
CSE 594 : Modern Cryptography 26 Jan, 2017

Lecture 1: Shannon and Perfect Secrecy

Instructor: Omkant Pandey Scribe: Him Kalyan Bordoloi, Arian Akhavan Niaki

1 Symmetric Ciphers

A symmetric cipher consists of the following elements:

1. KG a method for generating random keys k.

2. Enc an encryption algorithm, where Enc encrypts a message m using a secret key k and
generate ciphertext c. This is formally shown as:

Enc(k,m)→ c

3. Dec a decryption algorithm, where Dec should work correctly for every m in the message
space M given the ciphertext and the key. This is formally shown as:

∀k, ∀m : Dec(k,Enc(k,m)) = m.

Notation: M , K and C are the message space, key space and the ciphertext space and they
contain the set of all messages m, all keys k and all ciphertexts c respectively.

1.1 Security of a Cipher

1. Hide the key: hiding the key does not mean hiding the message, for example in Caesar Cipher
ATTACK = BUUBDL and DEFEND = EFGFOE. Therefore, the cipher can be broken by
checking patterns and without having the key.

2. Hide the message: hiding all possible functions of the message is impossible because some
characteristic about the message may be known. For example, a message in English may
always start with ”Hello”.

3. Hide everything that is not known: The ciphertext should not give any new information
about the message to the adversary.

1.2 Hide everything that is not known

1.2.1 Shannon’s Secrecy

The approach of ”Hiding Everything that is not known” is represented mathematically as follows

• D is the distribution of messages over the message space M . D consists of the probabilities
of all messages m in M .

• c = Enc(m, k) is the cipher text produced by the encryption algorithm where

– m is the message being encrypted
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– k is the key chosen randomly

– Enc induces some additional randomness

– C is the distribution of cipher-text

• For to adversary to not gain any additional knowledge from the encrypted message, his
knowledge of D must not increase after observing C

i.e. distribution D and D|C must be identical

Definition 1 A cipher (M, K,KG, Enc, Dec) is Shannon secure w.r.t a distribution D over M if
for all m1 P M and for all c

Pr[m← D : m = m′] = Pr[k ← KG,m← D : m = m′|Enc(m, k) = c]

It is Shannon secure if it is Shannon secure w.r.t. all distributions D over M .

1.2.2 Perfect Secrecy

For every pair of messages m1 ∈ M and m2 ∈ M , The distribution of cipher-texts for m1, C1 =
{k ← KG, output Enc(m1, k)} and for m2, C2 = {k ← KG, output Enc(m2, k)} are identical

i.e. The distributions C1 and C2 must be identical for every pair of m1, m2

Definition 2 Scheme (M, K,KG, Enc, Dec) is perfectly secure for every pair of messages m1, m2

in M and for all c,

Pr[k ← KG : Enc(m1, k) = c] = Pr[k ← KG : Enc(m2, k) = c]

Theorem 1 Equivalence Theorem A private-key encryption scheme is perfectly secure if and only
if it is Shannon secure.

Proof. In order to prove the Equivalence Theorem we need to prove the following

Perfect Secrecy => Shannon Secrecy
And

Shannon Secrecy => Perfect Secrecy

Part 1: Perfect Secrecy => Shannon Secrecy

Given: ∀(m1,m2) ∈M ×M and every c ∈ C

Pr[Enck(m1) = c] = Pr[Enck(m2) = c]

Show: for every D over M m′ ∈M , and c ∈ C

Prk,m[m = m′|Enck(m) = c] = Prm[m = m′]
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L.H.S = Prk,m[m = m′|Enck(m) = c]

=
Prk,m[m = m′ ∩ Enck(m) = c]

Prk,m[Enck(m) = c]

=
Prk,m[m = m′ ∩ Enck(m′) = c]

Prk,m[Enck(m) = c]
∵ m = m′ in numerator

∵ Pr[m = m′] is independent of k and Pr[Enck(m′) = c] is independent of m

=
Prm[m = m′].P rk[Enck(m′) = c]

Prk,m[Enck(m) = c]

=
Prm[m = m′]

Prk,m[Enck(m) = c]
× Prk[Enck(m′) = c]

Prk,m[Enck(m) = c]

= Prm,k[m = m′|Enck(m) = c]× Prk[Enck(m′) = c]

Prk,m[Enck(m) = c]

= R.H.S × Prk[Enck(m′) = c]

Prk,m[Enck(m) = c]

Now we need to prove that

Prk[Enck(m′) = c]

Prk,m[Enck(m) = c]
= 1

The probability that we get a cipher-text c from any message m is the sum of the probabilities
of each test in the message set M leading to c on encryption using Enc

∴ Prk,m[Enck(m) = c] =
∑

m′′∈M
Prm[m = m′′]Prk[Enck(m′′) = c]

∵ probability of getting cipher − text c is equal for every message in M

=
∑

m′′∈M
Prm[m = m′′]Prk[Enck(m′′) = c]

= Prk[Enck(m′) = c]
∑

m′′∈M
Prm[m = m′′]

= Prk[Enck(m′) = c]× 1

∴
Prk[Enck(m′) = c]

