
Lecture 3:
Combinatorial Generation

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Contest Results

Winner: Overflowed (10 problems, 1552 minutes)

Topic: Combinatorial Objects

• Combinatorial Objects

• Ranking and Unranking

• Subsets

• Permutations

• Integer Partitions

• Trees and Graphs

Recursive Decompositions of Combinatorial
Objects

A L G O R I T H M A L G O R I T H M

9
9 −

4 −
{4,1,5,2,3} {1,4,2,3}4

{1,2,7,9} {1,2,7}

Classical Combinatorial Objects

• Permutations and Strings

• Subsets and k-Subsets

• Set Partitions, Integer Partitions and Young Tableaux

• Trees and Graphs

Properties of Combinatorial Objects

• There are a discrete number of them for any given size, so
they can be counted.

• The number of distinct objects typically grow exponen-
tially with size.

• They can typicially be generated by backtracking, but . . .

• There are more interesting ways to work with them.

Generation by Backtracking

void backtrack(int a[], int k, data input) {
int c[MAXCANDIDATES]; /* candidates for next position */
int nc; /* next position candidate count */
int i; /* counter */

if (is_a_solution(a, k, input)) {
process_solution(a, k,input);

} else {
k = k + 1;
construct_candidates(a, k, input, c, &nc);
for (i = 0; i < nc; i++) {

a[k] = c[i];
make_move(a, k, input);
backtrack(a, k, input);
unmake_move(a, k, input);

if (finished) {
return; /* terminate early */

}
}

}
}

Questions?

Topic: Ranking and Unranking

• Combinatorial Objects

• Ranking and Unranking

• Subsets

• Permutations

• Integer Partitions

• Trees and Graphs

Operations on Combinatorial Objects

• Count(n) – how many objects are there of size n?

• Rank(x,n) – What number or position is object x in an
ordering of all objects of size n?

• Unrank(i,n) – Construct the ith object in the ordering of
all objects of size n.

• Next(x) – Return the object appearing directly after x in
the ordering of all objects of size n.

• RandomGen(n) – Return an object selected uniformly at
random from all objects of size n.

Permutations Example

{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}

• Count[3] = 6

• Rank[{1, 3, 2}, 3] = 1

• Unrank[3, 3] = {2, 3, 1}
• Next[{2, 3, 1}] = {3, 1, 2}
• Previous[{1, 2, 3}] = {3, 2, 1}
• RandomGen[3] = {1, 3, 2}

Everything Follows from Count, Rank, and
Unrank

• x = Unrank(Rank(x,n), n)

• Next(x)→ Unrank(Rank(x,n) + 1, n)

• Previous(x)→ Unrank(Rank(x,n) + 1, n)

• RandomGen(n)→ Unrank(RandInt(0:Count(n)-1), n)

Better is to do Next/Previous mod Count(n) to get a cyclic
order.
Further, Rank and Unrank follow from Count

Natural Generation Orders

• Lexicographic or sorted order:
permutations: 123, 132, 213, 231, 312, 321
subsets: {} {1} {12} {123} {13} {2} {23} {3}

• Minimum change order: (one swap or insertion/deletion)
permutations: 123, 321, 231, 132, 312, 213
subsets: {} {1} {12} {2} {23} {123} {13} {3}

Rank and Unrank depend upon which generation order is
used.

Questions?

Topic: Subsets

• Combinatorial Objects

• Ranking and Unranking

• Subsets

• Permutations

• Integer Partitions

• Trees and Graphs

Counting Subsets

{}
{1}

{2}

{2,3}

{1,2,3}

{3}

{1,3} {1,2}

The recursive formula is:

Count(n) = 2× Count(n− 1)

Count(0) = 1

Binary Counting Representation

Thus Count(n) = 2n, the same as the number of strings of
boolean true/false or the number of bit patterns of length n.
Need arbitrary precision arithmetic to count for large n.
The bijection between length-n binary strings and the set of
integers {0, 1, . . . , 2n − 1} given by

bn−1bn−2 . . . b2b1b0 ⇐⇒
n−1∑
i=0

2ibi,

is well-known because it is the standard way of representing
integers in computers.

