
FAST AND ACCURATE THREE-DIMENSIONAL RECONSTRUCTION
FROM CONE-BEAM PROJECTION DATA USING ALGEBRAIC METHODS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University

By

Klaus Mueller, Dipl. Ing. (FH), M.S., M.S.

* * * * *

The Ohio State University
1998

Dissertation Committee:

Dr. Roni Yagel, Adviser

Dr. Roger Crawfis

Dr. Richard Parent

Approved by

Adviser

Department of Computer and Information Science

© Klaus Mueller, 1998

All Rights reserved.

iii

ABSTRACT

Cone-beam computed tomography (CT) is an emerging imaging technology, as it provides
all projections needed for three-dimensional (3D) reconstruction in a single spin of the X-
ray source-detector pair. This facilitates fast, low-dose data acquisition as required for
imaging fast moving objects, such as the heart, and intra-operative CT applications. Current
cone-beam reconstruction algorithms mainly employ the Filtered-Backprojection (FBP)
approach. In this dissertation, a different class of reconstruction algorithms is studied: the
algebraic reconstruction methods. Algebraic reconstruction starts from an initial guess for
the reconstructed object and then performs a sequence of iterative grid projections and cor-
rection backprojections until the reconstruction has converged. Algebraic methods have
many advantages over FBP, such as better noise tolerance and better handling of sparse and
non-uniformly distributed projection datasets. So far, the main repellant for using algebraic
methods in routine clinical situations was their slow speed. Apart from providing solutions
for this pressing problem, we will also apply, for the first time, algebraic methods in the
context of general low-contrast cone-beam tomography. This new context poses several
challenges, both for reconstruction quality and speed.

To eliminate the strong aliasing effects that occur when standard algebraic methods are
applied for cone angles exceeding 20˚, we introduce the new concept of depth-adaptive
basis function kernels. Then, a comprehensive study is conducted on how various parame-
ters, such as grid initialization, relaxation coefficient, number of iterations, and correction
method (ART or SART) influence cone-beam reconstruction quality and speed. Finally, a
new algorithm, the Weighted Distance Scheme, is proposed that optimally arranges the
order in which the grid projections are performed., which reduces the number of iterations
and promotes reconstruction quality. We find that three iterations are sufficient to obtain
good reconstruction quality in the general case. A cost function is then developed that
relates the computational effort of FBP with that of algebraic methods. In an attempt to
match the cost of algebraic methods and FBP, a new accurate and efficient projection algo-
rithm is proposed that reaches its goal by caching projection computations for reuse in the
subsequent backprojection. Finally, we propose a new hardware-accelerated scheme for
algebraic methods that utilizes readily available off-the-shelf graphics hardware and
enables a reconstruction to be performed in less than 2 minutes at good quality.

iv

Gewidmet meiner Mutter und meinem Vater

v

ACKNOWLEDGMENTS

If you spend ten years of your life at one place, like I did at Ohio State, you will get to know
a wide variety of people that are affiliated with this institution in one way or the other.
Many of these people will be instrumental in the success of your work, and without their
help and inspiration you will never reach your goals, or even be able to discover and define
them. My path since arriving from Germany with two suitcases in my hands to the present
load, filling a medium sized U-Haul truck, was lined with some of the nicest and most
resourceful people I have ever met in my life. I was able to build many incredible friend-
ships and collaborations, and I fondly look back to my time as a graduate student at Ohio
State.

The person who, without a doubt, has inspired and supported me the most is my advisor
Roni Yagel, a mentorpar excellence. A meeting with him was like a complete mental over-
haul: I would walk into his office, deeply worried about some matter, and would leave an
hour later, re-vitalized and full of hope, eager to attack the problem, whatever it was. There
was never a time where he could not spare a moment - and often, a moment turned into an
hour and more. His optimism, enthusiasm, keen sense for opportunity, ingenuity, and
friendship have taught me a great deal and have helped me to grow into a person much more
mature than I was when I first met him in 1992.

Another person I am deeply indebted to is Ed Herderick of the Biomedical Engineering
(BME) Center at Ohio State, whom I have known almost since my beginnings at this uni-
versity. He was the one who recommended me for my first assistantship, inspired, super-
vised, and guided me through my Master’s thesis at BME, and provided me with support
ever since, even after my departure from BME. The road of this dissertation would have
been a lot rockier without his permission to maintain my “home” at the Laboratory of Vas-
cular Diseases, whose splendid and neatly maintained computational resources and com-
fortable premises have made it so much easier to accomplish this research. In this respect,
I also thank Dr. Mort Friedman, Acting Chairman of BME, for generously letting me heat
the BME CPU’s and spin 3 GB of harddrive real-estate over the past two years. Thanks are
especially in order for BME system administrator Vlad Marukhlenko who kept the CPU’s
heatable, the harddrives spinable, and the cooling fans quiet.

Enthusiastic thank-you’s go out to a number of people that have provided me with research
opportunities and financial backing, and who have trusted in me that I could actually per-
form the work that had to be done. First, I must thank Prof. Herman Weed, and also Dr.
Richard Campbell, who admitted me to the BME program in a rather un-bureaucratic man-
ner, not knowing much about me other than my grades and the fact that I was German.
When I arrived in Columbus one cold winter day in 1988, the wind hissing around the cor-

vi

ners of Dreese Laboratories, Prof. Weed and Dr. Campbell quickly integrated me into the
program, and made sure I wouldn’t get lost so far away from home.

I am also greatly indebted to Dr. J. Fredrick Cornhill, who became my advisor shortly after
my arrival in the US and who would let me do computer-related research even though I, as
an electrical engineer, was initially not very versed in these aspects. This early research
sparked my interest in computer science, and Dr. Cornhill’s generous funding for the next
seven years enabled me to deeply acquaint myself with the subject, a task that ultimately
lead to a second Master’s degree in that discipline (and subsequently this Ph.D.). I want to
thank Dr. Cornhill for providing me with the opportunity to participate in a number of clin-
ical software projects at the Cleveland Clinic Foundation. This involvement in real-life
applications of computers in the medical field have surely prepared me well for a career
that is geared towards the development of practical systems that benefit human health and
well-being.

I would also like to thank Dr. John Wheller, head of the Columbus Children’s Hospital
catheterization lab, whose innovative effort for better medical imaging technologies has
provided the clinical motivation of this dissertation research. I sincerely appreciate the time
he has invested in writing the grant that has supported me for two years, his permission to
letting me access the medical facilities at the hospital, his eagerness to understand the tech-
nical aspects of the project, and his brave struggle with bureaucracy to keep things rolling.

Last but not least, I shall thank Dr. Roger Crawfis, who joined Ohio State just a year ago,
and who supported me for the past six months. I have had a great final lap at OSU, thanks
to Roger, with some rather interesting research projects popping up in the past year, open-
ing many promising prospects for the years ahead.

I shall continue the list with thanking the adjunct members of my dissertation committee,
Dr. Rick Parent and Dr. Roger Crawfis for reading the document, enduring the 113 slides
in my oral defense, and providing many helpful comments.

Another marvelous individual that I had the pleasure to meet and collaborate with is Dr.
Robert Hamlin, Professor at the Department of Veterinary Physiology. A sign posted at his
door says: “Don’t knock, just walk in!”, and that’s exactly how he works: Whenever I
needed something, be it a letter of recommendation or a person to serve on a committee,
Dr. Hamlin was right there for me. Thanks for your lively instructions on the cardiac and
circulatory system, and the research work we have done together with Randolph Seidler.

