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Abstract

We present a new method for the detection and estimation of multiple directional illumi-

nants, using a single image of any object with known geometry and Lambertian reflectance.

We use the resulting highly accurate estimates to modify virtually the illumination and geom-

etry of a real scene and produce correctly illuminated Augmented Reality images. Our method

obviates the need to modify the imaged scene by inserting calibration objects of any particular

geometry, relying instead on partial knowledge of the geometry of the scene. Thus, the recov-

ered multiple illuminants can be used both for image-based rendering and for shape recon-

struction. Our method combines information both from the shading of the object and from

shadows cast on the scene by the object. Initially, we use a method based on shadows and

a method based on shading independently. The shadow-based method utilizes brightness var-

iation inside the shadows cast by the object, whereas the shading-based method utilizes bright-

ness variation on the directly illuminated portions of the object. We demonstrate how the two

sources of information complement each other in a number of occasions. We then describe an

approach that integrates the two methods, with results superior to those obtained if the two

methods are used separately. The resulting illumination information can be used (i) to render

synthetic objects in a real photograph with correct illumination effects, and (ii) to virtually re-

light the scene.
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1. Introduction

In order to integrate seamlessly a virtual object in a real scene (i.e., synthesize an

Augmented Reality image [1]), we need to simulate accurately the interactions of the

virtual object with the illumination of the scene. Furthermore, to manipulate real-
istically existing images, knowledge of illuminant directions is necessary both in

image-based computer graphics, and in computer vision for shape reconstruction.

This problem is particularly hard for diffuse (Lambertian) surfaces and directional

light sources and cannot be solved using local information only. Lambertian reflec-

tance is the most common type of reflectance. In this work we concentrate on direc-

tional light sources because they have the most pronounced effects in the appearance

of a scene and any errors in their estimation will cause noticeable errors and incon-

sistencies in the resulting Augmented Reality images. Previous methods that estimate
multiple light sources require images of a calibration object of given shape (typically

a sphere) which needs to be removed from the scene and might cause artifacts. In-

stead, our method relies on partial knowledge of the geometry of the scene and

can be used on objects of arbitrary shape. This allows us to possibly use any diffuse

object in the scene for illumination calibration. We present a new method that inte-

grates information from shadows and shading in the presence of strong directional

sources of illumination. The shadow-based method utilizes brightness variations in-

side the shadows cast by the object, whereas the shading-based method utilizes
brightness variations on the directly illuminated portions of the object. The proposed

integrated method is both more accurate and more general in its applicability, than

the two methods applied separately.

In the last few years, there has been an increased interest in estimating the reflec-

tance properties and the illumination conditions of a scene based on images of the

scene. The interest in computing illuminant directions first arose from shape from

shading applications, and focused on recovering a single light source [7,12,20,31].

However, illumination in most real scenes is more complex and it is very likely to
have a number of co-existing light sources in a scene. An early attempt to recover

a more general illumination description [8], modeled multiple light sources as a poly-

nomial distribution. A discussion of the various types of light sources can be found

in [11]. With the advent of Image Based Modeling and Rendering (IMBR) methods

in Computer Graphics, it quickly became apparent that accuracy, photorealism, and

generality of many IMBR applications depends on the knowledge of such properties

and parameters. As a result a number of methods were proposed, which recovered

illumination parameters or reflectance properties of the scene in the form of BRDFs
(Bidirectional Reflectance Distribution Functions) [4,5,10,14–16,19,21,23,25,28,29].

Most of these methods are geared towards the production of high quality images,

requiring extensive data collection with the use of specialized equipment

[4,5,28,29] and off-line processing [10,16], or have particularly restrictive assump-

tions, e.g., a single light source [21]. Such methods would not be of use if only one

or a few images of the scene are available. More relevant work is the system pro-

posed by [14], aimed at interactive relighting of indoor scenes, requiring knowledge

of complete scene geometry and using fast radiosity methods. Radiosity computa-
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tions in a complex outdoor scene, even if accurate geometry was known, would be

prohibitively slow.

A domain of computer graphics research that has recently attracted increased in-

terest, Augmented Reality (AR) is a variation of Virtual Environments (VE) with the

following three characteristics: (1) combines real and virtual, (2) interactive in real
time, (3) real and virtual objects are registered in 3-D [1]. To achieve a high quality

synthesized image in an Augmented Reality system, three aspects have to be taken

into account: geometry, illumination, and real-time performance [22]. In particular,

estimation of illumination parameters from images is necessary, in order to compen-

sate for illumination artifacts, and also to allow super-imposition of synthetic images

of new objects into real scenes. Most such methods need to use a calibration object of

fixed shape, typically a sphere. In [17] a calibration object that comprises of diffuse