Ranking Subsets

Lexicographic order is hard to rank/generate, so use binary
counting:
0 1 2 3 4 5 6 7

000, 001, 010, 011, 100, 101, 110, 111

• if (Head(x)==0) Rank(x,n) = Rank(Rest(x),n-1)

• if (Head(x)==1) Rank(x,n) = 2n−1 + Rank(Rest(x),n-1)

• Rank(1,3,5,6) = 25 + 23 + 21 = 42

Unranking Subsets

If i > 2n−1, the first bit is zero and item 1 is not in the subset.
SubsetUnrank[i,n] = Unrank[i,1,n]

• If (i ≥ Count(n− 1))

Unrank(i, j, n) = {j} ∪ Unrank(i− 2n−1, j + 1, n− 1)

• If (i < Count(n− 1))

Unrank(i, j, n) = Unrank(i, j, n− 1)

Unrank(6,1,3) = {1} ∪ Unrank(2, 2, 2) =
{1, 2} ∪ Unrank(0, 3, 1) = {1, 2}

Gray Codes

Gray codes are minimum change orderings for subsets of n
items.
The neighbor of each subset is constructed by adding or
deleting a single element.
A Gray code for n = 4 is: {}, {4}, {3, 4}, {3}, {2, 3}, {2, 3,
4}, {2, 4}, {2}, {1, 2}, {1, 2, 4}, {1, 2, 3, 4}, {1, 2, 3}, {1,
3}, {1, 3, 4}, {1, 4}, {1}

Gray Codes and Hamiltonian Cycles

Each Gray code ordering corresponds to a Hamiltonian
cycle on the minimum change graph for subsets, which is a
hypercube.

Binary Reflected Gray Codes

There is a nice recursive construction. Build a Gray code of
size n − 1, concatenate it to its reverse, and add n to each
member of the reversed copy.

There are ranking and unranking methods for Gray codes, but
binary counting is easier in our counting-based approach.

Strings

There are αn strings of length n built from an alphabet of size
α, because there are α choices for each position.
For n = α = 3: 000 001 002 010 011 012 020 021 022 100
101 102 110 111 112 120 121 122 200 201 202 210 211 212
220 221 222
To rank string S,

Rank[S, n] = S[1] ∗Count[n− 1, α] +Rank[Rest[S], n− 1]

Unranking is finding the first character by bi/Count[n − 1]c
and then recurring.

De Bruijn Sequences

The shortest circular string which contains all strings of
length k exactly once.
00010111 = 000, 001, 010, 101, 011, 111, 110, 100
11101000 = 111, 110, 101, 010, 100, 000, 001, 011
These are “safecracker” sequences, the most efficient way to
try all possible combinations.

Eulerian Cycles and De Bruijn Sequences

Construct a directed graph where each vertex represents a
(k − 1)-mer, and each directed edge is tables with a symbol
such that each edge represents a k-mer.

A Hamiltonian cycle on this graph defines a de Bruijn
sequence.
But even better, an Eulerian cycle on this graph defines a
longer de Bruijn sequence.
Note indegree = outdegree.

K-Subsets

A k-subset is a subset with exactly k elements in it.
For n = 5, k = 3: {123} {124} {125} {134} {135} {145}
{234} {235} {245} {345}
A simple recursive construction starts from the observation
that each k-subset on n elements either contains the first
element of the set or it does not.
Thus the number of k-subsets of 1 . . . n is:

n
k

 =

n− 1

k − 1

 +

n− 1

k

.

Prepending the first element to each (k−1)-subset of the other
n−1 elements gives the former, and building all the k-subsets
of the other n− 1 elements gives the latter.

The first element appears in Unrank[i,n] iff i <
n− 1
k − 1



Grid Paths and k-Subsets

Any shortest path across an n + 1×m + 1 grid consists of n
down hops and m right hops.
Each such path is defined by picking the positions of the n
down hops as an n-subset of [1, . . . , n +m].

