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Fig. 1. Each column shows a MDS-plot of feature vectors that describe the local neighborhood structure of the nodes in the TWITTER
network (top) and a force-directed network layout of the same network (bottom). Colors correspond to a k-means clustering for k = 3
or 4 (right) on the local feature vectors.

Abstract—Network exploration techniques aim at identifying features like clusters, central nodes or motifs in networks. Motifs are
local sub-networks of a network that appear more frequently than expected. We introduce a new type of local neighborhood structure
that is spectrally defined, i.e., based on the eigenvalues and eigenvectors of some matrix associated with the network, and show that
well established visual analytics techniques for exploring high-dimensional point clouds provide an effective means for the exploration
of the distribution of these neighborhood structures. Experiments on real world social networks demonstrate that our approach is
indeed capable of revealing interesting neighborhood structures that are not easily accessible otherwise.

Index Terms—Large networks, local neighborhood structure, spectral embedding, spectral clustering, high dimensional data.

1 INTRODUCTION

Networks arise almost everywhere, e.g. as social networks, road net-
works, protein-protein interaction networks or as hyperlink networks
of documents. Exploratory network analysis aims at identifying char-
acteristic features of a network G = (V,E), where V is a finite set of
nodes and E is a set of links that connect the nodes. Well studied
network features include

1. clusters, i.e., a partitioning of the node set V into groups of sim-
ilar nodes,

2. central nodes, and
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3. motifs, i.e., small sub-networks of G that are more frequent than
expected when compared to some given random graph model.

The type of feature that we study in this paper is similar in spirit to
motifs, namely we are looking for typical neighborhood structures in
a network. On the technical side our approach is close to very success-
ful approaches for node clustering and for computing node centrality
indexes that both can be tackled with spectral techniques. These tech-
niques build on the eigenvalues and eigenvectors of some suited matrix
associated with a given network.

Eigenvector centrality uses the eigenvector to the largest eigenvalue
of the adjacency matrix to define a centrality score for each node, i.e.,
the centrality score of node xi is defined as

ci =
1
λ

∑
j∈N(i)

v j,

where λ is the largest eigenvalue of the adjacency matrix of the net-
work G and v = (v1, . . . ,vn) is the corresponding eigenvector. Here
we assume that the nodes of G are indexed from 1 to |V |, and N(i)
is the set of indexes of the neighbors of the vertex xi in G. Slight
modifications of the Eigenvector centrality are Katz centrality and the



PageRank. See [2] for a comprehensive overview on graph centrality
measures.

Spectral clustering, see for example [8], is a popular family of graph
clustering techniques. In a nutshell it works as follows: take some
symmetric matrix associated with the network, popular choices are
graph Laplacians, and compute the top-k eigenvectors v1, . . . ,vk of this
matrix, i.e., the eigenvectors to the k leading eigenvalues λ1 ≥ . . . ≥
λk. The eigenvectors are then used to embed the nodes of G in the
Euclidean space Rk by the following mapping

xi 7→ (v1i, . . . ,vki) ∈ Rk,

i.e., the node xi is mapped to the i’th components of the top-k eigenvec-
tors. The embedded nodes can then be clustered using some Euclidean
clustering algorithm. The standard here is the k-means clustering al-
gorithm. Here we are going to use a variant of the spectral embedding
from above that is called diffusion maps [12]. For diffusion maps the
Euclidean distance in the embedding space can be related to a diffu-
sion distance in the original network. We will provide a brief review
of this technique later in the paper.

The new idea that we want to present here is using Euclidean em-
beddings as they are used in spectral clustering for the identification of
typical neighborhood structures in a network. For that we just consider
the k-nearest neighbors1 of any node in the graph in the embedding
into Euclidean space and determine the local shape of this neighbor-
hood by a local principal component analysis (PCA). The eigenvalues
and eigenvectors that are determined by the local PCA characterize the
local geometry, e.g., if all eigenvalues are of the same magnitude, then
the neighborhood looks spherical, while it looks ellipsoidal otherwise.
The local eigenvectors determine a local coordinate system. The local
geometry that is encoded in the eigenvalues and eigenvectors of the
local PCA can be represented by 2k-dimensional feature vector. The
entirety of the feature vectors for all nodes of the network provides yet
another point cloud.

Our main contribution is the introduction of visual analytics tech-
niques for exploring these feature vector point clouds and thus the lo-
cal neighborhood structure of a network. Experiments with real world
social networks show that our approach allows to detect novel features
in these networks.

