Lecture 20: Non-Interactive Zero-Knowledge

Instructor: Omkant Pandey

Spring 2017 (CSE 594)

The Setting

- Alice wants to prove an NP statement to Bob without revealing her private witness
- However, Alice only has the resource to send a single message to Bob. Therefore, they cannot run an interactive zero-knowledge proof
- To make matters worse, 1-message zero-knowledge is only possible for languages in BPP! (Think: Why?)
- Fortunately, they both have access to a common random string that was (honestly) generated by someone they both trust
- Can Alice prove statements non-interactively to Bob using the common random string?

Non-Interactive Proofs

Syntax. A non-interactive proof system for a language L with witness relation R is a tuple of algorithms ($\mathrm{K}, \mathrm{P}, \mathrm{V}$) such that:

- Setup: $\sigma \leftarrow \mathrm{K}\left(1^{n}\right)$ outputs a common random string
- Prove: $\pi \leftarrow \mathrm{P}(\sigma, x, w)$ takes as input a common random string σ, a statement $x \in L$ and a witness w and outputs a proof π
- Verify: $V(\sigma, x, \pi)$ outputs 1 if it accepts the proof and 0 otherwise

A non-interactive proof system must satisfy completeness and soundness properties

Non-Interactive Proofs (contd.)

Completeness: $\forall x \in L, \forall w \in R(x)$:

$$
\operatorname{Pr}\left[\sigma \leftarrow \mathrm{K}\left(1^{n}\right) ; \pi \leftarrow \mathrm{P}(\sigma, x, w): \mathrm{V}(\sigma, x, \pi)=1\right]=1
$$

Non-Adaptive Soundness: There exists a negligible function $\nu(\cdot)$ s.t. $\forall x \notin L$:

$$
\operatorname{Pr}\left[\sigma \leftarrow \mathrm{K}\left(1^{n}\right) ; \exists \pi \text { s.t. } \mathrm{V}(\sigma, x, \pi)=1\right] \leqslant \nu(n)
$$

Adaptive Soundness: There exists a negligible function $\nu(\cdot)$ s.t.:

$$
\operatorname{Pr}\left[\sigma \leftarrow \mathrm{K}\left(1^{n}\right) ; \exists(x, \pi) \text { s.t. } x \notin L \wedge \mathrm{~V}(\sigma, x, \pi)=1\right] \leqslant \nu(n)
$$

Note: In non-adaptive soundness, the adversary chooses x before seeing the common random string whereas in adaptive soundness, it can choose x depending upon the common random string

Non-Interactive Zero Knowledge (NIZK)

Definition (Non-Adaptive NIZK)

A non-interactive proof system $(\mathrm{K}, \mathrm{P}, \mathrm{V})$ for a language L with witness relation R is non-adaptive zero-knowledge if there exists a PPT simulator \mathcal{S} s.t. for every $x \in L, w \in R(x)$, the output distributions of the following two experiments are computationally indistinguishable:

$\operatorname{REAL}\left(1^{n}, x, w\right)$	$\operatorname{IDEAL}\left(1^{n}, x\right)$
$\sigma \leftarrow \mathrm{K}\left(1^{n}\right)$	$(\sigma, \pi) \leftarrow \mathcal{S}\left(1^{n}, x\right)$
$\pi \leftarrow \mathrm{P}(\sigma, x, w)$	
Output (σ, π)	Output (σ, π)

Note: The simulator generates both the common random string and the simulated proof given the statement x is input. In particular, the simulated common random string can depend on x and can therefore only be used for a single proof

Non-Interactive Zero Knowledge (contd.)