and specular parts is proposed. In [4] a specular sphere is used as a light probe to
measure the incident illumination at the location where synthetic objects will be

placed in the scene. Such a sphere though might have strong inter-reflections with

other objects in the scene, especially if they are close to it. Using the Lambertian

shading model, Yang and Yuille [27] observed that multiple light sources can be de-

duced from boundary conditions, i.e., the image intensity along the occluding

boundaries and at singular points. Based on this idea, Zhang and Yang [30] show

that the illuminant directions have a close relationship to critical points on a Lam-

bertian sphere and that, by identifying most of those critical points, illuminant direc-
tions may be recovered if certain conditions are satisfied. Conceptually, a critical

point is a point on the surface such that all its neighbors are not illuminated by

the same light sources. However, because the detection of critical points is sensitive

to noise, the direction of extracted real lights is not very robust to noisy data. Re-

cently, an illuminant direction detection method that minimizes the global error

was proposed by Wang and Samaras [26]. In general, each point of a surface is illu-

minated by a subset of all the directional light sources in the scene. The method seg-

ments the surface robustly into regions (‘‘virtual light patches’’), with each region
illuminated by a different set of sources. Then, real lights can be extracted, based

on the segmented ‘‘virtual light patches’’ instead of critical points that are relatively

sensitive to noise. Since there are more points in a region than on the boundary, the

method�s accuracy does not depend on the exact extraction of the boundary and can

tolerate noisy and missing data better. When the observed shape is not spherical, its

normals are mapped to a sphere (for an example see Fig. 7), although a lot of nor-

mals will be missing. However the method works well even for incomplete spheres, as

long as there are enough points inside each light patch for the least-squares method
to work correctly.

Inserting calibration objects in the scene complicates the acquisition process, as

they either need to be physically removed before re-capturing the image, which is

not always possible, or they need to be electronically removed as a post processing

step, which might introduce artifacts in the image. Our proposed method can be ap-

plied to objects of known arbitrary geometry, as long as that shape contains a fairly

complete set of normals for a least-squares evaluation of the light sources. Thus,

it would be possible to estimate the illuminants from the image of a scene, using
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geometry that is part of the scene. Although estimating the object geometry from the

image would be more convenient, current single image computer vision methods do

not provide the necessary accuracy for precise illuminant estimation. Such accuracy

can be achieved only by more cmplex multi-image methods [13] that require precise

calibration. The idea of using arbitrary known shape can also be found in the ap-
proach of Sato et al. [23], which exploits information of a radiance distribution inside

shadows cast by an object of known shape in the scene. Recently, under a signal pro-

cessing approach [2,19], a comprehensive mathematical framework for evaluation of

illumination parameters through convolution is described. Unfortunately, this

framework does not provide a method to estimate high-frequency illumination such

as directional light sources when the BRDF is smooth, as in the Lambertian case.

Convolution is a local operation and the problem is ill-posed when only local infor-

mation is considered [3]. Our method uses global information to overcome this prob-
lem, and in this sense, it is complementary to the methods of [2,15,19].

In this paper, we propose a new method for multiple directional source estimation,

that integrates illumination estimation from shading [26] and shadows [23]. Both

methods rely on knowledge of the illuminated geometry but do not require a specific

calibration object. However they have different strengths and weaknesses. Often the

shadow of a light source that shades a large visible area of an object is occluded and

vice versa. The Hough transform can introduce spurious lights in the shading-based

method and the extended area source approximation of directional sources in the shad-
ow-based method can introduce significant errors. We demonstrate how the two

sources of information complement each other in a number of occasions. Even when

both methods are applicable at the same time, combining them reduces the error and

speeds up computation. Hence, we arrive at an approach that integrates the twometh-

ods, with results superior to those obtained if the twomethods are used separately. The

resulting illumination information can be used (i) to render synthetic objects in a real

photograph with correct illumination effects, and (ii) to virtually re-light the scene.

The rest of this paper is structured as follows. Section 2 describes the notion of crit-
ical points and their properties as they pertain to our problem. Section 3 describes the

basic shading-based algorithm and extensions that make it robust to noise andmissing

data. These properties of our algorithm allow its application to objects of arbitrary

shape in Section 3.4. The shadow-based algorithm is in Section 4. The two methods

are compared and integrated in Section 5. We apply our method to the synthesis of

Augmented Reality images in Section 6 and conclude with future work in Section 7.
2. Critical points

Definition 1. Given an image, let Li, i ¼ 1; 2; . . ., be the light sources of the image. A

point in the image is called a critical point if the surface normal at the corresponding

point on the surface of the object is perpendicular to some light source Li.

