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Random Functions

How do we define a random function?

e Consider functions F': {0,1}" — {0,1}"

Think: How many such functions are there?

Write F' as a table:
o first column has input strings from 0™ to 1™;

e against each input, second column has the function value

o i.e., each row is of the form (z, F(x))
o The size of the table for ' = 2" x n = n2"

Total number of functions mapping n bits to n bits = 272"
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Random Functions

There are two ways to define a random function:

e First method: A random function F' from n bits to n bits is a
function selected uniformly at random from all 2"2" functions that
map n bits to n bits

e Second method: Use a randomized algorithm to describe the
function. Sometimes more convenient to use in proofs

randomized program M to implement a random function F’

M keeps a table T that is initially empty.

on input z, M has not seen = before, choose a random string y and
add the entry (z,y) to the table T

e otherwise, if z is already in the table, M picks the entry
corresponding to x from 7', and outputs that

e M’s output distribution identical to that of F.
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Random Functions

@ Truly random functions are huge random objects

@ No matter which method we use, we cannot store the entire
function efficiently

e With the second method, we can support polynomial calls to the
function efficiently because M will only need polynomial space and
time to store and query T'

e Can we use some crypto magic to make a function F’ so that:

e it “looks like” a random function
e but actually needs much fewer bits to describe, store, and query?
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Pseudorandom Functions (PRF)

e PRF looks like a random function, and needs polynomial bits to be
described
e Think: What does “looks like” mean?
o First Idea: Use computational indistinguishability
Random Functions and PRFs are hard to tell apart efficiently
@ Think: Should the distinguisher get the description of either a
random function or a PRF?
e Main Issue: A random function is of exponential size
— D can’t even read the input efficiently

— D can tell by looking at the size

e Idea: D can only query the function on inputs of its choice, and
see the output.
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Pseudorandom Functions

o Keep the description of PRF secret from D?
o Security by obscurity not a good idea (Kerckoff’s priniciple)

o Solution: PRF will be a keyed function. Only the key will be
secret, and the PRF evaluation algorithm will be public
e Security via a Game based definition
— Players: a challenger Ch and D. Ch is randomized and efficient

— Game starts by C'h choosing a random bit b. If b =0, Ch
implements a random function, otherwise it implements a PRF

— D send queries x1, 2, ... to Ch, one-by-one

Ch answers by correctly replying F(z1), F(x2),. ..
Finally, D outputs his guess b’ (of F being random or PRF)
~ D winsift/ =b
e PRF Security: No D can win with probability better than 1/2.
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Pseudorandom Functions: Definition

Definition (Pseudorandom Functions)

A family {F}rego,13» of functions, where : Fj : {0,1}" — {0,1}" for all
k, is pseudorandom if:
o Easy to compute: there is an efficient algorithm M such that
Vk,x: M(k,x) = Fy(z).

e Hard to distinguish: for every non-uniform PPT D there exists
a negligible function v such that Vn € N:

|Pr[D wins GuessGame] — 1/2| < v(n).

where GuessGame is defined below
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Pseudorandom Functions: Game Based Definition

GuessGame(1™) incorporates D and proceeds as follows:

@ The games choose a PRF key k and a random bit b.

o It runs D answering every query x as follows:

o If b=0: (answer using PRF)
— output Fy(x)

If b=1: (answer using a random F)
— (keep a table T for previous answers)
— if x isin T return T'[z].

else: choose y < {0,1}", T[x] =y, return y.
e Game stops when D halts. D outputs a bit &’

D wins GuessGame if ' = b.

Remark: note that for any b only one of the two functions is ever used.

Instructor: Omkant Pandey Lecture 9: Pseudorandomness - III ~ Spring 2017 (CSE 594) 8 /16



Pseudorandom Functions (contd.)

@ Think: How can we construct a PRF?
e Use PRG?
e Simpler problem: build PRF for just 1-bit inputs using PRG
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From PRG to PRF with 1-bit input

Let G be a length doubling PRG
Want: {F}} such that Fj : {0,1} — {0,1}"

e G is length doubling, so let

G(5) = yollm

where [yo| = [y1| = n
PREF: Set k = s and,

Fi(0) = yo, Fr(1) =1

Think: What about n-bit inputs?

e Idea for 1-bit case: “double and choose”
o For general case: Apply the “double and choose” idea repeatedly!
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PRF from PRG

Theorem (Goldreich-Goldwasser-Micali (GGM))

If pseudorandom generators exist then pseudorandom functions exist

e Notation: define Gy and G; as
G(s) = Go(s)[|G1(s)

i.e., Gg chooses left half of G and G; chooses right half

o Construction for n-bit inputs x = x122... 2,

Fi(z) = Go, (Gapy (- (Gay (K)).)
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PRF from PRG (contd.)

o We can represent Fj, as a binary tree of size 2"
@ The root corresponds to k

o Left and right child on level 1 and 2 are:
k‘o = Go(k‘) and kl = Gl(k‘)
@ Second level children:

koo = Go(ko), ko1 = G1(ko), k1o = Go(k1), ki = G1(k1)

At level £, 2¢ nodes, one for each path, denoted by Eey..a
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PRF from PRG (contd.)

7N

ko = Go(k) k1 = G1(k)
koo = Go(ko) ko1 = G1(ko) k1o = Go(k1) k11 = G1(k1)

{PRF Tree: To evaluate F(z) travel down the path z and output kzj
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Proof Strategy

o Let’s use Hybrid Arguments!

@ Problem: If we replace each node in the tree one-by-one with
random, then exponentially many hybrids. Hybrid lemma doesn’t
apply!

@ Observation: Efficient adversary can only make polynomial
queries

@ Thus, only need to change polynomial number of nodes in the tree
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Proof Strategy (contd.)

Two layers of hybrids:

o First, define hybrids over the n levels in the tree. For every i, H; is
such that the nodes up to level ¢ are random, but the nodes below
are pseudorandom.

e If Hy and H,, are distinguishable with noticeable advantage, then
use hybrid lemma to find level ¢ s.t. H; and H;1, are also
distinguishable with noticeable advantage

e Now, hybrid over the nodes in level ¢ + 1 that are “affected” by
adversary’s queries, replacing each node one by one with random

@ Use hybrid lemma again to identify one node that is changed from
pseudorandom to random and break PRG’s security to get a
contradiction
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Proof Details

o Must make sure that all hybrids are implementable in polynomial
time
o Will use two key points to ensure this:

@ Adversary only makes polynomial number of queries
@ A random function can be efficiently implemented (using second
method) if the number of queries are polynomial

e Think: Formal proof?
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