SPIE s
Medical Imaging

MIC-GPU:

High-Performance Computing
for Medical Imaging

on Programmable Graphics

Hardware (GPUs)

CUDA Memory Optimization

Klaus Mueller and Sungsoo Ha
Stony Brook University
Computer Science
Stony Brook, NY

SPIE s

Optimizing Memory Usage Mecical ITeging

Minimizing data transfers with low bandwidth

* Minimizing host & device transfer
* Maximizing usage of shared memory

* Re-computing can sometimes be cheaper than transfer

Organizing memory accesses based on the optimal memory
access patterns

* Important for global memory access (low bandwidth)

* Shared memory accesses are usually worth optimizing only in case they
have a high degree of bank conflicts

SPIE Medical Imaging 2016 MIC-GPU

st

Global Memory Coalescing Mockaal Fmaghntl

Warps & global memory

* Threads execute by warp (32)

* Memory read/write by half warp (16)

* Global memory is considered to be partitioned into segments of size
equal to 32, 64, or 128 bytes and aligned to these sizes.

* Block width must be divisible by 16 for coalescing
* Check your hardware (Compute Capability 1.x)
¢ Greatly improves throughput (Can yield speedups of >10)

SPIE Medical Imaging 2016 MIC-GPU

Global Memory Coalescing Mokl VG

Compute Capability 1.0 or 1.1

Memory
* Aligned 64 or 128 bytes segment ¢ varp

* Sequential warp
¢ Divergent warp

* See some good patterns in CUDA
document and CUDA SDK samples

Compute Capability 1.2 or higher
* 32, 64 or 128 bytes segment

* Any pattern as long as inside segment

SPIE Medical Imaging 2016 MIC-GPU

Sobel Filter Effect e T

Example: Sobel Filter Modical Imaging

¢ Discrete convolution with Sobel mask

Before: After:
5|6
2 6 4|2
e
5 6 * X
! 4]0
Bosi= /
:£==I‘l / (0|0 \
: : a2 4
A / . \ Output
Apron Inputimage giter magk |2 |10 | 6 s image
¢ |0 ¢ "]
Ideally each thread will compute x\'
one output pixel 5|46
MIC-GPU 5 SPIE Medical Imaging 2016 MIC-GPU 6

R/W Global Memory

Bad access patter __device__ unsigned char ComputeSobel(

unsigned char ul,
e Glabal memory only. No texturelmem ory ar shared memony Hundreds

of dlocK cydlgs, [¢eRIRared to 1 ar 2 fon reading fremughiaged memony

unsigned char um,

unsigned char ur, 5| 6
* Unstrugturedieadm mr ml Imm! mr unsigned char ml, =
unsigned char mm, //not used
* Nojcache, upjtd R glebal memory reads per th A .
//J Input from global memory unsigned char mr, 5 6

—global__ void uns!gned S % Reduce 12 reads into 8 reads |
SobelBadKernel(unsigned char* Input, unsigned char* output,unsigned int width, unsigned int unsigned char Im,

height) unsigned char Ir,

float fScale){

short Horz = ur + 2*mr + Ir - ul - 2*ml - II;
short Vert = ul + 2*um + ur - Il - 2*Im - Ir;
short Sum = (short) (fScale*(abs(Horz)+abs(Vert)));
if (Sum < 0) return 0; else if (Sum > 255) return 255;
return (unsigned char) Sum;}

{ Output to another global memory
..../[calculate the index for ur, ul, um, ml, mr, II, Im, Ir.
float Horz=Input[ur] +Input[lr] +2.0*Input[mr] -2.0*Input[ml] -Input[ul] -Input(ll] ;
float Vert=Input[ur] +Input[ul] +2.0*Input[um] -2.0*Input[im] -Input[ll] -Input[Ir] ;
output[resultindex] = abs(Horz)+abs(Vert);

}

SPIE Medical Imaging 2016 MIC-GPU 7 SPIE Medical Imaging 2016 MIC-GPU 8

Reading Texture Memory

Take advantage of CUDA (texture memory)
* Using cache (texture memory) to enhance performance

* Each kernel can compute more than one pixels. This can help to exploit
locality for cache

* Texture memory itself is optimized for coalescing

SPIE st

Medical Imaging

Reading Texture Memory

¢ Texture memory only.

