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ABSTRACT

Resampling is a frequent task in visualization and medical imag-
ing. It occurs whenever images or volumes are magnified, rotated,
translated, or warped. Resampling is also an integral procedure in
the registration of multi-modal datasets, such as CT, PET, and MRI,
in the correction of motion artifacts in MRI, and in the alignment
of temporal volume sequences in fMRI. It is well known that the
quality of the resampling result depends heavily on the quality of
the interpolation filter used. However, high-quality filters are rarely
employed in practice due to their large spatial extents. In this pa-
per, we explore a new resampling technique that operates in the
frequency-domain where high- quality filtering is feasible. Further,
unlike previous methods of this kind, our technique is not limited
to integer-ratio scaling factors, but can resample image and volume
datasets at any rate. This would usually require the application of
slow Discrete Fourier Transforms (DFT) to return the data to the
spatial domain. We studied two methods that successfully avoid
these delays: the chirp-z transform and the FFTW package. We
also outline techniques to avoid the ringing artifacts that may oc-
cur with frequency-domain filtering. Thus, our method can achieve
high-quality interpolation at speeds that are usually associated with
spatial filters of far lower quality.

CR Categories: I.4.3 [Image Processing]: Filtering, Enhance-
ment; I.4.5 [Image Processing]: Transform Methods; I.4.10 [Image
Processing]: Volumetric Image Representation; I.3.0 [Computer
Graphics]: General

Keywords: resampling, filters, Fourier Transform

1 INTRODUCTION

The resampling of images and volumes is a frequently occurring
task. A few examples are:

• Magnification (or upsampling), either for local zooms (as a
magnifying glass) within a region of interest or for global en-
largements.

• Minification (or downsampling), for general size reductions,
image pyramids, mip-maps, and others.

• Interpolation of additional data along one or more axis di-
rections, such as for the interpolation of additional slices in
anisotropically acquired MRI or CT datasets.

• Rotation of images and volumes, required for the registration
of multi-modal, multi-volume datasets, and for some volume
renderers [9].
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• Regular warps, such as perspective warps, for post-warp vol-
ume rendering with parallel rays.

The fidelity of the resampled image or volume is highly depen-
dent on the quality of the resampling filter used in the process.
Many evaluations of interpolation filters have become available
over the years, both in terms of their quality and their computa-
tional effort [15, 17, 18, 21, 23], and a history of interpolation since
the Babylonian times has been collected by Meijiring [16]. Gener-
ally, the wider the filter in the spatial domain, the better its quality
(assuming proper parameter tuning). For example, a cubic convo-
lution filter of half width=2 tends to give better interpolation results
than a linear filter of half width=1. Frequency plots are often used to
demonstrate the quality of a filter. Consider Fig. 1, which compares
the box, linear, Gaussian, and sinc filters. A good filter has all of
its energy in the passband (the frequencies below half the sampling
rate - the main lobe) and little energy in the stopband (the frequen-
cies above half the sampling rate - the side lobes). While the former
reduces blurring effects, the latter limits aliasing. The theoretically
best filter is the sinc filter, a box in the frequency domain, which
has all of its energy in the passband and none in the stopband. The
sinc filter, however, has infinite width in the spatial domain, and is
therefore impractical to use. Marschner and Lobb [15] showed that
a windowed sinc is a good compromise in that respect.

Figure 1: Some spatial interpolation filters in the frequency domain.

Alternatively, filtering can also be performed in the frequency
domain. Here, the discrete spatial convolution is replaced by spec-
tral multiplication. For a 1D discrete signal of length N, the cost
of the O(N lgN) FFT (Fast Fourier Transform) and IFFT (Inverse
FFT) is amortized if the filter size W > 2lgN. Thus, for N = 256,
filters of W > 16 are most efficiently implemented in the frequency
domain. A good example is computed tomography (CT) where the
initial spectral ramp filtering is best transformed in the frequency
domain, since for the standard N = 256, the width of the spatial-
domain counterpart of the filter is much greater than 25 pixels [13].
These relationships extend readily into higher dimensions when the
filter is separable, while it gets even more favorable to perform fil-
tering in the frequency domain when the filter is non-separable.
One should note, however, that long filters tend to have ringing
artifacts in the filtered image. This makes the sinc filter, despite
its theoretical superiority, a poor filter in practice, especially when
strong edges are present in the input image. We shall discuss these
issues further in the course of this paper.