Questions?

Topic: Permutations

• Combinatorial Objects

• Ranking and Unranking

• Subsets

• Permutations

• Integer Partitions

• Trees and Graphs

Permutations
A permutation is an ordering or arrangment of 1, . . . , n.
{1234}, {1243}, {1324}, {1342}, {1423}, {1432}, {2134},
{2143}, {2314}, {2341}, {2413}, {2431}, {3124}, {3142},
{3214}, {3241}, {3412}, {3421}, {4123}, {4132}, {4213},
{4231}, {4312}, {4321}

{1,3,2}

{2,3,1}

{3,2,1}

{1,2,3}

{2,1,3}

{3,1,2}

Counting Permutations

The first element of permutation p can be anything from
1, . . . , n, and then recur with any arrangement of the other
n− 1 elements:

Count[n] = n× Count[n− 1] = n!

Count[1] = 1

Ranking Permutations

For permutations in lexicographic order, the rank of permuta-
tion p is

Rank[p, n] = (p[1]− 1)×Rank[Rest[p], n− 1]

Note that the permutation must be renormalized after
removing the head:
Rest[3,1,4,2,5] = [1,3,2,4]

Unranking Permutations

The first element of Unrank[i, n] is given by
di + 1/Count[n − 1]e, then recur — but adjust for missing
elements

Unrank[14, 4]→ [3] + Unrank[14− 2× (3!), 3]→

[2] + Unrank[0, 2]→ [1, 4]

The reason it is [1,4] instead of [1,2] is that 2 and 3 have been
used so far.

Minimum Change Ordering
The minimum possible change between permutations is a
swap of a pair of elements e.g. 3,1,4,2,5 and 3,1,4,2,5.
Minimum change or maximum change orders can be found
through Hamiltonian cycles on the appropriate graph.

Special permutation generation algorithms (e.g. Johnson-
Trotter) can generate permutations which differ in one
neighboring transposition.

{1234}{2134}{3124}{1324}{2314}{3214}

{4213}{2413}{1423}{4123}{2143}{1243}
{1342}{3142}{4132}{1432}{3412}{4312}
{4321}{3421}{2431}{4231}{3241}{2341}

Derangements

Derangements are permutations where there is no element i
in position i.

{4213}{2413}{4123}{2143}{3142}{3412}{4312}{4321}{3421}{2341}

In any derangement, either n swaps position with i (leaving
the remaining n− 2 items to be deranged) or n is in position
i such that i cannot be in position n (leaving n − 1 elements
to be deranged). So:

D[n] = (n− 1)D[n− 2] +D[n− 1]

Questions?

Topic: Integer Partitions

• Combinatorial Objects

• Ranking and Unranking

• Subsets

• Permutations

• Integer Partitions

• Trees and Graphs

Integer Partitions
An integer partition (in short, partition) of a positive integer
n is a set of strictly positive integers which sum up to n.
By convention, partitions are listed in non-increasing order.
{{6}, {5, 1}, {4, 2}, {4, 1, 1}, {3, 3}, {3, 2, 1}, {3, 1, 1, 1},
{2, 2, 2}, {2, 2, 1, 1}, {2, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1}}

Ferrer’s Diagrams of Integer Partitions

My citations on Google Scholar can be represented by an
integer partition, with my H-index being the red square (at
least h papers each with at least h citations).

Counting Integer Partitions

Counting partitions is best done by solving a more general
problem, where Count[n,k] gives the number of n with a
largest part of at most k.
The largest part of any such partition is either k or < k, so:

pn,k = pn−k,k + pn,k−1, for n ≥ k > 0.

Letting pn,0 = 0 for all n > 0 and p0,k = 1 for all k ≥ 0, we
get a recurrence relation for pn,k.
The total number of partitions of n, pn, is equal to pn,n, and
so this recurrence can be used to compute pn as well.

Bijections on Integer Partitions

Flipping the dots across the main diagonal proves that
CountKParts(n, k) = CountMaxPart(n, k).

