
MIC-GPU:
High-Performance Computing
for Medical Imaging
on Programmable Graphics
Hardware (GPUs)

CUDA Memory Optimization

Stony Brook University

Computer Science

Stony Brook, NY

Klaus Mueller and Sungsoo Ha

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 2SPIE Medical Imaging 2008 MIC-GPU 2SPIE Medical Imaging 2016

Optimizing Memory Usage

Minimizing data transfers with low bandwidth
• Minimizing host & device transfer

• Maximizing usage of shared memory

• Re-computing can sometimes be cheaper than transfer

Organizing memory accesses based on the optimal memory
access patterns

• Important for global memory access (low bandwidth)

• Shared memory accesses are usually worth optimizing only in case they
have a high degree of bank conflicts

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 3SPIE Medical Imaging 2008 MIC-GPU 3SPIE Medical Imaging 2016

Global Memory Coalescing

Warps & global memory
• Threads execute by warp (32)

• Memory read/write by half warp (16)

• Global memory is considered to be partitioned into segments of size
equal to 32, 64, or 128 bytes and aligned to these sizes.

• Block width must be divisible by 16 for coalescing

• Check your hardware (Compute Capability 1.x)

• Greatly improves throughput (Can yield speedups of >10)

Block

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 4SPIE Medical Imaging 2008 MIC-GPU 4SPIE Medical Imaging 2016

Global Memory Coalescing

Compute Capability 1.0 or 1.1
• Aligned 64 or 128 bytes segment

• Sequential warp

• Divergent warp

• See some good patterns in CUDA
document and CUDA SDK samples

Compute Capability 1.2 or higher
• 32, 64 or 128 bytes segment

• Any pattern as long as inside segment

Memory ……

Half-warp
0 1 2 3 4 5 6 7 8 9 A B C D E F

SPIE Medical Imaging 2008 MIC-GPU 5SPIE Medical Imaging 2010SPIE Medical Imaging 2009

Sobel Filter Effect

Before: After:

MIC-GPU 5 SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 6SPIE Medical Imaging 2008 MIC-GPU 6SPIE Medical Imaging 2016

Example: Sobel Filter

• Discrete convolution with Sobel mask

13

2 5 6

4 2 7

5 2 6

*

Output
image

Ideally each thread will compute
one output pixel

2 5 6

4 2 7

5 2 6

Input image
Apron

-1 0 1

-2 0 2

-1 0 1

-2 0 6

-8 0 14

-5 0 6

Filter mask

x
11∑

1 2 1

0 0 0

-1 -2 -1

2 10 6

0 0 0

-5 -4 6

Filter mask

x
2∑

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 7SPIE Medical Imaging 2008 MIC-GPU 7SPIE Medical Imaging 2016

ul um ur

ml mm mr

ll lm lr

Memory

ul um ur

ml mm mr

ll lm lr

Memory

R/W Global Memory

Bad access pattern
• Global memory only. No texture memory or shared memory. Hundreds

of clock cycles, compared to 1 or 2 for reading from shared memory

• Unstructured read

• No cache, up to 12 global memory reads per thread

__global__ void
SobelBadKernel(unsigned char* Input, unsigned char* output,unsigned int width, unsigned int

height)
{
….//calculate the index for ur, ul, um, ml, mr, ll, lm, lr.
float Horz=Input[ur] +Input[lr] +2.0*Input[mr] -2.0*Input[ml] -Input[ul] -Input[ll] ;
float Vert=Input[ur] +Input[ul] +2.0*Input[um] -2.0*Input[lm] -Input[ll] -Input[lr] ;
output[resultindex] = abs(Horz)+abs(Vert);

}

Input from global memory

Output to another global memory

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 8SPIE Medical Imaging 2008 MIC-GPU 8SPIE Medical Imaging 2016