So far, we have only discussed frequency domain filtering as an
efficient solution for performing discrete convolution, where the
length of the signal remains constant. Discrete convolution may
be performed for the purpose of edge filtering, blurring, bandpass-
ing, and others. On the other hand, an image pyramid or mipmap
can be created by filtering with a filter at half the image’s band-
width and then performing a subsequent downsampling by a factor
of two, dropping every other sample and row. The frequency do-
main can be employed to perform this bandpassed downsampling
efficiently, and this approach is often used in multirate systems [10],
in which the sampling rate of a digital signal may be first increased
or decreased before processing. Our work promotes the use of very
efficient techniques for frequency domain-based processing, that is,
the chirp-z transform [2, 22] and the FFTW system [11].

Our framework also proves particularly useful for the rotation
of images and volumes, where scanline algorithms have been pre-
viously devised as a fast way to perform these operations [5, 12].
Scanline algorithms usually include several passes, and each pass
only operates on one dimension of the image or volume. Our
frequency-space approach also operates in this manner, and hence it
readily applies to the resampling of images and volumes for affine
transforms or warps.

Our paper is structured as follows. First, we review related work.
Then, in Section 3, we describe the general theory of the methods
used, i.e., the chirp-z transform and the FFTW package. In Section
4, we will discuss in detail our approach, in the specific applica-
tion domain. Section 5 presents results, and Section 6 ends with
conclusions.

2 RELATED WORK

Upsampling by an integer factor, say k, can be achieved by trans-
forming the signal into the frequency domain, and creating the k−1
intermediate series of samples via k−1 phase shifts, each followed
by an inverse frequency transform. This method has been used
by Chen et al. [6] to interpolate intermediate slices in anisotrop-
ically sampled MRI and CT datasets. A similar technique has been
used by Unser et al. [27] in conjunction with a scheme that im-
plemented rotations as a sequence of 1D shears, each performed in
the frequency domain as phase shifts. Tong and Cox [8, 25] used
the chirp-z transform [2, 22] to rotate 2D or 3D images. One 2D
chirp-z transform, requiring four 2D FFTs, is sufficient for the 2D
case [22], and two successive 3D chirp-z transforms requiring six
3D FFTs, are used for the 3D case [2]. All research groups have
demonstrated that superior results can be obtained when using these
frequency-space techniques over spatial-domain methods.

However, Chen et al. can only produce isotropic datasets if the
ratio of anisotropy is an integer number, which is certainly not al-
ways the case. On the other hand, Unser et al. cannot scale an
image or volume, which may be required when a dataset must be
rotated and scaled to fit with the co-registered image of volume,
respectively. Finally, Tong and Cox do not take advantage of the ef-
ficient decomposition of affine transformations into 1D operations.
The limitations for the former two originate in the fact that scaling
is equivalent to having more samples over the same spatial extent.
Since, for efficiency, an FFT was used to perform the forward trans-
form, requiring N being a power of two, the scaled signal would
require an M that is not a power of two, which would no longer al-
low the use of the FFT for the backward transform. A slower DFT
(Discrete Fourier Transform) must then be used instead, which at
O(N2) is much slower than the FFT with O(N lgN).

The approach presented in our paper eliminates all of these con-
straints, enabling us to produce an arbitrary number of samples in
the output signal. Since for arbitrary scale factors potentially at
least one slow DFT is required, it is important to identify a fast
implementation of the DFT. We use two approaches to facilitate

this. First, we employ the 1D chirp-z transform. This method is,
in essence, a clever way to implement a DFT as a series of 4 FFTs,
which has lower complexity. More details on implementing the
chirp-z transform can be found in Section 3. One drawback of the
chirp-z transform is the need of handling multiple long-sequence
FFTs, which can be troublesome for the interactive manipulation of
larger volumes.

Another solution is to make use of a public-domain pack-
age called FFTW [11] (see also www.fftw.org). FFTW is an
architecture-adaptive, high performance implementation of the
Cooley-Tukey FFT algorithm [7]. It exploits the fact that the per-
formance of a program is mostly determined by complicated in-
teractions of the code with the processor pipeline and by the char-
acteristics of the memory and the cache. But most importantly,
due to its performance-driven decomposition of the FFT process
into subtasks, sequences of non-power-of-two lengths suffer only
little decrease in speed (less than 20%). More details on FFTW
will be provided in Section 3, while our results will show that the
architecture-aware FFTW proves superior to the complexity-aware
chirp-z method, at least in the context of our goals.