Definition (Adaptive NIZK)

A non-interactive proof system $(\mathrm{K}, \mathrm{P}, \mathrm{V})$ for a language L with witness relation R is adaptive zero-knowledge if there exists a PPT simulator $\mathcal{S}=\left(\mathcal{S}_{0}, \mathcal{S}_{1}\right)$ s.t. for every $x \in L, w \in R(x)$, the output distributions of the following two experiments are computationally indistinguishable:

$\operatorname{REAL}\left(1^{n}, x, w\right)$	$\operatorname{IDEAL}\left(1^{n}, x\right)$
$\sigma \leftarrow \mathrm{K}\left(1^{n}\right)$	$(\sigma, \tau) \leftarrow \mathcal{S}_{0}\left(1^{n}\right)$
$\pi \leftarrow \mathrm{P}(\sigma, x, w)$	$\pi \leftarrow \mathcal{S}_{1}(\sigma, \tau, x)$
Output (σ, π)	Output (σ, π)

Note 1: Here, τ is a "trapdoor" for the simulated common random string σ that is used by \mathcal{S}_{1} to generate an accepting proof for x without knowing the witness.
Note 2: This definition captures reusable common random strings

Remarks on NIZK Definition

- In NIZK, the simulator is given "extra power" to choose the common random string, along with possibly a trapdoor to enable simulation without a witness
- In interactive ZK, the extra power to the simulator was the ability to "reset" the verifier
- Indeed, a simulator must always have some extra power over the normal prover, otherwise, the definition would be impossible to realize for languages outside BPP
- In NIZKs, the extra power is ok since we require indistinguishability of the "joint distribution" over the common random string and the proof

From Non-Adaptive to Adaptive Soundness

Lemma

There exists an efficient transformation from any non-interactive proof system ($\mathrm{K}, \mathrm{P}, \mathrm{V}$) with non-adaptive soundness into a non-interactive proof system $\left(\mathrm{K}^{\prime}, \mathrm{P}^{\prime}, \mathrm{V}^{\prime}\right)$ with adaptive soundness

Proof Strategy: Let $\ell(n)$ be the length of the statements

- Repeat (K, P, V) polynomially many times (with fresh randomness) so that soundness error decreases to $2^{-2 \ell(n)}$
- Non-adaptive soundness means that a randomly sampled σ is "bad" for a statement x with probability $2^{-2 \ell(n)}$
- By Union Bound, σ is "bad" for all statements with probability $2^{-\ell(n)}$. Therefore, we have adaptive soundness

NIZKs for NP

I. Non-adaptive Zero Knowledge: We first construct NIZKs for NP with non-adaptive zero-knowledge property using the following two steps:

Step 1. Construct a NIZK proof system for NP in the hidden-bit model. This step is unconditional
Step 2. Using trapdoor permutations, transform any NIZK proof system for language in the hidden-bit model to a non-adaptive NIZK proof system in the common random string model
II. Adaptive Zero Knowledge: Next, we transform non-adaptive NIZKs for NP into adaptive NIZKs for NP. This step only requires one-way functions, which are implied by trapdoor permutations.
Putting all the steps together, we obtain adaptive NIZKs for NP based on trapdoor permutations

Roadmap

- Today: Defining NIZKs in hidden-bit model, and transformation from NIZKs in hidden-bit model to NIZKs in common random string model
- Next time: NIZKs for NP in the hidden-bit model
- Homework: Non-adaptive NIZKs to Adaptive NIZKs

NIZK in Hidden-Bit Model

Syntax. A non-interactive proof system for a language L with witness relation R in the hidden-bit model is a tuple of algorithms $\left(\mathrm{K}_{\mathrm{HB}}, \mathrm{P}_{\mathrm{HB}}, \mathrm{V}_{\mathrm{HB}}\right)$ such that:

- Setup: $r \leftarrow \mathrm{~K}_{\mathrm{HB}}\left(1^{n}\right)$ outputs the hidden random string
- Prove: $(I, \pi) \leftarrow \mathrm{P}_{\mathrm{HB}}(r, x, w)$ generates the indices $I \subseteq[|r|]$ of r to reveal, along with a proof π
- Verify: $V_{\mathrm{HB}}\left(I,\left\{r_{i}\right\}_{i \in I}, \pi\right)$ outputs 1 if it accepts the proof and 0 otherwise

Such a proof system must satisfy completeness and soundness (similar to as defined earlier)

NIZK in Hidden-Bit Model (contd.)