Corporate support over the years was generously granted by both Shiley-Pfizer and General
Electric. In conjunction with the latter, I’d like to thank both Steve Chucta, technician at
the Children’s Hospital catheterization lab and GE field engineer Mike Brenkus for their
technical assistance with the GE Angiogram Scanner. Without Mike’s midnight job on wir-
ing-up the scanner boards we would have never been able to spatially register the angio-
grams for 3D reconstruction. With respect to the Pfizer project, I’d like to acknowledge Dr.
Kim Powell and Eric LaPresto from the Cleveland Clinic Biomedical Engineering Depart-
ment, and Jamie Lee Hirsch and Dr. James Chandler from the Shiley Heart Valve Research
Center. It was a great experience to work with this team, developing algorithms and soft-

vii

ware systems to diagnose defective Björk-Shiley artificial heart valves in-vivo. Thanks
especially to Kim Powell for two years of fun collaboration, co-authorship and the windy
weekends on ‘Breakaway’ with Craig, and Eric LaPresto for a great job on smoothing out
our final paper.

This list is definitely not complete without mentioning the M3Y-factory, born out of a
casual Biergarten project, and matured into a serious (well...) research enterprise, produc-
ing so far three conference papers and one journal paper on exploring new ways for calcu-
lating more accurate interpolation and gradient filters for volume rendering. The M3Y
partners in crime are: Torsten Möller, Raghu Machiraju, and Roni Yagel. Thanks guys, for
your continued friendship and the opportunity of racing each of the papers 10 minutes
before deadline at 95 mph to the nearest DHL drop-off station.

Thanks also to the “Splatters”: Ed Swan, Torsten Möller, Roger Crawfis, Naeem Shareef,
and Roni Yagel, which formed a collaboration with the aim of producing more accurate
perspective volume renderings with the splatting algorithm. The ideas that emerged in this
project led to the depth-adaptive kernels that were also used in this dissertation. I would
like to thank in particular Ed Swan and Torsten Möller for passing the honor of first author-
ship in the journal paper on to me. Turning the paper around from its depressing first review
to the completely overhauled final version was just a great accomplishment by all partici-
pants. The nightly sessions with math-wiz Torsten were a special treat.

My thanks also go out to Roger Johnson, formerly Professor at BME, for enlightening me
both on the physics part of medical imaging and the bourbon distillation process, and for
meticulously proof-reading an early journal paper on my research. It was nice to have him
as an inofficial member in my dissertation committee.

Don Stredney of the Ohio Supercomputer Center (OSC) deserves a big thank-you for let-
ting me use OSC’s large-caliber computing equipment for developing my interactive vol-
ume renderer and refining the texture-mapping hardware accelerated ART algorithm. Don
was also the one who brought me in contact with Dr. Wheller, and who helped me out with
obtaining clinical volume data sets that I could dig my volume renderer’s teeth in. Like-
wise, Dennis Sessanna is thanked for his assistance at the OSC computing facilities.

The texture-mapping hardware accelerated ART algorithm was developed during a two-
month internship at Silicon Graphics Biomedical in Jerusalem, Israel. I really enjoyed my
time there, thanks to the great hospitality that was extended to me by the people working at
the company, in particular: Michael Berman, Ziv Sofermann, Lana Tocus, Dayana, and my
host Roni Yagel.

Finally, I should thank all my friends that made sure that I would not spendall my time in
the lab and who dragged me out into the fresh air every once in a while (listed in random
order, without claiming completeness): Perry Chappano, Derek Kamper, Anne Florentine,
Field Hockey All-American Britta Eikhoff, Michael Malone, die Skat Brüder Norbert
Peekhaus, Ulf Hartwig, und Glenn Hofmann, Anton (and Claire) Bartolo, whose unrelated
presence in the lab at night gave me the assuring confidence that I wasn’t the only one trad-
ing beers for work, Enrico Nunziata, Duran and Mary-Jane Yetkinler, Randolph Seidler

viii

who bought me my first Schweinshaxn, Glenn and Monique Nieschwitz, Holger “Don’t
worry - be Holgi” Zwingmann, the Martyniuk-Pancziuk’s, Randall and Ivana Swartz, Matt
and Vanessa Waliszewski, VolViz comrades Torsten Möller, Naeem Shareef, Raghu
Machiraju, Ed Swan, Yair Kurzion and Asish Law, Chao-hui Wang, Linda Ludwig who
provided me with a bending shelf of free Prentice-Hall text books, Madhu Soundararajan,
the BME gang Ajeet Gaddipati, Bernhard (and Christina) Sturm, the Kimodos Bala Gopa-
kumaran and Andre van der Kouwe,...

But, most importantly, I must thank my parents, Rolf and Gisela Müller, and my sister Bär-
bel, for never giving up on me and always supporting me, no matter how odd my next move
seemed to be. This dissertation shall be dedicated to you.

ix

VITA

October 12, 1960. Born - Stuttgart, Germany

1987. Dipl. Ing. (FH), Polytechnic University Ulm,
Germany

1990. M.S. (BME), The Ohio State University

1996. M.S. (CIS), The Ohio State University

1988 - present . Graduate Research Associate,
The Ohio State University

PUBLICATIONS

Publications relevant to the topic of this dissertation:

[1] K. Mueller, R. Yagel, and J.J. Wheller, “A fast and accurate projection algorithm for
3D cone-beam reconstruction with the Algebraic Reconstruction Technique (ART),”
Proceedings of the 1998 SPIE Medical Imaging Conference, Vol. SPIE 3336, pp. (in
print), 1998. (won Honorary Mention Award.)

[2] K. Mueller, R. Yagel, and J.F. Cornhill, “The weighted distance scheme: a globally
optimizing projection ordering method for the Algebraic Reconstruction Technique
(ART),” IEEE Transactions on Medical Imaging, vol. 16, no. 2, pp. 223-230, April
1997.

[3] K. Mueller, R. Yagel, and J.F. Cornhill, “Accelerating the anti-aliased Algebraic
Reconstruction Technique (ART) by table-based voxel backward projection,”
Proceedings EMBS’95 (The Annual International Conference of the IEEE
Engineering in Medicine and Biology Society), pp. 579-580, 1995.

x

FIELDS OF STUDY

Major Field: Computer and Information Science (Computer Graphics)

Minor Field: Artificial Intelligence

Minor Field: Statistics

xi

 TABLE OF CONTENTS

Page

Abstract .. iii

Dedication.. iv

Acknowledgments... v

Vita... ix

List of Tables ... xiv

List of Figures... xv

Chapters:

1. INTRODUCTION ... 1

1.1 Methods for CT Data Acquisition and Reconstruction.................................... 4

1.1.1 Volumetric CT data acquisition techniques..4

1.1.2 Methods to reconstruct an object from its projections ...6

1.1.2.1 Brief description and cost of algebraic methods...6

1.1.2.2 Description and cost of Filtered Backprojection ..7

1.1.3 Preliminary comparison of FBP and algebraic methods in terms of cost 10

1.1.4 Comparison of FBP and algebraic methods in terms of quality..................................11

1.2 Contributions of this Dissertation .. 12

2. ALGEBRAIC METHODS: BACKGROUND.. 14

2.1 The Algebraic Reconstruction Technique (ART) .. 14

2.1.1 ART as a system of linear equations .. 15

2.1.2 Choosing a good voxel basis .. 15

xii

2.1.3 The Kaczmarz method for solving the system of linear equations 23

2.1.4 Efficient grid projection.. 26

2.1.5 Why ART needs fewer projections than FBP... 27

2.2 Simultaneous ART (SART) ... 28

2.3 Other Algebraic Reconstruction Methods ... 29

3. A GLOBALLY OPTIMIZING PROJECTION ACCESS ALGORITHM................. 32

3.1 Introduction.. 32

3.2 Previous Work.. 33

3.3 The Weighted Distance Projection Ordering Scheme.................................... 34

3.4 Results.. 37

4. CONE-BEAM RECONSTRUCTION WITH ART: ACCURACY ISSUES............ 44

4.1 Modified ART for Accurate Cone-Beam Reconstruction.............................. 44

4.1.1 Reconstruction artifacts in traditional cone-beam ART ...46

4.1.2 New scheme for projection/backprojection to prevent reconstruction artifacts.........47

4.1.2.1 Adapting the projection algorithm for cone-beam ART...............................48

4.1.2.2 Adapting the backprojection algorithm for cone-beam ART53

4.1.2.3 Putting everything together...56

4.2 3D Cone-Beam Reconstruction with SART .. 59

4.3 Results.. 60

4.4 Error Analysis .. 67

5. CONE-BEAM RECONSTRUCTION WITH ART: SPEED ISSUES....................... 69

5.1 Previous Work.. 70

5.2 An Accurate Voxel-Driven Splatting Algorithm for Cone-Beam ART......... 71

5.3 A Fast and Accurate Ray-Driven Splatting Algorithm for

 Cone-Beam ART... 73

5.3.1 Ray-Driven Splatting with Constant-Size Interpolation Kernels73

5.3.2 Ray-Driven Splatting with Variable-Size Interpolation Kernels75

5.4 Caching Schemes for Faster Execution of ART and SART 78

5.5 Results.. 80

xiii

5.6 Cost and Feasibility of Algebraic Methods: Final Analysis 81

5.7 Error Analysis of Westover-Type Splatting ... 82

5.7.1 Errors from non-perpendicular traversal of the footprint polygon.............................82

5.7.2 Errors from non-perpendicular alignment of footprint polygon................................. 83

6. RAPID ART BY GRAPHICS HARDWARE ACCELERATION 87

6.1 Hardware Accelerated Projection/Backprojection... 88

6.2 Potential for Other Hardware Acceleration ... 92

6.2.1 Accumulation of the projection image ...94

6.2.2 Computation of the correction image...96

6.2.3 Volume update ...96

6.3 Optimal Memory Access ... 98

6.4 Increasing the Resolution of the Framebuffer ..100

6.4.1 Enhancing the framebuffer precision ... 101

6.4.2 A high precision accumulation framebuffer.. 102

6.5 Results...103

6.6 Future Work - Parallel Implementations...105

7. CONCLUSIONS.. 107

BIBLIOGRAPHY ...109

xiv

LIST OF TABLES

Table Page

3.1 Projection access orders for all six ordering schemes (M=30) 38

3.2 Standard deviations of box counts for three projection set magnitudes
(M=30, 80, and 100) to measure projection access uniformity and
clustering .. 40

4.1 The definition of our 3D extension of the Shepp-Logan phantom 45

5.1 Run-times for SART, using both voxel-driven and ray-driven splatting, and
for ART using ray-driven splatting 80

6.1 Data structures of ART and TMA-ART and their pixel value ranges 92

6.2 Time performance of cone-beam TMA-ART for the different constituents
(tasks) of the program flow chart given in Figure 6.5 103

6.3 Runtimes per iteration for different enhancements of TMA-ART104

xv

LIST OF FIGURES

Figure Page

1.1 Dynamic Spatial Reconstructor (DSR) .. 2

1.2 Biplane C-arm X-ray scanner 4

1.3 Volumetric scanning geometries .. 6

1.4 Fourier Slice Theorem and Radon transform ... 7

1.5 Fan-beam geometric arrangement .. 8

1.6 Cone-beam source orbits .. 10

2.1 A beam bi due to rayri passes through projection imagePϕ 16

2.2 Interpolation of a ray sample valuesik ... 17

2.3 A ray ri at orientationϕ enters the kernel of voxelvj ... 18

2.4 Some interpolation filters in the spatial and in the frequency domain.................. 19

2.5 Interpolation of a discrete signal in the frequency domain 24

2.6 The ART algorithm .. 24

2.7 Kaczmarz’ iterative procedure for solving systems of linear equations 25

2.8 The SART algorithm .. 30

3.1 Projection order permutationτ for M=30 projections .. 34

3.2 Pseudo-code to illustrate insertion/removal of projections into/from
circular queueΘ and listΛ ... 35

xvi

3.3 Sampling patterns in projection access space .. 39

3.4 Reconstruction errors for Shepp-Logan phantom for the six projection
access schemes ... 41

3.5 Original 2D Shepp-Logan phantom ... 42

3.6 Reconstruction of the Shepp-Logan phantom after 3 iterations for the six
projection access schemes .. 43

4.1 Slices across the 3D Shepp-Logan brain phantom .. 46

4.2 The slices of Figure 4.1a reconstructed with traditional ART from
cone-beam projection data ... 47

4.3 Reconstruction of a solid sphere after one correction atϕ=0˚ was applied 48

4.4 Perspective projection for the 2D case ... 50

4.5 Frequency response and impulse response of the interpolation filterH’
and the combined filterHB 52

 4.6 Grid projection at different slice depths in the frequency domain 54

4.7 Backprojection at different slice depths in the frequency domain 57

4.8 Reconstruction with ART utilizing the new variable-width interpolation
kernels .. 58

4.9 Reconstructing a uniform discrete correction signalcs(z) into the
continuous signalc(z) with ART and SART using a linear interpolation
filter h ... 60

4.10 Reconstruction with SART 61

4.11 Correlation Coefficient (CC) and Background Coefficient of Variation
(CV) for ART and SART with constant and variable interpolation
kernel size for 3 regions of the Sheph-Logan phantom 63

4.12 Reconstructions of the 3D Shepp-Logan brain phantom for cone angles of
20˚, 40˚, and 60˚ with different ART and SART parameter seetings 65

4.13 Computing the perpendicular ray distance to estimate the accurate ray grid
sampling rate 67

xvii

4.14 Shape of the rayfront with constant ... 68

4.15 The relative error estretch when usingTr instead of for stretching the
kernel functions 68

5.1 Perspective voxel-driven splatting ... 72

5.2 Ray-driven splatting ... 74

5.3 Determining the local sampling rate of the arrangement of diverging rays 77

5.4 Error for different schemes of measuring the ray grid sampling rate 78

5.5 Errors from non-perpendicular traversal of footprint polygon 83

5.6 Errors from the non-perpendicular alignment of the footprint polygon 84

5.7 The angleϕc as a function of boundary voxel location on the reconstruction
circle ... 85

5.8 Maximum normalized absolute error that occurs due to non-perpendicular
alignment of the footprint polygons ... 86

6.1 Grid projection with TMA-ART... 88

6.2 Backprojection with TMA-ART... 89

6.3 Stages of vertex transformation ... 90

6.4 Texture mapping an image onto a polygon .. 91

6.5 Flow chart of TMA-ART.. 93

6.6 Rendering a full 12bit data word into a 12bit framebuffer 95

6.7 Rendering a 12bit data word using 2 color channels ... 95

6.8 Hardware implementation of the volume update ... 97

6.9 Memory access order for different projection anglesϕ .. 98

6.10 Voxels stored inx-y-z order .. 99

ωr
ˆ

Tr
ˆ

xviii

6.11 Voxels stored iny-x-z order ...100

6.12 Increasing the framebuffer resolution from 12 bit to 16 bit by adding up
two color channels, properly shifted 101

6.13 Accumulation framebuffer with 16 bit precision ..102

6.14 3D Shepp-Logan brain phantom reconstructed with both basic TMA-ART
and precision-enhanced TMA-ART...106

1

CHAPTER 1

INTRODUCTION

There is no doubt that G.N. Hounsfield’s invention of the Computed Tomography (CT)
scanner in 1972 has revolutionized diagnostic medicine. This invention has not only gained
Hounsfield the honors of British Knighthood and the Nobel Prize in Medicine in 1979, but
has also brought millions of dollars to the manufacturing company EMI, Ltd. and to others
that have licensed the patent. But most importantly, it has, for the first time, made it possi-
ble to visually inspect a person’s inside anatomy without the need for invasive surgery.
Hounsfield’s invention showed that it was principally feasible, based on a very large num-
ber of measurements, to reconstruct a cross-sectional slice of a patient with fairly high
accuracy. In the following years, the image quality of the slices improved drastically. Two
main reconstruction techniques emerged, which still exist up to this day: On one side there
is the domain of direct methods that capitalize on the Fourier Slice Theorem [4], while on
the other side lies the domain of iterative methods that seek to solve the reconstruction
problem by solving a system of simultaneous linear equations. The most prominent mem-
ber of the former group is the Filtered Backprojection (FBP) algorithm [5][50]. Here, the
reconstruction is achieved by filtering the projection images with a ramp filter in frequency
space, and then backprojecting the filtered projections onto a reconstruction grid. The first
and still most prevalent representative of the iterative methods is the Algebraic Reconstruc-
tion Technique (ART), attributed to Gordon et. al. [17]. Here, an object is reconstructed on
a discrete grid by a sequence of alternating grid projections and correction backprojections.
The projection measures how close the current state of the reconstructed object matches
one of the scanner projections, while in the backprojection step a corrective factor is dis-
tributed back onto the grid. Many such projection/backprojection operations are typically
needed to make the reconstructed object fit all projections in the acquired set, within a cer-
tain tolerance margin.