We assume that images are formed by perspective or orthographic projection and

the object in the image has a Lambertian surface with constant albedo, that is the
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BRDF f ðhi;/i; he;/eÞ is known to be a constant and each surface point appears

equally bright from all viewing directions
1 W

resolut
E ¼ qLiL � n ¼ qLi cos hi; ð1Þ
where E is the scene radiance of an ideal Lambertian surface, q is the albedo, L

represents the direction, and Li represents the amount of incident light, and n is the

unit normal to the surface.

Initially, the algorithm is developed using a sphere model and subsequently ex-

tended [26] to objects of arbitrary shape.

• We assume the observed object is a sphere with Lambertian reflectance properties

whose physical size is already known.
• For light sources whose direction is co-linear with the lens axis of the camera, 1 the

best possible result is their equivalent frontal light source Lfrontal.

It has been proven in [30] that it is not possible to recover the exact value of the

intensity of any individual light source among four (or more) pairs of antipodal light

sources (i.e., opposite direction light sources). However, this kind of situation, i.e.,

an object illuminated by antipodal light sources, happens rarely, so for simplicity

in the rest of this paper, we will make an additional assumption that there are no

antipodal light sources.
2.1. Sphere cross-section with a plane P

Let P be an arbitrary plane such that S, the center of the sphere, lies on it (Fig. 1),

Li; i ¼ 1; 2; . . . ; be the light sources of the image and ðLiÞP their projections on P. A
point on the arc s can be specified by its corresponding angle parameter in ½a; b� using
the following proposition [30]:

Proposition 1. Consider an angle interval ½a; b� of a sphere cross-section (Fig. 1). We
can always find a partition h0 ¼ a < h1 < � � � < hn ¼ b of the interval ½a; b� such that in
each ½hi�1; hi� we have EðhÞ ¼ bi sin h þ ci cos h for some constants bi and ci; 16 i6 n
(Fig. 2), where EðhÞ is the intensity function along the arc s.
e assume that they are co-linear when they form an angle less than a threshold x depending on the

ion.



Fig. 2. The XY -space and the hR-space for the case with two directional light sources.
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Intuitively, ðbi�1; ci�1Þ represents the virtual light source of the ½hi�2; hi�1� part, and
ðbi; ciÞ of the neighboring ½hi�1; hi� part. These two virtual light sources will be differ-

ent, if each of these two parts is lit by a different illuminant configuration. More for-

mally, Proposition 2 (from [30]) describes the difference between ðbi�1; ci�1Þ and

ðbi; ciÞ.

Proposition 2. In the configuration of Proposition 1, for any 16 i6 n, we define Ki as
the index set of real light sources contributed to the ½hi�1; hi� part of the arc s. Then the
Euclidean distance between two ðbi; ciÞ pairs is
d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbi � bi�1Þ2 þ ðci � ci�1Þ2

q
¼

X
j2K0[K00

kðLjÞPk; ð2Þ
where kðLjÞPk is the Euclidean norm, K0 ¼ Ki�1nKi (the index set of elements in Ki�1

but not in Ki), K00 ¼ Ki n Ki�1, and
P

j2Ki
Lj is the virtual light source corresponding to

½hi�1; hi�.

Propositions 1 and 2 show that the difference between ðbi�1; ci�1Þ ðbi; ciÞ will be

maximized at a critical point for these two virtual light sources. As we can see from

Eq. (2), possible critical points can be detected by thresholding kðLjÞPk.

2.2. Properties of critical points

Let R be the set of all critical points and X be the space of the sphere image. Then

intuitively R will cut X into a decomposition, i.e.,
X ¼
[
i2I
ui

 !
[ R; ð3Þ
where each ui � X is a subset of R2 which does not contain any critical points and I is

an index set.

Proposition 3. Given a decomposition of the image as described by (3), for any image
region ui, which corresponds to a 3D surface region si, there exists a light source L such
that when si is illuminated by L, the resulting image of si is exactly the same as ui.



Fig. 3. (a) Inner angle c. (b) Angles between two tangent lines.

Y. Wang, D. Samaras / Graphical Models 65 (2003) 185–205 191
Proposition 2 already provides us with a criterion to detect critical points on

the sphere based on the distance between ðbi; ciÞ pairs. Unfortunately, this crite-

rion greatly depends on the intensities of virtual light sources,
P

j2K0[K00 kðLjÞPk,
which are projected on the plane with respect to each different cross-section.

To locate the critical points more accurately, we provide another way to detect

critical points on each cross-section. Instead of using the distance between

ðbi; ciÞ pairs, we can use the tangent angles defined on the intensity curve
(Fig. 3a) [26].