Global memory as output.
Need consider coalescing
when write back

* No shared memory
unsigned char *pSobel = (unsigned char *) (((char *) pSobelOrjg”

for (inti = threadldx.x; i <w; i += blockDim.x) {

unsigned char pix00 = tex2D(tex, (float) i-1, (float) blockldx.x-1);
(float) i+0, (float) blockldx.x-1);
(float) i+1, (float) blockldx.x-1);

unsigned char pix01 = tex2D(tex,
unsigned char pix02 = tex2D(tex,

unsigned char pix10 = tex2D(tex, (float) i-1, (float) blockldx.x+0);

(
(
(tex,
unsigned char pix11 = tex2D(tex, (float) i+0, (float) blockldx.x+0);
(tex,
(
(

(

(
unsigned char pix12 = tex2D(tex, (float) i+34+ ckldx.x+0:
unsigned char pix20 = tex2D(tex, (float) i% ﬁzﬁ?ofrr;m texture
unsigned char pix21 = tex2D(tex, (float) i+0, (float) blockldx.x+145;

unsigned char pix22 = tex2D(tex, (float) i+1, (float) blockldx.x+1);
pSobel[i] = ComputeSobel(pix00, pix01, pix02, pix10, pix11, pix12,
pix20, pix21, pix22, fScale);}

SPIE Medical Imaging 2016 MIC-GPU

SPIE Medical Imaging 2016 MIC-GPU 10

SPIE s

Improve Caching?

Disadvantage
* Only using hardware cache to handle spatial locality
* A pixel may be still loaded 9 times in total due to cache miss

Take advantage of CUDA Shared Memory

* Shared memory can be as fast as register! As a user-controlled cache.

1. Together with texture memory, load a block of the image into shared
memory

2. Each thread compute a consecutive rows of pixels (sliding window)
3. Writing result to global memory[

Medical Imaging

Returning Example : Sobel Filter Mot e

I

Applying vertical
and horizontal
masks

Computing all pixels inside

Each thread will compute a number of one block (without apron)

consecutive rows of pixel

SPIE Medical Imaging 2016 MIC-GPU

1"

SPIE Medical Imaging 2016 MIC-GPU 12

Reading Shared Memory

e Shared memory + texture memory.

__shared__ unsigned char shared[];
kernel<<<blocks, threads, sharedMem>>>(...);

...... /I copy a large tile of pixels into shared memory
__syncthreads();

...... /l read 9 pixels from shared memo

Loading data under current window, 9 reads
ry_ e, L0Bding |

out.x = ComputeSobel(pix00, pix01, pix02, pix10, pix11, pix12, pix20, pix21, pix22, fScale);
...... /Iread p00, p10, p20 % Sliding window right, reuse 6, update 3]
out.y = ComputeSobel(pix01, pix02, pix00, pix11, pix12, pix10, pix21, pix22, pix20, fScale);
______ // read p01, p11, p21 % Sliding window right, reuse 6, update 3 |
out.z = ComputeSobel(pix02, pix00, pix01, pix12, pix10, pix11, pix22, pix20, pix21, fScale);
...... I/ read p02, p12, p22 % Sliding window right, reuse 6, update 3|
out.w = ComputeSobel(pix00, pix01, pix02, pix10, pix11, pix12, pix20, pix21, pix22, fScale);
__syncthreads();

SPIE Medical Imaging 2016 MIC-GPU 13

.t

Shared Memory Bank Conflicts Mecical Imaging

Shared memory banks

* Shared memory is divided into 32 ~ Shared memory
banks to reduce conflicts

* Each thread can access 32-bit from
different banks simultaneously to Half-warp
achieve high memory bandwidth

R IR ERIE
EEREEEREEN

0123456789ABCDEF

* Conflict-free shared memory as fast Shared
as registers ared memory

* Linear

shared__ float shared[32];
float data = shared[Baselndex + 1* tid];

* Random

Thread ID

0123456789ABCDEF

1,3,5,7 (Any odd number)

Half-warp

SPIE Medical Imaging 2016 MIC-GPU 14

Shared Memory Bank Conflicts

Shared memory

Compute Capability 1.x

4-way bank conflicts

__shared__ char shared[32];
char data = shared[Baselndex + tid];

No bank conflicts
char data = shared[Baselndex + 4 * tid];

Half-warp

0123456789ABCDEF

Compute Capability 2.x

* Bank conflicts occur when multiple threads access different words in the
same bank

SPIE Medical Imaging 2016 MIC-GPU 15

Shared memory read a 32-bit word and broadcast to
several threads simultaneously

* Read

* Reduce or resolve bank conflicts if set to broadcasting

* Which word is selected as the broadcast word and which address
is picked up for each bank at each cycle is unspecified

Shared memory

0123456789ABCDEF

Half-warp

SPIE Medical Imaging 2016 MIC-GPU 16

SPIE s

Medical Imaging

Returning Example : Sum of Numbers

Add up a large set of numbers
§ =2l
MSE =" (a[i]-b[i])’

Number of addition operations:

V[0]EV[1]EV[2] @Ev[n —1]

* Normalization factor:

* Mean square error:

n-1 additions » How to optimize?

