A Frequency-Sensitive Point Hierarchy for Images and Volumes

Tomihisa Welsh

Klaus Mueller

Center for Visual Computing, Computer Science, Stony Brook University

(a) Orig. 2,608,070 pts, 9 sec
Figure 1: The engine dataset (256°), rendered semitransparent without occlusion culling at various error thresholds with our algorithm.

(b) 951,291 pts, 3 sec

Abstract

This paper introduces a method for converting an image or volume
sampled on a regular grid into a space-efficient irregular point
hierarchy. The conversion process retains the original frequency
characteristics of the dataset by matching the spatial distribution
of sample points with the required frequency. To achieve good
blending, the spherical points commonly used in volume rendering
are generalized to ellipsoidal point primitives. A family of multires-
olution, oriented Gabor wavelets provide the frequency-space
analysis of the dataset. The outcome of this frequency analysis is
the reduced set of points, in which the sampling rate is decreased
in originally oversampled areas. During rendering, the traversal of
the hierarchy can be controlled by any suitable error metric or
quality criteria. The local level of refinement is also sensitive to the
transfer function. Areas with density ranges mapped to high trans-
fer function variability are rendered at higher point resolution than
others. Our decomposition is flexible and can be used for iso-sur-
face rendering, alpha compositing and X-ray rendering of volumes.
We demonstrate our hierarchy with an interactive splatting volume
renderer; in which the traversal of the point hierarchy for render-
ing is modulated by a user-specified frame rate.

Keywords: volume rendering, point-based rendering, splatting.

1 Introduction

Hierarchies of rendering primitives are desirable, since they allow
the renderer to tune the size and number, and therefore the render-
ing effort, of the rendered primitives to the resolution of the screen
(view-sensitive) or the local detail of the object (feature-sensitive)

{tfwelsh, mueller} @cs.sunysb.edu, http://www.cs.sunysb.edu/~tfwelsh/Points

(c) 195,854 pts, 0.5 sec (d) 79,007 pts, 0.2 sec

or both. Successful approaches that fulfill both metrics have been
developed for polygonal surface-based objects a number of years
ago (see Hoppe [1997] and others). One motivation behind the
recent trend to point-based surface rendering is that for objects of
high geometric complexity a point primitive offers greater simplic-
ity for projection and better delineation of fine object detail than a
small triangle [Zwicker et al. 2001a], although hybrid approaches
have been proposed [Cohen et al. 2001; Chen and Nguyen 2001].
Similar advantages also exist for point-based volume rendering,
often called splatting [Westover 1990], when compared to image-
order rendering methods, such as raycasting [Meissner et al. 2000].
However, volume rendering is inherently different from surface
rendering (although iso-value volume rendering can also produce
the image of a shaded surface). While surface rendering only main-
tains a collection of points on the surface, volume rendering covers
the entire 3D function, supported by a full 3D grid of points, where
many points can project and contribute to a single pixel on the
screen. On the other hand, the rendering primitives used are simi-
lar, both renderers most often represent points as a smooth basis
function of radial extent, such as a Gaussian, to provide good
blending of the primitives. In surface rendering it is a collection of
2D Gaussians covering the modeled object surface, while in vol-
ume rendering it is a collection of 3D Gaussians that blend together
to form the 3D function embodied by the grid.

A number of hierarchical point-based surface renderers have
been proposed. Most of the earlier ones, such as [Chen and Nguyen
2001; Botsch et al. 2002, Pfister et al. 2000; Rusinkiewicz and
Levoy 2000] construct their hierarchies without much consider-
ation of local detail and are mainly view-sensitive, but more recent
approaches do perform a feature-sensitive construction of the hier-
archy [Dey and Hudson 2002].

While the research in hierarchical point-based surface render-
ing is numerous, there has not been much work on advancing the
concept of hierarchies in the field of point-based volume rendering
other than the early work by Laur and Hanrahan [1991]. Most of
the recent effort has been spent on using hierarchical representa-
tions for the purpose of opacity-based occlusion culling [Lee and
Thm 2000; Mora et al. 2002], while the rendering primitive is still a
regular arrangement of points at the original grid resolution.

As in point-based surface rendering, minimizing the number
of rendered points while maintaining a moderate amount of over-
lap for blending will also minimize the time required for rendering.
We have already mentioned opacity-based culling as one important

means to eliminate the occluded points from the rendering pipe-
line. A feature-sensitive point hierarchy will also reduce the num-
ber of non-occluded points that need to be rendered. The research
reported in this paper is targeted at the latter, by constructing a fea-
ture-sensitive hierarchical decomposition of the volume, with
capabilities to control the local rendering error on the fly. This
enables time-critical rendering as well as view-dependent level of
detail, both of which are not possible with a flat volume decompo-
sition. Another important issue, unique to volume rendering, is the
existence of transfer functions that map raw volume densities to
colors and opacities. We can further reduce the number of rendered
points by rendering volume regions that fall into uniform portions
of the transfer function at lower resolution.

The basic idea of our work is motivated by the concept of
adaptive, or importance sampling. In adaptive sampling, more
sample points are placed in image areas with high detail, while less
sample points are placed in homogenous regions (see discussion in
Glassner [1995], chapters 7 and 9). Since we would like to synthe-
size a smooth image from this point distribution, we must fill the
empty areas between the sample points by a suitable blending
mechanism. For this purpose, we represent each sample point as an
elliptical Gaussian basis function, each having an extent corre-
sponding to the local point density. This is illustrated in Fig. 7
(left). There are three stages to this process. First, we need to ana-
lyze the image/volume to find proper sample locations for the
adaptive sampling. We do this by performing a Gabor wavelet
decomposition. Second, from the analysis we obtain the decompo-
sition hierarchy which is synonymous with the point placement in
adaptive sampling, and assign an error metric to each component
or node in the hierarchy. The third stage is the actual image synthe-
sis where we traverse the hierarchy and pick the most appropriate
points given the quality metric and other view-dependent and
transfer function-dependent metrics, and splat these chosen points
into the image. All of these three stages will be described in the fol-
lowing sections, after a discussion on previous work in this area.

