ((e is awrite)V (e is read and not preceded by a write
common locks, and add an inter-edge between the corresponding tg the same variable in the subtree rooted it{
synchronization nodes, because this is the granularity at which the ,,” = the outermost ancestor ofcorresponding to
parts of the units containing those accesses can be interleaved; if no a synchronization block for lock

such lock exists, then an inter-edge is added directly between the 344 an inter-edge betweerandn’;

access nodes representing those two accesses. By assumption, the} ELSE return:

set of units does not have potential for deadlock, so the notion of

outermost common lock for two accesses is well defined,; if there | (e is read){

is potential for deadlock, the threads that execute the two accesses e = the preceding write to the same variable and

could acquire two locks in different orders without first acquiring a in the same unit as, if any, otherwise null;
common lock. IF (ew # null)

Intuitively, (7', E) is conflict-atomic, if in all traces ofT’, E), S(e)=S(e)U{ew};
the events of each transactiontan be repeatedly swapped with FOR eache” in S(e)

adjacent events without affecting the rest of the trace, until the trace addinterEdge(e):
is serial,i.e.,, the events of each transaction are contiguous. If two S(e)=S(e)U{e'}:
nodes are connected by an inter-edge, they cannot be swapped
Thus, a node with incident inter-edges is like a non-mover in
Lipton's reduction [15, 5, 21, 22]. Figure 5. The algorithm to add inter-edges for an arbitrary escaped
Figure 3 shows the algorithm to add inter-edges. Figure 4 shows variablez in the view-forest.
the conflict forest for a set of three units. Note that an inter-edge
can denote multiple relationships of the kinds described above. For
example, the inter-edge betwegnandts in Figure 4 denotes two
relationships: one is thak.R(x) can read the value written by
t1.W (z), and the other is between. W (z) andts. W (x).
Besides checking atomicity, the conflict-forest can also be used
for detecting data races, since each access node with incident inter-
edges indicates a data race.

3.2.2 View-Forest

The view-forest has three kinds of relationships between two con-
current unitsu; andus denoted by inter-edges. (1) The first kind
of relationship is between a nodewf associated with a write and ~ Figure 6. A view-forest. The inter-edges are shown as dotted lines.
a node ofus associated with a read, if the read can read the written

value by the write in some trace. (2) The second kind of relation-

ship connects two nodes associated with two writes to the same, . .)
variable, respectively, if both writes can be the write-predecessor INter-edges between every two writes to the same variables in con-

of the same read in some traces. (3) The third kind of relationship flict forest.) _ _
connects two nodes associated with unit-final writes to the same Figure 6 shows the view forest after applying the algorithm to
variable. the same three units in Figure 4.

The algorithm of adding inter-edges for view-forest is shown in . .
Figure 5. It is similar to the algorithm in Figure 3. When adding an 3.3 Commit-Node Reduction
inter-edge between a read and its potential write-predecessor, weLet n > n’ denote that a communication nodecontains i.e., is
also add inter-edges between its all potential write-predecessors.an ancestor of) another communication nadeA communication
S(e) caches all potential write-predecessors for the read far. node is called &ommit nodef it is not contained in any other
Besides connecting this kind of writes, we also add inter-edges be-communication nodes. For example, in Figure 6, the communica-
tween the unit-final writes to the same variables, instead of adding tion node “Acq(l)Rel(l)” in ¢1 contains the communication node

4 2006/2/15

“W (x)” which is a commit node since it does not contain any other
communication nodes.

Intuitively, for a set of nodes; > ... > ni > n., the commit
noden. denotes a non-movet,(1 < ¢ < k) denotes a larger non-
mover which contains:... All events ofn; (which also contains

Do d

all events ofns,...;n.) can be moved to the commit node position
through swapping without affecting the other units in all traces.
Thus, a transaction with at most one commit node is atomic, but a
transaction with two or more commit nodes might be non-atomic.
This is described formally in Section 4.

4. The Commit-Node Algorithms for Checking
Atomicity

This section presents algorithms for checking conflict-atomicity
and view-atomicity.

4.1 Conflict-Atomicity

Theorem 4.1. Suppos€T, E) has no potential for deadlock, and
E does not contain any synchronization operations. If each trans-
action ofT" has at most one commit node in the conflict-forest, then
(T, E) is conflict-atomic.

Proof. To prove that(T', E) is conflict-atomic, we need to show
that there is a conflict-equivalent serial tragé for an arbitrary
tracetr of (T, E). The general idea is to find a location of some
event inside the commit node for each transaction, such that when
all events of each transaction are moved to that location, the result-
ing trace is conflict-equivalent to the original trace. That location is
called acommit point

For a commit node:, if n is an access node, its commit point
is the location of the access eventtat if n is a synchronization
node, its commit point is any arbitrary location inside the commit
node attr. According to the assumption in the theorem, each com-
munication node contains only one commit nogté is constructed
from ¢r as follows: all events of the communication nodes that con-
tain the commit node are moved to the commit point; all events of
each transaction not in any communication node are also moved to
the commit point of the transaction; all other events are not moved.
tr’ is serial because every transaction has only one commit node.
In the following, we prove thatr’ is a legal trace and is conflict-
equivalent tair.

First, we observe that’ is consistent with the synchronization
events. This holds becausé is serial, and® does not contain any
synchronization. Seor’ is a trace forT, E).

Next, we show thatr’ is conflict-equivalent tar. Consider
conflicting eventse; and ez, wheree; andes occur in unitsu,
andus in T'U E, respectively. Without loss of generality, suppose
e1 precedeg; in tr. Because; andes conflict, w1 must contain
a communication node; containinge;, andus must contain a
communication nodexs containingez, andn; precedesns in
tr. After moving e; andes to the commit points of.; and ue,
respectively,e; and e, appear at the same order #tn and ¢7’.
Thereforer is conflict-equivalent tar’. O

The condition in Theorem 4.1 for conflict-atomicity is sufficient
but not necessary. In Figure 7, the set of transactions is conflict-
atomic, even thougly contains multiple commit nodes. The fol-
lowing theorem shows that the condition in Theorem 4.1 is an exact
test for conflict-atomicity of two transactions.

Theorem 4.2. Suppos€T,) has no potential for deadlock, and
T contains only two transactiongT’,) is conflict-atomic iff each
transaction inT" has at most one commit node in the conflict-forest.

Figure 7. {{t1,t2,t3}, @) is both conflict-atomic and view-atomic,
butt¢; contains two commit nodes.

Proof. A proof sketch appears here; more details are in the Ap-
pendix.

“<": This direction follows from Theorem 4.1.

“=" Suppos€el’ = {t,t'}. We show thatT, () is not conflict-
atomic if at least one transaction ifi has two or more commit
nodes. Without loss of generality, suppos$es at least two commit
nodes. Letn; andn. denote two commit nodes df ¢’ has at
least one commit node. There must be a pair of conflicting events,
denotede; ande’, with e; € n; ande} € n}, wheren} is a
communication node it', and there is an inter-edge between
andn/. Similarly, there must be another pair of conflicting events,
denotedes and e, with ez € no andes € nb, wheren) is a
communication node i, and there is an inter-edge betwean
andnj.

If one of n} andn’ contains the other or ik} = n5, we can
show that there is a trade wheren’ andn5 happen between;
andn.. Otherwise, we can show that there is a tracevheren)
andn5 happen between; andnz, or ny andns happen between
n} andnj. Hencetr does not have any conflict-equivalent serial
O

For example, in Figure 4{t1,t2},0) is not conflict-atomic
according to Theorem 4.2 becausecontains two commit nodes
when ignoringts. Similarly, ({¢2,t3},0) is not conflict-atomic,
either.