Definition (NIZK in Hidden Bit Model)

A non-interactive proof system $\left(\mathrm{K}_{\mathrm{HB}}, \mathrm{P}_{\mathrm{HB}}, \mathrm{V}_{\mathrm{HB}}\right)$ for a language L with witness relation R in the hidden-bit model is (non-adaptive) zero-knowledge if there exists a PPT simulator $\mathcal{S}_{\mathrm{HB}}$ s.t. for every $x \in L$, $w \in R(x)$, the output distributions of the following two experiments are computationally indistinguishable:

$\operatorname{REAL}\left(1^{n}, x, w\right)$	$\operatorname{IDEAL}\left(1^{n}, x\right)$
$r \leftarrow \mathrm{~K}_{\mathrm{HB}}\left(1^{n}\right)$	$\left(I,\left\{r_{i}\right\}_{i \in I}, \pi\right) \leftarrow \mathcal{S}_{\mathrm{HB}}\left(1^{n}, x\right)$
$(I, \pi) \leftarrow \mathrm{P}_{\mathrm{HB}}(r, x, w)$	
Output $\left(I,\left\{r_{i}\right\}_{i \in I}, \pi\right)$	Output $\left(I,\left\{r_{i}\right\}_{i \in I}, \pi\right)$

From NIZK in HB Model to NIZK in CRS Model

Intuition: How to transform a "public" random string into a "hidden" random string

- Suppose the prover samples a trapdoor permutation $\left(f, f^{-1}\right)$ with hardcore predicate h
- Given a common random string $\sigma=\sigma_{1}, \ldots, \sigma_{n}$, the prover can compute $r=r_{1}, \ldots, r_{n}$ where:

$$
r_{i}=h\left(f^{-1}\left(\sigma_{i}\right)\right)
$$

- If f is a permutation and h is a hard-core predicate, then r is guaranteed to be random
- Now r can be treated as the hidden random string: V can only see the parts of it that the prover wishes to reveal

Construction

Let $\mathcal{F}=\left\{f, f^{-1}\right\}$ be a family of 2^{n} trapdoor permutations with hardcore predicate h. Let ($\left.\mathrm{K}_{\mathrm{HB}}, \mathrm{P}_{\mathrm{HB}}, \mathrm{V}_{\mathrm{HB}}\right)$ be a NIZK proof system for L in the hidden-bit model with soundness error $2^{-2 n}$

Construction of (K, P, V):
$\mathrm{K}\left(1^{n}\right)$: Output a random string $\sigma=\sigma_{1}, \ldots, \sigma_{n}$ s.t. $\forall i,\left|\sigma_{i}\right|=n$
$\mathrm{P}(\sigma, x, w)$: Execute the following steps:

- Sample $\left(f, f^{-1}\right) \leftarrow \mathcal{F}\left(1^{n}\right)$
- Compute $\alpha_{i}=f^{-1}\left(\sigma_{i}\right)$ for $i \in[n]$
- Compute $r_{i}=h\left(\alpha_{i}\right)$ for $i \in[n]$
- Compute $(I, \phi) \leftarrow \mathrm{P}_{\mathrm{HB}}(r, x, w)$
- Output $\pi=\left(f, I,\left\{\alpha_{i}\right\}_{i \in I}, \Phi\right)$
$\mathrm{V}(\sigma, x, \pi)$: Parse $\pi=\left(f, I,\left\{\alpha_{i}\right\}_{i \in I}, \Phi\right)$ and:
- Check $f \in \mathcal{F}$ and $f\left(\alpha_{i}\right)=\sigma_{i}$ for every $i \in I$
- Compute $r_{i}=h\left(\alpha_{i}\right)$ for $i \in I$
- Output $\mathrm{V}_{\mathrm{HB}}\left(I,\left\{r_{i}\right\}_{i \in I}, x, \Phi\right)$