Ranking and Unranking Integer Partitions

The number of partitions with largest part exactly k is
Count[n,k]-Count[n,k-1]
Lexicographic order sorts the partitions based on the size of
the largest part, so for a given integer partition p, we can find
the rank of the first partition with k = p[1] and recur.
Unranking naturally inverts this procedure.

Questions?

Topic: Set Partitions

• Combinatorial Objects

• Ranking and Unranking

• Subsets

• Permutations

• Integer Partitions

• Set Partitions

• Trees and Graphs

Set Partitions

A set partition is a partition of a set into disjoint subsets.
[{1, 2, 3, 4}],
[{1}, {2, 3, 4}], [{1, 2}, {3, 4}], [{1, 3, 4}, {2}], [{1, 2, 3},
{4}], [{1, 4}, {2, 3}], [{1, 2, 4}, {3}], [{1, 3}, {2, 4}],
[{1}, {2}, {3, 4}], [{1}, {2, 3}, {4}], [{1}, {2, 4}, {3}], [{1,
2}, {3}, {4}], [{1, 3}, {2}, {4}], [{1, 4}, {2}, {3}],
[{1}, {2}, {3}, {4}]
Assuming a total order on a setX , a canonical way of writing
a set partition of X is this: write each subset in increasing
order and write the subsets themselves in increasing order of
their minimum elements.

Set Partitions in Action

The vertex coloring of a graph is a set partition: each part is
the subset of vertices of a given color.
A clustering is a set partition: the items in one cluster appear
as one part in the partition
A set packing is a set partition: each item belongs to exactly
one set in the packing.

Counting Set Partitions

The number of set partitions of {1, 2, . . . , n} having k blocks
is a fundamental combinatorial number called the Stirling
number of the second kind.

We use {n
k
} to denote the number of set partitions of

{1, 2, . . . , n} having k blocks.
The largest element n is either it is own part or at the end of
one of k existing parts, so:

{n
k
} = {n− 1

k − 1
} + k{n− 1

k
}

The Bell Numbers

The total number of set partitions of {1, 2, . . . , n} is the nth
Bell number, denotedBn, another fundamental combinatorial
number.

Clearly, Bn =
∑n
k=1 {

n
k
}

However, the identity

Bn =
n−1∑
k=0

n− 1
k

Bn−(k+1)

provides an alternate way.
The first part in a set partition contains 1 and k other elements,
each choice of which which leaves n − (k + 1) items to
partition in the other parts.

Summed over all possible k and simplified using the
symmetry of binomial numbers we get:

Bn =
n−1∑
k=0

n− 1
k

Bn−(k+1) =
n−1∑
k=0

n− 1
k

Bk.

Ranking and Unranking Set Partitions

Lexicographic ordering is by the number of parts.

So i < ∑x
k=1 {

n
k
} with the smallest x tells us the number of

parts.
The Stirling number recurrence then tells us whether n is in
its own part, or if not what part it is in.
Then recur to unrank the remaining elements.

Young Tableaux

A Young tableau of shape (n1, n2, . . . , nm) where n1 ≥ n2 ≥
· · · ≥ nm > 0 is an arrangement of n1+n2+ · · ·+nm distinct
integers in an array of m rows with ni elements in row i such
that each row and in each column are in increasing order.

Sequencing Young Tableaux

Young tableau are set partitions with the shape of integer
partitions, with rows and columns that are ordered:
{{1, 2, 3, 4}},
{{1, 3, 4}, {2}},
{{1, 2, 4}, {3}},
{{1, 2, 3}, {4}},
{{1, 3}, {2, 4}},
{{1, 2}, {3, 4}},
{{1, 4}, {2}, {3}},
{{1, 3}, {2}, {4}},
{{1, 2}, {3}, {4}},
{{1}, {2}, {3}, {4}}

Counting Young Tableaux

Each position p within a Young tableau defines an L-shaped
hook, consisting of p, all the elements below p, and all the
elements to the right of p.
The hook length formula gives the number of tableaux of a
given shape as n! divided by the product of the hook length
of each position, where n is the number of positions in the
tableau.
A convincing argument that the formula works is, of the n!
ways to label a tableau of given shape, only those where the
minimum element in each hook is in the corner

Hook Length Example

The hook length formula tells us there are 7!/(6×3×4×2) =
35 tableaux of this shape.

