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An Impossible Counting Problem

Suppose you went to a grocery store to buy some fruits. There are 

some constraints though:

A. The store has only two apples left: one red and one green. 

So you cannot take more than 2 apples.

B. All but 3 bananas are rotten. You do not like rotten bananas.

F. Figs are sold 6 per pack. You can take as many packs as you want.

M. Mangoes are sold in pairs. But you must not take more than a 

pair of pairs.

P. They sell 4 peaches per pack. Take as many packs as you want.

Now the question is: in how many ways can you buy � fruits from the 

store?



Generating Functions

Generating functions represent sequences by coding the terms of a 

sequence as coefficients of powers of a variable in a formal power 

series.

For example, one can represent a sequence ��, ��, ��, …	as:
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An Impossible Counting Problem

Then the generating function for �� is:
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Equating the coefficients of 
� from both sides:�� � 2� � 1

Suppose you can choose � fruits in �� different ways.



Fibonacci Numbers

�� �  0 "�	� � 0,1 "�	� � 1,��#� � ��#� $%&'()"�'.
Recurrence for Fibonacci numbers:
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Average Case Analysis of 

Quicksort



Quicksort

Input: An array � 1: � of � distinct numbers.

Output: Numbers of � 1: � rearranged in increasing order of value.

Steps:

1. Pivot Selection: Select pivot 9 � � 1 .

2. Partition: Rearrange the numbers of � 1: � such that � : � 9 for some : ∈ 1, � , each number in � 1: : � 1 is smaller than 9, and each in � : � 1: � is larger than 9. 

3. Recursion: Recursively sort � 1: : � 1 and � : � 1: � .

4. Output: Output � 1: � .



Quicksort

Input: An array � 1: � of � distinct numbers.

Output: Numbers of � 1: � rearranged in increasing order of value.

Steps:

1. Pivot Selection: Select pivot 9 � � 1 .

2. Partition: Use a stable partitioning algorithm to rearrange the numbers 

of � 1: � such that � : � 9 for some : ∈ 1, � , each number in � 1: : � 1 is smaller than 9, and each in � : � 1: � is larger than 9. 

3. Recursion: Recursively sort � 1: : � 1 and � : � 1: � .

4. Output: Output � 1: � .

Stable Partitioning: If two numbers < and = end up in the same 

partition and < appears before = in the input, then < must also 

appear before = in the resulting partition.



Average Number of Comparisons by Quicksort

We will average the number of comparisons performed by Quicksort

on all possible arrangements of the numbers in the input array.

Let %� = average #comparisons performed by Quicksort on � numbers.

Then
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The recurrence can be rewritten as follows.
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We have, 1 � 
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Putting 
 � 0,  @ 0 � G ⇒ %� � G ⇒ G � 0
Hence,  1 � 
 �@ 
 � �2 ln 1 � 
 � 2


⇒ @ 
 � 2 �ln 1 � 
 � 
 1 � 
 #�
� 2 �
HI

�
H�� � :� 1 
?�

?��

%� � 2 �� � 1 � ::
�

?�� � 2 � � 1 �1:
�

?�� � 4� � 2 � � 1 K� � 4�,
Equating coefficients of 
� from both sides,

where K� � ∑ �?�?�� is the �MN harmonic number.
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%� � 2 � � 1 K� � 4�,We have, 

where K� � ∑ �?�?�� is the �MN harmonic number.

But we know, K� � ln� � Ο 1 ( prove it )

%� � 2 � � 1 ln � � Ο 1 � 4� � Θ � log � .Hence, 