(K, P, V) is a Non-Interactive Proof

- Completeness: α is uniformly distributed since f^{-1} is a permutation and σ is random. Further, since h is a hard-core predicate, r is also uniformly distributed. Completeness follows from the completeness of $\left(\mathrm{K}_{\mathrm{HB}}, \mathrm{P}_{\mathrm{HB}}, \mathrm{V}_{\mathrm{HB}}\right)$
- Soundness: For any $f=f_{0}, r$ is uniformly random, so from (non-adaptive) soundness of $\left(\mathrm{K}_{\mathrm{HB}}, \mathrm{P}_{\mathrm{HB}}, \mathrm{V}_{\mathrm{HB}}\right)$, we have:

$$
\underset{\sigma}{\operatorname{Pr}}\left[P^{*} \text { can cheat using } f_{0}\right] \leqslant 2^{-2 n}
$$

Since there are only 2^{n} possible choices of f (verifier checks that $f \in \mathcal{F})$, by union bound, it follows:

$$
\underset{\sigma}{\operatorname{Pr}}\left[P^{*} \text { can cheat }\right] \leqslant 2^{-n}
$$

Proof of Zero Knowledge: Simulator

Let $\mathcal{S}_{\mathrm{HB}}$ be the simulator for $\left(\mathrm{K}_{\mathrm{HB}}, \mathrm{P}_{\mathrm{HB}}, \mathrm{V}_{\mathrm{HB}}\right)$
Simulator $\mathcal{S}\left(1^{n}, x\right)$:
(1) $\left(I,\left\{r_{i}\right\}_{i \in I}, \Phi\right) \leftarrow \mathcal{S}_{\mathrm{HB}}\left(1^{n}, x\right)$
(2) $\left(f, f^{-1}\right) \leftarrow \mathcal{F}$
(3) $\alpha_{i} \leftarrow h^{-1}\left(r_{i}\right)$ for every $i \in I$
(1) $\sigma_{i}=f\left(\alpha_{i}\right)$ for every $i \in I$
(6) $\sigma_{i} \stackrel{\&}{\leftarrow}\{0,1\}^{n}$ for every $i \notin I$
(0) Output $\left(\sigma, f, I,\left\{\alpha_{i}\right\}_{i \in I}, \Phi\right)$

Note: $h^{-1}\left(r_{i}\right)$ denotes sampling from the pre-image of r_{i}, which can be done efficiently by simply trying random α_{i} 's until $h\left(\alpha_{i}\right)=r_{i}$

Proof of Zero Knowledge: Hybrids

Hybrid $H_{0}\left(1^{n}, x, w\right):=\operatorname{REAL}\left(1^{n}, x, w\right)$:
(1) $\sigma \leftarrow \mathrm{K}\left(1^{n}\right)$ where $\sigma=\sigma_{1}, \ldots, \sigma_{n}$
(2) $\left(f, f^{-1}\right) \leftarrow \mathcal{F}$
(3) $\alpha_{i} \leftarrow f^{-1}\left(\sigma_{i}\right)$ for every $i \in[n]$
(1) $r_{i}=h\left(\alpha_{i}\right)$ for every $i \in[n]$
© $(I, \Phi) \leftarrow \mathrm{P}_{\mathrm{HB}}(r, x, w)$
(6) Output $\left(\sigma, f, I,\left\{\alpha_{i}\right\}_{i \in I}, \Phi\right)$

Proof of Zero Knowledge: Hybrids (contd.)

Hybrid $H_{1}\left(1^{n}, x, w\right)$:
(1) $\alpha_{i} \stackrel{\$}{\leftarrow}\{0,1\}^{n}$ for every $i \in[n]$
(2) $\left(f, f^{-1}\right) \leftarrow \mathcal{F}$
(3) $\sigma_{i} \leftarrow f\left(\alpha_{i}\right)$ for every $i \in[n]$
(1) $r_{i}=h\left(\alpha_{i}\right)$ for every $i \in[n]$
© $(I, \Phi) \leftarrow \mathrm{P}_{\mathrm{HB}}(r, x, w)$
(6) Output $\left(\sigma, f, I,\left\{\alpha_{i}\right\}_{i \in I}, \Phi\right)$
$H_{0} \approx H_{1}$: In H_{1}, we sample α_{i} at random and then compute σ_{i} (instead of sampling σ_{i} and then computing α_{i} as in H_{0}). This induces an identical distribution since f is a permutation

Proof of Zero Knowledge: Hybrids (contd.)

