CSE 548: Analysis of Algorithms

Lectures 19 & 20
(Dijkstra’s SSSP & Fibonacci Heaps)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Spring 2015

Fibonacci Heaps
(Fredman & Tarjan, 1984)

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

. Binary Heap Binomial Heap
H .
eap Operation (worst-case) (amortized)

MAKE-HEAP O(1) O(1)
INSERT O(logn) O(1)
MINIMUM (1) O(1)
EXTRACT-MIN O(logn) O(logn)
UNION O(n) O(1)
DECREASE-KEY O(logn) —

DELETE O(logn) —

Fibonacci Heaps
(Fredman & Tarjan, 1984)

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

. Binary Heap Binomial Heap
H .
eap Operation (worst-case) (amortized)

MAKE-HEAP O(1) O(1)
INSERT O(logn) O(1)
MINIMUM (1) O(1)
EXTRACT-MIN O(logn) O(logn)
UNION O(n) O(1)
DECREASE-KEY O(logn) (V?O(:S(;%il)
DELETE O(logn) Ullegin)

(worst case)

Fibonacci Heaps
(Fredman & Tarjan, 1984)

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

Heab Oberation Binary Heap Binomial Heap Fibonacci Heap
e (worst-case) (amortized) (amortized)

MAKE-HEAP O(1) O(1) O(1)
INSERT O(logn) O(1) O(1)
MINIMUM O(1) O(1) O(1)
EXTRACT-MIN O(logn) O(logn) O(logn)
UNION O(n) O(1) O(1)
DECREASE-KEY O(logn) (V(V)O(rls(i% :S)e | O(1)
DELETE O(logn) O(logn) O(logn)

(amortized)

Dijkstra’s SSSP Algorithm with a Min-Heap
(_ SSSP: Single-Source Shortest Paths)

Input: Weighted graph G = (V, E) with vertex set VV and edge set E, a
weight function w, and a source vertex s € G[V].

Output: For all v € G|V], v.d is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V,E), w, s)

for each v € G[V] do v.d « o
s.d <0
H« ¢ { empty min-heap }
for each v € G[V] do INSERT(H, v)
while H # @ do
u < EXTRACT-MIN(H)
for each v € Adj[u] do

ifv.d >u.d +w,, then

OV 0 N O U AW N =

DECREASE-KEY(H, v, u.d +wy,,)

—
o

v.d < u.d+wy,

Dijkstra’s SSSP Algorithm with a Min-Heap
(_ SSSP: Single-Source Shortest Paths)

Input: Weighted graph G = (V, E) with vertex set VV and edge set E, a
weight function w, and a source vertex s € G[V].

Output: For all v € G|V], v.d is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V,E), w, s) Letn = |G|V]| and m = |G|E]|
1. for each v € G[V] do v.d « o

2. sd<0 H# INSERTS = n

o Heo tempty min-heap} | # FXTRACT-MINS = n

4. for each v € G[V] do INSERT(H, v)

- <

S while H % 0 do # DECREASE-KEYS < m

6. u < EXTRACT-MIN(H)

7. for each v € Adj[u] do Total cost

5 Tv.d > u.d+wyy then = n(COStInsert + COStExtract—Min)
9. DECREASE-KEY(H, v, u.d +wy,,)

10. v.d —u.d+wy, + m(COStDecrease—Key)

Dijkstra’s SSSP Algorithm with a Min-Heap
(_ SSSP: Single-Source Shortest Paths)

Input: Weighted graph G = (V, E) with vertex set VV and edge set E, a
weight function w, and a source vertex s € G[V].