2 Previous Work

As far as we know the only space-covering point hierarchies con-
structed were in the form of quadtrees and octrees. However, an
undesirable property of quadtrees (octrees) is that a subdivision
always gives rise to 4 (8) children (as shown in Fig. 2a). A more
generalized point hierarchy, as the one shown in Fig. 2b, would
allow for a lesser amount of children to be expanded. This reduc-
tion of nodes can have important implications on storage and ren-
dering complexity. The hierarchical splatting technique proposed
by Laur and Hanrahan [1991] for volume rendering is based on an
octree and stores the root mean square error in each node. This
measure is then compared with an error threshold during traversal
to decide if the node should be expanded or not. The error approxi-
mates the cost of rendering a region at the resolution of the hierar-
chy level and the root mean square error metric is related to the
frequency content at that location.

The discrete wavelet transform offers a more versatile and rig-
orous framework for frequency analysis, and a number of visual-
ization researchers [Guthe et al. 2002; Muraki 1994; Westenberg
and Roerdink 2000, Westermann 1994] have used this transform to
find a decomposition. In this case, the basis functions are given by
the scaled wavelets. A wavelet-based decomposition, with only the
significant nodes shown, may look like the one given in Fig. 2c.
Note that unlike the quadtree, where only the bottom nodes (the
black ones) of the expanded tree have to be used for signal synthe-
sis, in the wavelet transform all nodes with a significant coefficient
(the black, blue, and red ones) have to be added, with potentially
large overlap among the basis functions. This does not fulfill our
minimum overlap criterion. In fact, the large extent of the basis
functions encoding the low signal frequencies has prevented the

~
]

X

(a) (b) (©)
Figure 2: Hierarchical point decompositions: (left) quadree;
(middle) generalized; (right) wavelet (overlapping primitives).

()

\
T
/

<

use of wavelet splatting for anything more than X-ray projection,
since the spatial order of the basis functions required for composit-
ing does not exist.

A very different strategy to find an image decomposition into
radial basis functions is to use numerical optimization. A list of
available techniques includes the conjugate gradient method, non-
linear least squares, such as the Levenberg-Marquardt algorithm,
or simulated annealing [Press et al. 1988]. The latter was recently
used by [Kreylos, B. Hamann 2001] to find a (piecewise linear)
polygonal decomposition of an image. Childs et al. [2000]
employed a modified version of the Marquardt algorithm to
decompose images into a set of elliptical Gaussians. Although their
implementation, termed Quickstep, is an order of magnitude faster
than the Marquardt algorithm it still takes about one hour to find
the decomposition of the Lena image (256%), which will probably
make the algorithm infeasible for volumes. The compression rates
are rather impressive, but a drawback of the resulting assembly of
Gaussians is that they will only yield a correct image when splatted
into the same grid that was used to evaluate the minimization met-
ric. In other words, the continuous function generated by the field
of Gaussians is not smooth and can have sharp positive and nega-
tive spikes at off-grid positions, which would be disastrous for
splat-based volume rendering or image magnification.

3 Overview

For a given dataset, the hierarchy consists of a number of fixed ele-
ments similar to a quadtree for images, or an octree for volumes.
Thus, the basic structure is a tree with M levels, and each node has
a fixed degree 2P where D is the dimensionality of the dataset.
Nodes higher in the tree represent coarser features while leaf nodes
(level 0) represent the original grid samples of the dataset. The
main difference between our representation and that of a quadtree
or octree is that nodes above the leaf nodes are not constrained to
represent regular data points but can contain irregular samples as
well. In fact, each node contains a different set of primitives (not
necessarily ZD) chosen from a fixed set of possibilities much like a
basis set. Fig. 4 shows the point primitives for the 2D case. Here,
we see that a given node will maximally use four point primitives.
However, by using horizontal or vertical splats we can cut this
number in half. In the case of volumes, a node will maximally use
up to eight points but 1/4 as many for the horizontal or vertical rep-
resentation. Thus, by combining the structure of an octree with
irregular sampling we are able to increase compression while
retaining the traversal speed afforded by the octree-based space
decomposition.

There are two main steps in building the point hierarchy. First,
the analysis stage involves decomposing the dataset into individual
frequency components (scale and orientation) using the Gabor
wavelet family. We use this information to build the fundamental
types of point primitives (elliptical Gaussians) and their location
for a given level in the hierarchy (scale level). More specifically,
we locate scale-space regions where features are oriented in a sin-
gle direction. For these regions we direct sampling in the optimal
direction and thereby reduce the number of samples required to
capture that feature. This potentially can eliminate a large number
of unnecessary samples at each level in the hierarchy while the

structure of the tree remains fixed (each node has 2P children).

Second, we assign an error metric to each component (node)
in the hierarchy. This error value is used later during rendering to
determine how far in the hierarchy tree we must traverse from the
coarsest, top level towards the finer, bottom level while still captur-
ing the important features of the data. This stage allows a further
reduction of points because we are able to render fewer, larger
points in regions when there is a low error associated with nodes
that are higher in the hierarchy.