Prk,m[Enck(m) = c]
= 1

1-3



Part 2: Shannon Secrecy => Perfect Secrecy

Given: ∀(m1,m2) ∈M ×M and ∀c

Show: Prk[Enck(m1) = c] = Prk[Enck(m2) = c]

We will only look at uniform distribution for this proof
Let D be the uniform distribution over m1, m2 so that:

Prm[m = m1] = Prm[m = m2] =
1

2

Since we are assuming this to be Shannon secure w.r.t D

Prk,m[m = m1|Enck(m) = c] = Prm[m = m1] and

Prk,m[m = m2|Enck(m) = c] = Prm[m = m2]

∴ Prk,m[m = m1|Enck(m) = c] = Prk,m[m = m2|Enck(m) = c]

L.H.S = Prk,m[m = m1|Enck(m) = c]

=
Prk,m[m = m1 ∩ Enck(m) = c]

Prk,m[Enck(m) = c]

=
Prk,m[m = m1 ∩ Enck(m1) = c]

Prk,m[Enck(m) = c]
∵ m = m1 in numerator

∵ Pr[m = m1] is independent of k and Pr[Enck(m1) = c] is independent of m

=
Prm[m = m1].P rk[Enck(m1) = c]

Prk,m[Enck(m) = c]

=
1
2 .P rk[Enck(m1) = c]

Prk,m[Enck(m) = c]

Similarly

R.H.S = Prk,m[m = m2|Enck(m) = c]

=
1
2 .P rk[Enck(m2) = c]

Prk,m[Enck(m) = c]

∵ L.H.S = R.H.S
1
2 .P rk[Enck(m1) = c]

Prk,m[Enck(m) = c]
=

1
2 .P rk[Enck(m2) = c]

Prk,m[Enck(m) = c]

1-4



Now cancel
1
2

Prk,m[Enck(m)=c] from both sides to get:

Prk[Enck(m1) = c] = Prk[Enck(m2) = c]

Remark 1 As noted in the class, it is not necessary to assume that m1 and m2 occur with equal
probability 1

2 . We can work with any D over the message space M such that support of D is equal
to M . To see this, observe that “LHS” is also equal Pr[m = m1] so we can divide by Pr[m = m1]
(which is not 0) to get that Prk[Enck(m1) = c] = Prk,m←D[Enck(m) = c]. Do the same to the term
in “RHS” to get the same equation for m2 and observe that they come out to be equal.

2 One Time Pad

• n is an integer which is equal to the length of the plaintext message.

• M := {0, 1}n is the Message space which is an n bit binary string.

• K := {0, 1}n is the Key space. Therefore the key is as long as the message.

Definition 3 OTP Algorithm:

• KG sample a key k uniformly at random. k ← {0, 1}n

• Enc(m, k) = c is a bit-by-bit XOR
if m = m1m2...mn and k = k1k2...kn the output ciphertext c = c1c2...cn is generated by
ci = mi ⊕ ki.

• Dec(c, k) = m is a bit-by-bit XOR as well
where mi = ci ⊕ ki for ever i.

• the key must have the following conditions:

– The key can be only used once.

– It must be sampled uniformly every time.

– The key must be the same length as the message. This will be a problem when encrypting
large amounts of data. (Ex: 80 GB hard drive)

Theorem 2 Perfect Security of OTP One Time Pad is a perfectly secure symmetric cipher en-
cryption scheme.

Proof. Perfect secrecy: for a fix m ∈ {0, 1}n and c ∈ {0, 1}n.
We know that Enc(m, k) = m⊕ k therefore:

Prk[Enck(m) = c] = Pr[m⊕ k = c]
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By applying ⊕m to both sides of m⊕ k = c:

Pr[m⊕ k = c] = Pr[k = m⊕ c] = 2−n

For all c that are not an n bit binary string (∀c /∈ {0, 1}n):

Prk[Enck(m) = c] = 0

⇒ ∀(m1,m2) ∈ {0, 1}n×n and ∀c :

Prk[Enck(m1) = c] = Prk[Enck(m2) = c]

Theorem 3 Shannon’s Theorem For every perfectly secure cipher (Enc,Dec) with message space
M and key space K, it holds that |K| ≥ |M |.

Remark 2 Note that message length n and, key length l are n = lg|M | and, l = lg|K| respectively.
Taking log on both sides, we get l ≥ n, i.e., keys must be as long as the messages for perfect secrecy.

Proof. If we assume the contrary |K| ≤ |M | and fix any message m0 and any key k0.
Let: c0 = Enc(m0, k0)

⇒ Prk[Enc(m0, k) = c0] > 0.

If we decrypt c0 with each key one by one we get a set of messages defined as below:

S = {Dec(c0, k) : k ∈ |K|}

We know that |S| ≤ |K| and from our assumption |K| < |M |, therefore we have:

|S| < |M |

This means that there exists a message m1 ∈ |M | such that m1 /∈ |S|. If we encrypt m1 with key
k ∈ |K|:

∀k ∈ |K| : Enc(m1, k) 6= c0.

⇒ Prk[Enc(m1, k) = c0] = 0.

Therefore, there exists m0, m1, and c0 such that:

Prk[Enc(m0, k) = c0] 6= Prk[Enc(m1, k) = c0].

The statement above contradicts perfect secrecy.
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