Reduce Global Memory Read

__device__ unsigned char ComputeSobel(
unsigned char ul,
unsigned char um,
unsigned char ur,
unsigned char ml,
unsigned char mm, //not used
unsigned char mr,
unsigned char ll,
unsigned char lm,
unsigned char lr,
float fScale){

short Horz = ur + 2*mr + lr - ul - 2*ml - ll;
short Vert = ul + 2*um + ur - ll - 2*lm - lr;
short Sum = (short) (fScale*(abs(Horz)+abs(Vert)));
if (Sum < 0) return 0; else if (Sum > 255) return 255;
return (unsigned char) Sum;}

52 6

24 7
25 6

Reduce 12 reads into 8 reads

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 9SPIE Medical Imaging 2008 MIC-GPU 9SPIE Medical Imaging 2016

Reading Texture Memory

Take advantage of CUDA (texture memory)
• Using cache (texture memory) to enhance performance

• Each kernel can compute more than one pixels. This can help to exploit
locality for cache

• Texture memory itself is optimized for coalescing

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 10SPIE Medical Imaging 2008 MIC-GPU 10SPIE Medical Imaging 2016

Reading Texture Memory

unsigned char *pSobel = (unsigned char *) (((char *) pSobelOriginal)+blockIdx.x*Pitch);
for (int i = threadIdx.x; i < w; i += blockDim.x) {

unsigned char pix00 = tex2D(tex, (float) i-1, (float) blockIdx.x-1);
unsigned char pix01 = tex2D(tex, (float) i+0, (float) blockIdx.x-1);
unsigned char pix02 = tex2D(tex, (float) i+1, (float) blockIdx.x-1);
unsigned char pix10 = tex2D(tex, (float) i-1, (float) blockIdx.x+0);
unsigned char pix11 = tex2D(tex, (float) i+0, (float) blockIdx.x+0);
unsigned char pix12 = tex2D(tex, (float) i+1, (float) blockIdx.x+0);
unsigned char pix20 = tex2D(tex, (float) i-1, (float) blockIdx.x+1);
unsigned char pix21 = tex2D(tex, (float) i+0, (float) blockIdx.x+1);
unsigned char pix22 = tex2D(tex, (float) i+1, (float) blockIdx.x+1);
pSobel[i] = ComputeSobel(pix00, pix01, pix02, pix10, pix11, pix12,

pix20, pix21, pix22, fScale);}

• Texture memory only.

• No shared memory Global memory as output.
Need consider coalescing
when write back

Read from texture
memory

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 11SPIE Medical Imaging 2008 MIC-GPU 11SPIE Medical Imaging 2016

Improve Caching?

Disadvantage
• Only using hardware cache to handle spatial locality
• A pixel may be still loaded 9 times in total due to cache miss

Take advantage of CUDA Shared Memory
• Shared memory can be as fast as register! As a user-controlled cache.
1. Together with texture memory, load a block of the image into shared

memory
2. Each thread compute a consecutive rows of pixels (sliding window)
3. Writing result to global memory�

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 12SPIE Medical Imaging 2008 MIC-GPU 12SPIE Medical Imaging 2016

Returning Example : Sobel Filter

Computing all pixels inside
one block (without apron)Each thread will compute a number of

consecutive rows of pixel

Applying vertical
and horizontal

masks

13 4 18 13

2 5 6

4 2 7

5 2 6

2 5 6

4 2 7

5 2 6

2 5 6

4 2 7

5 2 6

2 5 6

4 2 7

5 2 6

2 5 6

4 2 7

5 2 6

2 5 6

4 2 7

5 2 6

2 5 6

4 2 7

5 2 6

2 5 6

4 2 7

5 2 6

2 5 6

4 2 7

5 2 6

2 5 6

4 2 7

5 2 6

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 13SPIE Medical Imaging 2008 MIC-GPU 13SPIE Medical Imaging 2016

Reading Shared Memory

• Shared memory + texture memory.

