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Optimizing Memory Usage Medkesl Megr

Minimizing data transfers with low bandwidth

* Minimizing host & device transfer
* Maximizing usage of shared memory

* Re-computing can sometimes be cheaper than transfer

Organizing memory accesses based on the optimal memory
access patterns

* Important for global memory access (low bandwidth)

* Shared memory accesses are usually worth optimizing only in case they
have a high degree of bank conflicts
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Global Memory Coalescing

Global Memory Coalescing

Warps & global memory

* Threads execute by warp (32)

* Memory read/write by half warp (16)

* Global memory is considered to be partitioned into segments of size
equal to 32, 64, or 128 bytes and aligned to these sizes.

* Block width must be divisible by 16 for coalescing
* Check your hardware (Compute Capability 1.x)
* Greatly improves throughput (Can yield speedups of >10)
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Compute Capability 1.0 or 1.1

Memory
* Aligned 64 or 128 bytes segment Half-warp

* Sequential warp
¢ Divergent warp

* See some good patterns in CUDA
document and CUDA SDK samples

Compute Capability 1.2 or higher
* 32, 64 or 128 bytes segment

* Any pattern as long as inside segment
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Sobel Filter Effect Mocical ITeging Example: Sobel Filter Mocical ITeging
* Discrete convolution with Sobel mask
Before: After:
5|6
2 6 4|2
L
alal7| 1+ 2 =
5 6 * i
I TNE
/ @|0|8 \
/ A2
/ . \ Output
Apron Inputimage  gigr magk |2 |10 |8 image
_ — (8]0 |® I ¢
Ideally each thread will compute X
one output pixel 5|46
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R/W Global Memory Medical Imaging Reduce Global Memory Read Modksl Frearry
Bad access patter __device__ unsigned char ComputeSobel(
unsigned char ul,
. Gf| Il'mlk'nnmlnry only Nra(‘;n:flflrn mze;'nnry r{;-Q frnr memony Hundreds unsigned char um,
of glocK cydles, |¢prIRared to 1 ar 2 for| reading fiem,shaged memony unsigned char ur, S
* Unstrugturedyieasm mr ml Imml mr unsigned char ml, =
i h
* Nojcache, upjtd (R glebal memory regds per th===- uns!gned R
[0 Input from global memory Ll gy, 5 6
f E— unsigned char I,
—global _ void .g % Reduce 12 reads into 8 reads |
SobelBadKernel(unsigned char* Input, unsigned char* output,unsigned int width, unsigned int unsigned char Im,
height) unsigned char Ir,
{ Output to another global memory float fScale ){
..../Icalculate the index for ur, ul, um, ml, mr, Il, Im, Ir. short Horz = ur + 2*mr + Ir - ul - 2*ml - II;
float Horz=Input[ur] +Input[lr] +2.0*Input[mr] -2.0*Input[ml] -Input[ul] -Input[ll] ; short Vert = ul + 2*um + ur - Il - 2*Im - Ir:
float Vert=Input[ur] +Input[ul] +2.0*Inputfum] -2.0*Input[im] -Inputll] -Input[Ir] ; short Sum = (short) (fScale*(abs(Horz)+abs(Vert))):
outputfresultindex] = abs(Horz)+abs(Vert); if (Sum < 0 ) return 0; else if ( Sum > 255 ) return 255;
} return (unsigned char) Sum;}
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Reading Texture Memory

Reading Texture Memory

Take advantage of CUDA (texture memory)
* Using cache ( texture memory ) to enhance performance

¢ Each kernel can compute more than one pixels. This can help to exploit
locality for cache

* Texture memory itself is optimized for coalescing

¢ Texture memory only.