The following theorem gives a more sophisticated (compared
to Theorem 4.1) condition to decide conflict-atomicity (for any
number of transactions). This theorem (unlike Theorem 4.1) is
accurate enough to show that the set of transactions in Figure 7 is
conflict-atomic. Note that, when considering cycles in the conflict-
forest, tree edges are treated as undirected edges.

Theorem 4.3. Suppos€T, E) has no potential for deadlock, and

E does not contain any synchronization operations. If all pairs
(if they exist) of communication nodes from the same transaction
that do not contain each other are not involved in any cycle of the
conflict-forest, thedT', E) is conflict-atomic.

Proof. We prove the contrapositive. Suppdde E) is not conflict-
atomic. Thus, there is a trace for (T, 0) that does not have any
conflict-equivalent serial trace, and there is a directed ayirighe
serialization graph fotr. Suppose that consists of(t1, t2, ..., tn)

in order, wheret1, to, ..., t, € T. c implies that there must be an
evente; of ¢; that happens before an eventof ¢5, an evente),

of t5 that happens before an event of ¢3, ..., and an event,,

of ¢,, that happens before, of ¢; in tr, wheree; ande, access
the same variable;;, andes access the same variable,, ahd
ande’ access the same variable. This implies that there is a cycle
¢ in the conflict-forest. Ife; ande; of t; for i = 1..n are in the
same communication node, then bettande; happen before; ;1
ande;, in tr, fori = 1..n — 1. This contradicts the assumption
thate], happens before}. Hence, there must be a transaction in
{t1,t2, ..., t, } that has at least two communication nodeg/ahat

do not contain each other. O

The commit-node algorithnfor checking conflict-atomicity
works as follows. (1) Instrument the source code of program to be

2006/2/15

tested as discussed in Section 7.1. (2) Execute the instrumented “=": We prove the contrapositiva,e, if at least one of the
program, and dynamically construct the conflict-trees. (3) Add transactions has at least two commit nodes, {1iff) is not view-
inter-edges after the execution terminates. (4) Check the conditionsatomic. According to the definition of view-forest, there are three
of Theorem 4.1, if they are satisfied, report that conflict-atomicity kinds of inter-edge. (1) The first kind of inter-edge denotes the
holds; otherwise, check the conditions of Theorem 4.3, then report relationship between a read in a transactiort and its potential
conflict-atomicity holds or not according to whether the conditions write-predecessoe™ in the other transaction. If the read has a
are satisfied. preceding writee,,,.. in its own transaction, then a violation of
Although this algorithm may report false alarms since the con- view-atomicity is possible (becaus& can occur betweedt,,.. and
ditions in Theorem 4.1 and Theorem 4.3 are sufficient but not nec- ¢" by the definition of potential write-predecessor), so the desired
essary. But we believe that this happens very rarely. In the experi- implication holds. If the read does not have any preceding write
ments of Section 8, all the warnings for non-conflict-atomicity re- in its own transaction, the read and its potential write-predecessor
ported by the algorithm are confirmed to be true by Theorem 4.2. in the other transaction act like a pair of conflicting events, in the
Let|T|, n¢, andn. denote the number of transactions, the max- sense that their order in a trace determines that the two transactions
imum number of events in a transaction, and the number of eventsmust follow the order in all serial traces view-equivalent to the
in the whole execution (including non-transactional units), respec- trace (this is true with two transactions, although it is not true with
tively. Theorem 4.3 requires checking, for each pair of communica- more transactions). This is the same property of inter-edges in the
tion nodes of the same transaction, whether they are involved in aconflict-forest that is used in the proof of Theorem 4.2. (2) The
cycle, i.e., whether each of them is reachable from the other. Theresecond kind of inter-edge denotes the relationship between two
areO(|T| x n?) such pairs, and checking whether two nodes are writes that are potential write-predecessor for the same read; this
reachable from each other takes tiMé»?), so the worst-case time indicates a violation of view-atomicity (because either there is a

complexity of the algorithm i©(|T| x n? x n2). write to some variable: in ¢’ that can occur between a write to
z and a read ta in ¢, or there is a read t@ in ¢’ that can occur
4.2 View-Atomicity between two writes ta in t), so the desired implication holds. (3)

The third kind of inter-edge denotes the relationship between unit-
final writes of each transaction. With two transactions, these final
writes also act like conflicting events, in the sense described above,
so these edges have the same property as inter-edges in the conflict-
forest.

Proof. A proof sketch appears here; more details are in the Ap- 1hus, depending on the kind of edges present, either we im-
pendix. For any tracer of (7', E), we prove that it has a view- mediately conclude that the_ desired |mp||cat|on ho]ds, or all of the
equivalent serial trace”’, which is constructed in the same way as €dges have the property of inter-edges in the conflict-forest used in
in the proof of Theorem 4.1. The definition for the commit point of ~ the proof of &) in Theorem 4.2, and the rest of this proof is similar
each transaction is the same as there. By the same reasoning as i that proof. O

that proof,tr’ is serial and consistent with the synchronization op-
erations, sor’ is atrace foT, E). Next we prove in two steps that

tr’ is view-equivalent tatr. (1) We first prove that each read has
the same write-predecessortinandtr’. The main observation is:

if two communication nodes are connected by an inter-edge, then
the sets of nodes contained in them cannot be interleaved with eachTheorem 4.6. Suppos€T, E) has no potential for deadlock, and
other in any trace. Because there are inter-edges between commug does not contain any synchronization operations. If all pairs
nication nodes associated with potential write-predecessors for theof communication nodes from the same transaction that do not
same read’, if one communication node® contains the actual contain each other are not involved in any cycle of the view-forest,
write-predecessor of the reallin tr, all the communication nodes then(T', E) is view-atomic.

associated with other potential write-predecessorsfonust hap-

Theorem 4.4. Suppos€T, E) has no potential for deadlock, and
E does not contain any synchronization operations. If each trans-
action of 7" has at most one commit node in the view-forest, then
(T, E) is view-atomic.

For example, in Figure §{t2,t3},?) is not view-atomic be-
causets contains two commit nodes in the view-forest fgrand
ts. The following theorem gives a more sophisticated condition to
check view-atomicity.

pen intr before the events represented/3y or after the commit Proof. The proof is similar to the proof of Theorem 4.3. O

node associated with”. Hence, after moving all events in each

transaction to its commit node has the same write-predecessor The commit-node algorithm for checking view-atomicity is
in ¢ andtr. (2) A similar proof shows thatr and¢r’ have the similar to the algorithm for checking conflict-atomicity proposed in
same trace-final writes. O Section 4.1, except that the view-forest is constructed and checked

based on Theorems 4.4 and 4.6. Similarly as before, the worst-case

For example, in Figure 6{t1, ¢},) is view-atomic because time complexity of the algorithm i© (|7 x ni x n).
each oft; andt, contains only one commit node in the view-
forest. Note thaf{¢1,¢2},0) is not conflict-atomic since; has 5. The Polynomial Equivalence of Conflict- and
two commit nodes in the conflict-forest. View-Atomicit

The condition in Theorem 4.4 for view-atomicity is sufficient y
but not necessary. In the example of Figure({#., t2,t3}, 0) is The following theorem shows that the problems of checking
view-atomic butt; contains multiple commit nodes. The following conflict-atomicity and checking view-atomicity are polynomially
theorem shows that the condition in Theorem 4.4 is an exact testreducible to each other. This result is somewhat surprising, consid-
for view-atomicity of two transactions. ering that checking conflict serializability is in P [3] and checking
view serializability is NP-complete [16], so they are not polyno-
mially reducible unless P=NP. To simply the problem, we consider
only transactionse., assumeZ = (J; we expect that the result also
holds without this restriction.

Theorem 4.5. Supposel” has no potential for deadlock, arifl
contains only two transactionéT’, §)) is view-atomic iff each trans-
action in7" has at most one commit node in the view-forest.

