SPIE st
Medical Imaging

MIC-GPU:

High-Performance Computing
for Medical Imaging

on Programmable Graphics

Hardware (GPUs)

CUDA Memory Optimization

Klaus Mueller, Ziyi Zheng, Eric Papenhausen
Stony Brook University
Computer Science
Stony Brook, NY

Optimizing Memory Usage Medkesl Megr

Minimizing data transfers with low bandwidth

* Minimizing host & device transfer
* Maximizing usage of shared memory

* Re-computing can sometimes be cheaper than transfer

Organizing memory accesses based on the optimal memory
access patterns

* Important for global memory access (low bandwidth)

* Shared memory accesses are usually worth optimizing only in case they
have a high degree of bank conflicts

SPIE Medical Imaging 2012 MIC-GPU

Global Memory Coalescing

Global Memory Coalescing

Warps & global memory

* Threads execute by warp (32)

* Memory read/write by half warp (16)

* Global memory is considered to be partitioned into segments of size
equal to 32, 64, or 128 bytes and aligned to these sizes.

* Block width must be divisible by 16 for coalescing
* Check your hardware (Compute Capability 1.x)
* Greatly improves throughput (Can yield speedups of >10)

SPIE Medical Imaging 2012 MIC-GPU

Compute Capability 1.0 or 1.1

Memory
* Aligned 64 or 128 bytes segment Half-warp

* Sequential warp
¢ Divergent warp

* See some good patterns in CUDA
document and CUDA SDK samples

Compute Capability 1.2 or higher
* 32, 64 or 128 bytes segment

* Any pattern as long as inside segment

SPIE Medical Imaging 2012 MIC-GPU

- SPIE . A SPIE
Sobel Filter Effect Mocical ITeging Example: Sobel Filter Mocical ITeging
* Discrete convolution with Sobel mask
Before: After:
5|6
2 6 4|2
L
alal7| 1+ 2 =
5 6 * i
I TNE
/ @|0|8 \
/ A2
/ . \ Output
Apron Inputimage gigr magk |2 |10 |8 image
_ — (8]0 |® I ¢
Ideally each thread will compute X
one output pixel 5|46
MIC-GPU SPIE Medical Imaging 2012 MIC-GPU 6
SPIE SPIE
R/W Global Memory Medical Imaging Reduce Global Memory Read Modksl Frearry
Bad access patter __device__ unsigned char ComputeSobel(
unsigned char ul,
. Gf| Il'mlk'nnmlnry only Nra(‘;n:flflrn mze;'nnry r{;-Q frnr memony Hundreds unsigned char um,
of glocK cydles, |¢prIRared to 1 ar 2 for| reading fiem,shaged memony unsigned char ur, S
* Unstrugturedyieasm mr ml Imml mr unsigned char ml, =
i h
* Nojcache, upjtd (R glebal memory regds per th===- uns!gned R
[0 Input from global memory Ll gy, 5 6
f E— unsigned char I,
—global _ void .g % Reduce 12 reads into 8 reads |
SobelBadKernel(unsigned char* Input, unsigned char* output,unsigned int width, unsigned int unsigned char Im,
height) unsigned char Ir,
{ Output to another global memory float fScale){
..../Icalculate the index for ur, ul, um, ml, mr, Il, Im, Ir. short Horz = ur + 2*mr + Ir - ul - 2*ml - II;
float Horz=Input[ur] +Input[lr] +2.0*Input[mr] -2.0*Input[ml] -Input[ul] -Input[ll] ; short Vert = ul + 2*um + ur - Il - 2*Im - Ir:
float Vert=Input[ur] +Input[ul] +2.0*Inputfum] -2.0*Input[im] -Inputll] -Input[Ir] ; short Sum = (short) (fScale*(abs(Horz)+abs(Vert))):
outputfresultindex] = abs(Horz)+abs(Vert); if (Sum < 0) return 0; else if (Sum > 255) return 255;
} return (unsigned char) Sum;}
SPIE Medical Imaging 2012 MIC-GPU SPIE Medical Imaging 2012 MIC-GPU 8

Reading Texture Memory

Reading Texture Memory

Take advantage of CUDA (texture memory)
* Using cache (texture memory) to enhance performance

¢ Each kernel can compute more than one pixels. This can help to exploit
locality for cache

* Texture memory itself is optimized for coalescing

¢ Texture memory only.