Proposition 4. Along a sine curve, at a critical point hc, the inner angle c between two
tangent lines ðT1;T2Þ of each side of hc will be larger than 180�.
3. Shading-based illuminant detection

3.1. Critical point detection

From Proposition 1 we know that, for every cross-section of the sphere with a

plane P such that S, the center of the sphere, lies on P (illustrated in Figs. 2 and

4), there is a partition h0 ¼ a < h1 < � � � < hn ¼ b of the angle interval ½a;b� such that

in each ½hi�1; hi�, we have EðhÞ ¼ bi sin h þ ci cos h for some constants bi and

ci; 16 i6 n. By applying a standard recursive least-squares algorithm [6], we can

use the following two consecutive windows (AW and WB) to detect the local max-
imum points of inner angle c and distance defined by Eq. (2). Starting from an initial

point A, any point B on the same arc can be determined uniquely by the angle h
Fig. 4. A part of arc s, AB, is covered by two consecutive windows AW and WB.
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between SA and SB. Then we cover this part AB by the two consecutive windows

AW and WB (Fig. 4).

With points B and W moving from the beginning point A of the visible part of the

circle to its ending point C along the arc s, we could estimate bi and ci from the data

in the two consecutive windows AW and WB, respectively. Once a local maximum
point of Eq. (2) is detected, it signifies that we have included at least one �critical
point� in the second window WB. Because the inner angle c, defined in Proposition

4, is very sensitive to noise, we use two different criteria simultaneously to detect crit-

ical points. First we examine the distance defined in Proposition 2, then if the dis-

tance is above a threshold Tdistance, we try to locate the critical point by searching

for the maximum inner angle c along the curve. In practice, for the distance criterion

threshold Tdistance, we use a ratio Tratio instead of the direct Euclidean norm to normal-

ize for the varying light intensities. Tratio is calculated from Proposition 2:
Tratio ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbi � bi�1Þ2 þ ðci � ci�1Þ2

q
maxf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i�1 þ c2i�1

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i ;þc2i

p
g
; ð4Þ
where ðbi�1; ci�1Þ and ðbi; ciÞ are calculated from the two consecutive windows AW

and WB. Therefore, we can keep growing the first window AW to find critical point

pc using the recursive least-squares algorithm again. Then we fix the initial point A at

pc and keep searching for the next �critical point� until we exhaust the whole arc s.
3.2. Segmenting the surface

Definition 2. All critical points corresponding to one real light can be grouped into a

cut-off curve which is called a critical boundary.

Intuitively, each critical boundary of the sphere in our model is on a cross-section

plane through the center of the sphere. Therefore, critical points can be grouped into
critical boundaries using the Hough transform in a ðf; hÞ angle-pair parameter

Hough space, i.e., we apply the cross-section plane equation in the following form:
x � nx þ y � ny þ z � nz ¼ 0;
nx ¼ r cos h; ny ¼ r sin h cos f; nz ¼ r sin h sin f;

	
ð5Þ
where ðx; y; zÞ is the position of each critical point, ðnx; ny ; nzÞ is the normal of the

cross-section plane, r is the radius of the sphere, and f; h 2 ½0; 180�. Typically, we use
one-third of the highest vote count in the Hough transform as the threshold above

which we detect a (f; h) angle pair as a possible critical boundary.

Although critical points provide information to determine the light source direc-

tions [30], they are relatively sensitive to noisy data. Since most real images are not
noise free, if we only use the Hough transform to extract critical boundaries, we will

very likely find more boundaries than the real critical boundaries. Noise can either

introduce many spurious critical points or move the detected critical points away

from their true positions. However, non-critical point areas are less sensitive to noise

and provide important information to determine the light source directions.
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Definition 3. Critical boundaries will segment the whole sphere image into several

regions, and intuitively, each segmented region is corresponding to one virtual light.

Each region is called a virtual light patch.

Once we get the patches corresponding to each virtual light, the directions of vir-
tual light sources can be calculated.

Let A, B, C, and D be four points in a patch corresponding to one virtual light

source and nA, nB, nC, and nD be their normals, respectively. From the Lambertian

equation (1), augmented by an ambient light term a, we have
2 W

to nois
nAx nAy nAz 1

nBx nBy nBz 1

nCx nCy nCz 1

nDx nDy nDz 1

2
666664

3
777775 �

Lx

Ly

Lz

a

2
666664

3
777775 ¼

IA

IB

IC

ID

2
666664

3
777775; ð6Þ
where IA, IB, IC, and ID are brightness of each pixel in the source image corresponding

to four points A, B, C, and D, respectively.

If nA, nB, nC, and nD are non-coplanar, we can obtain the direction of the corre-
sponding virtual light source L, ½Lx; Ly ; Lz�T, and the ambient light intensity a by solv-

ing the system of equations in (6). Ideally, we would solve for the directions of virtual

light sources by using four non-coplanar points from corresponding patches. Due to

computation and rounding errors, four non-coplanar points are not always enough

for us to get a numerically robust estimate of the direction of a virtual light source.

