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Parallel Computing Explained

CPU vs. GPU
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Parallel Computing Explained

Any questions?
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Parallelism

What you just saw was an embarrassingly parallel task
• no or very little communication among parallel tasks

Most computational problems are not like that
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Parallelism

On the other hand, some processes are not parallel at all
• are they embarrassingly sequential? 

Need to find and gauge where the parallelism is
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Types of Parallelism

Task based parallelism
• unrelated processes are executed in parallel
• slowest process determines the speed
• also known as coarse grained parallelism
• MIMD model = Multiple Instructions Multiple Data

Data based parallelism
• decompose a specific task into threads
• each thread executes the same statement at the same time
• also known as fine grained parallelism
• SIMD model = Single Instructions Multiple Data
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Patterns of Parallelism

Loops
• for and while statements
• Fork and Join

Tiling and grids
• break the domain into sub-problems that                                            

map well to the hardware
• 2D tiles/grid for images, 3D tiles/grid for volumes

Divide and Conquer
• recursion: can present problems for parallelism when too deep
• better use an iterative approach that solves a level in parallel  
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Speedup Curves
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Amdahl’s Law

Governs theoretical speedup

P: parallelizable portion of the program
S: speedup
N: number of parallel processors
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Amdahl’s Law

Governs theoretical speedup

P: parallelizable portion of the program
S: speedup
N: number of parallel processors

P determines theoretically achievable speedup
• example (assuming infinite N): P=90%  S=10

P=99%  S=100
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Amdahl’s Law

How many processors to use
• when P is small  a small number of processors will do
• when P is large (embarrassingly parallel)  high N is useful 
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Speedup Curves
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Decision Support
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Comparison with CPUs

Backprojection task
• 496 projections 
• size 1,248×960 each

$4,500$500

from Treibig et al. “Pushing the limits for medical 
image reconstruction on recent standard 
multicore processors,” International Journal 
of High Performance Computing 
Applications, 2012
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Beyond Theory….

GPUs are more than parallel computing

There are certain features that provide a turbo boost 
• special ASIC circuits for frequent operations
• latency hiding by rapid thread switching
• special memory organization for 2D data
• schedulers 
• managers
• APIs, drivers 
• caches
• dedication to 

computing 
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Focus Efforts on Most Beneficial

Optimize program portion with most ‘bang for the buck’
• look at each program component 
• don’t be ambitious in the wrong place

Example:
• program with 2 independent parts: A, B (execution time shown)

• sometimes one gains more with less
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Programming Strategy

Use GPU to complement CPU execution
• recognize parallel program segments and only parallelize these
• leave the sequential (serial) portions on the CPU

sequential portions (do not bite)

parallel portions (enjoy)

PPP (Peach of Parallel Programming – Kirk/Hwu)
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The Hardware …. NVIDIA Fermi

SM (Streaming 
Multiprocessor) 

On chip:

SMs: up 16

CUDA cores: 32/SM → up to 512/chip

CUDA Core
has 32 Streaming 

Processors (SP) = CUDA core
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The Hardware …. NVIDIA Fermi

4 special function units (sin, cosine, 
reciprocal, and square root) 

full cross-bar interface

32 CUDA Cores
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Host and Device

Host → CPU
• controls program flow

• manages threads

• loads GPU programs (kernels)

• has host memory

Device → GPU 
• loads data

• performs computations

• has device memory

Heterogeneous programming model
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Cost of Data Transfer 

Amortizing the cost for data transfer is important
• computational benefit of a transfer plays a large role
• transfer costs are (or can be) significant

Adding two (N×N) matrices:
• transfer back and from device: 3 N2 elements
• number of additions: N2

 operations-transfer ratio = 1/3 or O(1)

Multiplying two (N×N) matrices:
• transfer back and from device: 3 N2 elements
• number of multiplications and additions: N3

 operations-transfer ratio = O(N) grows with N
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Parallelism Exposed as Threads 