2 THE PROCESSING PIPELINE

Here we describe in some detail the processing pipeline that computes
a local neighborhood feature vector for every node in the network.
Starting point of our pipeline is the adjacency matrix A of an undi-
rected network G = (V,E). If the number of nodes in the network is n,
then A is a symmetric n× n matrix whose entry ai j is 1 if {i, j} ∈ E,
i.e., the nodes xi and x j are connected, and 0 otherwise.

2.1 Similarity matrix
The first step in the pipeline is computing a similarity matrix S from
the adjacency matrix A. Our requirements on a similarity matrix are
that it is a symmetric, positive semidefinite n×n matrix, whose entry
si j is a measure for the similarity of nodes xi and x j. Popular similarity
matrices are

1. S = A2, i.e., the matrix product of the adjacency matrix with it-
self. In this case two nodes are considered similar, if they share
many common neighbors. Note that two nodes can be similar
even if they are not connected.

2. S = A ·A2, i.e., the point-wise product of the first similarity ma-
trix with the adjacency matrix. Here two nodes are considered
similar if they are connected and share many common neighbors.

3. S = (si j) with si j = exp(−λc2
i j), where ci j is the graph distance

between the nodes xi and x j, i.e., the length of a shortest path

1 Please excuse the heavy overloading of the character k that of course takes
different values when computing the top-k eigenvalues, the k-means clustering,
and the k-nearest neighbors.

connecting xi and x j in the network, and λ > 0 is some scaling
parameter.

2.2 Spectral embedding
The second step in the pipeline transforms the network into a Eu-
clidean point cloud via a spectral embedding. Nadler et al. [12] have
suggested diffusion maps as an embedding technique, where the Eu-
clidean distance in the embedding space has an interpretation as a dif-
fusion distance in a network whose weighted adjacency matrix is given
by the similarity matrix S. For the definition of a diffusion map Nadler
et al. consider the matrix D−1S, where D = (di j) is the diagonal ma-
trix with entries dii =∑

n
j=1 si j. Note that the matrix D−1S is stochastic,

i.e., it row sums are 1, and thus induces a Markov chain. Note though
that D−1S is not necessarily symmetric anymore. The eigenvalues
and the left- and right eigenvectors of D−1S can be obtained from the
eigenvalues λ0 ≥ λ1 ≥ . . .≥ λn−1 and the corresponding eigenvectors
v0, . . . ,vn−1 of the adjoint matrix D−1/2SD−1/2. The left eigenvec-
tors of D−1S are given as φ T

i = vT
i D1/2 and the right eigenvectors

are given as ψi = viD−1/2, respectively, for the eigenvalues λi. That
is, φ T

i D−1S = vT
i D−1/2S = vT

i D−1/2SD−1/2D1/2 = λivT
i D1/2 = λiφ

T
i

and similarly for the right eigenvectors. For k ≤ n the rank k diffusion
map (embedding) at time t ∈ N applied to vertex j ∈V is defined as

ψ
(k)
t (x) =

(
λ

t
1ψ1(x), . . . ,λ t

kψk(x)
)
,

where ψi(x) is the x-component of the vector ψi. The diffusion dis-
tance between two nodes in the network is defined as

d2(xi,x j) =
∥∥p(t,x|xi)− p(t,x|x j)

∥∥2
φ0

= ∑
x∈V

(
p(t,x|xi)− p(t,x|x j)

)2
φ0(x)−1,

where p(t,x|xi) = eT
i (D

−1S)t , i.e., multiplying the i’th standard basis
vector from the left to the t’th power of the stochastic matrix D−1S,
which corresponds to t steps in the Markov chain with transition ma-
trix D−1S, where at t = 0 the whole probability mass is concentrated
in the vertex xi. The diffusion distance thus compares the probabil-
ity mass distribution after t time steps when the initial distribution is
concentrated at xi and x j, respectively.

Nadler et al. prove that

1. d2(xi,x j) =
∥∥ψ

(n−1)
t (xi)−ψ

(n−1)
t (x j)

∥∥
2.

∣∣∣d2(xi,x j)−
∥∥ψ

(k)
t (xi)−ψ

(k)
t (x j)

∥∥2
∣∣∣ ≤ λ 2

k+1

(
1

φ0(xi)
− 1

φ0(x j)

)
That is, the Euclidean distance of the mapped vertices recovers their
diffusion distance for rank n−1 embeddings, and it is a good approx-
imation for rank k embeddings if the eigenvalues decay quickly.