While two-dimensional (2D) slice-based CT has been in clinical use for many years, the
current trend is now to three-dimensional (3D) or volumetric CT, in which projection
acquisition is directly geared towards a 3D reconstruction of the object. This is in contrast
to 3D representations obtained with standard slice-based CT, in which a number of sepa-

2

rately acquired, thin axial slices are simply stacked on top of one another.

One of the remaining great challenges in CT (and also other imaging modalities, like Mag-
netic Spin Resonance (MRI)) is the 3D reconstruction of moving objects, such as the beat-
ing heart, along with the coronary vessels and valves, and the lungs. Although these organs
move in a cyclic fashion, they do so in slightly varying trajectories. Respiratory motion of
the patient also contributes to this spatial variation. By gating image acquisition with a
physiological signal, such as the ECG, one can tag the acquired images and associate them
with a particular time instance within the organ’s cycle. In this way, images of equal time
instances can be collected into a set and used for the 3D reconstruction of the object at that
particular time frame. One can so generate animated, four-dimensional (4D) reconstruc-
tions of the object, with the fourth dimension being time. However, the irregularity of the
cycle trajectory causes inconsistencies within the images of a time set, since these images
have not really been acquired at thesame time instance, but only atequivalenttime
instances, a few cycles apart. This registration error will manifest itself in the reconstruc-
tions as blurring and streaking.

The ultimate device to conduct this kind of dynamic imaging is the Dynamic Spatial
Reconstructor (DSR), built as early as 1983 at the Mayo Clinic by Richard Robb [53][54]
(shown in Figure 1.1). Here, 14 rotating 2D cameras with 240 scan lines each receive pho-
tons of 14 opposing X-ray point sources at a frequency of 1/60 seconds. Thus, if a recon-
struction algorithm requires, say 42 images, for faithful reconstruction, and the imaged
organ does not move much within this window of 4/60 seconds, then we can reconstruct
this organ without the multi-cycle motion artifacts mentioned above, at a temporal resolu-
tion of 4/60 seconds. There are, however, a few problems with the DSR: First, the scanner
is very expensive, due to the replicated X-ray tubes and detectors, the heavy machinery
required to rotate the gantry, and the electronics required to control image acquisition. Sec-
ond, the gantry rotates only 1.5˚ per 1/60 sec, which means that the images per time window
are not uniformly distributed in orientation angle. Hence, gated imaging is still necessary,
although over a much reduced number of heart cycles.

FIGURE 1.1: Dynamic Spatial Reconstructor (DSR) built in 1983 at Mayo Clinic, Rochester,
MN. (Image was obtained from http://everest.radiology.uiowa.edu/gallery/dsr.html).

3

At the time the DSR was developed, 3D reconstruction was still in its infancy and no true
3D reconstruction algorithm was available. In need of pioneering results, the DSR was
forced to employ a standard 2D reconstruction algorithm, originally designed to reconstruct
cross-sectional slices from fan-beam projection data. In an approach termed the stack-of-
fans method, the DSR simply treated each axial row of projection data as coming from a
rotating virtual 2D fan-beam source, located in the same plane. This approximation yielded
reasonable results, which was not surprising since the source-detector distance (i.e., the
gantry diameter) was quite large, reducing the subtended angle of the X-ray cone to a mere
4˚. Hence, the fans in the stack-of-fans were nearly parallel. A modern 3D scanner, how-
ever, would employ much larger cone angles for the following reasons:

• smaller scanner design,

• to increase the utilization of the radially emitted X-rays,

• better magnification,

• to expand the reach in the axial direction, and

• to accommodate larger detector arrays.

As a matter of fact, micro-tomography (e.g., used to investigate the progress of osteoporo-
sis in trabecular bone) uses cone-angles of up to 60˚. It should also be noted at this point
that the DSR has never been duplicated, and rumor has it that it is currently being disman-
tled for scrap.

If dynamic imaging is to be performed in a widespread clinical setting, it is probably more
economical to resort to imaging equipment that is readily available at hospitals, such as a
biplane C-arm X-ray scanner [11] (shown in Figure 1.2) or a standard CT-gantry with an
added 2D camera [47][48][60] (similar to the DSR, just with one camera instead of 14).
While the latter still requires modification of standard hospital equipment, however, at a
smaller cost than the DSR, the former is available ready-to-go in great abundance.

Just to illustrate the efficacy of the former solution, let me give an example: The gantry of
a standard biplane C-arm scanner rotates at maximal speeds of 10˚/s around the patient and
acquires images at 30 frames/s per camera. With the biplane setup, we only need a little
more than one quarter spin to cover the necessary angular range of about 220˚. Thus, with
an acquisition time of 11s, we obtain 660 images (with the two cameras). If we were to
image a patients heart, perfused with contrast dye, we would cover 11 patient heart beats
(assuming the heart rate is the standard 1bps) with this amount of image data. If we then
divided a heart beat into 15 time slots (like the DSR), we would have 44 images per time
slot, fairly uniformly distributed over the semi-circle. Although workable, this is not overly
generous, and we would need a reconstruction algorithm that can deal with this reduced
amount of projection data.

Finally, yet another possible application of CT that has come into the spotlight is intra-oper-
ative CT. Here, a patient undergoing a critical surgical procedure, such as a cerebral tumor
ablation or a soft biopsy, is repeatedly imaged to verify the current status of the surgery. In
contrast to intra-operative MRI, intra-operative CT does not require special non-magnetic
instruments or electro-magnetic shielding. It is also much faster in the image generation

4

process (and less expensive). However, it does object patient and personnel to radiation.
Hence, it is crucial to choose both a CT modality and a reconstruction algorithm that min-
imize the number of acquired images and the amount of radiation dose that is needed to
generate them.

This dissertation seeks to advance the field with these apparent challenges in mind. A pre-
liminary goal can be stated as follows:

Devise a reconstruction framework that can faithfully and efficiently
reconstruct a general volumetric object given a minimal number of
projections images acquired in an efficient manner.

In order to zero in on this preliminary goal, two main decisions had to be made:

• how are the object projections obtained, and

• what fundamental technique is used to reconstruct the object from these projections.

In both categories there are several alternatives to choose from. The next section will
expand on these alternatives and justify my choice — cone-beam acquisition with algebraic
reconstruction. Then, in the following section, I will present the scientific contributions of
this dissertation.

1.1 Methods for CT Data Acquisition and Reconstruction

This section discusses the currently available CT-based volumetric data acquisition meth-
ods and will also expand on the two main suites of reconstruction algorithms, i.e., FBP and
the algebraic techniques. The discussion concludes with the most favorable acquisition
method and reconstruction technique to fulfill the preliminary goal stated above. First, I
will enumerate the currently available volumetric CT imaging modalities.

1.1.1 Volumetric CT data acquisition techniques

For many years, the standard method of acquiring a volumetric CT scan has been by scan-

FIGURE 1.2: Biplane C-arm X-ray scanner.

5

ning a patient one slice at a time. In this method, a linear detector array and a X-ray point
source are mounted across from each other. A fan-shaped X-ray beam (such as the one
shown in Figure 1.3a) traverses the patient, and the attenuated fan is stored as a 1D linear
image. By spinning the source/detector pair around the patient, a series of linear images is
obtained which are subsequently used for 2D slice reconstruction. A volumetric represen-
tation is obtained by advancing the table on which the patient rests after every spin, acquir-
ing a stack of such slices. The problem with this approach is three-fold:

• Projection data covering patient regions between the thin slice sections is not avail-
able, which can be a problem if a tumor is located right between two slices.