Output: For all v € G|V], v.d is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V,E), w, s) Letn = |G|V]| and m = |G|E]|

1. for each v € G[V] do v.d « o

2. 5de0 For Binary Heap (worst-case costs):
3. H« ¢ { empty min-heap }

4. for each v € G[V] do INSERT(H, v) COStInsert — 0(108 Tl)

6. u < EXTRACT-MIN(H) COStDeCTease—Key — O(lOg Tl)

7. for each v € Adj[u] do

8. ifv.d >u.d +w,, then

9. DECREASE-KEY(H, v, u.d + wy,,) = Total cost (worst-case)

10. v.d wd+wy, = O((m +n) logn)

Dijkstra’s SSSP Algorithm with a Min-Heap
(_ SSSP: Single-Source Shortest Paths)

Input: Weighted graph G = (V, E) with vertex set VV and edge set E, a
weight function w, and a source vertex s € G[V].

Output: For all v € G|V], v.d is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V,E), w, s) Letn = |G|V]| and m = |G|E]|
1. for each v € G[V] do v.d « o
2. sd<0 For Binomial Heap (amortized costs):
3. H« ¢ { empty min-heap }
4. for each v € G[V] do INSERT(H, v) COStInse‘rt — 0(1)
5. whileH # ¢ do COSTExtract—Min — O(log n)
6. u < EXTRACT-MIN(H) COStDeCTease—Key — O(lOg Tl)
7. for each v € Adj[u] do (worst-case)
8. ifv.d >u.d +w,, then
9. DECREASE-KEY(H, v, u.d +wy,,)
10. vod e ud+wy, = Total cost (worst-case)

= O((m +n) logn)

Dijkstra’s SSSP Algorithm with a Min-Heap

(_ SSSP: Single-Source Shortest Paths)

Input: Weighted graph G = (V, E) with vertex set VV and edge set E, a
weight function w, and a source vertex s € G[V].

Output: For all v € G|V], v.d is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V,E), w, s)

for each v € G[V] do v.d « o
s.d <0
H« ¢ { empty min-heap }

for each v € G[V] do INSERT(H, v)
while H # @ do

u < EXTRACT-MIN(H)

for each v € Adj[u] do

ifv.d >u.d +w,, then

OV 0 N O U AW N =

DECREASE-KEY(H, v, u.d + wy,,)

—
©

v.d < u.d+wy,

Letn = |G|V]| and m = |G|E]|

Total cost
< n(costisert + COStpxtract—min)
+ m(COStDecrease—K€3’)

Observation:

Obtaining a worst-case bound for a
sequence of n INSERTS, n EXTRACT-MINS
and m DECREASE-KEYS is enough.

- Amortized bound per operation is
sufficient.

Dijkstra’s SSSP Algorithm with a Min-Heap

(_ SSSP: Single-Source Shortest Paths)

Input: Weighted graph G = (V, E) with vertex set VV and edge set E, a
weight function w, and a source vertex s € G[V].

Output: For all v € G|V], v.d is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V,E), w, s)

for each v € G[V] do v.d « o
s.d <0
H« ¢ { empty min-heap }

for each v € G[V] do INSERT(H, v)
while H # @ do
u < EXTRACT-MIN(H)
for each v € Adj[u] do
ifv.d >u.d +w,, then

OV 0 N O U AW N =

DECREASE-KEY(H, v, u.d + wy,,)

—
©

v.d < u.d+wy,

Letn = |G|V]| and m = |G|E]|

Total cost
< n(costisert + COStpxtract—min)
+ m(COStDecrease—K€3’)

Observation:

For n(costpsert + COStgxtract—min)
the best possible bound is ®(nlogn).

(else violates sorting lower bound)

Perhaps m(costDecrease_Key) can be
improved to o(mlogn).

Fibonacci Heaps from Binomial Heaps

A Fibonacci heap can be viewed as an extension of Binomial heaps
which supports DECREASE-KEY and DELETE operations efficiently.

But the trees in a Fibonacci heap are no longer binomial trees as we
will be cutting subtrees out of them.

However, all operations (except DECREASE-KEY and DELETE) are still
performed in the same way as in binomial heaps.