Furthermore, it is not possible that we can always find several non-coplanar points

in an interval of an arc in some plane P as described above. These problems are

avoided by scanning the image both horizontally and vertically instead of one direc-
tion only and recovering the two-dimensional patches that are separated by critical

boundaries. Then from each two-dimensional patch, we use the internal non-critical

points of each virtual light patch to solve for the direction of the virtual light

source. 2
3.3. Recovering the true lights

Proposition 5. If a critical boundary separates a region into two virtual light patches
with one virtual light each, e.g., L1, L2, then the difference vector between L1 and L2,

Lpre ¼ L1 � L2, is called the real light pre-direction with respect to this critical
boundary. Since we have already assumed that there are no antipodal light sources (i.e.,
opposite direction light sources), the real light direction will be either the pre-direction
L1 � L2, or its opposite L2 � L1 (Fig. 5).
e only use points that are at least 2 pixels away from the critical boundary for increased robustness

e.



Fig. 5. Illustration of real light pre-direction. Lr is the real light direction.
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To find out the true directions, we pick a number of points on the surface, e.g.,
P1; P2; . . . ; Pk and their normals, e.g., N1;N2; . . . ;Nk, then the true directions will

be the solution of
Fig. 6

(a) The

from (a

light p

patche

and th
EðPjÞ ¼
X
i2K

maxðeiLi �Nj; 0Þ þ Lv �Nj; 16 j6 k; ð7Þ
where Lv is the virtual light source of a possible frontal illuminant whose critical

boundaries could not be detected and will be checked as a special case.

Selecting points in the area inside the critical boundaries is a robust way to detect

real lights. This can be done using standard least-squares methods [6,18].

After we find all the potential critical boundaries, Proposition 5 provides a way to
extract real lights by calculating the light difference vector of two virtual light patches

of two sides along the critical boundary. However, one real light might be calculated

many times by different virtual light patch pairs, and since our data will not be per-

fect, they will not be necessary exactly the same vector. We introduce an angle

threshold to cluster the resulting light difference vectors into real light groups, that

can be approximated by one vector.

By minimizing the least-squares errors of virtual light patches, we are able to

merge the spurious critical boundaries detected by the Hough transform, by the fol-
lowing steps (for an example see Fig. 6):
. Real sphere image: an almost Lambertian rubber ball with five light sources. Image size: 456� 456.

original image. (b) The generated image of a Lambertian ball with the five light sources extracted

). (c) The error image: darker color means higher error. (d) The initial eight boundaries and virtual

atches extracted by the Hough transform. (e) The resulting critical boundaries and virtual light

s calculated by our algorithm, three out of the initial eight boundaries were automatically merged

e locations of the other five boundaries were automatically adjusted.
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(1) Detect critical points using the method described in Section 3.1.

(2) Find initial critical boundaries by the Hough transform based on all detected

critical points.

(3) Adjust critical boundaries. We adjust every critical boundary by moving it by a

small step, with a reduction in the least-squares error indicating a better solution.
We keep updating boundaries using a ‘‘greedy’’ algorithm in order to minimize

the total error.

(4) Merge spurious critical boundaries. If two critical boundaries are closer than a

threshold angle Tmergeangle (e.g., 5�), they can be replaced by their average, result-

ing into one critical boundary instead of two.

(5) Remove spurious critical boundaries. We test every critical boundary, by remov-

ing it temporarily and if the least-squares error does not increase, we can con-

sider it a spurious boundary and remove it completely. We test boundaries in
increasing order of Hough transform votes (intuitively we test first the bound-

aries that are not as trustworthy).

(6) Calculate the real lights along a boundary by subtracting neighboring virtual

lights as described in Proposition 5.

3.4. Arbitrary shape

In this section, we extend our method to work with any object of known shape.
Obviously, there should exist enough non-coplanar points on the object illuminated

by each light to allow for a robust least-squares solution. We assume no inter-reflec-

tions. We map the image intensity of each point Pi of the arbitrary shape to a point Si
of a sphere, so that the normal at Pi is the same as the normal at Si.

We detect all potential critical points based on the points mapped on the sphere.

