
Stony Brook University

Computer Science

Stony Brook, NY

MIC-GPU:
High-Performance Computing
for Medical Imaging
on Programmable Graphics
Hardware (GPUs)

The Basics

Klaus Mueller and Sungsoo Ha

SPIE Medical Imaging 2016

Parallel Computing Explained

CPU vs. GPU

SPIE Medical Imaging 2016

Parallel Computing Explained

Any questions?

SPIE Medical Imaging 2016

Parallelism

What you just saw was an embarrassingly parallel task
• no or very little communication among parallel tasks

Most computational problems are not like that

SPIE Medical Imaging 2016

Parallelism

On the other hand, some processes are not parallel at all
• are they embarrassingly sequential?

Need to find and gauge where the parallelism is

SPIE Medical Imaging 2016

Types of Parallelism

Task based parallelism
• unrelated processes are executed in parallel
• slowest process determines the speed
• also known as coarse grained parallelism
• MIMD model = Multiple Instructions Multiple Data

Data based parallelism
• decompose a specific task into threads
• each thread executes the same statement at the same time
• also known as fine grained parallelism
• SIMD model = Single Instructions Multiple Data

SPIE Medical Imaging 2016

Patterns of Parallelism

Loops
• for and while statements
• Fork and Join

Tiling and grids
• break the domain into sub-problems that

map well to the hardware
• 2D tiles/grid for images, 3D tiles/grid for volumes

Divide and Conquer
• recursion: can present problems for parallelism when too deep
• better use an iterative approach that solves a level in parallel

SPIE Medical Imaging 2016

Speedup Curves

SPIE Medical Imaging 2016

Amdahl’s Law

Governs theoretical speedup

P: parallelizable portion of the program
S: speedup
N: number of parallel processors

N
PP

S
PP

S

parallel







)1(

1

)1(

1

SPIE Medical Imaging 2016

Amdahl’s Law

Governs theoretical speedup

P: parallelizable portion of the program
S: speedup
N: number of parallel processors

P determines theoretically achievable speedup
• example (assuming infinite N): P=90%  S=10

P=99%  S=100

N
PP

S
PP

S

parallel







)1(

1

)1(

1

SPIE Medical Imaging 2016

Amdahl’s Law

How many processors to use
• when P is small  a small number of processors will do
• when P is large (embarrassingly parallel)  high N is useful

SPIE Medical Imaging 2016

Speedup Curves

SPIE Medical Imaging 2016

Decision Support

SPIE Medical Imaging 2016

Comparison with CPUs

Backprojection task
• 496 projections
• size 1,248×960 each

$4,500$500

from Treibig et al. “Pushing the limits for medical
image reconstruction on recent standard
multicore processors,” International Journal
of High Performance Computing
Applications, 2012

SPIE Medical Imaging 2016

Beyond Theory….

GPUs are more than parallel computing

There are certain features that provide a turbo boost
• special ASIC circuits for frequent operations
• latency hiding by rapid thread switching
• special memory organization for 2D data
• schedulers
• managers
• APIs, drivers
• caches
• dedication to

computing

SPIE Medical Imaging 2016

Focus Efforts on Most Beneficial

Optimize program portion with most ‘bang for the buck’
• look at each program component
• don’t be ambitious in the wrong place

Example:
• program with 2 independent parts: A, B (execution time shown)

• sometimes one gains more with less

SPIE Medical Imaging 2016

Programming Strategy

Use GPU to complement CPU execution
• recognize parallel program segments and only parallelize these
• leave the sequential (serial) portions on the CPU

sequential portions (do not bite)

parallel portions (enjoy)

PPP (Peach of Parallel Programming – Kirk/Hwu)

SPIE Medical Imaging 2016

The Hardware …. NVIDIA Fermi

SM (Streaming
Multiprocessor)

On chip:

SMs: up 16

CUDA cores: 32/SM → up to 512/chip

CUDA Core
has 32 Streaming

Processors (SP) = CUDA core

18MIC-GPU

SPIE Medical Imaging 2016

The Hardware …. NVIDIA Fermi

4 special function units (sin, cosine,
reciprocal, and square root)

full cross-bar interface

32 CUDA Cores

19MIC-GPU SPIE Medical Imaging 2016

Host and Device

Host → CPU
• controls program flow

• manages threads

• loads GPU programs (kernels)

• has host memory

Device → GPU
• loads data

• performs computations

• has device memory

Heterogeneous programming model

20MIC-GPU

SPIE Medical Imaging 2016

Cost of Data Transfer

Amortizing the cost for data transfer is important
• computational benefit of a transfer plays a large role
• transfer costs are (or can be) significant

Adding two (N×N) matrices:
• transfer back and from device: 3 N2 elements
• number of additions: N2

 operations-transfer ratio = 1/3 or O(1)

Multiplying two (N×N) matrices:
• transfer back and from device: 3 N2 elements
• number of multiplications and additions: N3

 operations-transfer ratio = O(N) grows with N

SPIE Medical Imaging 2016

Parallelism Exposed as Threads

Thread management:
• all threads run the same code
• a thread runs on one core

The threads divide into blocks
• each block has a unique ID  block

ID
• each thread has a unique ID within a

block  thread ID
• block ID and thread ID can be used

to compute a global ID

The blocks form a grid

Block/grid size can be set in program

22MIC-GPU

SPIE Medical Imaging 2016

Threads Organization: Fine Grain

Threads within a block are
organized into warps

• execute the same instruction
simultaneously with different data

A warp is 32 threads (fixed)

One SM can maintain 48 warps
simultaneously

• keep one warp active while 47 wait
for memory  latency hiding

• 32 threads  48 warps 16 SMs
 24,576 threads !

23MIC-GPU SPIE Medical Imaging 2016

Block and Thread Management

Upon invoking a CUDA program from the host:

Block-level
• blocks are serially distributed to SMs

• threads of a block execute on one SM

• as thread blocks terminate, new blocks are launched on vacated SMs

Thread-level
• each SM launches warps of threads

• SM schedules and executes warps that are ready to run

• as warps and thread blocks complete, resources are freed

Choose grid dimensions according to task dimensions (1D, 2D, now 3D)

24MIC-GPU

SPIE Medical Imaging 2016

Block Scheduling: Example

Threads are assigned to SMs in block granularity
• up to 8 blocks to each SM as resource allows
• choose number of blocks per SM based on overall task size
• big blocks and small task will leave many SMs idle

An SM can take up to 1,536 threads
• could be 512 (threads/block) * 3 blocks
• or 256 (threads/block) * 6 blocks, etc.

The optimal block size depends on:
• how much latency needs to be hidden (larger blocks)
• how much memory is needed per thread (smaller blocks)
• task size (see above)

25MIC-GPU SPIE Medical Imaging 2016

Mapping the Architecture to
Parallel Programs

Mapping of blocks to
SMs

• depends on device
hardware

• transparent
scalability

Thread management
• very lightweight

thread creation,
scheduling

• in contrast, on the
CPU thread
management is very
heavy

26MIC-GPU

SPIE Medical Imaging 2016

An Important Player: Memory

MIC-GPU 27

Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

CUDA threads may access data
from multiple memory spaces:

Thread-level
• registers (fast)
• local memory to handle register spills

(slow)
Block-level

• shared memory
Grid-level

• global memory (slowest)
• constant memory (read-only)
• texture memory (cached, read-only)
• surface memory (writable texture)

SPIE Medical Imaging 2016

An Important Player: Memory

Memory On-chip Cached Access
Local N Y RW

Shared Y Y RW

Global N 1D RW

Constant N Y R

Texture N 1-3D R

MIC-GPU 28

Caches are on-chip

Code development strategy
• start by using just global memory

• then optimize

• more about this later

Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

SPIE Medical Imaging 2016

Global vs. Shared Memory

Global memory
• partitioned into segments divisible by 32
• ensure coalesced access
• most efficient when data access is contiguous