Proof. “<=": This implication is justified directly based on Theo- Theorem 5.1. The problems of checking conflict-atomicity and
rem4.4. checking view-atomicity are polynomially reducible to each other

6 2006/2/15

when restricted to problem instances where the Bebf non-
transactional units is empty.

Proof. A proof sketch appears here; more details are in the Ap-
pendix.

1. We first prove that the problem of checking conflict-atomicity
is polynomially reducible to the problem of checking view-atomicity.
We transform” as follows. Letl be a lock not used iff". For each
variabler, each read, is replaced by;“? e}, /'; and each write
e¥ isreplaced by “? el e¥ e;°!, wheree;*? ande; ' represent an
acquire and a release hfrespectively. Lef” denote the resulting
set of transactions.

We prove thafl’ is conflict-atomic iffT” is view-atomic. ="
Every traceir’ of T corresponds to some trateof T'. Every trace
tr of T has a conflict-equivalent serial trate,. We transformir
andtr, in the same manner that is used to transfdrnryielding
tracestr’ andtr,, of T', respectively. We show in the Appendix
thattr’ is view-equivalent to the serial trac¢e,. “<": For each
tracetr’ of T and its view-equivalent serial tra¢e’,, we remove
the operations inserted when constructifigirom 7'. This yields
tracestr andtrs of T. We show in the Appendix that is conflict-
equivalent tars.

2. We can check view-atomicity of pairs of transaction§’im
polynomial time based on Theorem 4.5. In the following we prove
that checking view-atomicity can be reduced to checking conflict-
atomicity when all pairs of transactions ifi are view-atomic.
Because all pairs of transactions Thare view-atomic, all non-
unit-final writes and non-unit-initial reads do not interact with other
transactions, so we remove them. [I&t denote the resulting set
of transactions. We prove thdt is view-atomic iff 7 is conflict-
atomic. ‘=" We prove the contrapositive by constructing a non-
view-serializable trace of’ from a non-conflict-serializable trace
of T. “<=": For each tracer of T', there is a corresponding trace
try of Ty which has a conflict-equivalent serial traeg . A serial
tracetr® of T that is view-equivalent tor can be constructed from
tr} by restoring the removed write and reads. O

6. Comparison with Other Atomicity Checking
Algorithms
6.1 Reduction-Based Algorithms

Reduction-based algorithms for checking conflict-atomicity [8, 5,
22] classify events based on commutativity and apply Lipton’s
reduction theorem [15]. We briefly describe the reduction-based
algorithm in [22], which is more accurate than the others.

An event is aright-mover(R) if, whenever it appears immedi-

ately before an event of a different thread, the two events can be

swappedi(e., they can be executed in the opposite order without
blocking) without changing the resulting stateleft-mover(L) is

defined similarly. Events not known to be left or right movers are
non-movergN). Race-free events are both right and left movers;

events with race are non-movers. Lock acquire events are right-

Theorem 6.1. If a transactiont has the form
(R + AcqA*Rel)* N7 (L + AcqgA* Rel)*, thent has at most one
commit node in the conflict-forest.

Proof. According to the algorithm in Figure 3, the block denoted
by AcqA* Rel does not contain any communication node. All syn-
chronization blocks denoted bljt*N7L* must be nested. Thus,
for any two communication nodes inthat are also synchroniza-
tion nodes, one is a descendant of the otheantains at most one
non-mover, and it occurs in the inner-most synchronization block.
Thus, there is at most one access nodetimat is also a commu-
nication node, and that communication node is a descendant of all
other communication nodesinThus, for any two communication
nodes of transactioh, one is a descendant of the other. Herice,
has at most one commit node. O

Now we give an example that is conflict-atomic according to
Theorem 4.1 but is wrongly reported to be non-atomic by the
reduction theorem. Lel” = {t1,t2}, where¢; consists ofel!
followed byey't, andts consists of only’?2. ¢; has the formVN
which does not matchR + AcqgA*Rel)* N’ (L + AcqA* Rel)*,
but¢; and¢, each have only one commit node.

The commit-node algorithm of Section 4.1 contains the benefits
of all the improvements to the reduction-based algorithm described
in [22], which include the improvements proposed in [5]. For ex-
ample, for re-entrant locks, thread-local locks, and protected locks,
there is no inter-edge connected to the corresponding synchroniza-
tion nodes.

Therefore, the reduction-based algorithm is less accurate than
the commit-node algorithm of Section 4.1.

6.2 The Block-Based Algorithm

The block-based algorithm [22] checks view-atomicity by consid-
ering pairs oblocksfrom different transactions. Intuitively, a block
captures the information about two accesses and the associated syn-
chronization that is relevant to atomicity checking. The block-based
algorithm constructs blocks from an observed trace and then com-
pares each block with all blocks in other concurrent transactions.
If two blocks are found to match certain unserializable patterns,
the transactions containing them are not atomic. The unserializable
patterns are defined based on view serializability; for example, one
unserializable pattern is when a write of one transaction can happen
between two continuous reads of another concurrent transaction.

The commit-node algorithm and the block-based algorithm are
both exact tests for view-atomicity for two transactions, but the for-
mer runs much faster in most programs in the experiments in Sec-
tion 8. For three or more transactions, the commit-node algorithm is
an efficient conservative test that is very accurate in practice based
on the experiments in Section 8; the block-based algorithm can pro-
vide an exact test but is significantly more expensive.

7. Implementation
We implemented the commit-node algorithms for checking conflict-

movers. Lock release events are left-movers. The reduction-basedatomicity and view-atomicity in Java. The implementation consists

algorithm is based on the following variant of Lipton’s reduc-
tion theorem: a sef” of transactions is conflict-atomic if has

no potential for deadlock and each transactioff'ihas the form

(R + AcqA*Rel)*N*(L 4+ AcqA*Rel)*, whereR, L, and N
denote right-mover, left-mover, and non-mover respectively, and

of three parts: instrumentation, monitoring and off-line analysis.
Instrumentation is discussed in Section 7.1. The monitor inter-
cepts all events described in Section 2 and constructs access trees.
Each access tree is optimized to discard the redundant accesses,
as discussed in Section 7.2. If there are more than two identical

AcqA* Rel denotes an acquire of some lock, followed by accesses access trees, we save only two copies, since the rest are redun-

to read-only or thread-local variables, followed by release of the
same lock.
The following theorem and example together show that The-

dant for checking atomicity. A dynamic escape analysis introduced
in Section 7.3 is used to determine when a variable escapes. A
happen-before analysis introduced in Section 7.4 is used to deter-

orem 4.1 is more accurate than the above reduction theorem formine whether two units are concurrent. When the program termi-

conflict-atomicity.

nates, the algorithm adds inter-edges between access trees, and then

2006/2/15

checks conflict-atomicity and view-atomicity using the algorithms
in Sections 4.1 and 4.2, respectively.