In terms of spatial filtering, Keys [14] as well as Park and
Schowengerdt [21] showed that the Catmull-Rom spline filter is
optimal within the class of cardinal splines. Mitchell and Netravali
[17] investigated the more general BC splines, which include car-
dinal splines, and found that BC splines satisfying 2C +B = 1 gave
the best subjective results. These filters include the Catmull-Rom
spline, where B = 0 and C = 0.5. Möller et al. [18] generalized
Keys’ method using a Taylor series expansion, by which it could
also be demonstrated that the Catmull-Rom spline is the most accu-
rate in the class of cardinal cubic splines. We therefore employ the
Catmull-Rom cubic filter, in addition to the other popular, but com-
putationally less expensive, box and linear filters, to compare the
results we obtain with our frequency domain resampling approach.

3 THEORY

In this section we will provide more details on the two alternative
mechanisms available for our purposes, i.e., the chirp-z transform
and the FFTW system. We will then compare the prospects of the
two in a more theoretical context.

3.1 The Chirp-z Transform

The chirp-z transform was developed relatively early [2, 22] and is
related to the fractional Fourier transform [1]. To explain how it
works, let us first consider an N-long sequence F in the frequency
domain, which we would like to transform into a sequence f of
equal length in the spatial domain. This is written as follows:

fk =
N−1

∑
j=0

Fje
2πi· j k

N (1)

The chirp-z transform generalizes this equation by substituting 1/N
with a factor α :

fk =
N−1

∑
j=0

Fje
2πi· jkα (2)

where α can be any rational or even complex number. This pa-
rameter allows the output signal to have arbitrary grid spacing. In
the general case, this transform must be performed by ways of a
(costly)Inverse DFT (IDFT), and the chirp-z transform was intro-
duced as an efficient alternative. It first rewrites 2 jk = j2 + k2 −
(k− j)2 and equation (2) becomes:

fk =
N−1

∑
j=0

Fje
πi·[ j2+k2−(k− j)2]α



= eπi·k2α
N−1

∑
j=0

Fje
πi· j2α e−πi·(k− j)2α = eπi·k2α

N−1

∑
j=0

y jzk− j (3)

Here, y j and zk− j are N-long sequences that are defined as:

y j = Fje
πi· j2α and z j = e−πi· j2α (4)

The z j is called the chirp-z signal, since its frequency increases with
time, or index j (see the second row of Fig. 2 for an illustration).
We observe that the sum in equation (3) is a discrete convolution
of the two sequences in equation (4). Since these sequences are
both N-long, it is more efficient to use a DFT approach that re-
places the convolution by a multiplication in the co-domain. There
are, however, two obstacles. First, the sequences y j and z j are not
necessarily a power of two, which is best for an FFT-based solu-
tion (although FFTW would provide an efficient transform even in
that case). Second, the z j does not satisfy the DFT assumption of
circular convolution, which expects the signals to be periodic and
requires that zk− j = zk− j+N . But, in our case, when (k− j) < 0,
zk− j = z j−k 6= zk− j+N , due to the squaring of (k− j) in equation (3).
To cope, we can convert the summation into a form that fits the cir-
cular convolution requirement. First, we select an integer p ≥N−1
for which 2p is a power of two, and extend the sequences in (4) as
follows:

y j = 0 N ≤ j < 2p

z j = 0 N ≤ j < 2p−N (5)

z j = e−πi·( j−2p)2α 2p−N ≤ j < 2p

The sequences in equation (5) are illustrated in Fig. 2 below (in this
figure, the reason for the N −M inserted zeros will be explained
later).

Figure 2: The chirp-z transform sequence. The first row shows the
N-long y j sequence that is kept as is, only padded with zeros .The
second row shows the N-long z j sequence, with the first part being
the regular sequence (the chirp-z signal), and the second part being
the first part, mirrored.The value 2p is chosen to be a power of two.

We observe that z j now satisfies the circularity criterion. The
convolution in equation (3) is then calculated as follows:

fk = eπi·k2α IFFT [FFT (y j) ·FFT (z j)] (6)

Both z j and y j are transformed with a 2p-point FFT, the resulting
sequences are multiplied bin per bin, and the result is transformed
back with a 2p-point IFFT and multiplied with the complex expo-
nential. Note that we can only make use of the first N samples – the
remaining 2p−N samples must be discarded.

