MIC-GPU:

High-Performance Computing
for Medical Imaging

on Programmable Graphics

Hardware (GPUs)

GPU Hardware

Klaus Mueller, Ziyi Zheng, Eric Papenhausen
Stony Brook University

Computer Science
Stony Brook, NY

NVIDIA Fermi Architecture i

GeForce 500 series — consumer graphics board
* 1.5 GB DRAM

Tesla 2000 series — general computing board
* 6 GB DRAM
* 2 x double precision performance
e ECC (Error Correcting Code) memory
Quadro 6000 series — professional graphics board
e Similar as Tesla but with video output

SPIE Medical Imaging 2012 MIC-GPU 2

NVIDIA Fermi Pl s

has 32 Streaming

SM (Streamin
CUDA Core Mult(ipr Sooss O?)/” Processors (SP) = CUDA core

| 3 [3 I | 4 (/9 | 4 \[4§ [|

On chip:
SMs: up 16
CUDA cores: 32/SM — up to 512/chip

JINVia

=)
ol
P
=
E

ANNYHa

SPIE Medical Imaging 2012 MIC-GPU 3

NVIDIA Fermi sl

— full cross-bar interface

Register File

Core Core Core Care
Core Core Core Core
Core Cors Core Core
Core Core Core Core [auuuuuuuuy 32 CUDA Cores
Core Core Core Core

Core Core Core Core

Core Core Core Core

ore Core Core Core
5 4 special function units (sin, cosine,
et el < reciprocal, and square root)
Interconnect Network

84K Configurable

Cache/Shared Mem

Uniform Cache

SPIE Medical Imaging 2012 MIC-GPU 4

Host and Device

Host — CPU

* controls program flow

° manages threads

* loads GPU programs (kernels)
* has host memory

Device — GPU

* loads data

¢ performs computations

* has device memory

Heterogeneous programming model

SPIE e
Medical Imaging

SPIE e
Medical Imaging

Thread Hierarchy : Coarse Grain

Parallelism is exposed as threads

Host Device
¢ all threads run the same code Grid 1
* athread runs on one core Kemi—p @0 @0 @0
ivide i on o Lo
The threads divide into blocks o W
* each block has a unique ID 2> block i
ID "fériti’,i‘
* each thread has a unique ID withina | = kemet ——"

block = thread ID

* block ID and thread ID can be used
to compute a global ID

"Block (1, 1)

The blocks form a grid

Block/grid size can be set in program

SPIE Medical Imaging 2012 MIC-GPU

SPIE Medical Imaging 2012 MIC-GPU

Thread Hierarchy: Fine Grain

Threads within a block are
organized into warps

* execute the same instruction
simultaneously with different data

A warp is 32 threads (fixed)

One SM can maintain 48 warps
simultaneously
* keep one warp active while 47 wait
for memory = latency hiding

e 32 threads x 48 warps x16 SMs
- 24,576 threads !

SPIE e
Medical Imaging

Device

Grid 1

Kernel 2

—» Block Block Blodc
(0,0 (1,0 (2,0

Block | Block | Blode
©n’ | @y || @D

‘A

o | —

Block (1, 1)

SPIE e
Medical Imaging

CUDA Hardware Implementation

Upon invoking a CUDA program from the host:

Block-level

* blocks are serially distributed to SMs

* threads of a block execute on one SM

* as thread blocks terminate, new blocks are launched on vacated SMs
Thread-level

* each SM launches warps of threads

* SM schedules and executes warps that are ready to run

* as warps and thread blocks complete, resources are freed

SPIE Medical Imaging 2012 MIC-GPU

SPIE Medical Imaging 2012 MIC-GPU

Mapping the Architecture to

SPIE e
Medical Imaging

Parallel Programs

Kernel Grid

Block Scheduling: Example

Threads are assigned to SMs in block granularity
* up to 8 blocks to each SM as resource allows

An SM can take up to 1,536 threads

e could be 512 (threads/block) * 3 blocks
* or 256 (threads/block) * 6 blocks, etc.

The optimal block size depends on:

SPIE e
Medical Imaging

* how much latency needs to be hidden (larger blocks)
* how much memory is needed per thread (smaller blocks)

Mapping of blocks to Block0 Block 1 Block2 Block 3
SMs | s ks s oot
* depends on device
hardware
* transparent l l
Sca/ablllty Device with 2 SMs Device with 4 SMs
Thread management ‘ smo ‘ sM1 ‘ ‘ SMo0 ‘ SM1 H sMm2 H SM 3 ‘
* very lightweight
thrr?aéj c;reation, H-H-H ‘-H-H-H-‘
scheduling
* in contrast, on the H!H!H ‘-H-H-H-‘
CPU thread
managgri?ent is very \!H!‘
heavy el
SPIE Medical Imaging 2012 MIC-GPU 9

SPIE Medical Imaging 2012 MIC-GPU

10

SPIE e
Medical Imaging

Memory Hierarchy

Grid

CUDA threads may access data
from multiple memory spaces:

Block (0, 0) Block (1, 0)

Thread-level

* registers (fast) ’ !

* local memory to handle register
spills (slow)

Block-level
* shared memory
Grid-level

* global memory
* constant memory (read-only)
* texture memory (read-only)

Thread (0, 0) || Thread (1, 0) Thread (0, 0) | Thread (1, 0)

YV i Fyyy i A4

~ ~

V'Y

»

Memory Hierarchy

SPIE e
Medical Imaging

Block (1, 0)

’

Thread (0, 0) | Thread (1, 0)

Grid
Memory On-chip Cached Access
Block (0, 0)
Local N Y RW
Shared Y Y RW
Global N 1D RW ’
Constant N Y R
Texture N 1 -3D R Thread (0, 0) | Thread (1, 0)
Code development strategy i i

»

jukinlu

~

e start by using just global memory
* then optimize

* more about this later

~

SPIE Medical Imaging 2012 MIC-GPU 1

SPIE Medical Imaging 2012 MIC-GPU

SPIE s

No Thread Communication Medical Imaging

Thread Block 0 Thread Block 1 Thread Block N - 1
threaarp [0 1]2[3]4]5[6]7] Lol [2ls[als[e]7] [o] 1]2[s]«[s]6]7]

float x = float x =

input [offsset+threadID] ; input [of£set+threadID];
float y = func(x); float y = func(x); LY float y = func(x);
output [threadID] = y; output [offsset+threadID] output [offset+threadID]
=y =y

SPIE e
Medical Imaging

Thread Communication

Thread Block 0

threaarn Lo [2]]| s]e]7]

float x =
input [threadID];
flo = func(x);

y
output [0] += y;

Thread communication
* threads within a block cooperate via
- atomic operations on global memory or shared memory,
- shared memory + barrier synchronization

SPIE Medical Imaging 2012 MIC-GPU 13

SPIE Medical Imaging 2012 MIC-GPU 14

SPIE e
Medical Imaging

Course Schedule

1:30 — 1:45: Introduction

1:45—-2:00: Parallel programming primer

2:00 -2:15: GPU hardware

2:15-3:00: CUDAAPI, threads level optimization (Ziyi)
Coffee Break

3:30-4:00: CUDA memory optimization (Eric)

4:00 - 4:15: CUDA programming environment (Ziyi)

4:15 - 4:45: Parallelism in medical image (Klaus)

4:45 - 5:25: CT reconstruction examples (Eric + Ziyi)

5:25-5:30: Closing remarks (Klaus)

SPIE Medical Imaging 2012

