Lecture 1: Introduction

Instructor: Omkant Pandey

Spring 2017 (CSE 594)

Instructor: Omkant Pandey

Lecture 1: Introduction

Spring 2017 (CSE 594)

3 × 4 3 ×

э

Cryptography

- Most of us rely on cryptography everyday
 - Online banking
 - Ordering something on Amazon
 - Sending emails
 - Interacting on social media...
- Your browser often tells you what it is using:

Instructor: Omkant Pandey

Lecture 1: Introduction

Spring 2017 (CSE 594)

Instructor: Omkant Pandey

Lecture 1: Introduction

Spring 2017 (CSE 594)

- 2

3 / 16

イロン 不聞と 不同と 不同と

(日) (同) (三) (三)

- 20

Instructor: Omkant Pandey

Lecture 1: Introduction

Spring 2017 (CSE 594)

(日) (同) (三) (三)

3 / 16

э

Lecture 1: Introduction

Spring 2017 (CSE 594)

- 2

3 / 16

イロン 不聞と 不同と 不同と

Instructor: Omkant Pandey

Lecture 1: Introduction

Spring 2017 (CSE 594)

イロン 不聞と 不同と 不同と

3 / 16

- 34

• Historically, such mechanisms are called ciphers.

Instructor: Omkant Pandey

Lecture 1: Introduction

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () Spring 2017 (CSE 594)

э

3 / 16

Image: A matrix and a matrix

k

Instructor: Omkant Pandey

Lecture 1: Introduction

Spring 2017 (CSE 594)

Instructor: Omkant Pandey

Lecture 1: Introduction

Spring 2017 (CSE 594)

4 / 16

<ロ> <個> <ヨ> <ヨ> 三日:

k

4 / 16

◆□> ◆圖> ◆ヨ> ◆ヨ> 三国・

.

Lecture 1: Introduction

◆□ ▶ ◆ ● ▶ ◆ ● ▶ ◆ ● ▶ ● ● ⑦ Q ○
Spring 2017 (CSE 594) 4 / 16

Spring 2017 (CSE 594)

4 / 16

<ロト < 回 > < 回 > < 回 > < 三 > - 三

Spring 2017 (CSE 594)

- 2

4 / 16

イロト イヨト イヨト イヨト

Instructor: Omkant Pandey

Lecture 1: Introduction

Spring 2017 (CSE 594)

- 2

4 / 16

イロン 不聞と 不同と 不同と

• *E*, *D* are called encryption and decryption algorithms, and *k*, the secret key.

Spring 2017 (CSE 594)

3

4 / 16

(日) (同) (三) (三)

- *E*, *D* are called encryption and decryption algorithms, and *k*, the secret key.
- *E* could be randomized, so that *c* changes every time!

Lecture 1: Introduction

э

4 / 16

< □ > < □ > < □ > < □ > < □ > < □ >

- E, D are called encryption and decryption algorithms, and k, the secret key.
- E could be randomized, so that c changes every time!
- Symmetric Cipher: k is same for both E and D.

Instructor: Omkant Pandey

Lecture 1: Introduction

э

4 / 16

< 17 ►

Historical Ciphers

...all completely broken

Instructor: Omkant Pandey

Lecture 1: Introduction

Spring 2017 (CSE 594)

- 3

5 / 16

Caesar Cipher

- Named after Julius Caesar who used it to communicate with his generals.
- You simply shift your alphabets by a fixed number...
 - Shift by 1: letter A becomes B, B becomes C, ... Z becomes A.
 - Shift by any amount $k = 1, 2, \ldots, 25$.
 - Decrypt by shifting back...
 - Example: encrypt ATTACK with Shift 1 = BUUBDL.
- Breaking Caesar Cipher:
 - Brute force: try all 26 possible shifts.
 - Visible patterns and letter frequencies:

ATTACK = BUUBDL and DEFEND = EFGFOE

• Ciphertext only attack! (worst kind)

- 3

6 / 16

イロト イポト イヨト イヨト

Substitution Cipher

- Choose a random permutation of English alphabets...
- $\{A \rightarrow T, B \rightarrow L, C \rightarrow K, \dots, Z \rightarrow H\}$ (no repeating)
- Encrypt: just map plaintext letters according to the substitution (key)
- Decrypt: revert back using the same key
- Cannot break by brute forcing for the key:

```
# possible keys = 26! \approx 2^{88}
```