The rendering stage involves traversing the hierarchy and
splatting the nodes which fall below a threshold criterion. For
images, the elliptical Gaussian splats for each node are accumu-
lated in an image buffer along with the weights of these splats. The
final image is then normalized by dividing the image buffer with
the weight buffer. For volumes, we have implemented rendering
using a pre-shaded splatting technique using texture mapping
which does not normalize the image buffer [Mueller et al. 1999].

4 Frequency Analysis

In this section we describe the analysis of the dataset’s frequency
characteristics using Gabor wavelets. The goal is to gather infor-
mation in both the space and frequency domains to determine the
proper sampling rates for different portions of the dataset. The end
result is a decomposition of the 2D image or 3D volume into a
hierarchy of multiresolution scales and orientations.

4.1 Gabor Wavelet Decomposition

Gabor functions are well suited for the task of extracting oriented,
multiresolution features from images and volumes. In particular,
Gabor wavelets are attractive for our goal of combining spatial and
frequency information. A well known property of these functions
is that they provide the best theoretical trade-off between space and
frequency resolution [Daugman, 1988].

Gabor functions are created by modulating a Gaussian func-
tion with complex sinusoids. In its general form, the 2D Gabor
function is written [Daugman, 1988; Manjunath and Ma 1996] as:

x2)2
g(x, ¥, ug, vg) = exp|—| =+ = | +2mifugx +veyl| (1)
20, 20
y
where o, and G, are the extents of the Gaussian in the spatial
domain and (uy,v) is the frequency of the complex sinusoid. In the
frequency domain, the Gabor function is simply a Gaussian func-
tion scaled differently in the x and y directions:

G(u,v) = e—an(lz(u'—uO’)ZJr(v'fvo')z)

@)

u” = ucosO+vsin® v/ = —usin® + vcosH
where A is the aspect ratio 0,0y (u,’,v,”) = (w,cos6, w,sin0),
®, is the central frequency value and 0 is the central direction.
Thus, to create the full family of oriented, multiscale wavelets we
just rotate and dilate this mother wavelet in the frequency domain.
We set N=4 possible orientations and set the number of levels
M in the hierarchy to depend on the dataset. More specifically:

6=%,1SnSN Aw =27m=2 1<m<M

_ 2Aw(k—1) 3

T,

o, =2"-Aw A

Here, n and m are the direction and scale values for a given
wavelet function. These parameters create the decomposition
shown in Fig. 3a. Thus, we are able to capture horizontal, vertical
and diagonal orientations. We should note that by using a linear
combination of these values it would be possible to further localize

/;m

(a) (b)

Figure 3: The Gabor wavelet family coverage in the frequency
domain (a) for N=4 (orientations) and M=3 (scales) in 2D and (b)
for a single level (N=13, M=1) in 3D. The 13 quantized direc-
tions in 3D are represented as faces (F), edges (£) and vertices
(V) on a cube. Arrowheads also indicate the direction in which
the point primitives are flattened.

features between these major directions. However, as this would
have adverse effects on storage, we only use quantized directions.

For volumes, we quantize directions to the 13 edges, faces
and vertices of a cube (see Fig. 3b). In spherical coordinates these
correspond to the directions (¢, 0)={(-90,0), (-45,0), (-45,-45),
(-45,-90), (-45,-135), (0,0), (0,-45), (0,-90), (0,-135), (45,0), (45.-
45), (45,-90), (45,-135) in the frequency domain. The 3D version
of equation (2) is:

G(u,v,w) = e,znz(xz(u» —uy")2+ (v = v) (W = wy)?)

u’ = ucosOcosh—vsind + wsinbcosd)
v/ = —ucosOsin + vcosd + wsinOsind
w’ = —usin® + wcos0

The Gabor wavelet transform can be performed in the spatial
domain as a set of separable 1D convolutions [Loy 2002], however
for simplicity, we extract our wavelet decomposition using multi-
plication of the Gabor function with the image/volume in the fre-
quency domain. We use the Fast Fourier Transform (FFT) to
transform the data into the frequency domain, perform the multipli-
cations with the Gabor functions, and then transform each result
back into the spatial domain using the inverse FFT operation

4.2 Point Primitives

For images, the point primitives
are 2D elliptical Gaussians ori-
ented in four quantized directions
and scaled to any size. Fig. 4
shows the six different splat
types that can occur in 2D: two
isotropic and four anisotropic.
The four primitives on the top
left corner of the figure represent
the original samples of image.
The single large splat on the top
right is used when no significant
features exist for a given node.
The anisotropic primitives are
used when features are directed
along a single direction. The ori-
entation of the flattening corre-
sponds to the arrow directions in
Fig. 3a. The splat primitives in
Fig. 4c-f correspond to the arrow directions in Fig. 3a, counter-
clockwise. In both images and volumes, the number and orienta-
tion of the points is designed to fully cover each node in the hierar-
chy spatially while limiting the sampling rate along the direction
orthogonal to the feature. For example, if only a strong horizontal

Figure 4: 2D splat primitives.

feature exists for a given node in an image then the feature can be
represented with only two thin splats (Fig. 4f). For diagonal fea-
tures, the diagonal length 22+ 22=2.83 of a node conserva-
tively requires 3 directed splats as shown (Fig. 4c,e). The size of
the splats within a node are adjusted in order to spatially cover the
node while minimizing overlap with neighboring nodes. It should
be noted that if one normalizes the splatted image by the sum of
weights, such that overlap between neighboring splats is corrected
for, then the precise size and position of the diagonal splats is not
important.