To indicate whether an object has escaped, a boolean instance
field escaped is added to every instrumented class. Its initial value
is false. To detect when objects escape, we instrument all method
7.1 calls, and all stores to static fields, instance fields, and arrays. When
We modify the pretty-printer in the Kopi [14] compiler to insert ~@n object escapes, it is marked as escaped by settirgdtped
instrumentation as it pretty-prints the source code. The instrumen- field to true, and all objects to which it refers are marked as
tation intercepts the following events: (1) reads and writes to all €Scaped (and so on, recursively); Java's reflection mechanism is
monitored fields (see below); (2) entering and exiting synchronized used to dynamically find those objects. More details appear in [22].
blocks, including synchronized methods; (3) entering and exiting 7 4
methods that are considered as transactions (discussed in Section

Instrumentation

Happen-Before Analysis

2); (4) calls to threadtart andjoin; (5) barrier synchronization.
All non-final fields (with primitive type or reference type) of the

The execution of a thread is separated ipéviodsby occurrences
of synchronization events. A thread perioappens beforanother

specified classes (by default, all classes) are monitored. Accessedhread period if it must end before the other thread period starts.

to these fields in all methods of all classes are instrumented. Local

Our happen-before analysis tracks only happen-before relation-

variables are not monitored, because they are accessed by at mosthips induced bytart and join on threads and by barrier syn-
one thread. Our system inserts fields into monitored classes tochronization. A barrier is a rendezvous point for a specified number

keep track ofshadow informatione.g, whether the object has

n of threads. Once alk threads reach the barrier, all of them may

escaped. There is no way to insert fields into array classes in Javacontinue executing. Happen-before relationships induceghy

S0 we maintain a hash table that maps each array refetetocan
array with shadow information for each elementaofMonitoring

andnotify could also be analyzed; we do not do this because we
believe thatrait andnotify are rarely used to achieve atomicity.

every array element causes large slowdown in some programs, so We use a directed graph to represent the happen-before relations

our system supports “sampling” of arrays, in which only index
positions below a user-specified cutoff are monitored.

7.2 Optimization: Trimming the Access Tree

It is not necessary to save all accesses to escaped variables. Fog'

between thread periods. There is a path from the node representing
p1 to the node representing. iff p1 happens beforg.. More
details are in [22].

Experiments

access nodes with the same parent node, we preserve only the firstVe perform experiments with 12 programs. They atevator,
two read accesses and the first two write accesses (if they exist) totsp, sor, andhedc from [19];moldyn, montecarlo, andraytracer

each escaped variable, because the first two reads and writes to

from the Java Grande Benchmark Suite [18}ringBuffer,

can represent all discarded accesses for checking (conflict or view)Vector, Hashtable, andStack from Sun JDK 1.4.2; andigsaw

atomicity. The resulting trees and forests are said toibened

Theorem 7.1. For every(T, E), and every hypothesid about the
conflict-forest and view-forest in the theorems of Sectidid Aplds
for the trimmed forest iff it holds for the untrimmed forest.

Proof. 1. Consider reads. L&t be a set of three or more reads to

the same variable that share the same parent node. It is easy to se

that in both conflict forest and view forest, either all of them are
connected to a given write in another unit by inter-edges, or none
of them are connected to it. Suppose we evaldateonsidering
only the first two reads irR. It is easy to show that considering
additional reads iR either does not generate any additional inter-
edges, or the generated edges do not affect

2. Consider writes in the conflict-forest. LBf be a set of three

or more writes to the same variable that share the same parent node:

In the conflict forest, either all of them are connected to a given
read or write of another unit by inter-edges, or none of them are
connected to it. Similarly as for reads, we can show that considering
the third and subsequent writesT¥ either does not generate any
additional inter-edges, or the generated edges do not difeEor

the view forest, ifi¥ does not contain a unit-final write, then the
reasoning is similar to the previous case$}ifcontains a unit-final
write, it gets removed and the second writdihbecomes the unit-
final to that variable; it is easy to verify (for each hypotheKiy

that this does not affed. O

7.3 Dynamic Escape Analysis

from W3C [13]. elevator simulates the actions of multiple ele-
vators.tsp solves the travelling salesman problem; we run it on
the accompanying data fileap14. sor is a scientific computing
program which uses barriers rather than locks for synchronization.
hedc is a Web crawler that searches astrophysics data on the Web.
moldyn, montecarlo, andraytracer are computation-intensive
arallel programs that compute molecular dynamics, Monte Carlo
imulation, and ray tracing, respectivelpgsaw is a Web server
implemented in Java; we instrument only its packages that are re-
lated to HTTP service. Table 1 shows the number of lines of code
in instrumented classese,, it excludes code in uninstrumented
libraries. For all programs that accept the number of threads as an
argument, we use three threads. All experiments are done on a Sun
Blade 1500 with a 1GHz UltraSPARC 11l CPU, 2GB RAM, SunOS
5.8, and JDK 1.4.2.
Table 1 compares the running time, result and storage of the
commit-node algorithm for view-atomicity described at the end of
Section 4.2 with the off-line reduction-based algorithm [22] and
the pairwise block-based algorithm [22]. This version of the block-
based algorithm checks view-atomicity of all pairs of transactions;
the full block-based algorithm, which checks whether the entire set
of transactions is atomic, would be significantly slower. “LOC” is
the lines of code. “Base time” is the running time of the uninstru-
mented program. “Intrcpt time” is the running time when all events
relevant to atomicity checking are intercepted but not processed
(an empty method is called). For each algorithm, “time” includes
the running time of the instrumented program and the subsequent
analysis. “space” is the storage used by each algorithm. The storage

Before an object escapes from the thread that created it, all oper-of the commit-node algorithm is the sum of the number of nodes

ations on it can be ignored when checking atomicity. An object
escapes in the following scenarios: ¢lis stored in a static field or
a field of an escaped object; (@)s an instance of a thread and the
thread is started; (3) is referenced by a field of another objett
ando’ escapes (this leads to cascading escape)) {@)passed as
an argument to a native method that may cause it to escape.

and the number of inter-edges (which in these experiments is at
most 2/3 of the number of nodes) in the trimmed view-forest. The
storage of the reduction-based algorithm is the total size of lock-
sets (which store identifiers of lock objects) and thread-sets (which
store identifiers of thread periods) for all escaped variables. The
storage of the block-based algorithm is the number of blocks. “re-

2006/2/15

Program LOC Base | Intrcpt Commit-node Alg Reduction-based Alg Block-based Alg

time time time | report | space time | report| space time | report| space
elevator 528 0.2s 0.34s 0.4s| 0-2-0 342 0.5s| 0-2-0 184 0.6s| 0-2-0 108
tsp 706 | 0.24s 0.4s 40.0s| 0-2-0 | 3015 325s| 0-2-0| 530 8m59s| 0-2-0 | 13474
sor 251 | 0.47s 47.1s 52.4s| 0-0-0 90 53.3s| 0-0-0 64 1m4.1s| 0-0-0| 3056
hedc 2197 0.6s 0.82s 1.0s| 0-0-0 892 1.0s| 0-0-1 349 2.1s| 0-0-0| 1085
moldyn 1265 | 44.03s| 24m34s| 34m26s| 0-0-0 | 3819 | 38m22.1s| 0-0-0| 810 | 28m54.6s| 0-0-0 132
montecarlo 3619 | 15.85s| 7m37s| 7m43s| 0-0-0 148 8m10.1| 0-0-0 79 | 8mlld4s| 0-0-0 159
raytracer 1832 | 14.34s| 10m8s| 10m50s| 2-0-0 106 | 11m58.9s| 2-0-0 26 | 36m17.6s| 2-0-0 39
jigsaw 25012 | 1.60s 2.2s 3.4s| 1-3-0 | 4031 2.74s| 1-3-1| 2012 | 8m25.4s| 1-3-0 | 17254
StringBuffer 1255 - - - | 0-1-0 - - 0-1-0 - - | 0-1-0 -
Vector 1020 - - - | 4-4-0 - - | 4-4-10 - - | 4-4-0 -
Hashtable 1054 - - - | 0-4-0 - -| 041 - - | 0-4-0 -
Stack 119 - - - | 3-4-0 - - | 3-4-12 - - | 3-4-0 -

Table 1. Performance and Accuracy. The categories of “report” for the three algorithms are bug - benign - false alarm. A dash means that
the item is negligible.

port” reflects the warnings issued by each algorithm. We classify which could get an incorrect value, causing the program
warnings issued by each algorithm into three categories: to report failure. The bug injigsaw is due to atom-