Thread management:
• all threads run the same code
• a thread runs on one core

The threads divide into blocks
• each block has a unique ID  block 

ID
• each thread has a unique ID within a 

block  thread ID
• block ID and thread ID can be used 

to compute a global ID

The blocks form a grid

Block/grid size can be set in program
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Threads Organization: Fine Grain 

Threads within a block are 
organized into warps

• execute the same instruction 
simultaneously with different data

A warp is 32 threads (fixed)

One SM can maintain 48 warps 
simultaneously

• keep one warp active while 47 wait 
for memory  latency hiding

• 32 threads  48 warps 16 SMs              
 24,576 threads !
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Block and Thread Management 

Upon invoking a CUDA program from the host:

Block-level
• blocks are serially distributed to SMs 

• threads of a block execute on one SM 

• as thread blocks terminate, new blocks are launched on vacated SMs

Thread-level
• each SM launches warps of threads

• SM schedules and executes warps that are ready to run

• as warps and thread blocks complete, resources are freed

Choose grid dimensions according to task dimensions (1D, 2D, now 3D)
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Block Scheduling: Example

Threads are assigned to SMs in block granularity
• up to 8 blocks to each SM as resource allows
• choose number of blocks per SM based on overall task size
• big blocks and small task will leave many SMs idle 

An SM can take up to 1,536 threads
• could be 512 (threads/block) * 3 blocks 
• or 256 (threads/block) * 6 blocks, etc.

The optimal block size depends on:
• how much latency needs to be hidden (larger blocks)
• how much memory is needed per thread (smaller blocks)
• task size (see above)
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Mapping the Architecture to 
Parallel Programs

Mapping of blocks to 
SMs

• depends on device 
hardware

• transparent 
scalability

Thread management
• very lightweight 

thread creation, 
scheduling

• in contrast, on the 
CPU thread 
management is very 
heavy
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An Important Player: Memory
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CUDA threads may access data                               
from multiple memory spaces:

Thread-level
• registers (fast)
• local memory to handle register spills 

(slow)
Block-level 

• shared memory
Grid-level 

• global memory (slowest)
• constant memory (read-only)
• texture memory (cached, read-only)
• surface memory (writable texture)
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An Important Player: Memory 

Memory On-chip Cached Access
Local N Y RW

Shared Y Y RW

Global N 1D RW

Constant N Y R

Texture N 1-3D R
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Caches are on-chip

Code development strategy
• start by using just global memory 

• then optimize

• more about this later
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Global vs. Shared Memory

Global memory
• partitioned into segments divisible by 32
• ensure coalesced access
• most efficient when data access is contiguous

Shared memory 
• organized into 32 banks
• ensure conflict-free access

If data is not aligned well in global memory
• align it in shared memory
• use collaborative load operation
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• 0 1 2 3 4 5 6 7 8 9 A B C D E F

• 0 1 2 3 4 5 6 7 8 9 A B C D E F
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Latency Hiding -- Revisited

Latency hiding is a form of hardware multi-threading

Major source of the speedup of GPUs
• a new warp is switched to within one clock cycle 

But….hardware multi-threading requires memory
• contexts of all these threads must be maintained in memory
• this typically limits the amount of threads that can be simultaneously 

maintained for latency hiding
• so there is a tradeoff
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Avoid Latency – Exploit Locality

Temporal locality
• data that was accessed before will be likely accessed again
• use cache to reduce access latencies

Spatial locality
• data close to the data accessed last will likely be accessed soon
• fetch entire cache lines when accessing one element

Exploit locality by
• storing data in shared memory 
• configure hardware caches (L2, CUDA vs. self-managed shared 

memory)
• e.g., split 64 KB/block into 48 KB CUDA cache and 16 KB self-

managed  (Fermi and higher)

SPIE Medical Imaging 2016

Thread Communication Across 
Blocks
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…
float x = 
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID
Thread Block 0

…
…
float x = 
input[offsset+threadID];
float y = func(x);
output[offsset+threadID] 

= y;
…

Thread Block 1

…
float x = 
input[offset+threadID];
float y = func(x);
output[offset+threadID]

= y;
…

Thread Block N - 1
76543210 76543210 76543210
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Thread Communication

