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Optimizing Memory Usage

Minimizing data transfers with low bandwidth
• Minimizing host & device transfer

• Maximizing usage of shared memory

• Re-computing can sometimes be cheaper than transfer 

Organizing memory accesses based on the optimal memory 
access patterns

• Important for global memory access (low bandwidth)

• Shared memory accesses are usually worth optimizing only in case they 
have a high degree of bank conflicts
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Global Memory Coalescing

Warps & global memory
• Threads execute by warp (32)

• Memory read/write by half warp (16)

• Global memory is considered to be partitioned into segments of size 
equal to 32, 64, or 128 bytes and aligned to these sizes.

• Block width must be divisible by 16 for coalescing

• Check your hardware (Compute Capability 1.x)

• Greatly improves throughput (Can yield speedups of >10)

Block

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 4SPIE Medical Imaging 2008 MIC-GPU 4SPIE Medical Imaging 2016

Global Memory Coalescing

Compute Capability 1.0 or 1.1
• Aligned 64 or 128 bytes segment

• Sequential warp 

• Divergent warp 

• See some good patterns in CUDA 
document and CUDA SDK samples

Compute Capability 1.2 or higher
• 32, 64 or 128 bytes segment

• Any pattern as long as inside segment

Memory                                              ……

Half-warp
0 1 2 3 4 5 6 7 8 9 A B C D E F
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Sobel Filter Effect

Before:                                       After:
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Example: Sobel Filter

• Discrete convolution with Sobel mask
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Bad access pattern
• Global memory only. No texture memory or shared memory. Hundreds 

of clock cycles, compared to 1 or 2 for reading from shared memory 

• Unstructured read 

• No cache, up to 12 global memory reads per thread

__global__ void
SobelBadKernel(unsigned char* Input, unsigned char* output,unsigned int width, unsigned int 

height)
{
….//calculate the index for ur, ul, um, ml, mr, ll, lm, lr. 
float Horz=Input[ur] +Input[lr] +2.0*Input[mr] -2.0*Input[ml] -Input[ul] -Input[ll] ;
float Vert=Input[ur] +Input[ul] +2.0*Input[um] -2.0*Input[lm] -Input[ll] -Input[lr] ;
output[resultindex]   = abs(Horz)+abs(Vert);

}

Input from global memory

Output to another global memory

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 8SPIE Medical Imaging 2008 MIC-GPU 8SPIE Medical Imaging 2016

Reduce Global Memory Read

__device__ unsigned char ComputeSobel(
unsigned char ul, 
unsigned char um, 
unsigned char ur, 
unsigned char ml, 
unsigned char mm, //not used
unsigned char mr, 
unsigned char ll, 
unsigned char lm, 
unsigned char lr, 
float fScale ){

short Horz = ur + 2*mr + lr - ul - 2*ml - ll;
short Vert = ul + 2*um + ur - ll - 2*lm - lr;
short Sum = (short) (fScale*(abs(Horz)+abs(Vert)));
if ( Sum < 0 ) return 0; else if ( Sum > 255 ) return 255;
return (unsigned char) Sum;}

52 6

24 7
25 6

Reduce 12 reads into 8 reads
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Reading Texture Memory

Take advantage of CUDA (texture memory)
• Using cache ( texture memory ) to enhance performance

• Each kernel can compute more than one pixels. This can help to exploit 
locality for cache

• Texture memory itself is optimized for coalescing
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Reading Texture Memory

unsigned char *pSobel = (unsigned char *) (((char *) pSobelOriginal)+blockIdx.x*Pitch);
for ( int i = threadIdx.x; i < w; i += blockDim.x ) {

unsigned char pix00 = tex2D( tex, (float) i-1, (float) blockIdx.x-1 );
unsigned char pix01 = tex2D( tex, (float) i+0, (float) blockIdx.x-1 );
unsigned char pix02 = tex2D( tex, (float) i+1, (float) blockIdx.x-1 );
unsigned char pix10 = tex2D( tex, (float) i-1, (float) blockIdx.x+0 );
unsigned char pix11 = tex2D( tex, (float) i+0, (float) blockIdx.x+0 );
unsigned char pix12 = tex2D( tex, (float) i+1, (float) blockIdx.x+0 );
unsigned char pix20 = tex2D( tex, (float) i-1, (float) blockIdx.x+1 );
unsigned char pix21 = tex2D( tex, (float) i+0, (float) blockIdx.x+1 );
unsigned char pix22 = tex2D( tex, (float) i+1, (float) blockIdx.x+1 );
pSobel[i] = ComputeSobel(pix00, pix01, pix02, pix10, pix11, pix12,

pix20, pix21, pix22, fScale );}

• Texture memory only. 

• No shared memory Global memory as output. 
Need consider coalescing 
when write back 

Read from texture 
memory
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Improve Caching?

Disadvantage
• Only using hardware cache to handle spatial locality
• A pixel may be still loaded 9 times in total due to cache miss

Take advantage of CUDA Shared Memory
• Shared memory can be as fast as register! As a user-controlled cache.
1. Together with texture memory, load a block of the image into shared 

memory
2. Each thread compute a consecutive rows of pixels (sliding window)
3. Writing result to global memory�

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 12SPIE Medical Imaging 2008 MIC-GPU 12SPIE Medical Imaging 2016

Returning Example : Sobel Filter

Computing all pixels inside 
one block (without apron)Each thread will compute a number of 

consecutive rows of pixel

Applying vertical 
and horizontal 

masks
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Reading Shared Memory

• Shared memory + texture memory. 