For volumes, there are 15 splat primitive sets: two isotropic
splat sets and 13 anisotropic splat sets directed along quantized
directions of a cube depicted in Fig. 3b. A cube has 6 faces, 8 verti-
ces and 12 edges but by symmetry there are only 13 relevant direc-
tions. The 3 face directions can be covered with two large,
pancake-shaped splats (analogous to the 2D case of Fig. 4d.,f),
while the 6 edge and 4 vertex directions can be covered with three
splats flattened perpendicular to the direction vector, placed equi-
distant from each other (analogous to the 2D case of Fig. 4c,e). In
addition, there is the single large-splat configuration and the stan-
dard 8-small-splats configuration. In practice, we have found that it
is better to use 4 elongated cigar-shaped splats for the edge direc-
tions when normalization is not used in the volume rendering.

Note that the average occupancy of all of these configurations
is less than 4 splats, which is considerably smaller than the stan-
dard 8-splat case. In conjunction with the fact that these lower-
occupancy configurations can be tuned reasonably well to the local
features, we expect a high utility during rendering and therefore
considerable savings.

4.3 Selecting Node Types

For images, each node is assigned one of the 6 types shown in
Fig. 4. For volumes, each node is assigned one of 15 possible types
(single splat, 8 small splats or one of 13 possible directed splats).
Based on the construction of the Gabor wavelet family, each node
will have 4 Gabor coefficient values for images and 13 coefficients
for volumes to examine. We use a simple algorithm to determine
whether any directed feature exists for that node:

if (foreach direction i, coeff; <t;)
then nodetype="single large splat”
else if
foreach direction i
foreach direction j not neighboring i
coeff; > coefT; (i is the strongest direction)

and coeff; <t, (j is not too large)
and coeffj/coeff;j > t3 (i is comparably larger than j)

then nodetype="directed towards i’
else nodetype="maximum number of small splats”

Thus, if no large Gabor coefficients exist, one large splat is
sufficient. If, however, there is a large, dominant coefficient and no
other large non-neighboring coefficients then we select a directed
splat. By only considering non-neighboring directions we take care
of the possibility that there could be a feature oriented between two
quantized directions, which would give rise to large coefficients at
both of these orientations. In our experiments we have found that
thresholds around ¢;=2,¢,=10 and #;=0.05 worked reasonably well.

4.4 Assigning Error Values to the Hierarchy

The final pre-processing step involves assigning an error value to
each node in the hierarchy. It is this error which is used during ren-
dering to determine whether a node should be rendered (because it
is below a user-defined threshold) or whether the hierarchy needs
to be traversed more (the error associated with splatting at a course
resolution is too large). We examined a number of error metrics
including: (i) the maximum Gabor coefficient at a given node, (ii)
the root mean square error used by Laur and Hanrahan which
assumes the rendering primitive is a spherical Gaussian, (iii) a

direct measure of the difference between a node splatted using its
assigned point primitives and the original volume.

The first method involves selecting the largest coefficient
from the frequency decomposition generated by the Gabor wave-
lets for each node in the hierarchy. Clearly, we expect large coeffi-
cients to be associated with important features. On the other hand,
since we traverse the hierarchy in a top-down fashion during ren-
dering, we do not want to skip important nodes low in the hierar-
chy by selecting nodes above them before examining the entire
hierarchy. Thus, we store for each node both the maximum error
value (i.e., the coefficient) from the Gabor wavelet analysis and the
value of the highest coefficient below it in the tree. We render
nodes with a high coefficient value. The traversal algorithm is:

TraverseNode(node){

if ((node.coeff >= threshold and node.max_coeff below <= threshold)
or node.isLeafNode)
then render current node else traverse child nodes }

This traversal method makes sense when synthesizing a single
image or a “cut” across the hierarchy [Leven et al. 2002]. It is a
conservative approach in that it will never cull nodes below a given
node if the children nodes contain important high frequencies.

Although the traversal method using the Gabor coefficients
directly produces acceptable results, there are at least two reasons
for considering other error metrics. First, the Gabor wavelets were
built in the frequency domain so there is always some amount of
trade-off of spatial resolution for frequency resolution. In other
words, the coefficients are somewhat susceptible to ringing arti-
facts and not always spatially precise. Also, it should be observed
that we cannot expect gradual changes in the point reduction when
the threshold is changed. For instance, when we raise the threshold,
there can be a sudden drop in the number of rendered points when
many coefficients in the lower hierarchy levels fall below the
threshold. This lack of level of detail control leads to unexpected,
irregular changes in the rendered image as the threshold changes.

A second error metric that we implemented is the root mean
square error used by Laur and Hanrahan:

¢ = [3s2+(3s) ®)

where ejl is the error associated with node j at level /, s; is the value
of the voxel sampled on a volume pyramid and each of the summa-
tion terms is over the entire node region. This metric effectively
measures the variation for a node at the resolution of its pyramid
level. Although this metric can be computed relatively quickly, it
assumes a constant function throughout the node.

Because our point hierarchy uses irregular samples within a
node, we found it more suitable to use a metric which is sensitive
to the specific manner in which the point hierarchy was built. Ide-
ally, we should use a metric which is sensitive to errors associated
with the final rendered image. However, this is infeasible since the
final choice of splats will be dynamic and unknown before render-
ing. Our simple approach is to splat each level of the hierarchy into
a 2D or 3D image buffer and to assign an error to each node based
on the difference between the original image and the splatted
image at a given level. Although this approach is computationally
slow, it produces the best results. It has an advantage over using the
Gabor coefficients directly when an interactive traversal mecha-
nism is required because the threshold is directly proportional to
image quality. The traversal algorithm then becomes:

TraverseNode(node){

if ((node.error < threshold or node.isLeafNode)
then render current node else traverse child nodes }

Note that we still need to use the Gabor coefficients to deter-
mine splat orientations. Had we used a slow, brute force technique
and simply tested the error for each of the 15 possible configura-

tions for each node, the error values would only be able to reflect
properties local to the node and not take into consideration the glo-
bal frequency characteristics due to overlapping nodesRendering
2D images using elliptical splats is straightforward and can be
implemented efficiently in software [Heckbert 1989]. The only
major difference is that a final normalization step is required due to
the irregular point arrangement. Normalization is performed by
dividing the value buffer by a weight buffer, which is obtained by
splatting the points with a value of 1.0.

