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Optimization Case Study

Goal:
• test various optimization strategies and tweak to maximize impact
• using Filtered Backprojection for this case study

Optimization #1: minimize shared memory usage
• update a block of voxels per thread (optimum was 16 × 16 × 4)
• orientation-neutral block minimizes “shadow” on projections   
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Optimization Case Study

Optimization #2: exploit special GPU (ASIC) hardware
• we store projection data in texture memory
• allows fast bilinear interpolation
• frees up registers without penalty since texture is cached

Optimization #3: exploit constant memory
• we store projection (system) matrix in constant memory
• frees up shared memory and reduces global memory accesses

Optimization #4: increase thread granularity
• backproject multiple projections in one thread (optimum was 4) 
• reduces global memory accesses and number of kernel invocations 
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Optimization Case Study

Optimization #5: Pre-fetching
• pre-fetch data while computing on previous data
• incurs some shared memory overhead but worked out OK

Optimization #6: Page-locked memory
• page-lock the result array
• forces OS to store this data on one contiguous page of memory
• eliminates the need for page swaps

Other optimization strategies: loop unrolling, fast math
• we tried these but they did not yield much benefits in this specific 

case
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Case Study – Rabbit CT

Benchmarking framework:
• developed by Rohkohl et al.
• FDK backprojection algorithm
• 496 projections of a rabbit
• 1,248 X 960 pixels each

Advantages:
• enables true comparisons
• embeds the system matrix already
• ‘just’ accelerate the backprojection
• measures timings
• measures reconstruction errors

Leaderboard
• benchmark new code
• 2563, 5123, 10243 volume reconstructions
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Setup

Approach:
• each thread computes an array of voxels

Thread Block Dimension: 16 x 16 x 4
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Winning Implementation #1

+ page-lock memory
+ pre-fetch data

E. Papenhausen, Z. Zheng, K. Mueller, "GPU-
Accelerated Back-Projection Revisited: 
Squeezing Performance by Careful Tuning," 
F ll 3D 2011
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Winning Implementation #2

RapidRabbit strikes back
• re-order projection and voxel loop (improves locality)
• faster perspective divide and depth weighting

using fast inverse square root
w = a2x + a5y + a8z + a11
w’ = rsqrt(w * w)
u = (a0x + a3y + a6z + a9) * w’
v = (a1x + a4y + a7z + a10) * w’
result += tex2D(tRef, (u+0.5), (v+0.5)* w’ * w’

• accumulation via atomic adds
• staged page-locks 
• transpose volume at 45°

E. Papenhausen, Z. Zheng, K. Mueller, “Rapid Rabbit: Highly Optimized GPU 
Accelerated Cone-Beam CT Reconstruction,” IEEE Medical Imaging Conference, 
2013
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Demo

handing over to Sungsoo
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