……// copy a large tile of pixels into shared memory
__syncthreads();

……// read 9 pixels from shared memory
out.x = ComputeSobel(pix00, pix01, pix02,  pix10, pix11, pix12, pix20, pix21, pix22, fScale );

……//read p00, p10, p20
out.y = ComputeSobel(pix01, pix02, pix00,  pix11, pix12, pix10, pix21, pix22, pix20, fScale );
……// read p01, p11, p21
out.z = ComputeSobel( pix02, pix00, pix01,  pix12, pix10, pix11, pix22, pix20, pix21, fScale );
……// read p02, p12, p22
out.w = ComputeSobel( pix00, pix01, pix02,  pix10, pix11, pix12, pix20, pix21, pix22, fScale );

__syncthreads();

__shared__ unsigned char shared[];
kernel<<<blocks, threads, sharedMem>>>(…);

Loading data under current window, 9 reads 

Sliding window right, reuse 6, update 3

Sliding window right, reuse 6, update 3

Sliding window right, reuse 6, update 3
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Shared Memory Bank Conflicts

Shared memory banks
• Shared memory is divided into 32 

banks to reduce conflicts

• Each thread can access 32-bit from 
different banks simultaneously to 
achieve high memory bandwidth 

• Conflict-free shared memory as fast 
as registers

• Linear

• Random

shared__ float shared[32];
float data = shared[BaseIndex + 1* tid];

Shared  memory

Half-warp

……
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Thread ID

Half-warp
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Shared  memory
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Shared Memory Bank Conflicts

4-way bank conflicts

No bank conflicts

• Bank conflicts occur when multiple threads access different words in the 
same bank

__shared__ char shared[32];
char data = shared[BaseIndex + tid];

char data = shared[BaseIndex + 4 * tid];

……

0 1 2 3 4 5 6 7 8 9 A B C D E F

Shared  memory

Half-warp

Compute Capability 1.x

Compute Capability 2.x
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Shared Memory Broadcasting

Shared memory read a 32-bit word and broadcast to 
several threads simultaneously

• Read

• Reduce or resolve bank conflicts if set to broadcasting

• Which word is selected as the broadcast word and which address 
is picked up for each bank at each cycle is unspecified

……
Shared  memory

Half-warp
0 1 2 3 4 5 6 7 8 9 A B C D E F
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Returning Example : Sum of Numbers

Add up a large set of numbers
• Normalization factor:

• Mean square error:

Number of addition operations:
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n-1 additions How to optimize?
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Non-parallel approach

Non-parallel approach:
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Input numbers:

O(n) additions

Generate only 
one thread

Rule 1 : Maximized parallel execution
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Parallel Approach: Kernel 1

Interleaved addressing: Kernel 1
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O(logn) additions

16 threads in a 
half wrap.

Only 8 of them 
are active in the 

first loop

Uncoalesced global 
memory reading and 

writing pattern
Rule 2 : Optimize memory usage
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Parallel Approach: Kernel 1

CUDA code:

MIC-GPU 20

inefficient statement, % operator 
is very slow

Writing with global memory 
coalescing 

Rule 3: Maximize instruction throughput
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Parallel Approach: Kernel 2

Refinement strategy: 
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Parallel Approach: Kernel 2

Interleaved addressing: Kernel 2
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Shared memory conflict !

Half-warp

0 1 2 3 4 5 6 7 8 9 A B C D E F

Shared  memory

8 9 10 11 15…

Law 2 : Optimize memory usage
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Parallel Approach: Kernel 3

Sequential addressing: Kernel 3
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Conflict-free

Half-warp
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Shared  memory
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Parallel Approach: Kernel 3

CUDA code:
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Every thread is active in first 
loop interation

Half of the threads are idle in 
first loop iteration!

Wasteful!

Law 3: Maximize instruction throughput
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Toward Final Optimized Kernel

Performance for 4M numbers:
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Further Optimizations

Kernel 4
• Halve the number of blocks, with two loads

Kernel 5
• Unrolling last loop

Kernel 6
• Completely unrolling loops

Kernel 7
• Multiple element per thread
• See details changes in 

M. Harris, Optimizing parallel reduction with CUDA

Rule 3: Maximize instruction throughput
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Towards Final Optimized Kernel

Performance for 4M numbers:
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Final optimized kernel:

SPIE Medical Imaging 2008SPIE Medical Imaging 2009 MIC-GPU 28SPIE Medical Imaging 2008 MIC-GPU 28SPIE Medical Imaging 2016

Best Programming Practices

Three basic strategies
• Maximize parallel execution
• Optimize memory usage  achieve maximum memory bandwidth
• Optimize instruction bandwidth  maximize instruction throughput

Maximized parallel execution
• Minimize number of synchronization barriers  let it flow
• Minimize divergent flows
• Better synchronize within a block than across  group threads

Optimize memory usage
• Map poor coalescing patterns in global memory to shared memory
• Load data in coalesced chunks before computation begins
 #1: Get good coalescing in global memory 
 #2: Get conflict-free data access in shared memory
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Best Programming Practices

Maximize instruction throughput

1. Instruction level

operator, branches and loops

2. Optimize execution configuration

Kernel will fail to launch if
• Number of threads per block >> max number of threads per block
• Requires too many registers or shared memory than available 
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Best Programming Practices

Block
• At least as many blocks as multiprocessors (SMs)

Threads
• Chose number of threads/block as a multiple of the warp size
• Typically 192 or 256 threads per block
• But watch out for required registers and shared memory
• Check Visual profiler or Occupancy Calculator

Multiprocessor occupancy
• Ratio of number of active warps per SM over max number of warps
• Visual profiler or Occupancy Calculator

- Choose thread block size based on shared memory and 
registers