5 Rendering

Rendering in 3D is a much more difficult task due to compu-
tational complexity. A further complication is the issue of how to
composite semi-transparent samples before the normalization step
can be applied. One solution would be to use a slice-based splatting
approach [Mueller 1999] where each sheet buffer is normalized
before shading and compositing. However, for better speed we
chose to implement the simpler composite-only pre-shaded splat-
ting algorithm by Westover [1989] which renders each splat as a
whole and not in sections. The lack of interpolated volume sheets,
however, makes normalization infeasible, which, to our surprise,
has not compromised image quality significantly beyond the usual
blurring associated with this type of algorithm (see Results).

5.1 Creating 3D Elliptical Gaussians

The shape of a 3D elliptical Gaussian can be modeled via the
implicit equation of an ellipsoid (quadric surface):

f(x,y,2) = ax2+by2+czz+2dxy+2eyz+2gx+2hy+2jz+k =0

Since we assume that the ellipsoid is centered about the origin for a
given splat and of unit size (k=1), we let g=h=j=0 and drop the last
four terms. We can represent this ellipsoid using matrix notation
[6], giving rise to a 3x3 quadric matrix Q. With this representation
we can create arbitrarily oriented and scaled ellipsoids by applying
the desired 3D affine transformation contained in matrix M with
the formula:

ad
O=ldbe =N -1-M"! (6)

ec

where [is the identity matrix. In our application, a non-uniform
scale followed by a rotation will generate each of the 13 configura-
tions (for each scale). We can pre-multiply M by the viewing
matrix V before application of (6) to obtain the screen space ellip-
soid E. To obtain the 2D screen projection of E we can simply drop
its last row and column to obtain E’s 2D screen-space ellipse £

For orthographic rendering we can pre-compute £’ for all
cases and scales before the frame is rendered (the hierarchy only
stores the ID for the case and scale per splat). For perspective ren-
dering, ¥ changes with distance from the screen and therefore we
need to compute £’ per splat [Zwicker et al. 2001b].

5.2 Texture Mapping the Ellipse

Next we need to determine the
function that maps the unit
Gaussian function stored in the
graphics board’s texture map to
the ellipse represented by E’
(see Fig. 5). We can perform this
affine mapping by simply scal-

) ing a unit circle in two orthogo-
Figure 5: Mapping a unit 2D nal directions by factors s, and
Gaussian function to ellipsoid s, and then rotating the stretched
E’s screen-space elllipse E. circle by an angle 6 to form the

appropriate ellipse. A procedure that achieves this is described in
Westover [1990], but we noticed that the derivation contains two
crucial (possibly typographic) errors and thus we outline our own
derivation in closer detail here.

Starting from the identity matrix we solve for the three
unknown parameters s, s, 0, using equation (6) with the parame-
ters of £” and scale and rotation matrices S and R:

E=((S- RN 1-(S- Ry =R- (5 - R" @)

Plugging in the unknown parameters s, s,, 6 we get:

p= |ad| _ |cos® —sinb| 1/s3 0 | cos® sin®
db sin® cos0 0 1/Sy2 —sin® cosO

2 02 2 2
7cose+sm9 251n9+c059

, b

2 2 2 2
S5 55 sy 55 ®)
-~ sinecose+ sinBcosO
52 52

These are the terms that aréxincorrectl}; yreported by Westover
[1990]. After some algebraic manipulation we get:

a-b _ cos® sinb
d sin® cos0

©

When d=0, the mapping is determined by scaling factors
s, = Jl/a, s, = 1/b and 6=0. When d is not 0, let:

_(a=b) _ cos®

G a " " Sie

G = (wf ;41-}), or equivalently (w2 -~ Gw—1) = 0 (10)

G+ JG2+4
W:_—.—.—.—.—.——-—.——

_ 1)
3 ,0 arctan(w

We can now use equation (8) to compute s,, s,. This gives us all
parameters of S and R to transform the four vertices of the polygon
that maps the unit Gaussian texture to the screen.

5.3 Hierarchy Traversal and Image Synthesis

We now describe the final traversal algorithm for our interactive
volume renderer. In this section we assume that method 3 (differ-
ence metric) is used to obtain the node error.

Sensitivity to uniform transfer function regions. By mak-
ing our traversal algorithm sensitive to uniform regions in the
transfer function we can further reduce the number of rendered
points (provided such uniform areas exist). When the correspond-
ing density values are spatially localized then we can represent the
same function with fewer, larger splats using our hierarchy. We are
able to make our traversal algorithm sensitive to the transfer func-
tion by ways of a simple procedure. First, we build a 2D table
TF[0-255][0-255] storing the variability of the transfer function for
all of the quantized range intervals. For instance, we store the dif-
ference between the minimum and maximum values for ranges:
{0-5},{0-10}, ... {0-255}, {5-10},{5-15}, ...{200-255}. Second, as
a preprocessing step, we store at each node in the hierarchy the
range of values of the volume v, Vinax for the spatial region cov-
ered by that node. Thus, during traversal we have an additional
error metric to consider, that is, TF,,=TF[vin][Vimax], Which indi-
cates the variability of the transfer function for that node. If TF,,
is zero or below a threshold for a given node then there is no need
to traverse the hierarchy further.