B h . fl iolati ¢ icitv th iah icity violations involving the field w3c.tools.resources.
* Bug the warning reflects a violation of atomicity that might store.ResourceStoreManager.loadedStore due to state-

cause a violation of an application-specific correctness require- oo -5 aer o o0l oadedStore—— without synchroniza-

ment. tion; as a resultloadedStore may contain an incorrect value. The
¢ Benign the warning reflects a violation of atomicity that does error in jigsaw described in [20] does not appear in our experi-
not affect the correctness of the application. ments, because the relevant code was modified in the newer version

of jigsaw that we tested. The above atomicity violations involve
ity. data races. The errors ector andStack are from atomicity vi-
olations involving the fieldelementCount (discussed in Section

Table 1 shows, for each category, the number of methods suchl).
that a warning in that category is issued for a transaction thatisan ~ The reduction-based algorithm produces more false alarms
execution of that method or part of the code of that method. For the than the others. For example, somellection classes use
commit-node algorithm, we count based on the transactions that domodCount to count modifications. Thus, when an update method
not satisfy the condition in the hypothesis of Theorem 4.6. my executesnodCount++ (which is a read followed by a write),

We conclude the following from Table 1. (1) The commit- and another methodn, checks for recent modifications by
node algorithm has the same accuracy on these benchmarks aseading modCount, there is a serializable sequence of events
the pairwise block-based algorithm, and they are more accuratem;:readfiodCount) mo:readfiodCount) m;:write(modCount).
than the reduction-based algorithm; specifically, they produce no But the benign race omodCount causes the reduction-based
false alarms, while the reduction-based algorithm produces 25 falsealgorithm to produce a false alarm here, becatuse contains
alarms in total. Diagnosing a warning as a false alarm can re- two accesses taodCount that are non-movers. Similar scenar-
quire significant human time and effort, so reducing the number of ios exist in jigsaw (e.g, on the fieldalive in the method
false alarms is crucial in practice. (2) In the experiments, the pair- w3c.util.CachedThread.waitForRunner()) and other pro-
wise block-based algorithm does not miss any atomicity violations grams.
involving three or more transactionse(, no such violations are
present). (3) The commit-node algorithm is as fast as the reduction-
based algorithm (even 0.4% faster on average), and significantlyg' Related Work
faster than the block-based algorithm (56% faster on average). In [21, 22], we proposed the reduction-based and block-based al-

We also check these programs for conflict-atomicity using the gorithms for runtime atomicity checking. Flanagan and Freund [5]
commit-node algorithm presented in Section 4.1. It issues exactly independently proposed a reduction-based algorithm. Our previous
the same warnings (including bugs, benign and false alarms) as theexperiments showed that the reduction-based algorithm is faster,
commit-node algorithm for checking view-atomicity. This shows and the block-based algorithm is more accurate [22]. This paper
that the reduction-based algorithm issues false alarms because itpresents a new algorithm that is as fast as the reduction-based algo-
analysis is imprecise, not because it is checking conflict-atomicity rithm, is as accurate as the pairwise block-based algorithm, and can
while the other algorithms used for Table 1 check view-atomicity. detect atomicity violations involving any number of transactions.
The commit-node algorithm for conflict-atomicity is slightly faster We explored the use of static analysis to decrease the overhead for
(5.9% faster on average) than the commit-node algorithm for view- the reduction-based algorithm [17] and the block-based algorithm
atomicity, because the former needs less time to construct inter-[1]. The similar technique can be used to reduce the overhead of
edges. the commit-node algorithm as our future work.

We also test the programs by comparing pair of transactions Flanaganet. al. extended their atomicity type system to ver-
each time according to Theorems 4.2 and 4.5. Checking pairs of ify abstract atomicity of programs by analyzing purity [7]. We ex-
transaction for conflict-atomicity and view-atomicity produces the tended their work to verify atomicity of programs that use non-

¢ False alarm the warning does not reflect a violation of atomic-

same result as checking the whole set of transactions. blocking synchronization [23].
The bugs in raytracer come from atomicity viola- Model checking can also be used to check atomicity [9, 4].
tions involving the field JGFRayTracerBench.checksuml, Model checking provides stronger guarantees than runtime mon-

9 2006/2/15

itoring, because it considers all possible behaviors of a program. [5] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity
Also, many of the supporting analyses, such as dynamic escape checker for multithreaded programs. Pnoc. of ACM Symposium

analysis, analysis of arrays, deadlock detection, and special treat- 0on Principles of Programming Languages (POPpages 256-267.

ment of thread-local and read-only variables, etc., can be performed ~ ACM Press, 2004.

more easily and precisely in a model checker than by program in- [6] C. Flanagan and S. N. Freund. Type inference against rac&satic

strumentation [9]. However, model checking is more expensive and Analysis Symposium (SA8plume 3148 oL NCS Springer-Verlag,
is feasible only for programs with relatively small state spaces. Aug. 2004.

von Praun and Gross [20] present a static analysis to detect [7] C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting purity for
violations of method consistencyvhich is similar to atomicity. atomicity. IEEE Transactions on Software Engineer;i3d.(4), Apr.
Although their static analysis is unsound (in order to reduce the 2005.

cost and the number of false alarms), it considers the entire program [g] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
and therefore may be more thorough than runtime analysis in some Proc. ACM SIGPLAN Conference on Programming Language Design
cases. On the other hand, it produces more false alarms than our and Implementation (PLDIACM Press, 2003.

commit-node algorithm, based on a comparison of the false alarms [9] J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity specifica-

in our Table 1 with the false and spurious reports in Table 1 of [20]. tions for concurrent object-oriented software using model-checking.
Linearizability[11] is a correctness condition for objects which In Proc. 5th International Conference on Verification, Model Check-

are shared by concurrent processes. Linearizability can be viewed ing and Abstract Interpretation (VMCAIyolume 2937 ofLNCS

as a special case of strict serializability where transactions are re- Springer-Verlag, Jan. 2004.

stricted to consist of a single method applied to a single object [11]. [10] K. Havelund. Using runtime analysis to guide model checking of

Linearizability is defined semantically.e., in terms of the spec- Java programs. IRroc. 7th Intl. SPIN Workshop on Model Checking

ification (correctness requirements) of the object. In contrast, we of Softwarevolume 1885 of NCS pages 245-264. Springer-Verlag,

define atomicity in terms of operations performed by the imple- Aug. 2000.

mentation. Our definition is more restrictive but has the practical [11] M. P. Herlihy and J. M. Wing. Linearizability: a correctness

benefit of being directly applicable to programs for which formal condition for concurrent objectACM Transactions on Programming

correctness requirements are unavailable. Vafeiedial. present Languages and Systemi®(3):463—-492, July 1990.

an approach to use rely-guarantee reasoning to verify linearizabil- [12] Java Grande Forum. Java Grande Multi-threaded Benchmark Suite.

ity of several algorithms using fine-grain synchronization [18]. The version 1.0. Available from http://www.javagrande.org/.
approach is not automatic but provides static guarantees and can

analyze fine-grain synchronization for which our algorithms pro-
duce false alarms. [14] Decision Management Systems GmbH, Kopi compiler. Available
from http://www.dms.at/kopi/.

[13] Jigsaw, version 2.2.4. Available from http://www.w3c.org.