The rank of a tree is still defined as the number of children of the root,
and we still link two trees if they have the same rank.

Implementing DECREASE-KEY(H, x, k)

DecreASE-KEY(H, x, k): One possible approach is to cut out the
subtree rooted at x from H, reduce the value of x to k, and insert that

subtree into the root list of H.

Problem: If we cut out a lot of subtrees from a tree its size will no

longer be exponential in its rank. Since our analysis of EXTRACT-MIN in
binomial heaps was highly dependent on this exponential relationship,

that analysis will no longer hold.

Solution: Limit #cuts among the children of any node to 2. We will

show that the size of each tree will still remain exponential in its rank.

When a 2nd child is cut from a node x, we also cut x from its parent
leading to a possible sequence of cuts moving up towards the root.

Analysis of Fibonacci He

ap Operations

Recurrence for Fibonacci numbers: f,, = <

(0 if n=0,
1 if n=1,

. . 1
We showed in a pervious lecture: f, = NG

1+\/§andq5 _ 1+5

where ¢ =

Sn-1+ fu—2 otherwise.

(™ — ¢™),

aretherootsz? —z—1 = 0.

Analysis of Fibonacci Heap Operations

Lemma 1: For all integersn = 0, f,42 = 1+ X1, fi-

Proof: By induction on n.

Basecase: f, =1=14+0=1+f, =1+X,f:

Inductive hypothesis: fii, =1+ Y5, f; for0 <k <n— 1.

Then fn+2 — fn+1 + fn — fn + (1 + 7iﬂL=_01 i) =1+ Z?=0fl

Analysis of Fibonacci Heap Operations

Lemma 2: For all integersn = 0, f,,,, = ¢".

Proof: By induction on n.
Basecase: f, =1 =¢%and 3 =2 > ¢

Inductive hypothesis: fj1, = ¢* for0 <k <n — 1.

Then fni2 = frs1 + fn
> (pn—l + (pn—z
= (¢ + 1D)p"?
— ¢2¢n—2
= "

Analysis of Fibonacci Heap Operations

Lemma 3: Let x be any node in a Fibonacci heap, and suppose that
k = rank(x). Let y{, V5, ..., Vi be the children of x in the order in
which they were linked to x, from the earliest to the latest. Then

rank(y;) = max{0,i — 2}for1 <i < k.

Proof: Obviously, rank(y,;) = 0.

Fori > 1, when y; was linked to x, all of y4, vy, ..., y;_1 were children
of x. So, rank(x) > i — 1.

Because y; is linked to x only if rank(y;) = rank(x), we must have
had rank(y;) = i — 1 at that time.

Since then, y; has lost at most one child, and hence rank(y;) =i — 2.

Analysis of Fibonacci Heap Operations

Lemma 4: Let z be any node in a Fibonacci heap with n = size(z)

and r = rank(z). Thenr < logy n.

Proof: Let s;, be the minimum possible size of any node of rank k in

any Fibonacci heap.
Trivially, s = 1 and s; = 2.

Since adding children to a node cannot decrease its size, s, increases

monotonically with k.

Let x be a node in any Fibonacci heap with rank(x) = r and

size(x) = s,.

Analysis of Fibonacci Heap Operations

Lemma 4: Let z be any node in a Fibonacci heap with n = size(z)

and r = rank(z). Thenr < logy n.

Proof (continued): Let y4, v-, ..., ¥, be the children of x in the order
in which they were linked to x, from the earliest to the latest.

Then s, = 1+ X1 Srank(y) = 1+ Xi=1Smax{0,i-2) = 2 + Xi=2 Si—2
We now show by induction on r that s, = f,-,, for all integer r = 0.
Basecase:so =1 =f,ands; =2 = f5.

Inductive hypothesis: s, = fry, forO < k <r —1.

Thens, =2+ X582 22+ fi =1+ 2i-1 fi = frez.

Hencen = s, = fry, = ¢" > r <loggn.