Smooth transients for speed and quality. Because our goal
is to create an interactive system in which traversal depths between
frames are expected to vary, we need to consider mechanisms to

enforce smooth continuities between frames. Due to the manner in
which the hierarchy is built, it is possible for scale size or resolu-
tion between a parent node and its child to differ by up to two lev-
els (a parent node could be rendered as one large splat at size level
i while its child might consist of 8 small splats at level i-1). Also,
image quality tends to make large jumps when the threshold
changes between certain critical regions. Fig. 6 (pink line) demon-
strates this effect. The plot shows the number of points being ren-
dered as a function of increasing threshold. The sharp drops in the
line indicate these critical regions where we suspect the traversal
mechanism introduces discontinuities in rendering quality.

In order to lessen these effects, we introduce another layer to
our node hierarchy for single large splats. This is actually just the
large splat primitive type that we use to build our hierarchy, but we
add an additional error term for rendering this type at each node.
Thus we simply add another error test during traversal and do not
need to store any additional information. Fig. 6 (blue line) shows
how this simple modification reduces the large discontinuities in
the number of points being rendered. Note, the blue line is lower
than the pink line because less, larger splats are being utilized.
However, image quality falls at a greater rate.

Final traversal algorithm. Our final traversal algorithm is:

TraverseNode(node){

if (node.error < thresh or TF . <tf_thresh or node.isLeafNode)
then render current node

else if (node.error2 < threshold (error for rendering large splat))
then render single large splat

else traverse children nodes }

The final splat value is obtained by sampling a Gaussian pyra-
mid. Also, because we render using compositing, we must order
our splats from front to back. This is achieved using a standard
bucket sorting algorithm which is performed before a view is ren-
dered. Once the splats are properly ordered we send them to the
video card where they are composited using OpenGL texture map-
ping and lighting.

Figure 6: Number of rendered
points as a function of threshold
value. The pink line shows rapid
changes at critical points. The
blue line is the result after mod-
ifying the traversal algorithm as
described in the text.

—

Figure 7: (Top, left): The original Lena image (262,144 points). (Top, center): Reduction to
85,530 points (rms=0.0042). (Top, right): Reduction to 45,616 points (rms=0.0086). The
only noticable difference is slight blurring. (Bottom, left): A cut-out of the hat area (at a
higher threshold for demonstration purposes): the elliptical orientation appears to follow the
features well.

6 Results
6.1 Images

We implemented a 2D software splatter to demonstrate the results
of applying our algorithm to images. Fig. 7 shows a point reduction
for the Lena image of 1/3 and 1/5 of the original number of points.
At 1/5 of the original number of points, only very slight smoothing
can be perceived. Looking closely at the shape of the points (bot-
tom left image), we observe that the frequency analysis seems to be
quite successful in placing oriented splats close to the appropriate
features. Note that for this image the threshold was set very high,
to bring the number of points down to a visibly differentiable level.
We should mention that we do not compare our results to standard
image compression algorithms such as JPEG, since the main goal
of our system is to create a point hierarchy system and not image
compression.

6.2 Volumes

In this section we show the results of applying our algorithm to
volumes. Results were generated on a Pentium 4 (2.0 GHz) system
with an nVidia Geforce4 4400 Ti graphics board and 1 GB of main
memory. All voxels (including the original reference volume) were
thresholded above values of 5 to eliminate “air” voxels. Also, no
occlusion culling was used for all our experiments to show the pure
speedup facilitated by our flexible point hierarchy.

Fig. 1 presents the 256 engine volume, rendered semi-trans-
parently as a point cloud with no opacity-based gradient modula-
tion. This example demonstrates the advantage of using a
minimized point hierarchy when the goal is interactive rendering
speeds. The original dataset uses over 2.6 million points and takes
9 seconds to render. However, a very high quality image (b) can be
obtained with less than 1 million points and can be rendered in 3
seconds. Also, at near interactive frame rates, the volume only
looks blurry but still retains all the important features (c, d).

Fig. 8 compares the results of using the three different error
metrics that we have described in Section 4.4. The original image
is shown on the left. Image (b) uses the default error metric
(method 3) which is just the 3D difference between the original
volume and the reduced point representation for the node. Image
(c) uses the root mean square error used by Laur and Hanrahan.
This error is faster to compute and good in quality but there is
some image quality loss. For example, observe the loss of detail
above the eye brow. Next, (d) shows the image generated using the
Gabor coefficients directly. Although the quality is good, there are

many more points being used and there is also a lack of range in
the compression level. Finally, (e) shows similar loss of detail
around the brow when the full hierarchy is rendered with 8 spheri-
cal splats per node but using method 3. This indicates that by using
oriented primitives we are able to render higher quality images
even when the error metric and all other factors remain the same.
Note that the octree decomposition of Laur and Hanrahan is a sub-
set of our decomposition. To fit their approach, each of our feature-
aligned elliptical splats would have to be substituted by a set of
spherical splats to achieve the same error and therefore more prim-
itives would have to be rendered.