Global memory as output.
Need consider coalescing
when write back

* No shared memory
unsigned char *pSobel = (unsigned char *) (((char *) pSobelOrjg”

for (inti = threadldx.x; i <w; i += blockDim.x ) {
unsigned char pix00 = tex2D( tex, (float) i-1, (float) blockldx.x-1 );
unsigned char pix01 = tex2D( tex, (float) i+0, (float) blockldx.x-1 );
unsigned char pix02 = tex2D( tex, (float) i+1, (float) blockldx.x-1 );

unsigned char pix10 = tex2D( tex, (float) i-1, (float) blockldx.x+0 );

(
(
(tex,
unsigned char pix11 = tex2D( tex, (float) i+0, (float) blockldx.x+0 );
(tex,
(
(

(

(
unsigned char pix12 = tex2D( tex, (float) i+4+ ckldx.x+0:
unsigned char pix20 = tex2D( tex, (float) i% ﬁzigjofr?m texture
unsigned char pix21 = tex2D( tex, (float) i+0, (float) blockldx.x+145;

unsigned char pix22 = tex2D( tex, (float) i+1, (float) blockldx.x+1 );
pSobel[i] = ComputeSobel(pix00, pix01, pix02, pix10, pix11, pix12,
pix20, pix21, pix22, fScale );}
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Improve Caching? Meciod e

Disadvantage

* Only using hardware cache to handle spatial locality
* A pixel may be still loaded 9 times in total due to cache miss

Take advantage of CUDA Shared Memory

* Shared memory can be as fast as register! As a user-controlled cache.

1. Together with texture memory, load a block of the image into shared
memory

2. Each thread compute a consecutive rows of pixels (sliding window)
3. Writing result to global memory

Returning Example : Sobel Filter Medioal

I

Applying vertical
and horizontal
masks

Computing all pixels inside

Each thread will compute a number of one block (without apron)

consecutive rows of pixel
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Reading Shared Memory Mecical Inegh Shared Memory Bank Conflicts

¢ Shared memory + texture memory.

Shared memory banks

__shared__ unsigned char shared[];
kernel<<<blocks, threads, sharedMem>>>(...); * Shared memory is divided into 32 Shared memory
512652 banks to reduce conflicts

...... /I copy a large tile of pixels into shared memory

* Each thread can access 32-bit from X
syncthreads(); : f 3 WTTNTT%H
— _ 0 % Loading data under current window, 9 reads | different banks simultaneously to Half-warp [T] ST |
...... Il read 9 pixels from shared memory achieve high memory bandwidth 0123456789ABCDEF

out.x = ComputeSobel(pix00, pix01, pix02, pix10, pix11, pix12, pix20, pix21, pix22, fScale );

P Tae— - * Conflict-free shared memory as fast
,,,,,, Sliding window right, reuse 6, update 3 .
/Iread p00, p10, p20 % g g p! I as registers Shared memory

out.y = ComputeSobel(pix01, pix02, pix00, pix11, pix12, pix10, pix21, pix22, pix20, fScale );

______ /l read po1, p11, p21 % Sliding window right, reuse 6, update 3 | * Linear

out.z = ComputeSobel( pix02, pix00, pix01, pix12, pix10, pix11, pix22, pix20, pix21, fScale ); shared__ float shared[32]; _ Thread ID

...... I/ read p02, p12, p22 % Sliding window right, reuse 6, update 3 l i dalis = syl e mics L UEL

out.w = ComputeSobel( pix00, pix01, pix02, pix10, pix11, pix12, pix20, pix21, pix22, fScale ); * Random

. 0123456789ABCDEF
SR 1,3,5,7 ...... (Any odd number)
Half-warp
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SPIE

Shared Memory Bank Conflicts Mol ks Shared Memory Broadcasting Vioc

Imaging

Compute Capability 1.x Shared memory

4-way bank conflicts
__shared__ char shared[32];

Shared memory read a 32-bit word and broadcast to
several threads simultaneously

char data = shared[Baselndex + tid]; ] * Read
No bank conflicts * Reduce or resolve bank conflicts if set to broadcasting
_ P Half-warp
char data = shared[Baselndex + 4 * tid]; 0123456789ABCDEF * Which word is selected as the broadcast word and which address
is picked up for each bank at each cycle is unspecified
Compute Capability 2.x Shared memory

* Bank conflicts occur when multiple threads access different words in the
same bank

0123456789ABCDEF

Half-warp
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Returning Example : Sum of Numbers

Non-parallel approach

Add up a large set of numbers
S = 2 Ml
MSE = > (a[i] - b[i])?