Analysis of Fibonacci Heap Operations

Corollary: The maximum degree of any node in an n node Fibonacci
heap is O(logn).

Proof: Let z be any node in the heap.

Then from Lemma 4,

degree(z) = rank(z) < logg (Size(z)) < loggs n = O(logn).

Analysis of Fibonacci Heap Operations

All nodes are initially unmarked.

We mark a node when
— it loses its first child

We unmark a node when
— it loses its second child, or
— becomes the child of another node (e.g., Linked)

We extend the potential function used for binomial heaps:
®(D;) = 2t(D;) + 3m(D;),

where D; is the state of the data structure after the it" operation,
t(D;) is the number of trees in the root list, and
m(D;) is the number of marked nodes.

Analysis of Fibonacci Heap Operations

We extend the potential function used for binomial heaps:
®(D;) = 2t(D;) + 3m(D;),

where D; is the state of the data structure after the it" operation,
t(D;) is the number of trees in the root list, and
m(D;) is the number of marked nodes.

DeEcCReASE-KEY(H, x, k,.): Let k = #cascading cuts performed.

Then the actual cost of cutting the tree rooted at x is 1, and
the actual cost of each of the cascading cuts is also 1.

~ overall actual cost, ¢c; =1+ k

Fibonacci Heaps from Binomial Heaps
Potential function: ®(D;) = 2t(D;) + 3m(D;)
DEcCReASE-KEY(H, x, k.,):

New trees: 1 tree rooted at x, and

1 tree produced by each of the k cascading cuts.
~t(D;) —t(Dj—1) =14k
Marked nodes: 1 node unmarked by each cascading cut, and
at most 1 node marked by the last cut/cascading cut.
~m(D;) —m(D;_;) < —-k+1
Potential drop, A; = ®(D;) — ®(D;_4)

= 2(t(D;) — t(D;_1)) + 3(m(D;) — m(D;_1))
<2(1+k)+3(-k+1)
=—k+5

Fibonacci Heaps from Binomial Heaps
Potential function: ®(D;) = 2t(D;) + 3m(D;)

DECReASE-KEY(H, x, k.,):

Amortized cost, ¢; = ¢; + A;
<(1+k)+(—k+5)
=6
= 0(1)

Fibonacci Heaps from Binomial Heaps
Potential function: ®(D;) = 2t(D;) + 3m(D;)
EXTRACT-MIN(H):

Let d,, be the max degree of any node in an n-node Fibonacci heap.

Cost of creating the array of pointersis < d,, +1.

Suppose we start with k trees in the doubly linked list, and perform [
link operations during the conversion from linked list to array version.
So we perform k 4+ [work, and end up with k — [trees.

Cost of converting to the linked list version is k — L.

actualcost,¢c; <d,+1+k+D)+k—-1)=2k+d,+1
Since no node is marked, and each link reduces the #trees by 1,

potential change, A; = ®(D;) — ®(D;_,) = —21

Fibonacci Heaps from Binomial Heaps
Potential function: ®(D;) = 2t(D;) + 3m(D;)

EXTRACT-MIN(H):

actualcost,c; <d,+1+k+D)+k—-1)=2k+d,+1
potential change, A; = ®(D;) — ®(D;_,) = —2I

amortized cost, §; =¢; + A; < 2(k— 0D +d,, +1

But k—1<d,, +1 (aswe have at most one tree of each rank)

So, ¢; < 3d,, + 3 = O(logn).

Fibonacci Heaps from Binomial Heaps
Potential function: ®(D;) = 2t(D;) + 3m(D;)
DeLeTe(H, x):

STEP 1: DECREASE-KEY(H, x, —0)
STEP 2: EXTRACT-MIN(H)

amortized cost, ¢; = amortized cost of DECREASE-KEY
+ amortized cost of EXTRACT-MIN
= 0(1) + O(logn)
= O(logn)