3.2 The FFTW System

In the FFTW system, a Fourier transform is computed by an execu-
tor, which consists of highly optimized, composable blocks of C
code called codelets. A codelet is a specialized piece of code that

computes part of the transform. It is generated automatically by a
codelet generator, which takes the computer’s special architecture
and configuration into account. The combination of codelets ap-
plied by the executor is specified by a special data structure called
a plan. The plan is determined at runtime, before the computation
begins, by a planner, which uses a dynamic programming algo-
rithm to find a fast composition of codelets. The planner seeks to
minimize the actual execution time, and not the number of floating
point operations. To do so, it measures the run time of many plans
and selects the fastest. The plan can be reused as many times as
needed. If one only needs a single transform of a given size, the
one-time cost of the planner becomes a significant cost-factor. But
when many transforms of the same size are computed in a typical
high-performance application, then the expensive initialization is
amortized.

In our case, however, this size may vary. We get around this
problem by generating all possible DFT plans beforehand and load
these at start-up time. Since we only perform 1D DFTs, this is
definitely feasible and dramatically reduces the execution time of
operations on images or volumes.

4 OUR APPROACH

In this section we will discuss our contributions. First, we will de-
scribe our implemented frequency space-based operators, i.e. 1D
scaling and 1D translational shifts. All subsequent resampling ap-
plications will be decomposed into these basic 1D operators.

4.1 Scaling

Suppose we have a 1D signal f (t), 0 ≤ t ≤ T , sampled into discrete
samples fi, 0 ≤ i < M, spaced apart by a sample distance △t. We
would like to produce a magnified signal g(t) = f (at), 0 ≤ t ≤ T/a
with 0 < a ≤ 1.0, and sample it into a sequence gi, 0 ≤ i < N, such
that (M − 1) = a(N − 1), and the sample distance being again △t.
We can look at this as a two-stage process. First, we sample f (t)
over the interval T at a rate a△t into the N-long sequence gi, and
then we pull it apart such that the sample distance is △t again (see
Fig. 3 for an illustration of this procedure). While the second step
is just an application of the Fourier scaling theorem [3], it is the first
step that is the interesting one. We shall look at it in closer detail
now.

Figure 3: The original signal f (t) which has been sampled into fi

(black), and is now being resampled into gi (green), left: upsampled
f (t), right: g(t) stretched such that the grid values are △t apart.

We want to realize the gi upsampling using a frequency domain
method. We start with an M-point DFT of the fi which produces
the complex series Fj, 0 ≤ j < M, in the frequency domain. We
would like to output N samples, however, the DFT produced only
M frequency-domain samples, thus N −M samples must be added
to the spectrum before transforming back to the spatial domain. But
where do these samples go? Since N > M, yet we cover the same
time interval T , we know that g(t) has a higher sampling rate than
f (t). Thus its spectrum has a higher Nyquist rate. Yet, since both
f (t) and g(t) have been sampled over the same interval T , the spac-
ing of the samples in the frequency domain is identical. Hence, the
N−M samples must be added in the center of the spectrum, right at
the fold-over frequency (see again Fig. 2). Further, these samples
must be set to zero since their frequencies lie above the bandlimit
of f (t). On the other hand, if we want to produce a minified signal



g(t) = f (at), 0 ≤ t < T/a with a > 1, then we need to drop M−N
samples right in the middle of the spectrum.

We can realize the inverse DFT of the augmented or reduced
spectrum either with chirp-z or FFTW. Both will return an equiv-
alent sequence, since neither of them uses approximations (the re-
maining differences will be due to round-off errors).

4.2 Translation

Translations can also be performed in the frequency domain, via
phase shifts. This technique has been described in detail in [6, 27].
Briefly, if we wish to translate a signal f (t) to f (t − b), then the
Fourier shift theorem [3] states:

F{ f (t −b)} = F(u)e2πi·bu (7)

that is, one simply multiplies the function’s Fourier transform by
the phase term (the exponential), and does the inverse Fourier trans-
form. Accordingly, if we wish to shift an N-long discretized signal
fi by a factor of b, we can achieve this by obtaining its Fourier
transform Fi, advancing all basis sinusoids i (i.,e., the phases of the
Fourier coefficients Fj) by a factor of −bi/((N − 1)△t) via phase
shifts and then transforming the result back into the spatial domain.
This is equivalent to reconstructing f (t) with a sinc filter and re-
sampling the resulting continuous signal according to the shifted
grid. Assuming a bandlimited signal, this operation will not exhibit
any filter artifacts, such as blurring or aliasing, which would have
possibly been introduced with finite spatial filters.