10. Conclusions and Future Work R o e R e s
This p?per ('jteflTeStr:WO kinds of tatom',(t';'ty; confllct-atomllt;lty "E‘)nd [16] C. H. Papadimitriou. The serializability of concurrent database
view-atomicity. In theory, view-atomicity IS more appealing be- updates.Journal of the ACM26(4):631-653, Oct. 1979.

cause it is less restrictive, but in our experiments, checking view-

atomicity and checking conflict-atomicity give the same results. It (17 @,‘pgfg;ﬁag&é?; r(\#ag}ilt‘é Ygizg’ ;?éj :tbr?{ic?tt;g?t;c A:éo,\;ln ated
is well-known that checking conflict-serializability is in P [3] and SIGPLAN 2005 Symposium on Principles and Practice of Parallel
checking view-serializability is NP-complete [16]; surprisingly, we Programming (PPoPR)ACM Press, June 2005.

show that the problems of checking conflict-atomicity and check- - . . .

: - o - : [18] V. Vefeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving
ing view-atomicity are polynomially reducible to each other. correctness of highly-concurrent linearizable objectsPioc. ACM

. In our experiments, the Commi.t-.node algorithms proposed in SIGPLAN 2006 Symposium on Principles and Practice of Parallel
this paper are as fast as and significantly more accurate than our Programming (PPOPP)ACM Press, 2006.

previous reduction-based algorithm, and they are as accurate as .)
PR . L [19] C. von Praun and T. R. Gross. Object race detectionPrbtec.
and significantly faster than our previous pairwise block-based 16th ACM Conference on Object-Oriented Programming, Systems,

algor.ithm.. Languages and Applications (OOPSIL#ylume 36(11) oSIGPLAN
Directions for future work include using static analysis to re- Notices pages 70-82. ACM Press, Oct. 2001.
duce the overhead of the commit-node algorithms, evaluating them

on larger applications, and considering fine-grain synchronization. [20] C.von Praun and T. R. Gross. Static detection of atomicity violations

in object-oriented programs. lfournal of Object Technology, vol.3,
no. 6 June 2004.

References [21] L. Wang and S. D. Stoller. Run-time analysis for atomicity. In
[1] R. Agarwal, A. Sasturkar, L. Wang, and S. D. Stoller. Optimized run- Third Workshop on Runtime Verification (RVO8lume 89(2) of
time race detection and atomicity checking using partial discovered Electronic Notes in Theoretical Computer Scierielsevier, 2003.
types. InProc. 20th IEEE/ACM International Conference on [22] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multi-
Automated Software Engineering (ASELM Press, Nov. 2005. threaded programs. Technical Report DAR-04-14, SUNY at Stony
[2] R. Agarwal, L. Wang, and S. D. Stoller. Detecting potential deadlocks Brook, Computer Science Dept., July 2004. (revised May 2005). To

with static analysis and runtime monitoring. Rtoceedings of the appear inEEE Transactions on Software Engineering
Parallel and Distributed Systems: Testing and Debugging (PADTAD) [23] L. Wang and S. D. Stoller. Static analysis for programs with non-
Track of the 2005 IBM Verification Conferen@pringer-Verlag, Nov. blocking synchronization. IRroc. ACM SIGPLAN 2005 Symposium
2005. on Principles and Practice of Parallel Programming (PPoPRLCM

[3] P. A. Bemnstein, V. Hadzilacos, and N. Goodma@oncurrency Press, June 2005.
control and recovery in database systerAsldison Wesley, 1987.

[4] C. Flanagan. Verifying commit-atomicity using model-checking. In
Proc. 11th Int'l. SPIN Workshop on Model Checking of Software
volume 2989 oL NCS pages 252-266. Springer-Verlag, 2004.

10 2006/2/15

A. Conflict-Atomicity

Let held-outsidén) denote the locks held by the executing thread
just before the thread executes the first event of nadeet held-
outsidén,n2) denote the locks acquired before the first event
noden; and released after the last event of nedeby the exe-
cuting thread. Leheld-midn1, n2) denote the locks acquired and
released between the last eventafand the first event ok, by
the executing thread.

Theorem 4.2 SupposéT’, §) has no potential for deadlock, and
T contains only two transaction&r’, §)) is conflict-atomic iff each
transaction irf” has at most one commit node in the conflict-forest.

Proof. “<": it follows from Theorem 4.1.

“=": Supposel’ = {t,t'}. We show thatT\,) is not conflict-
atomic if at least one transaction ifi has two or more commit
nodes. Without loss of generality, suppes$as at least two commit
nodes. Letr; andn, denote two commit nodes of Thus,t’ has
at least one commit node. Otherwigecannot have any commit
node. There must be a pair of conflicting events, denetednd
eh, e1 € ny ande] € n}, wheren} is a communication node ifj,
and there is an inter-edge betweenandn/ . Similarly, there must
be another pair of conflicting events, denotgdandes, ex € n2
ande) € nj, wheren) is a communication node i, and there is
an inter-edge between, andnj.

Suppose one of} andn’ contains the other ot} = n5. Then
there is a traceér wheren; andn’ happen between; andna,
becauséeld-outsidén;) N held-outsidér’) = @ for i = 1,2, where
n’ is the outer ofv} andnj, orn’ = nf if n] = nb. Thus,tr does
not have any conflict-equivalent serial trace.

Supposen; does not contaim) and vice versa. According
to the definition of conflict-forest, we knoWweld-outsidéni) N
held-outsidén}) = () andheld-outsidénz) N held-outsidéns)
(. Furthermore, because there is no potential for deadloekl-
mid(n},n3) N held-outsidén,,n2) = @ or held-midni,n2) N
held-outsidény, n5) = 0. Otherwise, if there exists a lodk €
held-midn1, n5) N held-outsidéni,ns2) and a lockls € held-
mid(n1, n2) N held-outsidén’, n5), thent acquireds while hold-
ing 11, andt’ acquired; while holdinglz, and there is no outer lock

wo

of e, int¢r. Note thate?!, ex
We consider four cases.

(2) If eyt ex? ande;, belong to different units, then there are
communication nodes such thdt € n,’?, e; € n;?, ex? € ny,,,
ezl € Ny, ex? € Ny, €32 € ng,k, and such that inter-edges
exist betweem,’* andng,,, betweem;’? andny,,, and between
N2 andng,l. The inter-edge implies that,? andn;! cannot
interleave, so,,} happens either before})? or aftern,’2 in tr (if
N5 happened betweemn;? andn;’2, it would contradict the fact
thatey ! is the write-predecessor ef, in ¢r). Thus, the commit
point of ;! is either before the commit point ef,,? or after the
commit point ofn;’2 in ¢r. Thereforeey? happens either before
e¥ or afterel, in tr’, soel, has the same write-predecesspt in
bothtr andtr’.

(2). If ey* andey? belong to the same unit, ther}’> must
happen either before;* or after e}, in ¢tr. For the first case,
e¥2 also happens before?* in tr'. For the second case, there
must be communication nodes,, andn,’2 that contaire;’? and
ez, respectively, andy;,, happens aften,’? in tr. Thus, e;?
also happens after;, in ¢r. Therefore,el, has the same write-
predecessaryt in tr andtr’.

(3). If eyt and e, belong to the same unit, thest’> must
happen either befor€;* or aftere’, in tr. For the first case, there
must be communication nodes;. andn,,? that contaire;’? and
ey, respectively, anak;,! happens befora,? in tr, soe;? also
happens before’* in tr’. For the second casey? happens after
el in tr’ by the same reason. Therefoeg, has the same write-
predecessary’t in tr andtr’.

(4). If e2? ande;, belong to the same unit, thetj> must happen
beforee;™ in tr, and there must be communication nodg$,
andn.,? that contaire;? andey*, respectively, and.,,} happens
beforen,? in ¢r. This impliese;? also happens befokg’* in ¢r'.
Therefore,e], has the same write-predecesst in both¢r and
tr'.

2. Now, we prove thatr andtr’ have the same trace-final write
to each variable. Suppose that the trace-final write to a variable
in tr is e£*, and another write to 2z happens beforeiﬁ/w in tr.