• The stop-and-go table movement may cause patient displacement between subsequent
slice-scans, leading to slice-misalignment in the volume.

• A volumetric scan usually takes a long time, much longer than a single breath hold,
due to the setup time prior to each slice acquisition. This introduces respiratory motion
artifacts into the data, another source for data inconsistency.

The first two shortcomings have been eliminated with the recent introduction of the spiral
(or helical) CT scanning devices (see Figure 1.3a). Again, one works with a linear detector
array, but this time the patient table is translated continuously during the scan. Special
reconstruction algorithms have been designed to produce a volumetric reconstruction based
on the spiral projection data [9][27]. Although spiral CT is clearly a tremendous progress
for volumetric CT, some problems still remain:

• Respiratory patient motion may still cause inconsistencies in the data set. Although the
volumetric scans are obtained 5 to 8 times faster than with slice-based CT, they may
still take longer than a patient’s breath hold.

• The emitted X-rays that fan out in a cone-shape are still under-utilized, since there is
only one (or, in the more recent models, a few) linear detector array(s) that receive
them. Those rays that are not used for image formation and just die out in the periph-
ery unnecessarily contribute to the patient dose.

• 1D image data coming from the same gantry orientation, but from a different coil of
the helix, are not temporally related. This makes it difficult to set up a protocol for
gated imaging of moving physiological structures.

The final method leads us back to the old DSR, or better, its predecessor, the SSDSR (Sin-
gle Source DSR), which adhered to the cone-beam imaging paradigm (shown in Figure
1.3). In cone-beam CT, a whole 3D dataset is acquired within only one spin around the
patient. This provides for fast acquisition and better X-ray utilization, as this time a com-
plete 2D detector array receives the cone-shaped flux of rays. The circumstance that all
image data in a 2D image now originate from the same time instance enables easy gated
imaging, and also provides an opportunity to use image-based methods for 3D reconstruc-
tion.

Clearly, cone-beam CT had the most prospects of meeting the set preliminary goal.

6

1.1.2 Methods to reconstruct an object from its projections

In this section, I will discuss both FBP and algebraic methods in terms of their accuracy
and computational cost. I will also give a brief description of both methods.

1.1.2.1 Brief description and cost of algebraic methods

A short description of the workings of algebraic methods has already been given in the
beginning of this introduction. There, I mentioned that in algebraic methods an object is
reconstructed by a sequence of alternating grid projections and correction backprojections.
These projections and backprojections are executed for allM images in the acquired set,
and possibly for many iterationsI. Hence, the complexity of algebraic methods is mainly
defined by the effort needed for grid projection and backprojection, multiplied by the num-
ber of iterations. Since the effort for projection and backprojection is similar, we can write
the cost of algebraic methods as:

(1.1)

We will see the reasoning behind the second form of this equation later. For now, consider
aAlg=1.

(a) (b)

FIGURE 1.3: Volumetric scanning geometries. (a) Spiral (helical) scan: the source and a 1D
detector array are mounted opposite to each other and rotate in a spiral fashion many times
around the patient. (b) Cone-beam scan: the source and a 2D detector array are mounted oppo-
site to each other and rotate around the patient once.

Cost Algebraic() 2 I M Cost Projection()⋅ ⋅ ⋅=

2 a⋅ Alg I M Cost Projection()⋅ ⋅ ⋅=

7

1.1.2.2 Description and cost of Filtered Backprojection

The Filtered Backprojection approach is a direct method and capitalizes on the Fourier
Slice Theorem [4] and the Radon transform [30] (see Figure 1.4). The Radon transform of
a 2D functionf(x,y) is the line integral

(1.2)

Thus a value at location s in a projection image gθ(s) is given by integrating the object along
a line perpendicular to the image plane oriented at angleθ. The Fourier Slice Theorem then
states that the Fourier Transform (FT) of this projection image gθ(s) is a lineGθ(ρ) in the
frequency domain, oriented at angleθ and passing through the origin.

Obtaining a number of projections at uniformly spaced orientations and Fourier transform-
ing them yields a polar grid of slices in the frequency domain (shown as the dashed lines
in Figure 1.4b). However, we cannot simply interpolate this polar grid into a cartesian grid
and then perform an inverse Fourier transform to reconstruct the object, as is explained as
follows. The 2D inverse FT (IFT)f(x,y) of a signalF(u,v) is given by:

(1.3)

gθ s() f x y,() δ x θcos y θsin s–+() xd yd∫∫=

θ

x

y

gϕ(s)

s

u

v
Gθ(ρ)

(a) Spatial domain (b) Frequency domain

FIGURE 1.4: Fourier Slice Theorem and Radon transform

s

f(x,y F(u,v)

f x y,() F u v,() i2π ux vy+()[]exp ud vd∫∫=

θ F ρ θ,() i2πρ x θcos y θsin+()[] ρexp ρd

0

∞

∫d

0

2π

∫=

θ G ρ θ,() i2πρ x θcos y θsin+()[] ρexp ρd

∞–

∞

∫d

0

2π

∫=

8

The first representation is the cartesian form, the second and third is the polar form. The
last from of the equation states that an object given byf(x,y) can be reconstructed by scaling
the polar slicesGθ(ρ) by |ρ|, performing a 1D IFT on them (inner integral), and finally
backprojecting (=”smearing”) them onto the grid (outer integral). Thus we need 2 1D FT’s,
the multiplications with |ρ|, and the backprojection step. Alternatively, one can convolve
the gθ(R) by the IFT of |ρ| and backproject that onto the grid. Note, that the IFT of |ρ| does
not exist, but approximations (using largesinc-type filters) usually suffice. The former
method is referred to as Filtered Backprojection (FBP), the latter as Convolution Back-
projection (CBP).

So far, the discussion was restricted to the 2D parallel beam case. However, as was men-
tioned in the previous section, modern slice-based CT scanners use the fan-beam approach,
in which a point source with opposing 1D detector array are both mounted onto a rotating
gantry. The (still experimental) cone-beam scanners extend the 1D linear detector array to
a 2D detector matrix.

The good news is that the FBP and CBP algorithms can still be used, but with certain alter-
ations, and, in the case of cone-beam, with certain restrictions. The diverging-beam case
can be converted into the parallel-beam case by transforming the projection data as follows
(see Figure 1.5).

First, one must movegϕ(s) to the origin, scaling the projection coordinates bys=s’(d/d’).
Then, we must adjust the projection values for the path length difference due to the diverg-
ing beams by multiplying each by the term . In the case of cone-beam, we
just need to consider thet coordinate as well. After the data adjustment is performed, we

y

x

s’

d’d

central ray

gθ(s’)

θ

FIGURE 1.5: Fan-beam geometric arrangement

d d
2

s
2

+

⁄

9

filter by |ρ| as usual. Due to the diverging beam geometry, the backprojection is not simply
a smearing action, but must be performed as a weighted backprojection. In the following
discussion, consider the 3D cone-beam case which is the most general. Even though back-
projection is done in a cartesian coordinate system, our data are still in a projective coordi-
nate system, spanned by the image coordinatess, t and the ray coordinate r, given by the
projected length of the ray onto the central ray, normalized byd. The mapping of this pro-
jective coordinate system (s,t,r) to (x,y,z) is (rs,rt,r). This gives rise to the volumetric dif-
ferential dx·dy·dz=r2ds·dt·dr. Thus, when backprojecting the projective data onto the
cartesian grid, we must weight the contribution by 1/r2. The weighted backprojection inte-
gral is then written as:

(1.4)

In the fan-beam case, given a sufficient number of projection images (see below), an object
can be reconstructed with good accuracy. The cone-beam case is, however, more difficult.
Here, certain criteria with respect to the orbit of the source detector pair have to be
observed. A fundamental rule for faithful cone-beam reconstruction was formulated by Tuy
and can be stated as follows:

Tuy’s Data Sufficiency Condition: For every plane that intersects the object, there
must exist at least one cone-beam source point [64].

