HW 2 Key:

Q4.
Let $S[i, j]$ be the shortest string which is a super-sequence of $B 1[1 \ldots$ i] and $B 2[1 \ldots j]$.
$S[0,0]=0, S[i, 0]=i$, and $S[0, j]=j$.
Recurrence Formula:

$$
\begin{aligned}
\mathrm{S}[\mathrm{i}, \mathrm{j}]= & \operatorname{Min}\{ \\
& \\
& \mathrm{S}[\mathrm{i}-1, \mathrm{j}-1]+1 ; \text { if } \mathrm{B} 1[\mathrm{i}]=\mathrm{B} 2[\mathrm{j}] \\
& \mathrm{S}[\mathrm{i}-1, \mathrm{j}]+1 \\
& \mathrm{~S}[\mathrm{i}, \mathrm{j}-1]+1
\end{aligned}
$$

Runtime: $\mathrm{O}(\mathrm{nm})$, where length of $\mathrm{B} 1=\mathrm{n}$ and length of $\mathrm{B} 2=\mathrm{m}$.
Q5.
Similar to Q 4 , consider 3 sequences at a time.
Runtime: $\mathrm{O}(\mathrm{nml})$, where length of $\mathrm{B} 1=\mathrm{n}$, length of $\mathrm{B} 2=\mathrm{m}$, and length of $\mathrm{B} 3=1$.
For K sequences, generalize the above formula for K sequences, Runtime: $\mathrm{O}\left(\mathrm{n}^{\wedge} \mathrm{K}\right)$
Q6.
Let $\mathrm{P}[\mathrm{i}, \mathrm{j}]$ be the minimum number of inserts for string $\mathrm{S}(\mathrm{Si} . . \mathrm{Sj})$ to become a palindrome.

Initialize:
$\mathrm{P}[\mathrm{i}, \mathrm{i}]=0$ for $\mathrm{i}=0$ to n $\mathrm{P}[0, \mathrm{i}]=\mathrm{i}$

Recurrence Formula:

$$
P[i, j]=\operatorname{Min}\{
$$

$$
P[i+1, j-1]+1, \text { if } S[i]=S[j]
$$

$$
\mathrm{P}[\mathrm{i}, \mathrm{j}-1]+1
$$

$$
\mathrm{P}[\mathrm{i}+1, \mathrm{j}]+1
$$

\}
Runtime: $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$