Global memory as output.
Need consider coalescing
when write back

* No shared memory
unsigned char *pSobel = (unsigned char *) (((char *) pSobelOrjg”

for (inti = threadldx.x; i <w; i += blockDim.x) {
unsigned char pix00 = tex2D(tex, (float) i-1, (float) blockldx.x-1);
unsigned char pix01 = tex2D(tex, (float) i+0, (float) blockldx.x-1);
unsigned char pix02 = tex2D(tex, (float) i+1, (float) blockldx.x-1);

unsigned char pix10 = tex2D(tex, (float) i-1, (float) blockldx.x+0);

(
(
(tex,
unsigned char pix11 = tex2D(tex, (float) i+0, (float) blockldx.x+0);
(tex,
(
(

(

(
unsigned char pix12 = tex2D(tex, (float) i+4+ ckldx.x+0:
unsigned char pix20 = tex2D(tex, (float) i% ﬁzigjofr?m texture
unsigned char pix21 = tex2D(tex, (float) i+0, (float) blockldx.x+145;

unsigned char pix22 = tex2D(tex, (float) i+1, (float) blockldx.x+1);
pSobel[i] = ComputeSobel(pix00, pix01, pix02, pix10, pix11, pix12,
pix20, pix21, pix22, fScale);}

SPIE Medical Imaging 2012 MIC-GPU

SPIE Medical Imaging 2012 MIC-GPU 10

Improve Caching? Meciod e

Disadvantage

* Only using hardware cache to handle spatial locality
* A pixel may be still loaded 9 times in total due to cache miss

Take advantage of CUDA Shared Memory

* Shared memory can be as fast as register! As a user-controlled cache.

1. Together with texture memory, load a block of the image into shared
memory

2. Each thread compute a consecutive rows of pixels (sliding window)
3. Writing result to global memory

Returning Example : Sobel Filter Medioal

I

Applying vertical
and horizontal
masks

Computing all pixels inside

Each thread will compute a number of one block (without apron)

consecutive rows of pixel

SPIE Medical Imaging 2012 MIC-GPU

1"

SPIE Medical Imaging 2012 MIC-GPU 12

Reading Shared Memory Mecical Inegh Shared Memory Bank Conflicts

¢ Shared memory + texture memory.

Shared memory banks

__shared__ unsigned char shared[];
kernel<<<blocks, threads, sharedMem>>>(...); * Shared memory is divided into 32 Shared memory
512652 banks to reduce conflicts

...... /I copy a large tile of pixels into shared memory

* Each thread can access 32-bit from X
syncthreads(); : f 3 WTTNTT%H
— _ 0 % Loading data under current window, 9 reads | different banks simultaneously to Half-warp [T] ST |
...... Il read 9 pixels from shared memory achieve high memory bandwidth 0123456789ABCDEF

out.x = ComputeSobel(pix00, pix01, pix02, pix10, pix11, pix12, pix20, pix21, pix22, fScale);

P Tae— - * Conflict-free shared memory as fast
,,,,,, Sliding window right, reuse 6, update 3 .
/Iread p00, p10, p20 % g g p! I as registers Shared memory

out.y = ComputeSobel(pix01, pix02, pix00, pix11, pix12, pix10, pix21, pix22, pix20, fScale);

______ /l read po1, p11, p21 % Sliding window right, reuse 6, update 3 | * Linear

out.z = ComputeSobel(pix02, pix00, pix01, pix12, pix10, pix11, pix22, pix20, pix21, fScale); shared__ float shared[32]; _ Thread ID

...... I/ read p02, p12, p22 % Sliding window right, reuse 6, update 3 l i dalis = syl e mics L UEL

out.w = ComputeSobel(pix00, pix01, pix02, pix10, pix11, pix12, pix20, pix21, pix22, fScale); * Random

. 0123456789ABCDEF
SR 1,3,5,7 (Any odd number)
Half-warp
SPIE Medical Imaging 2012 MIC-GPU 13 SPIE Medical Imaging 2012 MIC-GPU 14

SPIE

Shared Memory Bank Conflicts Mol ks Shared Memory Broadcasting Vioc

Imaging

Compute Capability 1.x Shared memory

4-way bank conflicts
__shared__ char shared[32];

Shared memory read a 32-bit word and broadcast to
several threads simultaneously

char data = shared[Baselndex + tid];] * Read
No bank conflicts * Reduce or resolve bank conflicts if set to broadcasting
_ P Half-warp
char data = shared[Baselndex + 4 * tid]; 0123456789ABCDEF * Which word is selected as the broadcast word and which address
is picked up for each bank at each cycle is unspecified
Compute Capability 2.x Shared memory

* Bank conflicts occur when multiple threads access different words in the
same bank

0123456789ABCDEF

Half-warp

SPIE Medical Imaging 2012 MIC-GPU 15 SPIE Medical Imaging 2012 MIC-GPU 16

Returning Example : Sum of Numbers

Non-parallel approach

Add up a large set of numbers
S = 2 Ml
MSE = > (a[i] - b[i])?