Thread communication
• threads within a block cooperate via 

- atomic operations on global memory or shared memory,
- shared memory + barrier synchronization
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…
float x = 
input[threadID];
float y = func(x);
output[0] += y;
…

threadID
Thread Block 0

76543210
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Recent Architectures

Kepler
• emphasis on better programmability
• Hyper-Q  (block scheduling occurs in parallel – not in a queue)
• Dynamic Parallelism (threads can launch other threads)

Maxwell
• emphasis on energy efficiency 
• independent warp schedulers eliminating crossbar
• increased L2 cache allowing reduction in memory bus
• reduction in number of cores

Pascal (announced)
• 3D memory
• unified memory (CPU and GPU) with NVLink fast bus
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Next – Small Example

Programmed in CUDA

CUDA  = Compute Unified Device Architecture
• C-like language
• language and API created by NVIDIA
• libraries available (cuBLAS, cuFFT, Thrust, …)
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Vector Add – CPU

void vectorAdd(float *A, float *B, float *C, int N) {
for(int i = 0; i < N; i++)

C[i] = A[i] + B[i]; }

int main() {
int N = 4096; 

// allocate and initialize memory
float *A = (float *) malloc(sizeof(float)*N);    
float *B = (float *) malloc(sizeof(float)*N);    
float *C = (float *) malloc(sizeof(float)*N);
init(A); init(B);

vectorAdd(A, B, C, N); // run kernel
free(A); free(B); free(C);} // free memory
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Vector Add – GPU

__global__ void gpuVecAdd(float *A, float *B, float *C) {

int tid = blockIdx.x * blockDim.x + threadIdx.x

C[tid] = A[tid] + B[tid]; }

(0,0),  (1,0)    ….  (31,0)      

threadIdx.x

blockIdx.x

blockDim.x=32

tid = blockId.x * blockDim.x + threadIdx.x
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Vector Add – GPU

int main() {
int N = 4096; // allocate and initialize memory on the CPU
float *A = (float *) malloc(sizeof(float)*N); 

float *B = (float *) malloc(sizeof(float)*N); *C = (float*)malloc(sizeof(float)*N)
init(A); init(B);

// allocate and initialize memory on the GPU
float *d_A, *d_B, *d_C;
cudaMalloc(&d_A, sizeof(float)*N);   
cudaMalloc(&d_B, sizeof(float)*N);     cudaMalloc(&d_C, sizeof(float)*N);
cudaMemcpy(d_A, A, sizeof(float)*N, HtoD);    
cudaMemcpy(d_B, B, sizeof(float)*N, HtoD);

// configure threads
dim3 dimBlock(32,1);
dim3 dimGrid(N/32,1);

// run kernel on GPU
gpuVecAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C);

// copy result back to CPU
cudaMemcpy(C, d_C, sizeof(float)*N, DtoH);

// free memory on CPU and GPU
cudaFree(d_A);   cudaFree(d_B);    cudaFree(d_C);   free(A);   free(B);   free(C); }
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Subdivide Problem into 3 Stages 

Handle each data subset with one thread block by:
• load the subset from global memory to shared memory, using 

multiple threads to exploit memory-level parallelism
• compute on the subset in shared memory; each thread can 

efficiently multi-pass over any data element
• copy results from shared memory to global memory

Let’s see how this works using a matrix multiplication example
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Example: Matrix Multiplication

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M
int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N
int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

Pd

Md

Nd
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Using Multiple Blocks

Break-up Pd into tiles

Each block calculates one tile
• Each thread calculates one element
• Block size equal tile size

Problem
All threads access                                                                                                

global memory for their 
input matrix elements

• Two memory accesses                                                                                      
(8 bytes) per floating                                                                                          
point multiply-add
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Using Multiple Phases

Break up the execution of the kernel into 
phases so that the data accesses in 
each phase is focused on one subset 
(tile) of Md and Nd
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Tiled Matrix Multiplication

Each block computes one square 
sub-matrix Pdsub of size TILE_WIDTH

Each thread computes one element 
of Pdsub
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Kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1.  __shared__float Mds[TILE_WIDTH][TILE_WIDTH];
2.  __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