Break by frequency analysis

Frequency Analysis

• Frequency of letters, bigrams, double letters in English:

	Letters										
e	t	а	o	i	n	s	r	h			
12.49%	9.28%	8.04%	7.64%	7.57%	7.23%	6.51%	6.28%	5.05%			

	Bigrams										
th	he	in	er	an	re	on	at	en	nd	ti	es
3.56%	3.08%	2.43%	2.05%	1.99%	1.85%	1.76%	1.49%	1.45%	1.35%	1.34%	1.34%

	Double Letters											
	55	ee	00	tt	ff	рр	rr	mm	cc	nn		
0.58%	0.41%	0.38%	0.21%	0.17%	0.15%	0.14%	0.12%	0.10%	0.08%	0.07%		

• Breaking substitution cipher (ciphertext only attack):

- Collect a long ciphertext frequency patterns will not change.
- Compute frequencies of various letters
- Reconstruct the key: most frequent letter represents "E", second most is "T", etc. Use bigrams, trigrams, etc. for more.

• Great blogpost about this: http://norvig.com/mayzner.html

(Image courtesy Rick Wicklin: blog.sas.org)

Instructor: Omkant Pandey

Vigenère Cipher

- Use a random keyword to shift. Repeat to match length.
- Keyword = CAB
- Alphabets in an array of length 26: A=0, B=1, C=2,..., Z=25.
- Shift for the keyword CAB = 201.
 - HELLO (message)
 - CABCA (repeated key to match the length)
 - JEMNO (ciphertext)
 - $H \rightarrow J. E \rightarrow E. L \rightarrow M. L \rightarrow N. O \rightarrow O$
- Again, easily broken by frequency analysis: guess key length and analyze frequencies.
- Ciphertext only attack!

Rotor Machines

• After the typewriter, encryption based on rotor machines.

The Hebern Machine (Wikipedia)

- Rotor encodes the key
- Typed symbol encrypted with the next symbol on the rotor
- Rotor moves as you type, changing the key each time.
- Measure the cycle after which the key starts repeating

Rotor Machines

• Machines with more rotors, more rotors = bigger key space.

Enigma with 3 rotors (Wikipedia)

- More rotors = more keys $\approx 2^{36}$ in Enigma with 3-rotors.
- All susceptible to known cryptanalysis methods
- Friedman had several important cryptanalysis methods for Hebern.
- Further improved and highly optimized by others.
- Turing designed a machine to search for Enigma key from known ciphertexts/plaintext pairs.

Instructor: Omkant Pandey

Lecture 1: Introduction

Spring 2017 (CSE 594)

Digital Age

- Data Encryption Standard (DES), designed by IBM in response to government's call for a good encryption standard, in 1974.
- DES has roughly 2⁵⁶ keys, not considered safe with today's computing powers.
- Advanced Encryption Standard (AES):
 - Designed by Vincent Rijmen and Joan Daemen (originally called Rijndael) in 1998.
 - Selected and standardized by the US government through intense competition
 - Comes with different key sizes and other parameters (typical for such ciphers)
- Many other ciphers known today, e.g., Salsa, Twofish, ...

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

Today

- Design of such symmetric ciphers is an ongoing process
- Ciphers such AES are not yet (publicly known to be) broken
- Replaced with new parameters (or ciphers altogether) as weaknesses are discovered
- Rigorous process for selecting new ciphers
- These ciphers are quite fast and practical to use. Practical applications will always rely on them as the main method.
- A different approach to designing ciphers:
 - Take cryptanalysis "out of the equation"...
 - Design ciphers that are provably hard to break!
 - Possible to do; drawback: slow speed (practical but not as fast as say AES).

13 / 16

Beyond Secret Communication

- We will do a detailed study of encryption schemes that allow secret communication.
- Cryptography can do a lot more than secure communication.
 - Digital Signatures
 - Digital Cash
 - Electronic voting
 - Zero Knowledge Proofs
 - Coin flipping over internet
 - Secure multiparty computation
 - Verifiable Computation
 - . . .
- Provable security approach: strive for constructions that are mathematically proven hard to break.

Cryptography as a rigorous science

- Understand what you want to do: functionality
- Who are you protecting against, and what: threat model
- Propose a construction
- Prove that breaking your construction is:
 - either impossible, or
 - at least as hard as solving some known "hard problem"

- What does it mean for a cipher to be secure?
- Shannon's treatment of perfect secrecy.

3