Fig. 9 (left column) shows another example of a volume ren-
dering, a semi-transparent foot. Using our decomposition we are
able to get interactive framerates with minimal loss of image qual-
ity. Finally, Fig. 9 (right column) shows the results of our imple-
mentation for X-ray rendering. Here we are using a software
implementation since the limited framebuffer precision does not
allow the accumulation of X-ray images in hardware. We are how-
ever, able to perform normalization by a separately accumulated
weight image, since X-ray performs order-independent summa-
tions. We achieve interactive frame rates at the expense of image
blurring. Image (a) is the original dataset. Image (b) uses our tech-
nique with 1/4 compression, and we observe only slight quality
degradations. Image (c) shows that at 1/10 compression overall
structure is still present, but at a considerable amount of blurring.

(a) (Original) 1,779,610 pts (b) Method 3 (877,310 pts)

(¢) Method 2 (851,690 pts) (d) Method 1 (1,110,680)

Figure 8: The CT head dataset
(128%) rendered with the differ-
ent error metrics for hierarchy
traversal (a-d). (¢) This image
was generated using the
method 3 error metric but is
rendered with 8 spherical
points per node. This directly
demonstrates the advantage of
using splat primitives which
are chosen based on frequency
characteristics of the volume.

(e) Full Hierarchy (882,292 pts)

Preprocessing time for the Gabor wavelet decomposition is
currently the most lengthy step largely because it was implemented
using the FFT rather than using a recently reported technique that
employs a linear filter in the spatial domain [Loy 2002]. A 256
volume was processed in 195 min. using MATLAB. The prepro-
cessing time for building the node hierarchy using method 3 was 7
min. for a 1283 volume and 156 min. for a 256> volume. However,
building the hierarchy using method 1 and method 2 was only a
few seconds for a 1283 volume.

The hierarchy is implemented without pointers so each node
stores only the type of primitive (1 byte) and two floating point
error values (8 bytes). This allows the volume values (1 byte per
point) and gradient (quantized to 2 bytes per point [Rusinkiewicz
and Levoy 2000]) to be stored in a separate full data pyramid. The
location of each point is determined implicitly from the node loca-
tion and type at rendering time in order to minimize the storage
costs of the hierarchy.

6.3 Time-Critical Volume Rendering

We have implemented a rendering system which permits time-crit-
ical volume rendering and progressive refinement of the image.
Based on a history of previous frame-rates, the system adjusts the
error threshold to achieve a specified frame rate to maintain a user-
selected frame rate. When there is no motion, the system progres-
sively refines the image by lowering the error threshold and conse-
quently increasing the number of points in the representation.
Please see the conference DVD or project webpage for the video.

7 Conclusions and Future Work

We have introduced a method for converting an image or volume
sampled on a regular grid into an irregular point hierarchy. The
conversion process retains the original frequency characteristics of
the dataset while minimizing the number of points. The basic
approach is straightforward. We use the Gabor wavelet to analyze
the frequency characteristics of the source dataset at varying scale-
spaces. The analysis is used to determine the size, orientation and
location of points which can be employed to reconstruct the origi-
nal signal using an elliptical Gaussian splatting kernel. Our tech-
nique produces high-quality reconstructions of the original data for
both 2-D images and 3-D volumes, and also allows for time-critical
rendering with progressive refinement.

Although our technique works well for finding the initial size
and placement of points, we believe that the quality of the image
could be further improved by using a less quantized point position
and orientation. A potential solution might involve using an error
metric to guide point placement and resizing the points with a
numerical optimization algorithm. However, in order to avoid the
large computation times that global optimization solutions require,
we believe a local optimization policy is necessary. Also, such a
technique would result in a trade-off of computational speed and
space efficiency. We have, however, experimented with an algo-
rithm that flattens larger points based on local gradients and point
occupancies in the lower hierarchy levels.

We also hope to increase the image quality by using a slice-
based splat rendering algorithm [Mueller 1999]. The current
method of rendering via compositing-only does not permit normal-
ization of the weights. Using slice-based splatting, we could nor-
malize each image sheet after accumulating splats values and
weights. This would result in fixing some of the artifacts caused by
rendering variably-sized overlapping splats. If such a technique
were implemented on graphics hardware, there would be little loss
in speed. We would also like to test our hierarchy to decompose
other, more efficient regular grids, such as the BCC grids [Neophy-
tou and Mueller 2002]. Finally we believe we can save substantial
amounts of memory by quantizing the error metric.

(a) Orig. 281,510 pts, 1.2 sec (a) Orig. 1,779,60 pts, 5.7 sec

(b) 107,708 pts, 0.3 sec (5)551,950 pts, 2.4 sec

(c) 76,038 pts, 0.2 sec

Figure 9: (Left column): The foot dataset (1283) rendered at dif-
ferent error thresholds. (Right column): X-Ray rendering of the
CT head at different error thresholds.

(c) 76,038 pts, 0.2 sec

While it is true that today’s texture mapping hardware is heavily
optimized to render large blocks of 2D and 3D textures, the contin-
ued rise in the popularity of point-based surface representations
will undoubtedly lead to hardware that can also render point primi-
tives at high rates. Once this hardware is available, we believe vol-
ume point approaches such as ours will become more competitive
for a much broader range of volume datasets and applications.

Acknowledgement

We would like to thank the anonymous reviewers for their helpful
ideas and comments. This work was supported by NSF Career
grant ACI-0093157.

References

BOTSCH, M., WIRATANAYA, A., KOBBEL, L., “Efficient High Quality Ren-
dering of Point Sampled Geometry”, Proc. of the 13th Eurographics
Workshop on Rendering Techniques, Pisa, Italy, pp. 53-64, 2002.

CHEN, B. AND NGUYEN, M., “POP: A hybrid point and polygon rendering
system for large data,” Proc. Visualization 01, pp. 45-52,2001.