3.  int bx = blockIdx.x;  int by = blockIdx.y;
4.  int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5.  int Row = by * TILE_WIDTH + ty;
6.  int Col = bx * TILE_WIDTH + tx;
7.   float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8.   for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Coolaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
11. __syncthreads();
11.   for (int k = 0; k < TILE_WIDTH; ++k)
12. Pvalue += Mds[ty][k] * Nds[k][tx];
13. Synchthreads();
14. }
13.   Pd[Row*Width+Col] = Pvalue;
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Locality

This scheme enforces locality
• focus of computation on a subset of data elements
• allows one to use small but high-speed memory for fast 

computation
• this exploit matches fast processors with high memory bandwidth 

and so maximizes the performance
• locality useful in any multi-core configurations
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New Developments – CUDA 6

SPIE Medical Imaging 2016

NVIDIA Kepler Architecture

Kepler GK110 Die Photo

SPIE Medical Imaging 2016

16 Streaming Multiprocessors (SMX)
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One SMX

 192 single-
precision 
CUDA cores

 64 double-
precision units 

 32 special 
function units 
(SFU)

 32 load/store 
units (LD/ST)
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Features

 Full IEEE 754-2008 compliant

 Atomic operations (Add, Max, Min, AND, OR. …)

 Sophisticated memory hierarchy

 ECC protection 64 KB

48 KB

1,536 KB
across SMXs

8 GB
across SMXs
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Dynamic Parallelism

SPIE Medical Imaging 2016

Dynamic Parallelism

Application: Dynamic load balancing and grid refinement
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Instruction Level Parallelism

Each Kepler SMX contains
• 4 Warp Schedulers
• each with dual Instruction Dispatch Units

2 warp schedulers and 
single instruction 

dispatcher shown here
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Instruction Level Parallelism (ILP)

Dependencies not permitting ILP (9 clock cycles)
C = A + B
E = C + D
F = A + D

Instruction reordering for better ILP (8 clock cycles)
C = A + B
F = A + D
E = C + D
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Computation and Load/Store: No ILP
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….With ILP
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Common Optimizations

Loop unrolling
• reduces arithmetic and creates better vectorization

Loop fusion
• but check for dependencies

Thread fusion
• increases workload for threads

Kernel fusion 
• encourages data reuse

Collaborative load into shared memory
• when memory indexing is irregular 

Larger blocks
• more threads can better hide memory latency 
• but more threads require more registers  trade-off
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NVIDIA Parallel Nsight (see demo)
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High Performance Computing on 
the Desktop
PC graphics boards featuring GPUs:

• NVIDIA GeForce, ATI Radeon
• available at every computer store for less                                 

than $500
• set up your PC in less than an hour and play

the latest board: 

NVIDIA GeForce GTX 980
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“Just” Computing

Compute-only (no graphics): NVIDIA Tesla K and M series

True GPGPU 

(General Purpose 
Computing using 
GPU Technology)

Bundle 8 cards into a server: 5,280 processors, 192 GB memory

24 GB memory 
per card, 560 
processors

$4,000

K 80
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Recent Hot Topic: Deep Learning

A showcase application for GPUs
• DNN (deep neural networks) 
• CNN (convolutional neural networks)
• GPUs shine especially in the training phase
• cuDNN = CUDA deep neural network library 

MIC-GPU 61 SPIE Medical Imaging 2016

Course Schedule

1:30 – 1:45: Introduction (Klaus)

1:45 – 2:00: Parallel programming primer (Klaus)

2:00 – 2:30: GPU hardware and CUDA basics (Klaus)

2:30 – 3:00: CUDA API, threads (Sungsoo)

Coffee Break

3:30 – 4:00: CUDA memory optimization (Sungsoo)

4:00 – 4:15: CUDA programming environment (Sungsoo)

4:15 – 4:45: Multi GPU (Sungsoo)

4:45 – 5:25: Examples and demo (Klaus, Sungsoo)

5:25 – 5:30: Closing remarks (Klaus)
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