As expected, not every point on the surface of the sphere will be corresponding to a

normal on the surface of the arbitrary shape, so there will be many holes on the

mapped sphere, e.g., the black area in Fig. 7. Thus, many critical points� locations
will be calculated erroneously even for noise-free data. Consequently, the critical

boundaries calculated by the Hough transform based on these critical points might

not be correct or might be far away from their correct positions in some cases. Since

we cannot recover these missing data from the original image, it is impossible to
Fig. 7. Vase and its sphere mapping. Both image sizes are 400� 400. Black points on the sphere represent

normals that do not exist on the vase�s surface.
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adjust the critical boundaries detected by the Hough transform itself. On the other

hand, as long as the critical boundaries are not too far from the truth, the majority

of the points in a virtual patch will still correspond to the correct virtual light (espe-

cially after the adjustment steps described in Section 3.3). Thus it is still possible,

using sparse points on the sphere, to calculate the true light for each virtual light
patch based on Proposition 5. If two points have the same normal but different in-

tensities, we use the brighter one (assuming that the other is in shadow).
4. Shadow-based illuminant detection

Besides the shading information we explored above, a picture of a real scene is

very likely to contain some shadow information. Hence the illumination distribution
of the scene might also be recovered from a radiance distribution inside shadows cast

by an object of known shape onto another object surface of known shape and reflec-

tance. In [23], the illumination distribution of a scene is approximated by discrete

sampling of an extended light source and the whole distribution is represented as

a set of point sources equally distributed in the scene as shown in Fig. 8. The total

irradiance E at the shadow surface received from the entire illumination distribution

is computed by
Fig. 8

surface

Fig. 9
E ¼
Xn
i¼1

LiSi cos hi; ð8Þ
. The illumination distribution of a scene is approximated by discrete sampling over the entire

of the extended light source.

. Each shadow pixel provides a linear equation for estimating illumination distribution by shadows.



Fig. 11. Synthetic arbitrary shape image experiment: a top view of a vase illuminated by two light sources.

Image size: 800� 800 (scene), 400� 400 (mapping sphere). (a) The original synthetic image of a top lit

synthetic vase. The generated image of the vase with the illumination distribution estimated by (b) the

shading-based method, (c) the shadow-based method and (d) the integrated method, (e) The critical

boundary extracted using shading information only, where blue color represents points which are not

mapped by the normals on the sphere�s surface. One critical boundary (in red color) was missing when

using shading information only. (f) The resulting estimation using shadow information. (g) The resulting

estimation using the integrated method. Yellow areas are illuminant estimates using shadow information.

Red points represent the true light directions, green points the estimates of the integrated method. The

error image for (h) the shading-based method, (i) the shadow-based method and (j) the integrated method:

darker color means higher error.

Fig. 12. Synthetic arbitrary shape image experiment: a vase illuminated by two light sources with partial

shadows. Image Size: 800� 800 (scene), 400� 400 (mapping sphere). (a) The original synthetic image of a

synthetic vase with partial shadows. The generated image of the vase with the illumination distribution

estimated by (b) the shading-based method, (c) the shadow-based method and (d) the integrated method.

(e) The critical boundary extracted using shading information only, where blue color represents points

which are not mapped by the normals on the sphere�s surface. (f) The resulting estimation using shadow

information. Yellow areas are illuminant estimates using shadow information with 4� average angle error
and high error of illuminant intensity. (g) The resulting estimation using the integrated method. Yellow

areas are illuminant estimates using shadow information. Red points represent the true light directions,

green points the estimates of the integrated method. The error image for (h) the shading-based method,

(i) the shadow-based method and (j) the integrated method: darker color means higher error.

c
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where Li ði ¼ 1; 2; . . . ; nÞ is the illumination radiance per solid angle d ¼ 2p=n
coming from the direction ðhi;/iÞ, and Si are occlusion coefficients. Si ¼ 0 if Li is
occluded by objects, and Si ¼ 1 otherwise. Then this approximation leads each image

pixel inside shadows to provide a linear equation with unknown radiance of those

sources as shown in Fig. 9 [24].

Finally, a set of linear equations (9) is derived from the brightness changes ob-

served in the shadow image and solved for unknown Li�s.
a11 a12 a13 � � � a1n
a21 a22 a23 � � � a2n
a31 a32 a33 � � � a3n

� � � � � �
am1 am2 am3 � � � amn

2
66664

3
77775 �

L1
L2
L3
..
.

Ln

2
666664

3
777775 ¼

P1
P2
P3
..
.

Pm

2
666664

3
777775: ð9Þ
Under the assumption of the Lambertian model, the BRDF f ðhi;/i; he;/eÞ for a

Lambertian surface is known to be a constant. Then, in Eq. (9) the coefficients

ai ði ¼ 1; 2; . . . ; nÞ represent Kd cos hiSi where Kd is a diffuse reflectance parameter of

the surface. Therefore, by selecting a sufficiently large number of image pixels, it is

possible to solve for a solution set of unknown Li�s.
To estimate the illumination distribution of a real scene, we need to assume that

the number of image pixels in shadows is far larger than the number of illumination

radiance values to be calculated.
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Fig. 12.
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5. Integration of shading and shadows

In this section, we are going to propose a framework that combines the respective

advantages of shading and shadow information, allowing us to obtain improved re-
sults compared to using each of them independently.