If this condition is not warranted, certain parts of the object will be suppressed or appear
faded or blurred. Rizo et.al. give a good explanation for this behavior [52]. Tuy’s condition
is clearly not satisfied by a single circular-orbit data acquisition (shown in Figure 1.6a). A
possible remedy to this problem is to use two orthogonal circular orbits (one about thez-
axis and one about thex-axis, for example) and merge the two projection sets. Note, how-
ever, that this is not always feasible. Another way of satisfying the source-orbit criterion is
to scan the object in a circular orbit as usual, but supplement this scan by a vertical scan
without orbital motion. This acquisition path was advocated by Zeng and Gullberg [70] and
is shown in Figure 1.6b. Other trajectories have also been proposed, such as a helical scan
[65] or a circular orbit with a sinusoidal variation.

Prior to a cone-beam reconstruction with the modified parallel-beam reconstruction algo-
rithm described above, we must filter the projection images in the Fourier domain (or alter-
natively, convolve them in the spatial domain). If we choose to filter in the Fourier domain,
we must transform and inversely transform the projection data. This is most efficiently
done with a 2D FFT (Fast Fourier Transform) algorithm. The 2D FFT has a complexity of
O(n2·log(n)), wheren2 is the number of pixels in a projection image. FilteringGθ(ρ) with
a ramp filter has a complexity ofO(n2). Thus the resulting actual cost for the entire filtering
operation (2 FFTs and the pixel-wise multiplication by |ρ|) is somewhat lower than the cost
for a projection operation (which has a complexity ofO(n3)). However, a precise statement
cannot be made, since we do not exactly know the constants involved in theO-notation. For
now, we write the cost for FBP as:

f x y z, ,() 1

r
2

----g s t θ, ,() θd

0

π

∫=

10

(1.5)

Here,aFBP is a factor less than 1.0. It reflects the fact that filtering is probably less expen-
sive than grid projection.

1.1.3 Preliminary comparison of FBP and algebraic methods in terms of
cost

Using equations (1.1) and (1.5), we can compare FBP and algebraic reconstruction in terms
of their computational costs:

(1.6)

Clearly, if MAlg=MFBP andaAlg=1, algebraic methods are bound to be much slower than
FBP, even whenI=1. However, I have distinguishedMAlg andMFBP for a reason. As was
shown by Guan and Gordon in [19], theoreticallyMAlg<MFBP, or to be more precise,
MAlg=MFBP/2. In addition, one could imagine that some of the calculations done for grid
projection could be reused for the subsequent grid backprojections. This would render
aAlg<1. Taking all this into account, we may be able to afford a number of iterationsI>1,
and still be competitive with FBP. In this respect, things don’t look all that bad for the alge-
braic methods from the standpoint of computational cost.

FIGURE 1.6: Cone-beam source orbits: (a) single circular orbit, (b) circle-and-line orbit

(a) (b)

Cost FBP() M Cost Projection() Cost Filtering()+()⋅=

1 aFBP+() M Cost Projection()⋅ ⋅=

Cost Algebraic()
Cost FBP()

2 aAlg I⋅ MAlg⋅ ⋅
1 aFBP+() MFBP⋅

--=

11

1.1.4 Comparison of FBP and algebraic methods in terms of quality

Let me now consider the two methods in terms of their reconstruction quality. In clinical,
slice-based CT, FBP is nowadays exclusively used. This due to the computational advan-
tages that I have outlined in the previous paragraphs. Note, however, that clinical CT scan-
ners usually acquire more than 500 line projections per slice, which approximates the
continuous form of the inverse Radon integral rather well. The true power of algebraic
methods is revealed in cases where one does not have a large set of projections available,
when the projections are not distributed uniformly in angle, when the projections are sparse
or missing at certain orientations, or when one wants to model some of the photon scatter-
ing artifacts in the reconstruction procedure [1][30][36]. Noise as present in many clinical
CT datasets is also better handled by algebraic methods [30], a fact that has been discovered
by researchers in PET (Positron Emission Tomography) and SPECT (Single Photon Emis-
sion Computed Tomography) imaging as well [35][55]. Finally, algebraic methods allow
a-priory constraints to be applied onto the shape or density of the reconstructed object,
before and during the reconstruction process. In this way, the reconstruction can be influ-
enced and guided to produce an object of better contrast and delineation than it would have
without such intervention [60].

While 2D fan-beam tomographic reconstruction has been routinely used for over two
decades, 3D cone-beam reconstruction is still in the research stage. As yet, there are no clin-
ical cone-beam scanners, however, there are a number of experimental setups at academic
institutions [11][47][48][60] and corporate labs (Hitachi, GE, Siemens, and Elscint). A
variety of cone-beam algorithms based on FBP have also been proposed. The most notable
ones are Feldkamp, Davis, and Kress [12], Grangeat [15], and Smith [59], all published in
the mid and late 1980s. While the research on general 2D algebraic methods
[17][19][23][25] and 2D fan-beam algebraic methods [22][36] is numerous, the published
literature on 3D reconstructors using algebraic algorithms is rather sparse. One exception
is the work by Matej et. al. [35], whose studies in the field of fully-3D reconstruction of
noisy PET data indicate that ART, produces quantitatively better reconstruction results
than the more popular FBP and MLE (Maximum Likelihood Estimation) methods. In this
case, however, not a cone-beam reconstructor was used, but the projection rays were re-
binned which simplified ART to the parallel-beam case. Another group of researchers has
successfully applied ART for SPECT data [55] not long ago. Again, no cone-beam recon-
struction was performed, rather, the data were rebinned for parallel-beam reconstruction.

However, the most popular use of 3D cone-beam ART is in 3D computed angiography. As
was already touched on in a previous section of this introduction, in computed angiography
one acquires images of blood-perfused structures injected with radio-opaque dye while
rotating the cone-beam X-ray source-detector pair around the patient. For toxicity reasons,
the dye injection time is limited and thus the number of projections that can be acquired is
restricted as well. Computed angiography is a prime candidate for ART, as its projection
data feature many of the insufficiencies that were noted above as being better handled by
ART (as opposed to FBP): Only a limited amount of projection data is available, the pro-
jections are not necessarily taken at equi-distant angles, and the projections are usually

12

noisy. In addition, one can often improve the appearance and detail of the reconstructed
vessels by isolating the vessels from the background after a couple of iterations, and just
use these segmented volume regions in the remaining iterations [60]. For example, Ning
and Rooker [47] and Saint-Felix et. al. [60] all use ART-type methods to 3D reconstruct
vascular trees in the head and abdominal regions. One should keep in mind, however, that
the objects reconstructed in 3D computed angiography are of rather high contrast, which
poses the reconstruction problem as almost a binary one. To a lesser degree, this is also true
for PET and SPECT reconstructions.

It were the promising reported qualitative advantages of algebraic methods in the limited
projection data case, its better noise tolerance, and the lack of any fundamental research on
algebraic methods in the up-and-coming field of general, low-contrast cone-beam recon-
struction, that led me to dedicate this dissertational research to the advancement of alge-
braic methods in this setting. In the following, I shall give an outlook on the several
scientific contributions that were achieved in the course of this endeavour.

1.2 Contributions of this Dissertation

In this dissertation, I have undertaken and accomplished the task of advancing the current
state of the “ART” to a more general arena than high-contrast computed angiography. I
have conceived algorithms that produce accurate 3D reconstructions for cone angles as
wide as 60˚ and object contrasts as low as 0.5%. This just about covers the range of all cone-
beam reconstruction tasks, in-vivo and in-vitro, from clinical CT to micro-tomography of
biological specimen.

However, having designed a highly accurate reconstruction algorithm is only half of the
story. In order to make it applicable in a clinical setting, it is also important that this algo-
rithm produces its results in a reasonable amount of time. When this dissertation work was
begun, algebraic methods were nowhere near this premise. As indicated by equation (1.6),
algebraic methods have two main variables that can be attacked for this purpose:

• the number of iterations needed to converge to a solution that fits a certain conver-
gence criterion, and

• the complexity of the projection/backprojection operations.