CHILDS, J., LU, C.-C. AND POTTER, J., “A fast, space-efficient algorithm for

the approximation of images by an optimal sum of Gaussians,” Graph-
ics Interface’00, 2000.

COHEN, J., ALIAGA, D. AND ZHANG, W., “Hybrid simplification: Combining
multi-resolution polygon and point rendering,” Proc. Visualization 01,
pp. 37-44,2001.

DAUGMAN, J., "Complete discrete 2-D gabor transforms by neural network
for image analysis and compression," /[EEE Trans. Acoustics, Speech,
and Signal Processing, vol. 36, no. 7, pp. 1169--1179, 1988.

DEY, T. AND HUDSON, J., “PMR: Point to mesh rendering: a feature-based
approach,” Proc. IEEE Visualization, pp. 155-162, 2002.

FOLEY, J.D., VAN DAM, A., FEINER, S.K., AND HUGHES., J.F., Computer
Graphics: Principles and Practice. Addison-Wesley, 1996.

GLASSNER, A., Image Synthesis, Morgan-Kaufman, 1995.

GUTHE, S., WAND, M., GONSER, J., AND STRASSER, W., “Interactive render-
ing of large volume datasets,” IEEE Visualization 2002, pp. 53-60.
HorPE, H., “View-dependent refinement of progressive meshes.”, ACM

SIGGRAPH 97, pp. 189-198, 1997.

HECKBERT, P., Fundamentals of Texture Mapping and Image Warping,
M.Sc. Thesis, University of California, Berkeley, June, 1989.

LEE, R. AND IHM, 1., “On enhancing the speed of splatting using both object-
and image space coherence,” Graphical Models and Image Processing,
vol. 62, no. 4, 2000. pp 263-282.

KREYLOS, O., HAMANN, B., “On simulated annealing and the construction
of linear spline approximations for scattered data,” I[EEE Trans. Visual-
ization and Computer Graphics, vol. 7, no. 1, pp. 17-31, 2001.

LAUR, D. AND HANRAHAN, P., “Hierarchical splatting: A progressive refine-
ment algorithm for volume rendering,” ACM SIGGRAPH 91, pp. 285-
288, 1991.

LEVEN, J., CORSO, J., KUMAR, S. AND COHEN, J., “Interactive visualization
of unstructured grids using hierarchical 3D textures,” Proc. Symposium
on Volume Visualization and Graphics 2002. pp 33-40, 2002.

Loy, G., “Fast Computation of the Gabor Wavelet Transform,” Proc. of
Digital Image Computing - Techniques and Applications
(DICTA2002), Melbourne, January 2002.

MANJUNATH, B.S. AND MA, W.Y., "Texture features for browsing and
retrieval of image data", IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), vol.18, no.8, pp.837-42, Aug 1996.

MEISSNER, M., HUANG, J., BARTZ, D., MUELLER, K., CRAWFIS, R.,"“A prac-
tical comparison of popular volume rendering algorithms,” Symposium
on Volume Visualization and Graphics 2000, pp. 81-90, 2000.

MORA, B., JESSEL, J., CAUBET, R., “A new object-order raycasting algo-
rithm,” Proc. IEEE Visualization 2002, pp. 203-210, 2002.

MUELLER, K., SHAREEF, N., HUANG, J., CRAWFIS, R., “High-quality splat-
ting on rectilinear grids with efficient culling of occluded voxels,” IEEE
Trans. on Vis. and Comp. Graph., vol. 5, no. 2, pp. 116-134, 1999.

MURAKI, S., “Multiscale 3D edge representation of volume data by a DOG
wavelet,” 1994 Symp. on Volume Visualization, pp. 35-42.

NEOPHYTOU, N. AND MUELLER, K., "Space-time points: 4D Splatting on
effcient grids," Symp. Vol. Vis. and Graphics 2002, pp. 97-106.

PRESS, W., FLANNERY, B., TEUKOLSKY, S., VETTERLING, W., Numerical
Recipes in C, Cambridge University Press, 1988.

REDDY, M., “Perceptionally optimized 3D graphics,” [EEE Computer
Graphics & Applications, vol. 21, no. 5, pp. 68-75,2001.

RUSINKIEWICZ, S., LEVOY, M., “QSplats: A multiresolution point rendering
system for large meshes,” ACM SIGGRAPH 2000, pp. 343-352, 2000.

THEUBL, T., MOLLER, T., GROLLER, M. E., "Optimal Regular Volume Sam-
pling". In Proceedings of IEEE Visualization 2001, pp. 91-98, 2001.

WESTENBERG, M. AND ROERDINK, J., “X-Ray Volume Rendering by Hier-
archical Wavelet Splatting,” Proc. 15th Internl’ Conference on Pattern
Recognition, pp. 163-166, 2000.

WESTERMANN, R., “A multiresolution framework for volume rendering,”
Proc. 1994 Symp. on Volume Visualization, pp. 51-58, 1994.

WESTOVER, L., “Footprint evaluation for volume rendering”, ACM SIG-
GRAPH 90, pp. 367-376, 1990.

WESTOVER, L., “Interactive volume rendering,” Proc. 1989 Wo rkshop on
Volume Visualization, pp. 9-16, Chapel Hill, NC, May 1998.

ZWICKER, M., PFISTER, H., VAN BAAR, J. AND GROSS, M., “Surface Splat-
ting,” ACM SIGGRAPH 2001, pp. 371-378, 2001a.

ZWICKER, M., PFISTER, H., VAN BAAR, J. AND GROSS, M., “EWA Splat-
ting,” Proc. IEEE Visualization 2001, pp. 29-36, 2001b.