Fig. 15. Real arbitrary shape image experiment: a scene illuminated by three light sources. Image Size:

1534� 1024 (scene), 400� 400 (mapping sphere). (a) The original image. (b) The generated image of a

scene with the two light sources extracted from (a). (c) A synthetic object is superimposed into the gener-

ated image (b). (d) The real image of the scene illuminated by the two real lights. (e) The error image:

darker color means higher error. The noise in the generated image is mainly due to the inaccuracies in

the estimation of shape and the edges of each shadow. Nonetheless illuminant estimation is still possible.

(f) The 3D shape of the two objects� frontal surfaces, R,G,B color values represent the x; y; z components of

the normal.

Fig. 16. The results of the various steps of the algorithm in Section 5.3 for the images of Fig. 15. (a) The

distribution of illuminants estimated by shadow information. Notice that for each direction light source

there are more than one non-zero intensity solid angles corresponding to it. (b) The initial eight boundaries

extracted by the Hough transform. (c) The remaining five boundaries after adding shadow information.

(d) The resulting critical boundaries calculated by our algorithm, two of the five boundaries in (c) were

automatically removed and the locations of the other three boundaries were automatically adjusted.

b
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5.1. Advantages of shadows over shading

As can be seen from Fig. 7, arbitrary shapes do not always provide enough nor-

mals on the surface to make a complete sphere mapping, so many data points on the
sphere will be missing non-uniformly. Consequently, there is a possibility that some

critical boundaries will be lost and the corresponding real lights will not be esti-

mated. Fig. 11 is an example of a synthetic vase image whose top part is lit by

two directional light sources. From the sphere mapping (Fig. 11e), it is clear that very

few of the object�s normals map to the top part of the sphere and so not enough crit-

ical points can be detected. However, shadow information can be used to estimate

the intensity and direction of each light source. Fig. 13a compares the the experiment

results from shading-based, shadow-based, and integrated method.

5.2. Advantages of shading over shadows

While recovering the illumination distribution of the scene from a radiance distri-

bution inside shadows, complete shadows cast by an object of known shape onto an-

other object surface of known shape and reflectance are required. However, this

might not be possible in situations where the light direction is nearly parallel to

the surface. Obviously, in this case shadows can not provide enough information
to estimate the real illuminants. In particular the azimuth of the light source can still

be estimated reliably, but not the elevation. An experiment showed that in this situ-

ation, big errors will be introduced to the illumination distribution estimated by sha-

dow information only (Fig. 12d–e). Furthermore, in the method proposed in [23], a

large number of samples are needed to capture the rapid change of radiance distri-

bution around a direct light source. The radiance distribution inside a direct light

source has to be sampled densely and the estimation becomes more stable if we ob-

serve the difference between the radiances of two shadow regions for each light
source: one illuminated and the other not illuminated. Therefore, due to the discrete

sampling of the geodesic dome, it is very likely that one directional light will be rep-

resented by several adjacent sampling solid angles so the precision of estimation will



Fig. 10. (a) A synthetic vase illuminated by three directional light sources. (b) Estimated illumination dis-

tribution using shadow information only. (c) Error image generated by the illumination distribution esti-

mated in (b). (d) Detected critical boundaries using shading information only. (e) Error image generated

by the illumination distribution estimated in (d).
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also be limited. In the following sections, a region on the geodesic dome in [23] com-

posed by adjacent sampling solid angles, whose estimated illuminant intensity is not

close to zero, will be referred to as an illumination region. In Fig. 10, we can see that

the illumination distribution estimated by shading information provides higher accu-

racy than the one estimated by shadows. Fig. 13b compares the the experiment re-
sults from shading-based, shadow-based, and integrated method.

5.3. Shading and shadows

Definition 4. A shadow is called a complete shadow when all the parts of the scene

the shadow falls on are visible. The outmost edge of a complete shadow corre-
Fig. 13. Error comparison of the shading-based, shadow-based and integrated methods. The experiments

are based on (a) a top view of a vase illuminated by two light sources as described in Section 5.1 and (b) a

vase illuminated by two light sources with partial shadows described in Section 5.2. In (a) the second light

cannot be estimated by shading information only, due to the missing critical boundary.
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sponding to a directional light source is generated by the occluding boundary of the

object surface.

Fig. 14 shows that the occluding boundary of a smooth surface will be a critical

boundary in the context of shading. Consequently, when there is information both
from shading and from shadows, we can use shadow information to give us an ini-

tial estimate of the directions of the light sources, and then we can use the shading

information to refine it to compute the directions and intensities of the real light

sources.

In order to incorporate shadow information, we augment the algorithm of Section

3.3 by steps 3, 4, and 5:

(1) Detect critical points using the method described in Section 3.1.

(2) Find initial critical boundaries by the Hough transform based on all detected
critical points.