Shared memory
• organized into 32 banks
• ensure conflict-free access

If data is not aligned well in global memory
• align it in shared memory
• use collaborative load operation

MIC-GPU 29

• 0 1 2 3 4 5 6 7 8 9 A B C D E F

• 0 1 2 3 4 5 6 7 8 9 A B C D E F

SPIE Medical Imaging 2016

Latency Hiding -- Revisited

Latency hiding is a form of hardware multi-threading

Major source of the speedup of GPUs
• a new warp is switched to within one clock cycle

But….hardware multi-threading requires memory
• contexts of all these threads must be maintained in memory
• this typically limits the amount of threads that can be simultaneously

maintained for latency hiding
• so there is a tradeoff

MIC-GPU 30

SPIE Medical Imaging 2016

Avoid Latency – Exploit Locality

Temporal locality
• data that was accessed before will be likely accessed again
• use cache to reduce access latencies

Spatial locality
• data close to the data accessed last will likely be accessed soon
• fetch entire cache lines when accessing one element

Exploit locality by
• storing data in shared memory
• configure hardware caches (L2, CUDA vs. self-managed shared

memory)
• e.g., split 64 KB/block into 48 KB CUDA cache and 16 KB self-

managed (Fermi and higher)

SPIE Medical Imaging 2016

Thread Communication Across
Blocks

MIC-GPU 32

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID
Thread Block 0

…
…
float x =
input[offsset+threadID];
float y = func(x);
output[offsset+threadID]

= y;
…

Thread Block 1

…
float x =
input[offset+threadID];
float y = func(x);
output[offset+threadID]

= y;
…

Thread Block N - 1
76543210 76543210 76543210

SPIE Medical Imaging 2016

Thread Communication

Thread communication
• threads within a block cooperate via

- atomic operations on global memory or shared memory,
- shared memory + barrier synchronization

MIC-GPU 33

…
float x =
input[threadID];
float y = func(x);
output[0] += y;
…

threadID
Thread Block 0

76543210

SPIE Medical Imaging 2016

Recent Architectures

Kepler
• emphasis on better programmability
• Hyper-Q (block scheduling occurs in parallel – not in a queue)
• Dynamic Parallelism (threads can launch other threads)

Maxwell
• emphasis on energy efficiency
• independent warp schedulers eliminating crossbar
• increased L2 cache allowing reduction in memory bus
• reduction in number of cores

Pascal (announced)
• 3D memory
• unified memory (CPU and GPU) with NVLink fast bus

MIC-GPU 34

SPIE Medical Imaging 2016

Next – Small Example

Programmed in CUDA

CUDA = Compute Unified Device Architecture
• C-like language
• language and API created by NVIDIA
• libraries available (cuBLAS, cuFFT, Thrust, …)

SPIE Medical Imaging 2016

Vector Add – CPU

void vectorAdd(float *A, float *B, float *C, int N) {
for(int i = 0; i < N; i++)

C[i] = A[i] + B[i]; }

int main() {
int N = 4096;

// allocate and initialize memory
float *A = (float *) malloc(sizeof(float)*N);
float *B = (float *) malloc(sizeof(float)*N);
float *C = (float *) malloc(sizeof(float)*N);
init(A); init(B);

vectorAdd(A, B, C, N); // run kernel
free(A); free(B); free(C);} // free memory

SPIE Medical Imaging 2016

Vector Add – GPU

__global__ void gpuVecAdd(float *A, float *B, float *C) {

int tid = blockIdx.x * blockDim.x + threadIdx.x

C[tid] = A[tid] + B[tid]; }

(0,0), (1,0) …. (31,0)

threadIdx.x

blockIdx.x

blockDim.x=32

tid = blockId.x * blockDim.x + threadIdx.x

SPIE Medical Imaging 2016

Vector Add – GPU

int main() {
int N = 4096; // allocate and initialize memory on the CPU
float *A = (float *) malloc(sizeof(float)*N);

float *B = (float *) malloc(sizeof(float)*N); *C = (float*)malloc(sizeof(float)*N)
init(A); init(B);