Parenthesizations

A well-formed formula is a legal sequence of n sets of
parentheses.
For n = 3 there are five parenthesizations: ()()(), ()(()), (())(),
(()()), ((())).
How many parenthesizations of n sets of parenthesis?

Catalan Numbers

Since any balanced set of parentheses has a leftmost point
k + 1 at which the number of left and right parentheses are
equal, peeling off the first left parenthesis and the k + 1th
right parenthesis leaves two balanced sets k and n − 1 − k
parentheses, which leads to the following recurrence:

Cn =
n−1∑
k=0

CkCn−1−k =
1

n + 1

2n
n

 =
(2n)!

(n + 1)!n!

The Catalan numbers also count the number of triangulations
of a convex polygon and the number of paths across a lattice
which do not rise above the main diagonal.

Counting Parenthesizations as Young Tableaux

The number of parenthesizations is equal to the number of
{n, n}/ Young tableaux.
When filled with the numbers from 1 to 2n, the top row gives
the positions of of the left paren and the bottom row the
positions of the right parens.
Thus the ith (must appear before the ith).

Questions?

Topic: Trees and Graphs

• Combinatorial Objects

• Ranking and Unranking

• Subsets

• Permutations

• Integer Partitions

• Set Partitions

• Trees and Graphs

Counting Unlabeled Trees/Graphs is Hard

Testing whether two unlabeled graphs are the same (isomor-
phic) is challenging, which implies there is no easy way to
get an exact count of them.

Listing Labeled Trees

Counting Labeled Trees

That there are nn−2 distinct labeled trees on n vertices is
shown by Prüfer codes, a bijection between such trees and
strings of n− 2 integers between 1 and n.
The key to Prüfer’s bijection is the observation that for any
tree there are always at least two vertices of degree one.
Start with an n-vertex tree T , whose vertices are labeled 1
through n. Let u be the leaf with smallest label and let v be
the neighbor of u. Note that u and v are uniquely defined. We
now let v be the first symbol in our string, or Prüfer code.
After deleting vertex u we have a tree on n − 1 vertices, and
repeating this operation until only one edge is left gives us
n− 2 integers between 1 and n.

Ranking/Unranking Labeled Trees

The Prüfer codes imply we can rank and unrank labeled trees
exactly how we rank n − 2 length strings on an alphabet of
size n.

Labeled vs. Unlabeled Graphs

Dealing with unlabeled graphs gets into challenging problems
of graph isomorphism: are two graphs the same?

Counting Labeled Graphs

Every simple undirected labeled graph on n nodes and m

edges represents a selection ofm edges from the
n
2

 = n(n+1)
2

possible edges.
Thus these can be ranked/unranked like k-subsets, or just
subsets if m is not given.

Questions?

Topic: Conclusion

You Can Count On This

For any type of combinatorial object you can count, you can
rank/unrank, next/previous, or randomly select.
Even if you can’t count them, if you can build a graph
of related objects, you can sequence them by finding a
Hamiltonian path

For Further Reading

• Donald Knuth, Combinatorial Algorithms, Part I, Volume
4a of the Art of Computer Programming, 2011.

• Frank Ruskey, Combinatorial Generation, Working
Draft, https://page.math.tu-berlin.de/

˜felsner/SemWS17-18/Ruskey-Comb-Gen.
pdf, 2003

• Pemmaraju and Skiena, Computational Discrete Mathe-
matics: Combinatorics and Graph Theory with Mathe-
matica, 2003

• The Online Encyclopedia of Integer Sequences,
https://oeis.org/

https://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf
https://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf
https://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf

Questions?