(3) Calculate an initial illumination distribution using the estimation from the shad-

ow-based method [23]. Mark directions on the geodesic dome, for which possible

shadows are not complete or observable due to occlusions, as �excluded�.
(4) For each critical boundary, if its pre-direction is in a �non-excluded� solid angle

whose illuminant intensity is close to zero, consider it a spurious critical bound-

ary and reject it. Otherwise mark the illumination region on the geodesic dome,

containing this solid angle, as �registered.�
(5) For each �non-registered� illumination region, add a critical boundary whose pre-

direction is close to the direction determined by the peak center of this region as

an initial critical boundary.

(6) Adjust critical boundaries. We adjust every critical boundary by moving it by a

small step, with a reduction in the least-squares error indicating a better solution.

We keep updating boundaries using a ‘‘greedy’’ algorithm in order to minimize

the total error.

(7) Merge spurious critical boundaries. If two critical boundaries are closer than a
threshold angle Tmergeangle (e.g., 5�), they can be replaced by their average, result-

ing into one critical boundary instead of two.

(8) Remove spurious critical boundaries. We test every critical boundary, by remov-

ing it temporarily and if the least-squares error does not increase, we can con-

sider it a spurious boundary and remove it completely. We test boundaries in

increasing order of Hough transform votes (intuitively we test first the bound-

aries that are not as trustworthy).
Fig. 14. Outline of estimating illumination distribution by shadows.
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(9) Calculate the real lights along a boundary by subtracting neighboring virtual

lights as described in Proposition 5.

Step 3 reduces significantly the spurious critical boundaries to be processed in

steps 6 and 7, which are the most time consuming steps of the method. In our exper-

iments this amounts to a 30% speed up (or more in the case of noisy data with a lot
of spurious boundaries).
6. Augmented reality image synthesis

The combination of shading and shadow information can provide better estima-

tion of illumination distribution. These estimates can be used to synthesize Aug-

mented Reality images, i.e., real images with superimposed virtual objects

rendered under correct illumination. Furthermore, under the assumptions of Lam-

bertian BRDF and known geometry, we can re-render the real images to generate

new images by modifying the estimated illumination configuration. These abilities

are demonstrated by the following real image experiments: based on a scene contain-
ing two rubber toys illuminated by three light sources, we generated a new image

where one light has been switched off in Fig. 15b, which can be compared with a real

image of the scene with the same light truly switched off. Re-lighting is using the ratio

images as described by Marschner et al. [15]. In the generated image we superimpose

a synthetic object with correct shading and cast shadows in Fig. 15c. The original

image and 3D geometry were captured by the range scanner system described in

[9]. In Fig. 15f we can see that there are some inaccuracies and noise on the recovered

3D shape. The original image is 1534� 1024 pixels with the two toys at the center of
the image. To demonstrate the ability of our algorithm to use only partial scene in-

formation for accurate estimation, only the duck toy was used to estimate the illu-

minant directions. The second toy is used for visual evaluation of the results.

Based on the size of the duck, the diameter of the mapping sphere is 400. The follow-

ing parameter values were chosen for the algorithm: sliding window width w ¼ 30

pixels (approximately 13.5�), distance ratio Tratio ¼ 0:5, and angle threshold for

boundary merging (described in Section 3.3) Tmergeangle ¼ 5�.
Notice that the error of the generated image is locatedmostly along the edges of sur-

faces and shadows and this is because (1) the range scanned 3D shape in Fig. 15a has

higher levels of estimation noise near the edges and the inter-reflections between the ob-

ject and the table were not modeled, and (2) the simple rendering program used, does

not simulate perfectly the shadowing effects of the real lights. The remaining noise in

the generated image inFig. 15b is due to inaccuracies in shape estimation andviolations

of the Lambertian assumption. Nonetheless illuminant estimation is still possible. In

Fig. 16 we display the results of the various steps of the algorithm in Section 5.3.
7. Conclusions and future work

In this paper we presented a method for the estimation of multiple illuminant di-

rections from a single image, incorporating shadow and shading information. We



204 Y. Wang, D. Samaras / Graphical Models 65 (2003) 185–205
demonstrate how information from each source enhances the information from the

other source. We do not require the imaged scene to be of any particular geometry

(e.g., a sphere). This allows our method to be used with the existing scene geometry,

without the need for special light probes when the illumination of the scene consists

of directional light sources. Experiments on synthetic and real data show that the
method is robust to noise, even when the surface is not completely Lambertian.

We apply the results of our method to generate Augmented Reality images, by suc-

cessfully modifying scene illumination and seamlessly re-rendering the scene, includ-

ing superimposed synthetic objects. Future work includes study of the properties of

arbitrary surfaces (so that we can avoid the intermediate sphere mapping), speeding

up of the least-squares method and extending the method to non-Lambertian diffuse

reflectance for rough surfaces.
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