2.3 Local neighborhood features
In the third step of the pipeline we compute local neighborhood fea-
tures for the nodes of the network. Once the vertices of the network
have been embedded by the mapping

xi 7→ ψ
(k)
t (xi) ∈ Rk

we can compute their ` nearest neighbors in Euclidean distance. Let x
be a node and N(x) be the set of its ` nearest neighbors. We compute
a local PCA, i.e., local for the node x, for the vectors

ψ
(k)
t (y)−ψ

(k)
t (x), y ∈ N(x)

which gives us ` eigenvalues µ1 ≥ µ2 ≥ . . .≥ µ` and their correspond-
ing eigenvectors u1, . . . ,u`. The feature vector that we assign to x is
now simply given as (

µ1, . . . ,µ`,ω1, . . . ,ω`

)
,



Fig. 2. Left: Force-directed graph layout for the TWITTER data set. Middle/left: MDS plot of the local feature vectors for the same network.
Middle/right: The same MDS plot as before where the nodes are colored according to a k-means clustering. Right: The same graph layout as on
the left where the nodes are colored as before.

where ω j = eT
j u j, i.e., the cosine of the angle between u j and the

j’th standard basis vector e j ∈ R` that has the entry 1 at index j and
0 otherwise. The feature vector describes the local geometry in the
neighborhood of the embedding of x. The µ’s describe the shape of
the neighborhood, i.e., if all µ’s are of the same magnitude, then the
neighborhood is spherelike, while it looks ellipsoidal otherwise. The
ω’s just describe the rotation of the local coordinate system given by
the vectors u with respect to some fixed reference coordinate system.
Here the reference coordinate system is given by the standard basis
vectors of R`.

3 VISUAL EXPLORATION OF THE DISTRIBUTION OF LOCAL
NEIGHBORHOOD STRUCTURES

In Section 2 we showed how a feature vector that characterizes
the local neighborhood can be computed for every node of a given
network. The challenge now is to visualize the network and the gamut
of feature vectors despite their high dimension in a way that a user
can identify typical local neighborhood structures. We apply well
established techniques to tackle that problem, namely

1. we use a force-directed layout to present the network to the user,

2. use multidimensional scaling (MDS) to reduce the effective di-
mension of the feature vectors to two while maintaining a good
approximation of the pairwise distances,

3. provide an exploratory, interactive user interface. It shows side-
by-side a force-directed node-link layout of the network on the
left and a MDS plot of the feature vectors on the right. Built-in
brushing and linking of these plots improves the usability. The
user can also change parameters of the processing pipeline on-
the-fly and immediately see the changed visualization, and

4. apply k-means clustering on the local feature vectors to extract
structural types of local neighborhoods.

3.1 Drawing the graph
Many layout methods exist for graph visualization [5]. We aim at ob-
taining an overview of the network at hand and choose a force-directed
layout to show the nodes and their connecting links. In order to avoid
cluttering if appropriate we do not draw the links as straight line seg-
ments but as Bézier curves as in [13], see Figure 2(left) for an example.

3.2 Visualizing the local feature vectors
Numerous methods have been proposed for high dimensional data
visualization, e.g., scatter plot matrices [4], parallel coordinates [6],
generalized barycentric coordinates [3], and others. Multidimensional
scaling (MDS) [1] is a good method that allows to quickly gauge the
original similarity and structure of a high dimensional data set. Thus,
we choose it to visualize the local feature vectors.

3.3 Cluster analysis
As the MDS plot shows a very condensed view on the inherently high
dimensional local feature vectors, it may be hard to distinguish clusters
visually on that level. Therefore, we first cluster the original feature
vectors and then color the nodes of the graph and the points in the MDS
plot accordingly. Here we chose k-means clustering [9]. Note, that this
is different from the classic spectral clustering approach [8] where a
clustering algorithm is applied directly to the spectral embedding of
the nodes of the network. See Figure 2(right) for an example.

3.4 Interactivity
Just identifying clusters in the MDS plot of the local feature vector is
not enough. The user needs to link it to the original network. Hence,
we implemented brushing and linking [7] such that when the user se-
lects a certain area in the right-hand plot, corresponding nodes in the
original graph on the left are highlighted by drawing them larger. See
Figure 4.