4.3 Windowing and padding

The discrete Fourier transform assumes that the signal is periodic.
If the end of the signal is not smoothly related to its start, then we
may get discontinuities at the boundaries, leading to aliasing in the
frequency domain. We have implemented two ways to deal with
this: (1) windowing the signal in the spatial domain by an appro-
priate window filter, such as a Hanning window, or (2) padding the
signal with a sequence that connects the end and the start of the
sequence smoothly. We can use a simple linear interpolation be-
tween these end points for this. Note that after windowing, the side
regions of the signal will be attenuated, compared to the central re-
gion, and that we can compensate for this effect by multiplying the
signal by the reciprocal of the window function after the resampling
has occurred.

Another source of artifacts is spectral leakage, caused by not ex-
actly capturing an integer multiple of a sinusoidal oscillation in the
signal. In fact, this is very likely to happen, especially when there
is more than one frequency present. Windowing can also be used in
this case, as a remedy for spectral leakage.

Finally, we have noticed that in some cases windowing is also re-
quired in the frequency domain to prevent ringing artifacts in scal-
ing operations. Scaling in frequency space (without windowing)
can be thought of as the following process: (1) the discrete M-long
signal is transformed into frequency space, giving rise to a main
spectrum with discrete frequencies and its replicas; (2) the repli-
cas are removed by a box filter; (3) the remaining main spectrum
is transformed back to generate a continuous signal in the spatial
domain, (4) this signal is subsequently sampled to generate the de-
sired N samples. This process is equivalent to convolving fi with a
sinc filter (a box in the frequency domain) with period △t and sam-
pling the resulting signal with a△t, where a is the scaling factor.
No ringing occurs when a = 1. However, when a 6= 1, then the sinc
function resulting from each original sample point is not only sam-
pled at its peak and its zero crossings, but also within its non-zero
sidelobes. This creates a ripple for each individual original sample
point, which is most observable around strong edges [17].

The ringing can be reduced by using a window function on the
sequence Fj before insertion of the additional zeros in the center
of the spectrum. However, we have noticed that windowing is not
needed when the scale factor is small, i.e., less than 2.0. In that
case, the ringing does not affect a large, newly interpolated neigh-
borhood, and we do not use the window. If a window must be
applied, then ringing will be replaced by blur. We found the Welch
window to be a good compromise between blur and ringing.

4.4 Applications

Since the sinc filter is separable, the described 1D implementations
extend readily to higher dimensions. We simply perform first row-
wise filtering in the x-axis, then along the y-axis, and finally, if we
are dealing with volumes, along the z-axis. We shall now describe
a variety of applications to which we have applied our resampling
method. In the following, both chirp-z and FFTW can be used to
transform the signal back into the spatial domain. To transform the
signal into the frequency domain, either a regular FFT can be used
if the signal length is a power of 2, or is extended to be a power of
2, or FFTW can also be employed.

4.4.1 Scaled Rotations

It is well-known that image and volume rotations can be decom-
posed into a series of 1D shears. Early such decompositions suf-
fered from the so-called bottleneck problem [4, 12], where the con-
traction in intermediate sheared images complicated the implemen-
tation and could cause errors. More recent factorizations [20, 24]
do not suffer from bottlenecks. For example, the 2D factorization
could be written as follows:

[

cosα −sinα
sinα cosα

]

=

[

1 −tan α
2

0 1

][

1 0
sinα 1

][

1 tan α
2

0 1

]

(8)

Here the right- and left-most matrices are both x-shears, imple-
mented as unscaled x-shifts (x′ = x + ay), while the center matrix
is a y-shear, implemented as column-wise y-shifts (y′ = y + ax).
Unser et al. [27] used the phase shifting method to implement each
of these shifts at sinc accuracy, in 2D. The work of Unser et al. [27]
does not support scaled rotations, which in turn allows them to use
the phase-shift property of the Fourier Transform. However, there
are a variety of scenarios in which scaled rotations are necessary.
For example, when registering CT with MRI or PET volumes, it is
often the case that the MRI or PET volume has not only been ac-
quired at a different orientation, but also at lower resolution. This
requires a magnification followed by a rotation. Although we could
first use the (accelerated) IDFT to perform a high-quality magnifi-
cation and then use the method of Unser et al. for the rotation, we
can eliminate the latter step with the following factorizations. In
2D the factorization is:

[

1 −tan α
2

0 1

][

1 0
sinα Sy

][

Sx Sy · tan α
2

0 1

]

(9)

Here, Sx and Sy are the scale factors in x and y, and α is the rotation
angle. With Sz being the scale factor in z, the 3D factorization is:





1 0 0
G 1 H
0 0 1









1 A B
0 1 0
0 0 1









1 0 0
0 1 0
E F 1









1 0 0
C 1 D
0 0 1









Sx 0 0
0 Sy 0
0 0 Sz



(10)

where the factors A through H are expressions involving trigono-
metric functions of the 3D rotation angles α , θ , and ϕ . More spe-
cific detail is available in [5]. Combining scaling and rotation gives:





1 0 0
G 1 H
0 0 1









Sx A B
0 1 0
0 0 1









1 0 0
0 1 0

Sx ·E F Sz









1 0 0
Sx ·C Sy Sy ·D

0 0 1



(11)



All of these are scaled beam shifts (that is, the data are only
shifted along their individual beam axis direction). In our approach,
the 2D affine transform can be achieved in two phases, and the 3D
affine transform can be achieved in four phases, where each phase
is a scaled beam shift. For example, in the 2D case, the first phase
is a row-wise scaled xshift: x′ = ax + by, where the factor by is
the translation constant and the factor a is the scale constant. Each
scaled shift can be implemented by first transforming the spatial do-
main data into the frequency domain. The second step is, according
to the desired number of output samples, adding zeros or dropping
some of the highest frequencies in the spectrum. Here, windowing
is optional. The third step accomplishes the phase shift. The final
step is transforming the data back into the spatial domain.

4.4.2 Interpolation of intermediate slices

Volumes acquired with MRI, CT, confocal microscopy, and elec-
tron microscopy are often anisotropically sampled, i.e., their inter-
slice distance is larger than their inter-pixel distance. Most of the
times, the ratio of these two distances is not an integer value. In
order to reduce staircasing artifacts in the volume viewing and ren-
dering stage, it is advantageous to resample these datasets into an
isotropic representation. The non-integer voxel cell aspect ratio pre-
vents the phase shift method to be used for accurate resampling.
Our method can be readily employed for this purpose. Suppose
that the undersampled axis is z and we have N slices along z, then
M = N ·△tz/△tx, where △tx and △tz are the grid spacings in the
x (or y) and z axis directions. We then process each z-axis run and
generate the M samples using the scaling method. Note that this
will generate a complete new set of slices, due to the non-integer
aspect ratio. Since none of the original slices will be part of the
output data, it is even more important that an accurate resampler is
used.

4.4.3 Perspective warps

These warps scale the volume slices at a factor related to the slice-
orthogonal direction. Note that there may have been a prior rotation
before the warp. The perspective warp, as well as other applications
already described, can involve magnification factors of less than
unity, i.e., N < M. In this case, we remove the M−N central spec-
tral components. Since this corresponds to lowpassing an image
with a sinc filter prior to lowpassing, it can be advantageous to mul-
tiply the resulting spectrum with a window filter to avoid ringing.
Our experiments indicated, however, that this was only needed if
the removed frequency components had values significantly above
zero.

5 RESULTS

5.1 1D Analysis

In the following discussion, we shall refer to our implemented fre-
quency space-based operators as Freq filters. Since the results using
the chirp-z transform or FFTW are practically the same, only the
execution time is relevant when comparing the two. We performed
a quantitative analysis on four popular filters, i.e., box, linear, and
cubic, and compared them with our frequency-domain Freq filter.
In the cubic filter, α = −0.5