Hybrid $H_{2}\left(1^{n}, x, w\right)$:
(1) $r_{i} \stackrel{\S}{\leftarrow}\{0,1\}$ for every $i \in[n]$
(2) $\left(f, f^{-1}\right) \leftarrow \mathcal{F}$
(3) $\alpha_{i} \leftarrow h^{-1}\left(r_{i}\right)$ for every $i \in[n]$
(1) $\sigma_{i}=f\left(\alpha_{i}\right)$ for every $i \in[n]$
(0) $(I, \Phi) \leftarrow \mathrm{P}_{\mathrm{HB}}(r, x, w)$
(0) Output $\left(\sigma, f, I,\left\{\alpha_{i}\right\}_{i \in I}, \Phi\right)$
$H_{1} \approx H_{2}$: In H_{2}, we again change the sampling order: first sample $r=r_{1}, \ldots, r_{n}$ at random and then sample α_{i} from the pre-image of r_{i} (as described earlier). This distribution is identical to H_{1}

Proof of Zero Knowledge: Hybrids (contd.)

Hybrid $H_{3}\left(1^{n}, x, w\right)$:
(1) $r_{i} \stackrel{\&}{\leftarrow}\{0,1\}$ for every $i \in[n]$
(2) $\left(f, f^{-1}\right) \leftarrow \mathcal{F}$
(3) $\alpha_{i} \leftarrow h^{-1}\left(r_{i}\right)$ for every $i \in[n]$
(1) $(I, \Phi) \leftarrow \mathrm{P}_{\mathrm{HB}}(r, x, w)$
(6) $\sigma_{i}=f\left(\alpha_{i}\right)$ for every $i \in I$
(- $\sigma_{i} \stackrel{\&}{\leftarrow}_{\leftarrow}\{0,1\}^{n}$ for every $i \notin I$
(1) Output $\left(\sigma, f, I,\left\{\alpha_{i}\right\}_{i \in I}, \Phi\right)$
$H_{2} \approx_{c} H_{3}$: In H_{3}, we output random σ_{i} for $i \in I$. From security of hard-core predicate h, it follows that:

$$
\left\{f\left(h^{-1}\left(r_{i}\right)\right\} \approx_{c} U_{n}\right.
$$

Indistinguishability of H_{2} and H_{3} follows using the above equation

Proof of Zero Knowledge: Hybrids (contd.)

Hybrid $H_{4}\left(1^{n}, x\right):=\operatorname{IDEAL}\left(1^{n}, x\right)$:
(1) $\left(I,\left\{r_{i}\right\}_{i \in I}, \Phi\right) \leftarrow \mathcal{S}_{\mathrm{HB}}\left(1^{n}, x\right)$
(2) $\left(f, f^{-1}\right) \leftarrow \mathcal{F}$
(3) $\alpha_{i} \leftarrow h^{-1}\left(r_{i}\right)$ for every $i \in I$
(1) $\sigma_{i}=f\left(\alpha_{i}\right)$ for every $i \in I$
(3) $\sigma_{i} \stackrel{\&}{\leftarrow}\{0,1\}^{n}$ for every $i \notin I$
(6) Output $\left(\sigma, f, I,\left\{\alpha_{i}\right\}_{i \in I}, \Phi\right)$
$H_{3} \approx_{c} H_{4}$: In H_{4}, we swap P_{HB} with $\mathcal{S}_{\mathrm{HB}}$. Indistinguishability follows from the zero-knowledge property of $\left(\mathrm{K}_{\mathrm{HB}}, \mathrm{P}_{\mathrm{HB}}, \mathrm{V}_{\mathrm{HB}}\right)$