Number of addition operations:

v[O]+Vv[1]+v[2]4)---+v[n —1]

* Normalization factor:

* Mean square error:

n-1 additions » How to optimize?

SPIE Medical Imaging 2012 MIC-GPU 17

Input numbers: [w[7Ts 7 o 25 5]2]s]2]7] 0] n]o]2]

CINon-parallel approach:

[0/ 1]s]alol2ls]s]2][a]2]7]o]n]o]2]

Generate only b

one thread
[sla]e]a]olals|s][2l-a]z][7]o][1n]o]2]
O(n) additions
Rule 1 : Maximized parallel execution
SPIE Medical Imaging 2012 MIC-GPU 18

Parallel Approach: Kernel 1 SPIE i

Ointerleaved addressing: Kernel 1

Jol1]a]a]ol2{a]s|2[a]2][7]o]n]o]2] 16 threads in a
Step 1)/)/ half wrap.

Strice 1 @/ @/ C?‘/ ® @ Only 8 of them

qep? Lolvl7a]22lals|s[se/7|n[ul2]2] gre active in the
Stride 2 @./ ® ﬁ?o/ first loop

|17][1]e]2]s|s]al-a]o]7[1s]11]2]2]

Step 3
Stride 4 ®
Jaal1]7]a]e]2[a]|s|[w][a]o][7]a]]2]2]
Step 4
Stride 8 0)+¢
[a]1]7][1]e]2]a|s]17]-3]o]7[1s]11]2] 2|Uncoa|esced global
" memory reading and
O(If)gln) additions writing pattern
Rule 2 : Optimize memory usage
SPIE Medical Imaging 2012 MIC-GPU 19

Parallel Approach: Kernel 1

CUDA code:

__global__ void reduce0(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];

/I each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdatal[tid] = g_idata[i];

—synethreads(: Ryle 3: Maximize instruction throughput
/l do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) { g S — o

sdata(tid] += sdata[tid +s]; inefficient St?ste\lgr?/n;‘lo@ operatorJ
)
__syncthreads();

}

/1 write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

coalescing

. Writing with global memory J
20

SPIE Medical Imaging 2012 MIC-GPU

. SPIE) SPIE
Parallel Approach: Kernel 2 Medical Imaging Parallel Approach: Kernel 2 Medical Imaging
Refinement strategy: Cinterleaved addressing: Kernel 2
Just replace divergent branch in inner loop: [1o]1]8[-1]a[2[3]s[2]af2]7]o]11][o]2]
Tor (unsigned int s=1; 5 < BlooKDIm; 5 '= 2 e @/@/@/@/@/@/@/@/
bl s Stride ® 0 ®® ®
sdataltid] += sdataltid + s]; [z]a]2l2]s|s][s]-a]a[7]n][nn]2]2]
H Step 2 Shared memory
} __syncthreads(); Stride 2
[sl1]7]1]ela]a|s][al-a]e|7]a[nn]2]2z]
Step 3
With strided index and non-divergent branch: Strida 4
for (unsigned int s=1; s < blockDim.x; s *=2) { [z#]1]7]1]e]2fa]s]w]alef7]wln]z]2]
intindex = 2 * s * tid; Step 4 oy
Stride 8 0123456789ABCDEF
if (index < blockDim.x) { larla]7]alel2a]a]s][u]-a]e]7]1a[nn]2]2z]
sdatalindex] += sdatalindex + s]; Half-warp
. -_syncthreads(); Shared memory conflict !
Law 2 : Optimize memory usage
SPIE Medical Imaging 2012 MIC-GPU 21 SPIE Medical Imaging 2012 MIC-GPU 22
Parallel A h: K | 3 e Parallel A h: K | 3 e ey
arallel Approach: Kerne e B arallel Approach: Kerne Modkos Ieohg

. . Shared memory
OSequential addressing: Kernel 3

[wo] 1]s]1]o]2]als]-2]a]a]7]o]n]o]2]

Step 1 =t
Stride 8 0) (1) (2 Ws 6) (7

[s]-2]w0]6]o]o]alz]-2]-3]2]7]0][n]o]2] [1T1] [T E

CUDA code:

Just replace strided indexing in inner loop:

for (unsigned int s=1; s < blockDim.x; s "= 2) { l
intindex =2 * s * tid;

if (index < blockDim.x) {

loop interation

0123456789ABCDEF

Step 2
Stride 4 © @@ 0G Half-warp
[s]7]13]3lola]alz]-2]-3]2]7]0][n]o]2]
Step 3 00
Stride 2
|21]20[13]13[0o [s]7]-2]-s]2]7]0]11]0]2]
Step 4
Stride 1
[41]=20]13]13] 0]]al7z]-2]-3]2]7]0[n]0]2]
Conflict-free
SPIE Medical Imaging 2012 MIC-GPU 23

sdata[index] += sdata[index + s]:

\—-\ Every thread is active in first J

}
__syncthreads();

With reversed loop and threadID-based indexing:

for (unsigned int s=blockDim.x/2; s>0; s>>=1) [l
if (tid < s) {

} first loop iteration!
__syncthreads(); Wasteful!
} Ny

sdataltid] += sdataltid + s];'_\ Half of the threads are idle in ‘

Law 3: Maximize instruction throughput

SPIE Medical Imaging 2012 MIC-GPU

24

et

Toward Final Optimized Kernel

Performance for 4M numbers:

Step Cumulative
Time (222ints) Bandwidth Speedup Speedup

Kernel 1:
s 8.054ms 2083 GB/s

with divergent branching

el 3456ms 4.854GB/s 2.33x 2.33x

with bank conflicts

Kernel 3: 1.722ms 9.741GB/s 2.01x 4.68x

sequential addressing

SPIE Medical Imaging 2012 MIC-GPU 25

Further Optimizations

Kernel 4 Rule 3: Maximize instruction throughput
* Halve the number of blocks, with two loads
Kernel 5
* Unrolling last loop
Kernel 6
¢ Completely unrolling loops
Kernel 7
* Multiple element per thread
* See details changes in
M. Harris, Optimizing parallel reduction with CUDA

SPIE Medical Imaging 2012 MIC-GPU 26

Towards Final Optimized Kernel SPE

Performance for 4M numbers:

Step Cumulative
Time (222ints) Bandwidth Speedup Speedup

Kernel 1:

interleaved addressing 8.054 ms 2.083 GB/s

with divergent branching

Kernel 2:

Interleaved addressing 3.456 ms 4.854GB/s 2.33x 2.33x
with bank conflicts

Kernel 3: 1.722ms 9.741GB/s 2.01x 4.68x
sequential addressing

Kernel 4:

i SO 0.965 ms 17.377 GB/s 1.78x 8.34x
Kernel 5:

i 0.536ms 31.289GB/s 1.8x 15.01x
Kernel 6: 0.381ms 43.996GB/s 1.41x 21.16x

completely unrolied

Final optimized kernel:
Kernel 7: 0.268 ms 62.671 GB/s 1.42x 30.04x

multiple elements per threac

SPIE Medical Imaging 2012 MIC-GPU 27

S

Best Programming Practices

Three basic strategies

* Maximize parallel execution
* Optimize memory usage -> achieve maximum memory bandwidth
* Optimize instruction bandwidth - maximize instruction throughput

Maximized parallel execution
* Minimize number of synchronization barriers - let it flow
* Minimize divergent flows
* Better synchronize within a block than across - group threads

Optimize memory usage
* Map poor coalescing patterns in global memory to shared memory
* Load data in coalesced chunks before computation begins
- #1: Get good coalescing in global memory
- #2: Get conflict-free data access in shared memory

SPIE Medical Imaging 2012 MIC-GPU 28

Best Programming Practices

Maximize instruction throughput
1. Instruction level

—>operator, branches and loops
2. Optimize execution configuration

Kernel will fail to launch if

* Number of threads per block >> max number of threads per block
* Requires too many registers or shared memory than available

Best Programming Practices Moriosl e

Block

* At least as many blocks as multiprocessors (SMs)

Threads

* Chose number of threads/block as a multiple of the warp size
* Typically 192 or 256 threads per block

* But watch out for required registers and shared memory

* Check Visual profiler or Occupancy Calculator

Multiprocessor occupancy

¢ Ratio of number of active warps per SM over max number of warps
¢ Visual profiler or Occupancy Calculator

- Choose thread block size based on shared memory and
registers

SPIE Medical Imaging 2012 MIC-GPU 29

SPIE Medical Imaging 2012 MIC-GPU 30

Course Schedule i

dl Imaging

1:30 — 1:45: Introduction

1:45—-2:00: Parallel programming primer

2:00 - 2:15: GPU hardware

2:15-3:00: CUDA API, threads level optimization
Coffee Break

3:30 -4:00: CUDA memory optimization

4:00 - 4:15: CUDA programming environment (Ziyi)

4:15 - 4:45: Parallelism in medical image (Klaus)

4:45 - 5:25: CT reconstruction examples (Eric + Ziyi)

5:25-5:30: Closing remarks (Klaus)