box(t) =

{

1 if −0.5 < t ≤ 0.5
0 otherwise

linear(t) =







−t if −1 < t < 0
1.0− t if 0 ≤ t < 1.0
0 otherwise

cubic(t) =







(α +2)|t|3 − (α +3)|t|2 +1 if 0 < |t| ≤ 1

α |t|3 −5α |t|2 +8α |t|−4α if 1 < |t| ≤ 2
0 if 2 < |t|

Since all our filters are separable, we first conducted a quantita-
tive analysis with a 1D signal. For this purpose, we constructed a
signal synthesizer that allowed us to assemble any continuous sig-
nal as a sum of base frequencies. An example for such a signal is
shown in Fig. 4, left. This particular signal is composed of 19 sinu-
soids with different phases. We sampled this signal just above the
Nyquist rate, that is, twice per maximum oscillation. The resulting
sample points are shown in Fig. 4, right. We did two experiments,
shift and scale. In the shift experiment, we used the existing points
to interpolate a new set of points a shift-distance away. Fig. 5, left,
shows the result of the interpolation for a shift-distance of half the
grid spacing. The black dots in this figure are the correct values of
the analytical test signal at the shift-distance. We see that only our
Freq filter interpolates these points exactly, while the cubic filter
smoothes the signal somewhat and does not reconstruct it correctly.
This can be expected since its passband, similar to all other non-
sinc filters in Fig. 1, attenuates the higher frequencies closer to the
Nyquist rate. A similar situation occurs when the signal is magni-
fied, using the existing samples, an example of which is shown in
Fig. 5, right. We then evaluated all filters at different shift and scale
factors and computed the RMS error of the interpolated signal with
the analytical one. The results are shown in Fig. 7. It is obvious
that the frequency-space Freq filter excels in this task for all shift
and scale factors evaluated.

5.2 Image and Volume Results

We then applied our method to image magnification. To demon-
strate the fidelity of the individual filters, we started with a source
image (the Lena image) and recursively magnified it by a small
amount for 20 iterations. Note each scaling was implemented as
scaling in the x direction followed by a scaling in the y direction,
exploiting the separability property of the filters. Here, we also
compared our filter with the Lanczos filter [26], a popular (spatial)
windowed sinc-filter. The results of this experiment are presented
in Fig. 6, left. We observe that the Freq filter seems to only mini-
mally degrade the image quality, while the competing methods end
with diminished results. Here, the box filter forms pixel clusters
instead of blur since it does not generate intermediate pixel values.
The experiment demonstrates the Freq filter’s preservation of the
Fourier spectrum, especially in the higher bands. Adding a Welch
filter can remove the subtle ringing artifacts that are visible in some
areas, however, at the price of some blurring.

Fig. 6, right, illustrates the performance of the Freq filter for
the interpolation of extra slices in an anisotropically sampled CT
volume dataset. In this dataset, the slice distance was 3.4 times
the in-slice sampling rate. We observe that the isotropic volume
generated by the Freq filter exhibits the least staircase artifacts.

Fig 9 shows a set of volume rendered images after scaling the
engine dataset by a factor of 1.85 in each dimension and storing the
result. The parameters used for the volume rendering were identical
for all datasets. We observe that the results obtained with the Freq
filter have considerably less ripple and noise artifacts than those
obtained with the spatial filters. This can be closely observed in the
magnifications, shown in Fig. 10 and Fig. 11.

Finally, we also tested the filters with the de-facto test dataset
in volume rendering, the Marschner-Lobb (ML) function [15]. The
ML function’s frequency content is to 99.8% contained within the
Nyquist limit and a significant amount of the signal content lies
close to the Nyquist limit, positioning it as a challenging test for
any filter. We scaled the 403 volume dataset in similar ways than
the engine dataset, and the volume-rendered results are shown in



Fig. 12. We again observe that the Freq filter produces the least
structural artifacts.

5.3 Time Analysis

We will now have a look at the time performance of the Freq filter
in relation to its spatial contenders. We have measured the execu-
tion time for both the chirp-z transform and FFTW, and found that
FFTW is at least 5 times faster than the chirp-z transform when
doing image magnification. It is about 10 times faster when per-
forming volume magnification. All the tests were done on a PC
with Pentium-4 CPU and 512MB of memory.

FFTW also has a concept called wisdom, which can be used to
create plans at a faster rate, provided some plans have already been
created before. We found that it will usually take about 40 seconds
to generate 1000 plans without importing wisdom, while it only
takes 2 or 3 seconds if wisdom is present. For our experiments,
we pre-created 1024 plans, due to different sequence lengths from
10− 1024. After generating or loading the plans, we just need to
feed the input data, i.e., the sequence to be transformed, to the cor-
responding plan. This way, the plan generation time can be ignored,
and the total execution time is only due to the resampling effort.