……// copy a large tile of pixels into shared memory
__syncthreads();

……// read 9 pixels from shared memory
out.x = ComputeSobel(pix00, pix01, pix02, pix10, pix11, pix12, pix20, pix21, pix22, fScale);

……//read p00, p10, p20
out.y = ComputeSobel(pix01, pix02, pix00, pix11, pix12, pix10, pix21, pix22, pix20, fScale);
……// read p01, p11, p21
out.z = ComputeSobel(pix02, pix00, pix01, pix12, pix10, pix11, pix22, pix20, pix21, fScale);
……// read p02, p12, p22
out.w = ComputeSobel(pix00, pix01, pix02, pix10, pix11, pix12, pix20, pix21, pix22, fScale);

__syncthreads();

__shared__ unsigned char shared[];
kernel<<<blocks, threads, sharedMem>>>(…);

Loading data under current window, 9 reads

Sliding window right, reuse 6, update 3

Sliding window right, reuse 6, update 3

Sliding window right, reuse 6, update 3

2

4

5

5

2

2

6

7

6

2 5 6

4 2 7

5 2 6

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 14SPIE Medical Imaging 2008 MIC-GPU 14SPIE Medical Imaging 2016

Shared Memory Bank Conflicts

Shared memory banks
• Shared memory is divided into 32

banks to reduce conflicts

• Each thread can access 32-bit from
different banks simultaneously to
achieve high memory bandwidth

• Conflict-free shared memory as fast
as registers

• Linear

• Random

shared__ float shared[32];
float data = shared[BaseIndex + 1* tid];

Shared memory

Half-warp

……

0 1 2 3 4 5 6 7 8 9 A B C D E F

1, 3, 5 ,7 …… (Any odd number)

Thread ID

Half-warp

0 1 2 3 4 5 6 7 8 9 A B C D E F

Shared memory

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 15SPIE Medical Imaging 2008 MIC-GPU 15SPIE Medical Imaging 2016

Shared Memory Bank Conflicts

4-way bank conflicts

No bank conflicts

• Bank conflicts occur when multiple threads access different words in the
same bank

__shared__ char shared[32];
char data = shared[BaseIndex + tid];

char data = shared[BaseIndex + 4 * tid];

……

0 1 2 3 4 5 6 7 8 9 A B C D E F

Shared memory

Half-warp

Compute Capability 1.x

Compute Capability 2.x

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 16SPIE Medical Imaging 2008 MIC-GPU 16SPIE Medical Imaging 2016

Shared Memory Broadcasting

Shared memory read a 32-bit word and broadcast to
several threads simultaneously

• Read

• Reduce or resolve bank conflicts if set to broadcasting

• Which word is selected as the broadcast word and which address
is picked up for each bank at each cycle is unspecified

……
Shared memory

Half-warp
0 1 2 3 4 5 6 7 8 9 A B C D E F

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 17SPIE Medical Imaging 2008 MIC-GPU 17SPIE Medical Imaging 2016

Returning Example : Sum of Numbers

Add up a large set of numbers
• Normalization factor:

• Mean square error:

Number of addition operations:

MIC-GPU 17

 




1

0
][n

i
ivS

 




1

0
2])[][(n

i
ibiaMSE

]1[]2[]1[]0[ nvvvv 

n-1 additions How to optimize?

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 18SPIE Medical Imaging 2008 MIC-GPU 18SPIE Medical Imaging 2016

Non-parallel approach

Non-parallel approach:

MIC-GPU 18

Input numbers:

O(n) additions

Generate only
one thread

Rule 1 : Maximized parallel execution

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 19SPIE Medical Imaging 2008 MIC-GPU 19SPIE Medical Imaging 2016

Parallel Approach: Kernel 1

Interleaved addressing: Kernel 1

MIC-GPU 19

O(logn) additions

16 threads in a
half wrap.