This dissertation provides solutions that seek to minimize both of these crucial variables,
without sacrificing reconstruction quality.

Finally, with a growing number of graphics workstations being introduced in hospitals for
visualization purposes, the idea is not far-fetched to use these same workstations also for
3D reconstruction of these datasets. This would lead to a better utilization of these work-
stations, and would certainly be a more economical solution than to build or purchase spe-
cial reconstruction hardware boards. Since algebraic reconstruction mostly consists of
projection/backprojection operations, a task at which these workstations are really good at,
one can expect great computational speedups when porting algebraic algorithms to utilize
this hardware. The final chapter of this dissertation will report on such an attempt, which

13

led to a speedup of over 75 compared to the software implementation, at only little decline
in reconstruction quality.

Hence, the final goal of this dissertation can be defined as follows:

Extend the existing theory of algebraic methods into the previously
unexplored domain of general, low-contrast cone-beam reconstruction.
Devise techniques that provide reconstructions of high quality at low
computational effort, with the ultimate aim of making ART an efficient
choice for routine clinical use.

We shall see, in the subsequent sections, how this goal was accomplished.

14

CHAPTER 2

ALGEBRAIC METHODS:
BACKGROUND

In this chapter, the principles of algebraic methods will be described. First, I will discuss
the Algebraic Reconstruction Technique (ART) [17], which is the oldest method of this
kind. Then I will turn to a related method, Simultaneous ART (SART), developed later by
Anderson and Kak [2] as a means to suppress noise in the reconstructions. Although this
dissertation will be confined to these two variants of algebraic methods, others exist that
will be briefly discussed in the final section of this chapter.

2.1 The Algebraic Reconstruction Technique (ART)

The Algebraic Reconstruction Technique (ART) was proposed by Gordon, Bender, and
Herman in [17] as a method for the reconstruction of three-dimensional objects from elec-
tron-microscopic scans and X-ray photography. This seminal work was a major break-
through, as the Fourier methods that existed in those days were highly limited in the scope
of objects that they were able to reconstruct, and, in addition, were also rather wasteful in
terms of their computational requirements. It is generally believed that it was ART that
Hounsfield used in his first generation of CT scanners. However, as we also know, the Fou-
rier methods matured quickly and captured ART’s territory soon after.

Let me now describe the theory of ART as relevant for this dissertation. Although ART, in
its original form, was proposed to reconstruct 3D objects, it represented them as a stack of
separately reconstructed 2D slices, in a parallel beam geometry. For the remaining discus-
sion, I will extend the original 2D notation into 3D, which is more convenient considering
the scope of this dissertation. The extension is trivial, and can always be reduced to the 2D
case.

15

2.1.1 ART as a system of linear equations

ART can be written as a linear algebra problem:WV=P. Here,V is the unknown (N×1) col-
umn vector storing the values of allN=n3 volume elements orvoxels in then × n× n recon-
struction grid.P is the (R×1) column vector, composed of theR=M·Rm values of the pixels
pi in the combined set of allM projection imagesPϕ of Rm picture elements orpixels each,
where thePϕ are the images obtained from the imaging device at anglesϕ of the X-ray
detector plane (see Figure 2.1). Finally,W is the (R×N) weight (or coefficient) matrix in
which an elementwij represents a measure of the influence that voxelvj has on the rayri
passing through pixelpi. We can writeWV=P in an expanded form as a system of linear
equations:

(2.1)

It is clear that the weight coefficients bear a crucial role in the solution of this equation sys-
tem. They are the elements that link the unknown voxel values to the known pixel values.
For the solution to be accurate, each weightwij must accurately represent the influence of
a voxel vj on a rayri passing through pixelpi. The first ART incarnation by Gordon,
Bender, and Herman [17] represented a voxel grid by a raster of squares (see Figure 2.1).
A weightwij was set to 1 if a rayri passed through the square of voxelvj and was set to 0
otherwise. Later, Shepp and Logan [61] computed the actual area of intersection of the ray
beam that is bounded by the rays emanated from the pixel boundaries on the image plane.
It is this approach that is shown in Figure 2.1. In many current ART implementations the
ray beam is reduced back to a thin linear rayri. However, this time a coefficientwij is deter-
mined by the length ofri in voxelvj. Herman et. al. have shown in their software package
SNARK [24], that the calculation of thewij alongri requires only a few additions per voxel
and can be done very efficiently using an incremental Digital Differential Analyzer (DDA)
algorithm (see [13]). All these implementations represent a voxel by a square (or a cubic
box in 3D), which is a rather crude approximation, according to well-known principles of
sampling theory [49]. The following section will expand on this issue and conclude with a
voxel basis that is more appropriate than the box.

2.1.2 Choosing a good voxel basis

Consider again Figure 2.1. Here, we see that, although the originally imaged object was
continuous, i.e., each point in space had a defined density value, the reconstruction only
yields a discrete approximation of this object on a discrete raster. However, in contrast to
the representation of Figure 2.1, this raster does not consist of equi-valued tiles, which
would mean that the reconstructed object is a granulated representation of itself. Rather, it
is a raster of lines in which the known values, or grid samples, are only explicitly given at

w11v1 w12v2 w13v3 … w1NvN+ + + + p1=

w21v1 w22v2 w23v3 … w2NvN+ + + + p2=

…
wM1v1 wM2v2 vM3 … wMNvN+ + + + pM=

16

the intersection of the raster lines, also called grid points. Object values at volume locations
other than the grid points can be obtained by a process calledinterpolation. Hence, a con-
tinuous description of the object could (theoretically) be reconstructed by performing these
interpolations everywhere in the volume. To see what is meant by interpolation, consider
Figure 2.2. Here, a rayri is cast into the volume and samples the volume at equidistant
points. Since not every point coincides with a grid point, a weighting function, represented
by the interpolation kernelh(u,v), is centered at each sample point. The surrounding grid
points that fall within the interpolation kernel’s extent are integrated, properly weighted by
the interpolation kernel function (here a simple bilinear function). Figure 2.2 shows how a
sample valuesik at a ray sample position(X(sik),Y(sik)) is calculated from the neighboring
voxels.

The valuesik is given by:

(2.2)

The entire ray sum for pixelpi is then given by the sum of allsik along the rayri:

(2.3)

FIGURE 2.1: A beambi due to rayri passes through projection imagePϕ at pixelpi and sub-
tends a voxelvj. In early propositions of ART, a voxelvj was a block (square or cube) of uni-
form density. A weight factorwij was computed as the subtended area normalized by the total
voxel area.

v1

vN

v2

vj

wij
Area
Area
------------=

pi-1

pi

pi+1

Pϕ=70˚

ri-1

ri

ri+1

 bi-1

 bi

 bi+1

sik h X sik() X vj() Y sik() Y vj()–,–() vj⋅
j

∑=

pi h X sik() X vj() Y sik() Y vj()–,–() vj⋅
j

∑
k
∑=

17

This ray sum is a discrete approximation of the ray integral:

(2.4)

We can reorder this equation into:

(2.5)

This is shown in Figure 2.3. We see the similarity to the equations in (2.1). Here, a pixel
was given by:

(2.6)

Hence, the weights are given by the integrals of the interpolation kernel along the ray:

(2.7)

h(u,v)

x

y

ri

ri-1

ri+1

pi-1
pi

pi+1

Pϕ

FIGURE 2.2: Interpolation of a ray sample valuesik located at(X(sik),Y(sik)) in the reconstruc-
tion grid. All those discrete reconstruction grid pointsvj that fall into the extent of interpola-
tion kernelh(u,v) centered at(X(sik),Y(sik)) are properly weighted by the interpolation kernel
function at(X(sik)-X(vj),Y(sik)-Y(vj) and summed to form the value of samplesik of rayri.

sik h X sik() X vj() Y sik() Y vj()–,–() vj⋅
j

∑=

u

v

vj

v1 v2

vN

sk

ϕ

pi h X si() X vj() Y si() Y vj()–,–() vj⋅
j

∑
 sid∫=

pi vj h X si() X vj() Y si() Y vj()–,–() sid∫⋅
j

∑=

pi vj wij⋅
k
∑=

wij h X si() X vj() Y si() Y vj()–,–() sid∫=

18

Obviously, the better the interpolation kernel, the better the interpolation, and the more
accurate the weight factor. Figure 2.4 shows some popular interpolation kernels, both in the
spatial (Figure 2.4a) and in the frequency domain (Figure 2.4b). (We will return to these
plots in a few paragraphs.) The frequency plot tells us how good a filter is. Generally, when
reconstructing a function from discrete samples, we want the filter to have a high amplitude
for frequencies < 0.5/Tg and a low amplitude for frequencies > 0.5/Tg, where 1/Tg is the
grid sampling rate. We want that because discrete functions have their spectra replicated as
aliases at multiples of 1/Tg, and reconstructing with an interpolation filter means multiply-
ing the discrete signal’s frequency spectrum with the spectrum of the filter.