Number of addition operations:

v[O]+Vv[1]+v[2]4)---+v[n —1]

* Normalization factor:

* Mean square error:

n-1 additions » How to optimize?
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Input numbers: [w[7Ts 7 o 25 5]2]s]2]7 ] 0] n]o]2]

CINon-parallel approach:

[0/ 1]s]alol2ls]s]2][a]2]7]o]n]o]2]

Generate only b

one thread
[sla]e]a]olals|s][2l-a]z][7]o][1n]o]2]
O(n) additions
Rule 1 : Maximized parallel execution
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Parallel Approach: Kernel 1 SPIE i

Ointerleaved addressing: Kernel 1

Jol1]a]a]ol2{a]s|2[a]2][7]o]n]o]2] 16 threads in a
Step 1 )/ )/ half wrap.

Strice 1 @/ @/ C?‘/ ® @ Only 8 of them

qep? Lolvl7a]22lals|s[se/7|n[ul2]2] gre active in the
Stride 2 @./ ® ﬁ?o/ first loop

|17 ][1]e]2]s|s]al-a]o]7[1s]11]2]2]

Step 3
Stride 4 ®
Jaal1]7]a]e]2[a]|s|[w][a]o][7]a]]2]2]
Step 4
Stride 8 0)+¢
[a]1]7][1]e]2]a|s]17]-3]o]7[1s]11]2] 2|Uncoa|esced global
" memory reading and
O(If)gln) additions writing pattern
Rule 2 : Optimize memory usage
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Parallel Approach: Kernel 1

CUDA code:

__global__ void reduce0(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];

/I each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdatal[tid] = g_idata[i];

—synethreads(: Ryle 3: Maximize instruction throughput
/l do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) { g S — o

sdata(tid] += sdata[tid +s]; inefficient St?ste\lgr?/n;‘lo@ operatorJ
)
__syncthreads();

}

/1 write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

coalescing

. Writing with global memory J
20

SPIE Medical Imaging 2012 MIC-GPU




. SPIE ) SPIE
Parallel Approach: Kernel 2 Medical Imaging Parallel Approach: Kernel 2 Medical Imaging
Refinement strategy: Cinterleaved addressing: Kernel 2
Just replace divergent branch in inner loop: [1o]1]8[-1]a[2[3]s[2]af2]7]o]11][o]2]
Tor (unsigned int s=1; 5 < BlooKDIm; 5 '= 2 e @/@/@/@/@/@/@/@/
bl s Stride ® 0 ®® ®
sdataltid] += sdataltid + s]; [z ]a]2l2]s|s][s]-a]a[7]n][nn]2]2]
H Step 2 Shared memory
} __syncthreads(); Stride 2
[sl1]7]1]ela]a|s][al-a]e|7]a[nn]2]2z]
Step 3
With strided index and non-divergent branch: Strida 4
for (unsigned int s=1; s < blockDim.x; s *=2) { [z#]1]7]1]e]2fa]s]w]alef7]wln]z]2]
intindex = 2 * s * tid; Step 4 oy
Stride 8 0123456789ABCDEF
if (index < blockDim.x) { larla]7]alel2a]a]s][u]-a]e]7]1a[nn]2]2z]
sdatalindex] += sdatalindex + s]; Half-warp
. -_syncthreads(); Shared memory conflict !
Law 2 : Optimize memory usage
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Parallel A h: K | 3 e Parallel A h: K | 3 e ey
arallel Approach: Kerne e B arallel Approach: Kerne Modkos Ieohg

. . Shared memory
OSequential addressing: Kernel 3

[wo] 1 ]s]1]o]2]als]-2]a]a]7]o]n]o]2]

Step 1 =t
Stride 8 0) (1) (2 Ws 6) (7

[s]-2]w0]6]o]o]alz]-2]-3]2]7]0][n]o]2] [1T1] [T E

CUDA code:

Just replace strided indexing in inner loop:

for (unsigned int s=1; s < blockDim.x; s "= 2) { l
intindex =2 * s * tid;

if (index < blockDim.x) {

loop interation

0123456789ABCDEF

Step 2
Stride 4 © @@ 0G Half-warp
[s]7]13]3lola]alz]-2]-3]2]7]0][n]o]2]
Step 3 00
Stride 2
|21]20[13]13[ 0o [s]7]-2]-s]2]7]0]11]0]2]
Step 4
Stride 1
[41]=20]13]13] 0] ]al7z]-2]-3]2]7]0[n]0]2]
Conflict-free
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sdata[index] += sdata[index + s]:

\—-\ Every thread is active in first J

}
__syncthreads();

With reversed loop and threadID-based indexing:

for (unsigned int s=blockDim.x/2; s>0; s>>=1) [l
if (tid < s) {

} first loop iteration!
__syncthreads(); Wasteful!
} Ny

sdataltid] += sdataltid + s];'\_\ Half of the threads are idle in ‘

Law 3: Maximize instruction throughput

SPIE Medical Imaging 2012 MIC-GPU
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Toward Final Optimized Kernel

Performance for 4M numbers:

Step Cumulative
Time (222ints) Bandwidth  Speedup Speedup

Kernel 1:
s 8.054ms 2083 GB/s

with divergent branching

el 3456ms 4.854GB/s  2.33x 2.33x

with bank conflicts

Kernel 3: 1.722ms  9.741GB/s  2.01x 4.68x

sequential addressing
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Further Optimizations

Kernel 4 Rule 3: Maximize instruction throughput
* Halve the number of blocks, with two loads
Kernel 5
* Unrolling last loop
Kernel 6
¢ Completely unrolling loops
Kernel 7
* Multiple element per thread
* See details changes in
M. Harris, Optimizing parallel reduction with CUDA
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Towards Final Optimized Kernel SPE

Performance for 4M numbers:

Step Cumulative
Time (222ints) Bandwidth  Speedup Speedup

Kernel 1:

interleaved addressing 8.054 ms 2.083 GB/s

with divergent branching

Kernel 2:

Interleaved addressing 3.456 ms 4.854GB/s 2.33x 2.33x
with bank conflicts

Kernel 3: 1.722ms 9.741GB/s  2.01x 4.68x
sequential addressing

Kernel 4:

i SO 0.965 ms 17.377 GB/s 1.78x 8.34x
Kernel 5:

i 0.536ms 31.289GB/s  1.8x 15.01x
Kernel 6: 0.381ms 43.996GB/s  1.41x 21.16x

completely unrolied

Final optimized kernel:
Kernel 7: 0.268 ms 62.671 GB/s  1.42x 30.04x

multiple elements per threac
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Best Programming Practices

Three basic strategies

* Maximize parallel execution
* Optimize memory usage -> achieve maximum memory bandwidth
* Optimize instruction bandwidth - maximize instruction throughput

Maximized parallel execution
* Minimize number of synchronization barriers - let it flow
* Minimize divergent flows
* Better synchronize within a block than across - group threads

Optimize memory usage
* Map poor coalescing patterns in global memory to shared memory
* Load data in coalesced chunks before computation begins
- #1: Get good coalescing in global memory
- #2: Get conflict-free data access in shared memory
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Best Programming Practices

Maximize instruction throughput
1. Instruction level

—>operator, branches and loops
2. Optimize execution configuration

Kernel will fail to launch if

* Number of threads per block >> max number of threads per block
* Requires too many registers or shared memory than available

Best Programming Practices Moriosl e

Block

* At least as many blocks as multiprocessors (SMs)

Threads

* Chose number of threads/block as a multiple of the warp size
* Typically 192 or 256 threads per block

* But watch out for required registers and shared memory

* Check Visual profiler or Occupancy Calculator

Multiprocessor occupancy

¢ Ratio of number of active warps per SM over max number of warps
¢ Visual profiler or Occupancy Calculator

- Choose thread block size based on shared memory and
registers
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Course Schedule i

dl Imaging

1:30 — 1:45:  Introduction

1:45—-2:00: Parallel programming primer

2:00 - 2:15:  GPU hardware

2:15-3:00: CUDA API, threads level optimization
Coffee Break

3:30 -4:00: CUDA memory optimization

4:00 - 4:15: CUDA programming environment (Ziyi)

4:15 - 4:45:  Parallelism in medical image (Klaus)

4:45 - 5:25:  CT reconstruction examples (Eric + Ziyi)

5:25-5:30: Closing remarks (Klaus)




