Lecture 1: Introduction

Instructor: Omkant Pandey

Spring 2017 (CSE 594)

Cryptography

- Most of us rely on cryptography everyday
- Online banking
- Ordering something on Amazon
- Sending emails
- Interacting on social media...
- Your browser often tells you what it is using:

Secret Communication

- Historically, such mechanisms are called ciphers.

Ciphers

- E, D are called encryption and decryption algorithms, and k, the secret key.

Ciphers

- E, D are called encryption and decryption algorithms, and k, the secret key.
- E could be randomized, so that c changes every time!

Ciphers

- E, D are called encryption and decryption algorithms, and k, the secret key.
- E could be randomized, so that c changes every time!
- Symmetric Cipher: k is same for both E and D.

Historical Ciphers

...all completely broken

Caesar Cipher

- Named after Julius Caesar who used it to communicate with his generals.
- You simply shift your alphabets by a fixed number...
- Shift by 1: letter A becomes B, B becomes C, ... Z becomes A.
- Shift by any amount $k=1,2, \ldots, 25$.
- Decrypt by shifting back...
- Example: encrypt ATTACK with Shift 1 = BUUBDL.
- Breaking Caesar Cipher:
- Brute force: try all 26 possible shifts.
- Visible patterns and letter frequencies:

ATTACK $=$ BUUBDL and DEFEND $=$ EFGFOE

- Ciphertext only attack! (worst kind)

Substitution Cipher

- Choose a random permutation of English alphabets...
- $\{A \rightarrow T, B \rightarrow L, C \rightarrow K, \ldots, Z \rightarrow H\}$ (no repeating)
- Encrypt: just map plaintext letters according to the substitiution (key)
- Decrypt: revert back using the same key
- Cannot break by brute forcing for the key:
$\#$ possible keys $=26!\approx 2^{88}$
- Break by frequency analysis

Frequency Analysis

- Frequency of letters, bigrams, double letters in English:

Letters									
\mathbf{e}	\mathbf{t}	\mathbf{a}	$\mathbf{0}$	\mathbf{i}	\mathbf{n}	$\mathbf{5}$	\mathbf{r}	\mathbf{h}	
12.49%	9.28%	8.04%	7.64%	7.57%	7.23%	6.51%	6.28%	5.05%	

Bigrams											
th	he	in	er	an	re	on	at	en	nd	ti	es
3.56\%	3.08\%	2.43\%	2.05\%	1.98\%	1.85\%	1.76\%	1.49\%	1.45\%	1.35\%	1.34\%	1.34\%

Double Letters																				
II	ss	ee	00	tt	ff	pp	rr	mm	cc	nn										
0.58%	0.41%	0.38%	0.21%	0.17%	0.15%	0.14%	0.12%	0.10%	0.08%	0.07%										

- Breaking substitution cipher (ciphertext only attack):
- Collect a long ciphertext - frequency patterns will not change.
- Compute frequencies of various letters
- Reconstruct the key: most frequent letter represents "E", second most is " T ", etc. Use bigrams, trigrams, etc. for more.
- Great blogpost about this: http://norvig.com/mayzner.html

Vigenère Cipher

- Use a random keyword to shift. Repeat to match length.
- Keyword = CAB
- Alphabets in an array of length 26: $A=0, B=1, C=2, \ldots, Z=25$.
- Shift for the keyword $C A B=201$.
- HELLO (message)
- CABCA (repeated key to match the length)
- JEMNO (ciphertext)
- $\mathrm{H} \rightarrow \mathrm{J}, \mathrm{E} \rightarrow \mathrm{E}, \mathrm{L} \rightarrow \mathrm{M}, \mathrm{L} \rightarrow \mathrm{N}, \mathrm{O} \rightarrow \mathrm{O}$
- Again, easily broken by frequency analysis: guess key length and analyze frequencies.
- Ciphertext only attack!

Rotor Machines

- After the typewriter, encryption based on rotor machines.

The Hebern Machine (Wikipedia)

- Rotor encodes the key
- Typed symbol encrypted with the next symbol on the rotor
- Rotor moves as you type, changing the key each time.
- Measure the cycle after which the key starts repeating

Rotor Machines

- Machines with more rotors, more rotors = bigger key space.

Enigma with 3 rotors (Wikipedia)

- More rotors $=$ more keys $\approx 2^{36}$ in Enigma with 3-rotors.
- All susceptible to known cryptanalysis methods
- Friedman had several important cryptanalysis methods for Hebern.
- Further improved and highly optimized by others.
- Turing designed a machine to search for Enigma key from known ciphertexts/plaintext pairs.

Digital Age

- Data Encryption Standard (DES), designed by IBM in response to government's call for a good encryption standard, in 1974.
- DES has roughly 2^{56} keys, not considered safe with today's computing powers.
- Advanced Encryption Standard (AES):
- Designed by Vincent Rijmen and Joan Daemen (originally called Rijndael) in 1998.
- Selected and standardized by the US government through intense competition
- Comes with different key sizes and other parameters (typical for such ciphers)
- Many other ciphers known today, e.g., Salsa, Twofish, ...

Today

- Design of such symmetric ciphers is an ongoing process
- Ciphers such AES are not yet (publicly known to be) broken
- Replaced with new parameters (or ciphers altogether) as weaknesses are discovered
- Rigorous process for selecting new ciphers
- These ciphers are quite fast and practical to use. Practical applications will always rely on them as the main method.
- A different approach to designing ciphers:
- Take cryptanalysis "out of the equation"...
- Design ciphers that are provably hard to break!
- Possible to do; drawback: slow speed (practical but not as fast as say AES).

Beyond Secret Communication

- We will do a detailed study of encryption schemes that allow secret communication.
- Cryptography can do a lot more than secure communication.
- Digital Signatures
- Digital Cash
- Electronic voting
- Zero Knowledge Proofs
- Coin flipping over internet
- Secure multiparty computation
- Verifiable Computation
- ...
- Provable security approach: strive for constructions that are mathematically proven hard to break.

Cryptography as a rigorous science

- Understand what you want to do: functionality
- Who are you protecting against, and what: threat model
- Propose a construction
- Prove that breaking your construction is:
- either impossible, or
- at least as hard as solving some known "hard problem"

Next class

- What does it mean for a cipher to be secure?
- Shannon's treatment of perfect secrecy.