Fig. 4. The link interaction between the original network and embed-
ding points. Points selected on the right are highlighted on the left. To
support semantic analysis the user can also read the label of a node by
hovering over it with the mouse, see the marked node NYTIMESKRUG-
MAN on the left.

No single set of parameters used in the pipeline of Section 2 will
suffice for all data sets. Also, the dimension of the spectral embedding
should be at most the number of nearest neighbors used for the local
PCA, because otherwise the vectors to the nearest neighbors do not
span the whole embedding space which renders a meaningful com-
parison of the orientation of the local coordinate systems impossible.
Hence, we face a trade-off decision: on the one hand the spectral em-
bedding gets more accurate with higher dimension, i.e., it preserves
the diffusion distance better, but on the other hand, we must choose
a reasonably small number of nearest neighbors for the local PCA, as
that number directly effects the scale of the neighborhood structures
we are able to identify. Therefore, we take an exploratory approach
to find a suitable set of parameters for a given network and let the



Fig. 3. From left to right: Graph layout for the TWITTER(EXT) data set, MDS plot of the local feature vectors for the same data set, graph layout for
the FACEBOOK data set, and MDS plot of the local feature vectors for the same data set.

user change them as required. Specifically, the user can dynamically
change

• the dimension of the embedding of the graph,
• the number of neighbors to be used for the local PCA, and
• the number of clusters to be found in the k-means clustering (see

the following section).
All changes have an immediate effect on the visualization.

4 CASE STUDIES

In the sections below we demonstrate using the example of two real
world social networks (TWITTER and FACEBOOK) that our method is
capable of revealing typical local neighborhood structures. For both
case studies we used the similarity matrix S = A2 (see Section 2).

4.1 Twitter
The TWITTER network data set contains 350 nodes and 835 links,
where nodes represent twitter users and a link is present if a user
“follows” another user, see [10] for more details. We also consid-
ered an extended data set TWITTER(EXT) that contains 640 nodes and
7988 links, where nodes represent twitter users who used the hash-
tag “My2K” and a link is present if a user “follows”, “replies-to” or
“mentions” another user, see again [10] for more details.

For the results that we report here we chose a six dimensional spec-
tral embedding and used 15 nearest neighbors for the local PCA. Only
for Figure 1 that shows the effect of varying the parameters of our
pipeline we chose 4 (in three dimensions), 10 (in six dimensions)
and 25 (in 15 dimensions), respectively, neighbors for the local PCA.
There we observe that as we increase the size of the local neighbor-
hood, the MDS-projection spreads and splits into different clusters
more clearly.

For the TWITTER data set the feature vectors clearly separate into
clusters, see Figure 1. One cluster contains nodes (shown in light blue)
that are almost only connected to the central node NYTIMESKRUG-
MAN. Another cluster contains nodes in the boundary of the net-
work (shown in yellow), and a third cluster contains nodes in between
(shown in green). The last cluster can be split into two, but a direct
interpretation in the graph layout seems difficult. A k-means cluster-
ing on the full dimensional feature vectors confirms our visual finding.
Moreover, thanks to brushing and linking, as well as consistent color-
ing across the MDS-plot and the graph layout, we can now relate the
neighborhood structure to the original network.

We get similar results for the data set TWITTER(EXT), see Fig-
ure 3(left). Here the feature vectors clearly separate into two clusters
that interestingly correspond to two clusters in the original network.
That means these two clusters can also be described by local neigh-
borhood structures which cannot be seen at all just from the graph
layout.

4.2 Facebook
The FACEBOOK network data set [11] contains 4039 nodes and 88234
links. The results that we report for this data set were obtained from

an eight-dimensional spectral embedding and a choice of eight nearest
neighbors for the local PCA.

The MDS plot, see Figure 3(right), shows that the feature vectors
clearly separate into two pronounced clusters, each corresponding to
a certain local neighborhood structure. From the graph layout we see
that nodes of the first cluster correspond to nodes that belong to clus-
ters in the original network, while the nodes in the second cluster are
in-between clusters. We call nodes of the latter type as interface nodes.
See again Figure 3(right).

5 CONCLUSION

In this paper we have proposed a visual analytics method for find-
ing typical neighborhood structures in large networks. Preliminary re-
sults show that our method indeed allows to detect local structures that
would be hard to find otherwise. In future work we want to explore
different similarity matrices, e.g., similarity based on the shortest path
distance.
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