We prove thae? also happens before™ in tr. Lete¥ denote

ande;, cannot all be in the same unit.

to prevent those acquires from being interleaved, so these would bethe last write tar in the same unit as\! . Because:. " is the trace-

potential for deadlocks. Thus, there is a traeewhere bothn}
andn’ happen between; andn., or n; andn. happen between
n} andnj. As in the previous casey does not have any conflict-
equivalent serial trace. O

B. View-Atomicity

Theorem 4.4 SupposeT, E) has no potential for deadlock, and
E does not contain any synchronization operations. If each trans-
action of T has at most one commit node in the view-forest, then
(T, E) is view-atomic.

Proof. For any tracetr of (T, E), we prove that it has a view-
equivalent serial tracer’, which is constructed in the same way
as in Theorem 4.1. The definition for the commit point of each

final write of tr, e;”/ happens beforel™ in ¢r. According to the
algorithm in Figure 5, there must be two communication nades

andn’ such thate* € n ande® € n’. Thus,n’ must happen
beforen. Henceg? happens beforel™ in tr’. Sincee? can either
bee; or happen before} , e must happen before,”. O

C. The Polynomial Equivalence of Conflict- and
View-Atomicity
Lemma C.1. Suppos€gT,) has no potential for deadlock, and

T contains only two transactiongT’,) is not conflict-atomic iff
there are at least two inter-edges in the conflict-forest.

Proof. Suppose that the two transactions aendt’.
“=": We prove the contrapositive holds. If there is only one or

transaction is the same as in Theorem 4.1. By the same reasoninqio inter-edge betweehandt’, then it is easy to show that each

as in the proof of Theorem 4.15;’ is serial and consistent with the
synchronization operations, ¢d is a trace for(T, E).

1. We prove that each read has the same write-predecessor in

tr andtr’. Consider an arbitrary read, of a unitu € T U E. If

of them has at most one commit node, Bois conflict-atomic
according to Theorem 4.2.

“«<": Suppose that one inter-edge connects nagef ¢ and
noden} of ¢'; another inter-edge connects naggof ¢ and node

el does not have potential write-predecessors in units other thann of t'. These are two different edges,s0 # na orn} # nh. If

u, theel, has the same write-predecessotirandtr’ becauser’
preserves the internal order of events for each urilt in E.
Suppose:;, has potential write-predecessors in units other than
u, consider two potential write-predecessef$ and ez?, and
suppose without loss of generality thét' is the write-predecessor

11

n1 Or no is the ancestor of the other; andn’ cannot be ancestor
for each other according to the algorithm in Figure 3 (because the
“outmost common lock” condition would imply,y = ny and
n} n5), SO there are at least two commit nodestinhence
T is not conflict-atomic according to Theorem 4.2. Otherwise,

2006/2/15

contains at least two commit nodes, $ois not conflict-atomic are not read by other transactions, and those reads do not read

according to Theorem 4.2. O other transactions. Therefore, the resulting trace is a non-view-
serializable trace foF, soT is not view-atomic.
Lemma C.2. Suppos€T, () has no potential for deadlock, arid Let g be the serialization graph fer. Sincetr is not conflict-
contains only two transactiong7’,) is not view-atomic iff there serializable,g contains a cycle: of length two or morej.e., ¢
are at least two inter-edges in the view-forest. contains two or more transactions. In the following, we prove
o by contradiction that: cannot contain exactly two transactions.
Proof. The proof is similar as the proof for Theorem C.1. [Suppose that contains exactly two transactions andt;, thus,

¢ contains exactly two edges. We first show that the two edges
indicate two edges in the conflict-forest figrand¢; which are also

in the view-forest fort; and¢;. For the edge; — ¢;, there must

be two conflicting events; ande; from ¢; andt;, respectively,
ande; happens before; in ¢r; similarly, for the edge; — ¢,

Theorem 5.1 Checking conflict-atomicity dfl’,) and check-
ing view-atomicity of(T',) are polynomially reducible to each
other.

Proof. 1. We first prove that the problem of checking conflict-

" ;
atomicity can be polynomially reducible to the problem of checking t€re muslt be é‘f"?\ CO”ﬂ'Ctg‘gf eveni§ a”ﬁ € frﬁm Ifjjband fl
view-atomicity. We transforri” as follows. Let be a lock notused '€SPectively, and; happens be ore| in ¢r. There should be atleast
in T'. For each variable, each read’, is replaced by*? e” elrel; Mo |ntgr-edges in t.he conflict-forest for andtjlv. .Other\leeJ.e.,
and each write® is replaced by.?*? ¢” ¢ er<!. LetT" denote the if there is only one inter-edge betwegrnandt; (it is easy to know
resulting set oflfransactions v Twa o there must be |nter.-edge(s) because of these conflict events), both
Now we prove thaf is co.nflict-atomic iff 7" is view-atomic ei ande; ha_ppen_ elther before or after bc.ﬁh an_d € accordlng_
«=" For any tracetr of T, T is conflict-atomic implies that tq the algorithm in Figure 3. This contradicts with the co.nclu5|on
tr has én conflict-equivalent éerial trabe, We transformér and pllscussed gbove. Therefore, there must be at Iee_tst two inter-edges
tr- in the same manner that is used 1o ,transfdfnyielding P in the conflict-forest for; andt;. Because all non-final writes and
s " . : o the following reads are removed, each inter-edge in the conflict-
a;]ndtrs of T", r(;a_spectlv((jely. !:?]r ea(r:]h read in th_e orlgl(rj\al U4Ce forest must be one of the following two kinds of inter-edgigs:(
t ,e corresponding rea .m~ as the same erte-pr €decessor N -, veen a unit-initial read of one transaction and a unit-final write
tr’ andtr (because the insertions do not affect this relationship) to the same variable of the other transactionjigtietween a unit-
final write of one transaction and a unit-final write to the same

and the same write-predecessortinand ¢rs (because they are
H B : H /

conflict equivalent), and the same write-predecesserdndtr _variable of the other transaction. These two kinds of inter-edges

also exist in the view-foresti,e., all edges in the conflict-forest

(because the insertions do not affect this), so it has the same write
also exist in the view-forest that consists of the same transactions.

predecessor i’ andtr,. Similarly, we can show that the final
X | . .)
mgteert(te?j en?airt] t\é)agavk\i:ietelse\t/gits?k?;? c\t‘ritgnr?;;St.hle:(;;%aecrc])rzje;dwith Thus, if ¢ contains only two transactions, the view-forest would
’ contain two inter-edges between nodes in those two transactions,
so according to Lemma C.2, the two transactions would not be

respect to all other writes itr andtrs, so the associated read has
. i ; f :
the same write-predecessor il andtrf. Thus¢r’ has a view- view-atomic; this contradicts with the assumption that all pairs
of transactions are view-atomic. Heneecontains at least three

equivalent serial tracer,. Because the lock is not used inT’,
and is added in the pattern described above, there is a one-t0-ong, o4 ctions. LeT” denote the set of transactions contained-on
Hereafter we focus on the transactionsZih Let tr’ denote the

correspondence between trace§'aind traces of . According to
the previous analysis, each trace/tfhas an view-equivalent serial subsequence af obtained by removing all events of transactions
trace, sdl” is view-atomic. notinT’
“ ", / U H in- . i . . i
sertei wﬁg:w ?:?)%I?sttrruacctietr’?:ojr; 'ngrrr]?sm?;ﬁjéh: t?ggeratgn; in The algorithm in Figure 8 shows an algorithm to generate a
g ' y T ’ shortened cycle:, from c. We will show that existence of this
cycle impliesT is not view-atomic. The first three cases identify