Only 8 of them
are active in the

first loop

Uncoalesced global
memory reading and

writing pattern
Rule 2 : Optimize memory usage

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 20SPIE Medical Imaging 2008 MIC-GPU 20SPIE Medical Imaging 2016

Parallel Approach: Kernel 1

CUDA code:

MIC-GPU 20

inefficient statement, % operator
is very slow

Writing with global memory
coalescing

Rule 3: Maximize instruction throughput

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 21SPIE Medical Imaging 2008 MIC-GPU 21SPIE Medical Imaging 2016

Parallel Approach: Kernel 2

Refinement strategy:

MIC-GPU 21 SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 22SPIE Medical Imaging 2008 MIC-GPU 22SPIE Medical Imaging 2016

Parallel Approach: Kernel 2

Interleaved addressing: Kernel 2

MIC-GPU 22

Shared memory conflict !

Half-warp

0 1 2 3 4 5 6 7 8 9 A B C D E F

Shared memory

8 9 10 11 15…

Law 2 : Optimize memory usage

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 23SPIE Medical Imaging 2008 MIC-GPU 23SPIE Medical Imaging 2016

Parallel Approach: Kernel 3

Sequential addressing: Kernel 3

MIC-GPU 23

Conflict-free

Half-warp

0 1 2 3 4 5 6 7 8 9 A B C D E F

Shared memory

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 24SPIE Medical Imaging 2008 MIC-GPU 24SPIE Medical Imaging 2016

Parallel Approach: Kernel 3

CUDA code:

MIC-GPU 24

Every thread is active in first
loop interation

Half of the threads are idle in
first loop iteration!

Wasteful!

Law 3: Maximize instruction throughput

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 25SPIE Medical Imaging 2008 MIC-GPU 25SPIE Medical Imaging 2016

Toward Final Optimized Kernel

Performance for 4M numbers:

MIC-GPU 25 SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 26SPIE Medical Imaging 2008 MIC-GPU 26SPIE Medical Imaging 2016

Further Optimizations

Kernel 4
• Halve the number of blocks, with two loads

Kernel 5
• Unrolling last loop

Kernel 6
• Completely unrolling loops

Kernel 7
• Multiple element per thread
• See details changes in

M. Harris, Optimizing parallel reduction with CUDA

Rule 3: Maximize instruction throughput

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 27SPIE Medical Imaging 2008 MIC-GPU 27SPIE Medical Imaging 2016

Towards Final Optimized Kernel

Performance for 4M numbers:

MIC-GPU 27

Final optimized kernel:

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 28SPIE Medical Imaging 2008 MIC-GPU 28SPIE Medical Imaging 2016

Best Programming Practices

Three basic strategies
• Maximize parallel execution
• Optimize memory usage  achieve maximum memory bandwidth
• Optimize instruction bandwidth  maximize instruction throughput

Maximized parallel execution
• Minimize number of synchronization barriers  let it flow
• Minimize divergent flows
• Better synchronize within a block than across  group threads

Optimize memory usage
• Map poor coalescing patterns in global memory to shared memory
• Load data in coalesced chunks before computation begins
 #1: Get good coalescing in global memory
 #2: Get conflict-free data access in shared memory

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 29SPIE Medical Imaging 2008 MIC-GPU 29SPIE Medical Imaging 2016

Best Programming Practices

Maximize instruction throughput

1. Instruction level

operator, branches and loops

2. Optimize execution configuration

Kernel will fail to launch if
• Number of threads per block >> max number of threads per block
• Requires too many registers or shared memory than available

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 30SPIE Medical Imaging 2008 MIC-GPU 30SPIE Medical Imaging 2016

Best Programming Practices

Block
• At least as many blocks as multiprocessors (SMs)

Threads
• Chose number of threads/block as a multiple of the warp size
• Typically 192 or 256 threads per block
• But watch out for required registers and shared memory
• Check Visual profiler or Occupancy Calculator

Multiprocessor occupancy
• Ratio of number of active warps per SM over max number of warps
• Visual profiler or Occupancy Calculator

- Choose thread block size based on shared memory and
registers