In Fig. 8, we report the collected execution times. On the left,
we plot the execution times for scaling the chair volume (size:
64× 64× 64) and on the right we plot the times required for the
engine volume dataset (size: 128× 128× 112). We see immedi-
ately that beyond a scale factor of 2.0, the Freq filter (in its FFTW
implementation) wins over all spatial filters tested, even the small
box filter. This is readily explained since the forward FFT occurs
always at the same cost, only the backward FFT is scaled by the
magnification factor. This drives down the cost ratio when com-
pared to the spatial domain filters whose costs scale fully with the
magnification factor.

6 CONCLUSIONS

We have described the use of frequency-domain filters for the ac-
curate resampling of images and volumes at arbitrary magnifica-
tion factors. In this work, we have tried two methods to implement
our frequency domain (Freq) filter – the chirp-z transform and the
public-domain FFTW package. Our approach provides a gener-
alization of present frequency-space resampling methods, which
cannot handle arbitrary scale factors. While the resampling re-
sults obtained with the Freq filter are much better than what can
be achieved with common spatial filters, the significant complexity
of the multiple FFT passes that are required is a drawback of the
filter when implemented using the chirp-z method. However, when
using FFTW for both DFT and IDFT, the execution time can be
much reduced. In fact, it is even significantly faster than the spatial
domain filters when the scaling factor is bigger than 2.0 for vol-
umetric datasets. This shows the potential of frequency-space fil-
tering to even be applied in conjunction with interactive image and
volume manipulation applications. We conclude that frequency-
space resampling represents a very good choice for high-quality
region-of-interest zooms, the interpolation of extra slices in medi-
cal datasets, the correction of motion artifacts in MRI, the spatial
alignment of temporal volumes in fMRI, and for multi-volume reg-
istration. In future work, we plan to investigate the Freq approach
also in relation to higher-quality filters, such as those proposed in
[18].
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Figure 4: Left: original continuous signal with 19 frequencies. Right: a set of samples sampled at the Nyquist frequency, the number of samples
is 38.

Figure 5: Interpolation from 38 samples per period. Left: the signal is translated by half the sampling period. Right: the signal is magnified by
a factor of 1.85. In both graphs, the blue line is due to the cubic filter, while the red line is due to the Freq filter.

linear cubic box box linear

Lanczos chirp-z without window chirp-z with Welch window cubic Freq

Figure 6: Left: The Lena image after a series of 20 magnifications of 10 pixels each. We observe that the image degradation with the frequency
space, Freq, filter is minimal, while all other filters provide deteriorated results. The Freq filter seems to preserve the frequency spectrum well.
Using the Welch window in frequency space gives less ringing artifacts, yet the amount of smoothing is small. Right: Interpolation of extra
slices at a non-integer sampling rate. The original size of the voxels was 1× 1× 3.4. The slices were inserted horizontally (y-direction), with
respect to this figure. Shown here is a cut across many inserted slices. We observe that the frequency-transform method produces the least
staircase artifacts (but slightly more blurring).

Figure 7: Errors with scale and shift. The RMS error between the
original and the interpolated signals, using box, linear, cubic and Freq
filter. Left: the behavior related to changing the scale factor from
1.0 to 10.0. Right: the trend when changing the shift factor from 0.0
to 0.5, where the latter means that we sampled right between two
original samples.

Figure 8: Execution times using the box, linear cubic and Freq filter
to perform volume magnifications. Left: the time needed to magnify
a 64× 64× 64 volume from a factor of 1.5 to 5.0. Right: the time
needed to do the same operation on a larger volume, the engine (size:
128×128×112).
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Figure 9: Results of scaling the engine volume dataset by a factor of 1.85 along each dimension using the box, linear, cubic, and the frequency
space, Freq, filters. We notice ripple artifacts at various locations for box, linear, and cubic, which do not exist with Freq.
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Figure 10: Magnified view of the volume shown in Figure 9. We observe that the frequency-space method produces no ripple artifacts.
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Figure 11: Another magnified view onto the volume shown in Figure 9. Again, the frequency-space method produces the least artifacts.
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Figure 12: The Marschner-Lobb volume, scaled up with the different filters and volume rendered at an iso-value of 128. Once again, the
frequency-space method produces the least artifacts.