By assumptiontr’ has a view-equivalent trade’,. Writes to the
h . s ;
same variable must occur in the same ordetrinand ¢r;. Oth- and mark the edges that denote precedence between transactions
for all serial traces view-equivalent to, i.e., if an edget; — t2

erwise, the inserted read next to some write would have a different
! oy g . X X o
write predecessor itr’ andtr. Using this observation, and similar is marked, thert; precedess in all serial traces view-equivalent
to tr. The next two cases add shortcut edges to shartehe

reasoning as above, we can show that view-atomicit§’amplies

conzflltl:\’j;)atomémtyoofgt.hat the problem of checking view-atomicity €W shortcut edges are immediately marked because they also
- NOW'We prov pr Ing view-atomicity yonote precedence between transactions for all serial traces view-

equivalenttr. In the algorithme is updated in each iteration, and

is polynomially reducible to the problem of checking conflict-
atomicity. We can check view-atomicity of pairs of transactions #r' is updated accordingly by removing the transactions not on the
currente. Let ¢, andtr, denote the cycle and trace:r’ when the

in T in polynomial time based on Theorem 4.5. In the following,

we prove that checking view-atomicity can be reduced to checking 44orithm terminates. Note that, is a sub-sequence of the original
conflict-atomicity when all pairs of transactions T are view- tr’. tr, does not have any view-equivalent serial trace, because of
the cyclic precedence of transactions indicated-hyMore details

atomic.
Because all pairs of transactions®fare view-atomic, all unit- A discussed next.
Each edge om must imply one of the six cases shown in the

non-final writes cannot be read by other transaction, and each rea
either reads a preceding write of its own transaction in all traces, or .« view write-read, view tradgeitial_read-write, view write-
tracefinal_write, write-read, writel-write2, and read-write. The

reads writes of other transactions in all traces. We remove from
added edgeg’ in each case also belongs to one of the six cases.

each transaction all unit-non-final writes and all unit-non-initial
reads,i.e, all unit-final writes and unit-initial reads are retained. An edge fromt, to t; marked in the case by “view write-read”
implies thatt; contains a write, whose written value is read by

Let Ty denote the resulting set of transactions.

!.\I :O>W V\Y\Z;pr%\(,(zt&aefcgn¥;gwé2}3$|%Iﬁgﬁol\,?,iﬁonﬂlcyt]g%r?rlgc e t;. Thus, for any sub-trace of’ obtained by deleting transactions
tr that i.s nofconflict-serialingle themyis not vige?v?serializable other thare; andt;, if it contains the write and read toin ¢; and
Restoring the writes and reads removed when construgtirdpes t;, respectivelyf; precedes; in all serial traces view-equivalent

not affect view serializability of the trace-, because those writes

12 2006/2/15

to that sub-trace. Edges marked in the cases view iratial _read-
write and view write-uniffinal_write have the similar implication.

In the case write-read, the write-predecessor of the read must be
in a third transactioni.e., t;, is neithert; nort;. To see this, first
note that the write-predecessordf cannot beel,, otherwise this
edge would be handled in the case “view write-read”. Therefore,
if t, weret;, t; would contain two writes tac contradicting the
fact that each transaction iy contains at most one write to each
variable. Ift; weret;, e; would not be a unit-initial read it;,
contradicting the fact that unit-non-initial reads are removed when
constructingl’y. In the following, we show by contradiction that
contains at least three transactions after being shortened. Suppose
¢ contains only two transactions, namely and ¢;, after being
shortenedc contains an edge;, — tx, which was onc already,
and the new-edgé, — t;. From the definition of view-forest, the
view-forest contains inter-edges corresponding to these two edges,
so according to Lemma C.2; andt;, are not view-atomic; this
contradicts the assumption. The algorithm marks the egdge ¢;
because, must precede; in all serial traces view-equivalent to
sub-traces ofr’ that contairnt;, andt;.

In the case writel-write2, the trace-final write must be in a third
transaction. Ift, weret;, t; would contain two writes to the same
variable, which implies a contradiction. tf, were t; this edge
would be processed in the case view write-Lfitial_write instead.
After being shortened in this case,must contain at least three
transactions. Otherwise, suppaseontains only two transactions,
namelyt; andtg, by the similar reasoning as above, the shortened
cyclec contains at least three transactions after this step. The added
edgeeg’ always implies that; must happen beforg, in all serial
traces view-equivalent to sub-tracestof that containt; andty,.

In the case “read-write, cannot be; because the’, is a unit-
initial read.t; cannot bef; because each transaction cannot have
two writes to the same variablé, cannot bet; becauses, is a
unit-initial read. Note that;, may bet;. Similar as beforeg must
contains at least three transactions after this step of shortening cycle
by the similar reasoning as above.

After each iteration of the algorithm in Figure 8,is always
a cycle with at least three nodese(, transactions), hence, is a
cycle and contains at least three transactions. Each &dge t;
of ¢, implies that transactiony must happen beforg in all serial
traces view-equivalent tor,,. Thus, existence of cycle, implies
that there is no serial trace view-equivalentt9. If we consider
only the transactions contained by, , after restoring the deleted
writes and reads, the resulting trace is still not view-serializable
because these deleted writes and reads do not interact with any
transaction except for its own. Because the set of transactions in
this trace is a subset @f, T is not view-atomic.

“<": SupposeTy is conflict-atomic. This implied is also
view-atomic. For each tradge of T', there is a corresponding trace
try of Ty, SinceTy is view-atomic, there is a serial trace; that
is view-equivalent totry. We can expandr; into a serial trace
tr® for T by restoring the removed unit-non-initial reads and unit-
non-final writes for each transactiofr:® is view-equivalent tar
because all reads have the same write-predecessorandr?,
and all trace-final writes are the sametinandtr®. Hence, T is
view-atomic. O

while(some edges aefare unmarked)

lett; — t; be an unmarked edge of c;

[* view write-read: this edge is kept i, */
if 3z.(the written value by a write}, of ¢; is read
by areack], of ¢; in tr')
markt; — t;;
continue;

[* view traceinitial _read-write: this edge is also keptdp */
if 3x.(¢; contains a trace-initial read afin tr’
andt; contains a write ter)
markt; — t;;
continue;

[* view write-tracefinal_write: this edge is also kept iny, */
if 3x.(¢; contains a write ta: and¢; contains
a trace-final write ta in ¢r”)
markt; — t;;
continue;

[* write-read: find the write-predecessor of the read, delete the
current path or from the write-predecessor to the read,
and add an edge from the write-predecessor to the read.*/

if 3z.(a writee? of t; happens before a read

of t; intr’)
let ¢, be the transaction that contains
the write-predecessor ef, in tr';
¢ = c - {path from¢; tot; onc};
remove from¢r’ transactions no longer an
c=cU{tk — t;};
mark edgé, — t;;
continue;

[* write1l-write2: find the trace-final write t@ in tr’,

delete the current path arfrom writel to write2,

and add an edge from writel to the trace-final write:to
if 3x.(a writee’ of t; happens before a writg’

of t; intr')

let ¢, be the transaction that contains the trace-final write

tozintr’;

¢ = c - {path from¢; to t; onc};

remove from¢r’ transactions no longer an

c=cUt; — tg,

markt; — tx;

continue;

[* read-write: find the write-predecessor of the read
and the trace-final write to the same variable,
connect the write-predecessor and the trace-final write,
at last delete the path that contains the read. */

if 3z.(a reade], of t; happens before a write;
of t; intr')
let ¢, denote the transaction that contains
the write-predecessor ef, in tr';
let ¢, denote the transaction that contains
the trace-final write te: in tr';

¢ = c - {path from¢,, to ¢, onc};

remove from¢r’ transactions no longer an
c=cUtr — tp;

markt, — tn;

continue;

Figure 8. The algorithm to reduce a conflict-atomicity violating
cycle to a view-atomicity violating cycle.

13

2006/2/15