// allocate and initialize memory on the GPU
float *d_A, *d_B, *d_C;
cudaMalloc(&d_A, sizeof(float)*N);
cudaMalloc(&d_B, sizeof(float)*N); cudaMalloc(&d_C, sizeof(float)*N);
cudaMemcpy(d_A, A, sizeof(float)*N, HtoD);
cudaMemcpy(d_B, B, sizeof(float)*N, HtoD);

// configure threads
dim3 dimBlock(32,1);
dim3 dimGrid(N/32,1);

// run kernel on GPU
gpuVecAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C);

// copy result back to CPU
cudaMemcpy(C, d_C, sizeof(float)*N, DtoH);

// free memory on CPU and GPU
cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); free(A); free(B); free(C); }

SPIE Medical Imaging 2016

Subdivide Problem into 3 Stages

Handle each data subset with one thread block by:
• load the subset from global memory to shared memory, using

multiple threads to exploit memory-level parallelism
• compute on the subset in shared memory; each thread can

efficiently multi-pass over any data element
• copy results from shared memory to global memory

Let’s see how this works using a matrix multiplication example

MIC-GPU 39 SPIE Medical Imaging 2016

Example: Matrix Multiplication

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M
int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N
int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

Pd

Md

Nd

SPIE Medical Imaging 2016

Using Multiple Blocks

Break-up Pd into tiles

Each block calculates one tile
• Each thread calculates one element
• Block size equal tile size

Problem
All threads access

global memory for their
input matrix elements

• Two memory accesses
(8 bytes) per floating
point multiply-add

MIC-GPU 41 SPIE Medical Imaging 2016

Using Multiple Phases

Break up the execution of the kernel into
phases so that the data accesses in
each phase is focused on one subset
(tile) of Md and Nd

MIC-GPU 42

•Md

•Nd

•Pd

•Pdsub

•TILE_WIDTH

•WIDTH•WIDTH

•TILE_WIDTH•TILE_WIDTH

•bx

•tx
•0•1 •TILE_WIDTH-1•2

•0 •1 •2

•by •ty •2
•1
•0

•TILE_WIDTH-1

•2

•1

•0

•T
IL
E_

W
ID
TH

•T
IL
E_

W
ID
TH

•T
IL
E_

W
ID
TH

E

•W
ID
TH

•W
ID
TH

SPIE Medical Imaging 2016

Tiled Matrix Multiplication

Each block computes one square
sub-matrix Pdsub of size TILE_WIDTH

Each thread computes one element
of Pdsub

MIC-GPU 43

•Md

•Nd

•Pd

•Pdsub

•TILE_WIDTH

•WIDTH•WIDTH

•TILE_WIDTH•TILE_WIDTH

•bx

•tx
•0•1 •TILE_WIDTH-1•2

•0 •1 •2

•by •ty •2
•1
•0

•TILE_WIDTH-1

•2

•1

•0

•T
IL
E_

W
ID
TH

•T
IL
E_

W
ID
TH

•T
IL
E_

W
ID
TH

E

•W
ID
TH

•W
ID
TH

SPIE Medical Imaging 2016

Kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1. __shared__float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;
7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Coolaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
11. __syncthreads();
11. for (int k = 0; k < TILE_WIDTH; ++k)
12. Pvalue += Mds[ty][k] * Nds[k][tx];
13. Synchthreads();
14. }
13. Pd[Row*Width+Col] = Pvalue;

MIC-GPU 44

•Md

•Nd

•Pd

•Pds
ub

•TILE_WIDTH

•WIDTH•WIDTH

•TILE_WIDTH•TILE_WIDTH

•bx

•tx
•0•1•TILE_WIDTH-1•2

•0 •1 •2

•by •ty •2•1
•0

•TILE_WIDTH-1

•2

•1

•0

•T
IL
E_

W
ID
TH

•T
IL
E_

W
ID
TH

•T
IL
E_

W
ID
TH

E

•W
ID
TH

•W
ID
TH

SPIE Medical Imaging 2016

Locality

This scheme enforces locality
• focus of computation on a subset of data elements
• allows one to use small but high-speed memory for fast

computation
• this exploit matches fast processors with high memory bandwidth

and so maximizes the performance
• locality useful in any multi-core configurations