Non-parallel approach iackesl VoG

Input numbers: [wliTs]]o]2]3]5]2]s]12]7]1e]ulo]z]

CINon-parallel approach:
[wlaTe[aTel2ls]s2]a]2]7]o]u]o]2]

Generate only

SPIE Medical Imaging 2016 MIC-GPU 17

one thread
lanl1]e[a]ol-2]a]s]2]-a]2][7]0]n]o]2]
O(n) additions
Rule 1 : Maximized parallel execution
SPIE Medical Imaging 2016 MIC-GPU 18

Parallel Approach: Kernel 1 Mot e

Ointerleaved addressing: Kernel 1

18 1]o]2]3]s]2]s]z2]7]0]n]o]z2] 16 threads in a

|10

sep1 T 7 1] half wrap.

- Ié)l/ cD'l/ |‘D|J |®'|/ [s[3]e] |¢I/ |¢‘ljl only 8 or e
n 1 I T|-1)|-2(-2]| 8 5$|-5|-3|9 7T|1M|11| 2 2 are aCtlve In the

Strice 2 @‘/ @‘/ o— 6?'/ first loop
[w]1]7]1]e]2]8]s]a]-3]e]7][]nn]2]2]

ss;:?geaa GD.—/ @._//
[24]1]7]-1]e]-2]8[s|7]a]e]7]13[nn]2]2]

Step 4 v

Stride 8 (@)

lolaf7l]ef2le]s[n]sfef7]nlnl2]2]yncoalesced global
memory reading and
writing pattern

O(logn) additions
Rule 2 : Optimize memory usage

Parallel Approach: Kernel 1 Mokl VG

SPIE Medical Imaging 2016 MIC-GPU 19

CUDA code:
__global__ void reduced(int “g_idata, int *g_odata) {
extern __shared__ int sdata[];
each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x"blockDim.x + threadldx.x;
sdata[tid] = g_idatal[i];
—synethreads: Ryle 3: Maximize instruction throughput
do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2°s) == 0) { — . e o
sdata[tid] += sdata[tid +s]; insfiiciont Stiaste\greyné’loa‘)peratorj
__syncthreads();
}
write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];
} . Writing with global memory
J coalescing S
SPIE Medical Imaging 2016 MIC-GPU 20

Parallel Approach: Kernel 2

Refinement strategy:

Just replace divergent branch in inner loop:

for (unsigned int s=1; s < blockDim.x; s "= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];

__syncthreads();

With strided index and non-divergent branch:

for (unsigned int s=1; s < blockDim.x; s '= 2) {
intindex=2"s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

__syncthreads();

SPIE Medical Imaging 2016 MIC-GPU

21

Parallel Approach: Kernel 2 Modical Imaging

Cinterleaved addressing: Kernel 2
Jo[1]a]afol2]s|s|2]al2]7]0[11]o]2]
sl o @ @ @ @ @ @ @/

[nl1|7]a]2]|2]|s]|s|s|aje|7|n|[n]2]2]
p

Shared memory

Step 2

Stride 2 @‘/ CD"/ CD‘/ @"/

lef1]7]1]s]2[a8]s]al-a]o]7][1a]11]2]2]
p

sries @ ©
l2af1]7[1]s]-2[8]s][w]-3]e]7][13]11]2]2]
Step 4 x
Stride 8 @ 0123456789ABCDEF
lal1]7]ale]2]s]|s]w]a]e]7]13[n]2]2] Half-warp
Shared memory conflict !
Law 2 : Optimize memory usage
SPIE Medical Imaging 2016 MIC-GPU 22

Parallel Approach: Kernel 3

CSequential addressing: Kernel 3
Jro]1]s]-1]ol-2]a]s]2]a[2]7]0fn]o]2]
T

s FTEOTGO @
[sl2]w|es|ofo]af[7|-2]alz]7][o|[n]o]2]
Step 2 b ‘/
Stride 4 dﬁﬁ;
|n|7r_|_13|13|n|9|a|7|-2|-a|z|7|n|n|n|z|
Ssl:l‘e:es2 dﬁ)"/