45 SPIE Medical Imaging 2016

New Developments – CUDA 6

SPIE Medical Imaging 2016

NVIDIA Kepler Architecture

Kepler GK110 Die Photo

SPIE Medical Imaging 2016

16 Streaming Multiprocessors (SMX)

SPIE Medical Imaging 2016

One SMX

 192 single-
precision
CUDA cores

 64 double-
precision units

 32 special
function units
(SFU)

 32 load/store
units (LD/ST)

SPIE Medical Imaging 2016

Features

 Full IEEE 754-2008 compliant

 Atomic operations (Add, Max, Min, AND, OR. …)

 Sophisticated memory hierarchy

 ECC protection 64 KB

48 KB

1,536 KB
across SMXs

8 GB
across SMXs

SPIE Medical Imaging 2016

Dynamic Parallelism

SPIE Medical Imaging 2016

Dynamic Parallelism

Application: Dynamic load balancing and grid refinement

SPIE Medical Imaging 2016

Instruction Level Parallelism

Each Kepler SMX contains
• 4 Warp Schedulers
• each with dual Instruction Dispatch Units

2 warp schedulers and
single instruction

dispatcher shown here

SPIE Medical Imaging 2016

Instruction Level Parallelism (ILP)

Dependencies not permitting ILP (9 clock cycles)
C = A + B
E = C + D
F = A + D

Instruction reordering for better ILP (8 clock cycles)
C = A + B
F = A + D
E = C + D

SPIE Medical Imaging 2016

Computation and Load/Store: No ILP

SPIE Medical Imaging 2016

….With ILP

SPIE Medical Imaging 2016

Common Optimizations

Loop unrolling
• reduces arithmetic and creates better vectorization

Loop fusion
• but check for dependencies

Thread fusion
• increases workload for threads

Kernel fusion
• encourages data reuse

Collaborative load into shared memory
• when memory indexing is irregular

Larger blocks
• more threads can better hide memory latency
• but more threads require more registers  trade-off

SPIE Medical Imaging 2016

NVIDIA Parallel Nsight (see demo)

SPIE Medical Imaging 2016

High Performance Computing on
the Desktop
PC graphics boards featuring GPUs:

• NVIDIA GeForce, ATI Radeon
• available at every computer store for less

than $500
• set up your PC in less than an hour and play

the latest board:

NVIDIA GeForce GTX 980

SPIE Medical Imaging 2016

“Just” Computing

Compute-only (no graphics): NVIDIA Tesla K and M series

True GPGPU

(General Purpose
Computing using
GPU Technology)

Bundle 8 cards into a server: 5,280 processors, 192 GB memory

24 GB memory
per card, 560
processors

$4,000

K 80

SPIE Medical Imaging 2016

Recent Hot Topic: Deep Learning

A showcase application for GPUs
• DNN (deep neural networks)
• CNN (convolutional neural networks)
• GPUs shine especially in the training phase
• cuDNN = CUDA deep neural network library

MIC-GPU 61 SPIE Medical Imaging 2016

Course Schedule

1:30 – 1:45: Introduction (Klaus)

1:45 – 2:00: Parallel programming primer (Klaus)

2:00 – 2:30: GPU hardware and CUDA basics (Klaus)

2:30 – 3:00: CUDA API, threads (Sungsoo)

Coffee Break

3:30 – 4:00: CUDA memory optimization (Sungsoo)

4:00 – 4:15: CUDA programming environment (Sungsoo)

4:15 – 4:45: Multi GPU (Sungsoo)

4:45 – 5:25: Examples and demo (Klaus, Sungsoo)

5:25 – 5:30: Closing remarks (Klaus)

MIC-GPU 62