[21]20]13]s]o|s]a][7|-2]a]2]7]0][1n]0]2]

Step 4
Stride 1 d

[a1|2o]13]13]o[e]a]7|-2]a]2]7]0[11]0]2]

Conflict-free

[11 [TEETT |
0123456789ABCDEF

Half-warp

SPIE Medical Imaging 2016 MIC-GPU

23

Parallel Approach: Kernel 3

CUDA code:

Just replace strided indexing in inner loop:

for (unsigned int s=1; s < blockDim.x; s *=2) { |
intindex=2"*s *tid;

.. Everythreadis active in first
if (index < blockDim.x) { loop interation J
sdata[index] += sdata[index + s]; A
}
__syncthreads();

With reversed loop and threadID-based indexing:

for (unsigned int s=blockDim.x/2; s>0; s>>=1) { I
if (tid < s) { ;
sdata[tid] += sdata[tid + s];\\ Half of the threads are idle in
first loop iteration!

__syncthreads(); Wasteful!

Sy

Law 3: Maximize instruction throughput

SPIE Medical Imaging 2016 MIC-GPU 24

Toward Final Optimized Kernel i Further Optimizations i
Performance for 4M numbers: Kernel 4 Rule 3: Maximize instruction throughput
TRl Bamdndh S pi::up C;:ef::,i;e * Halve the number of blocks, with two loads
...Kf,.'.'.':f.ﬁ......, 8.054ms 2.083 GB/s Kernel 5
;::;7‘::““""' * Unrolling last loop
e i s 3.456ms 4.854GB/s 2.33x 2.33x Kernel 6
Kol 1.722ms 9.741GB/s 2.01x 4.68x * Completely unrolling loops
Kernel 7
* Multiple element per thread
* See details changes in
M. Harris, Optimizing parallel reduction with CUDA
SPIE Medical Imaging 2016 MIC-GPU 25 SPIE Medical Imaging 2016 MIC-GPU 26

Towards Final Optimized Kernel Medical Imaging Best Programming Practices Medical Imaging
Performance for 4M numbers: Three basic strategies
) .) Step Cumulative * Maximize parallel execution
. Time (2%ints) _ Bandwidth Spoedup _Speedup * Optimize memory usage - achieve maximum memory bandwidth
m;‘éuﬂw 8.054ms 2.083 GB/s * Optimize instruction bandwidth - maximize instruction throughput
with divergent branching o]
Kornel2: 3aEEme Asstcha. 23 S Maximized parallel execution
il * Minimize number of synchronization barriers - let it flow
Kol 1.722ms 9.741GB/s 2.01x 4.68x « Minimize divergent flows
* Better synchronize within a block than across - group threads
Kerneld: =~ 0965ms 17.377GB/ls 1.78x 8.34x .
m— Optimize memory usage
ol et o 20 me 31205 abe LEx 1500 * Map poor coalescing patterns in global memory to shared memory
5:;'::\[&;m 0.381ms 43.996GB/s 1.41x 21.16x * Load data in coalesced chunks before computation begins
; PR . - #1: Get good coalescing in global memory
Final Optlr::rznee:j ?_kemel' - #2: Get conflict-free data access in shared memory
o priwens 0268 Ms 62.671GB/s 1.42x 30.04x

SPIE Medical Imaging 2016 MIC-GPU 27 SPIE Medical Imaging 2016 MIC-GPU 28

Best Programming Practices

Maximize instruction throughput
1. Instruction level

—operator, branches and loops
2. Optimize execution configuration

Kernel will fail to launch if
* Number of threads per block >> max number of threads per block
* Requires too many registers or shared memory than available

SPIE s

Medical Imaging

SPIE s

Medical Imaging

Best Programming Practices

Block

* At least as many blocks as multiprocessors (SMs)

Threads
* Chose number of threads/block as a multiple of the warp size
e Typically 192 or 256 threads per block
* But watch out for required registers and shared memory
* Check Visual profiler or Occupancy Calculator

Multiprocessor occupancy
* Ratio of number of active warps per SM over max number of warps
* Visual profiler or Occupancy Calculator

- Choose thread block size based on shared memory and
registers

SPIE Medical Imaging 2016 MIC-GPU

29

SPIE Medical Imaging 2016 MIC-GPU 30