To clarify these statements, let me analyze the interpolation process a little more in detail.
The interpolation of a sample value at any location in a discrete grid can be decomposed as
follows:

• Reconstruction of the continuous functionf from the discrete grid functionfs by con-
volving f with the interpolation filterh.

• Resampling of the reconstructed continuous function f at the sample’s location
(X(sik),Y(sik)).

Consider now Figure 2.5a. Here, we see the frequency spectrum of the discrete grid signal,
Fs. The spectrum has a main lobe centered atf=0, and aliases, replicated at a frequency of
1/Tg. When reconstructingf from fs, we want to recover just the main lobe and none of the
aliases. However, real-life interpolation filters will always include some of the aliases into

vj

h(u,v)

ri

x

y

ϕ

FIGURE 2.3: A rayri at orientationϕ enters the kernel of voxelvj and integrates it along its
path.

vj h X si() X vj() Y si() Y vj()–,–() sid∫⋅

19

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Frequency

R
el

at
iv

e
po

w
er

 (
dB

)

Box
Bilinear
Gaussian
Sinc
Bessel−Kaiser

−3 −2 −1 0 1 2 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

A
m

pl
itu

de

Box
Bilinear
Gaussian
Sinc
Bessel−Kaiser

(a)

(b)

FIGURE 2.4: Some interpolation filters: (a) spatial plots, (b) frequency plots.

r

Frequency·Tg

20

-1/Tg 1/Tg

1/Tg-1/Tg

1/Tg
-1/Tg

0

0

0

f

f

f

(a)

(b)

(c)

FIGURE 2.5: Interpolation of a discrete signal (solid line), frequency domain: (a) Spectrum of
the original discrete signal,Fs, replicas (aliases) of the signal spectrum are located at multiples
of 1/Tg. (b) Multiplication with the spectrum of the (non-ideal) interpolation filterH. (c)
Resulting frequency spectrumF of the interpolated signal. Note that some of the signal’s
aliases survived due to the imperfect interpolation filter. (d) Re-sampled interpolated signal.
The aliases in the signal replicas in the sidelobes show up in the main lobe. The composite sig-
nal is irrecoverably distorted.

filter spectrumH

1/Tg
-1/Tg 0 f

(d)

21

the reconstructed function. Let me now illustrate what the decomposition of the interpola-
tion process in the spatial domain, as shown above, translates to in the frequency domain:

• Reconstruction off from fs is equivalent to the multiplication of the discrete signals’s
spectrumFs with the spectrum of the interpolation filter,H. This process is shown in
Figure 2.5b. Note the remaining (attenuated) signal aliases inF, shown in Figure 2.5c.
These aliases have disturbing effects (such as ghosts and false edges) inf. (This form
of aliasing is calledpost-aliasing).

• Resampling off is equivalent to replicating the reconstructed spectrumF at a fre-
quency 1/Tg. Note, in Figure 2.5d, that the attenuated signal aliases that survived the
reconstruction process now reach into neighboring lobes in the new discrete signal.
Thus, the re-sampled discrete signal has irrecoverable artifacts (calledpre-aliasing).

A far more detailed description of this process is given in [69]. Now, as we know more
about the effect of a good interpolation filter, let me return to Figure 2.4. Here, we see a
few interpolation filters, both in the spatial domain and in the frequency domain. The ideal
interpolation filter is thesinc filter, as its box-shape in the frequency domain blocks off all
signal aliases. The sinc filter passes all frequencies < 0.5·1/Tg (thepassband) unattenuated,
and it totally blocks off all frequencies > 0.5·1/Tg (thestopband). The sinc filter, however,
has an infinite extent in the spatial domain, and is therefore impractical to use. On the other
extreme is the box filter. It has an extent of 0.5 in the spatial domain, and has the worst
performance in blocking off signal aliases in the stopband. It is that boxfilter that is used
by the ART implementations mentioned before. We now easily recognize that this filter,
although very efficient due to its small spatial extent, is probably not the best choice for
reconstruction. Figure 2.4 also shows the frequency spectra and spatial waveforms of the
bilinear filter, a Gaussian filter 2^(-4·r2), and a Bessel-Kaiser filter. The last two filters have
a spatial extent of 4.0 and are also radially symmetric in higher dimensions. This will prove
to be an advantage later.

The family of Bessel-Kaiser functions were investigated for higher dimensions by Lewitt
in [32] and used (by the same author) for ART in [31] and [33]. The Bessel-Kaiser func-
tions have several nice characteristics:

• They are tunable to assume many spatial shapes and frequency spectra. Consider again
the frequency plots in Figure 2.4b. We observe that the spectrum of the Bessel-Kaiser
function has a main-lobe that falls off to zero at the grid sampling frequencyω=1/Tg,
and returns with many fast decaying side-lobes. The tuning parameters control the
placement of the zero-minima between the mainlobe and the sidelobes. They also con-
trol the rate of decay. Since the signal’s first sidelobe is at maximum at a frequency
ω=1/Tg,we would want to place the zero-minimum of the filter’s spectrum at that loca-
tion for best anti-aliasing effects. The circumstance that the filter decays fast in the
stopband suppresses all of the signal’s higher-order sidelobes to insignificance.

• Another characteristic of the Bessel-Kaiser function is that they have, in contrast to the
Gaussian function, a finite spatial extent (here a radius of 2.0). Truncation effects, that
possibly appear with a necessarily truncated Gaussian, are thus avoided.

22

• Finally, the Bessel-Kaiser function has a closed-form solution for the ray integration.

Due to Lewitt’s convincing arguments, and also due to a very efficient implementation
(described later), I have solely used Bessel-Kaiser functions as the voxel basis in the dis-
sertational research presented here. However, it should be noted that other voxel bases have
also been used in the past: Andersen and Kak represented a voxel by a bilinear kernel [2],
and I (in [44]) chose a Gaussian kernel in the early days of this research.

For convenience and completeness, I shall repeat some of the results derived in [32] for the
Bessel-Kaiser function in higher dimensions. First, the generalized Bessel-Kaiser function
is defined in the spatial domain as follows:

(2.8)

Here,a determines the extent of the function (chosen to be 2.0), and α is the taper parameter
that determines the trade-off between the width of the main lobe and the amplitude of the
side lobes in the Fourier transform of the function. (Whenα=0, we get the box function of
width 2a.) The functionIm() is the modified Bessel function of the first kind and orderm.
We setm=2 to get a continuous derivative at the kernel border and everywhere else in the
kernel’s extent.

The corresponding Fourier transform is given as:

(2.9)

Here,n is the dimension of the function to be reconstructed. If we reconstruct 2D slices,
n=2, for volumetric 3D reconstructionn=3. The functionJn/2+m() is the Bessel function of
the first kind and ordern/2+m. We see that, depending onn, different values ofα are nec-
essary to place the zero-minimum between the filter’s mainlobe and its first sidelobe at
ω=1/Tg. We can calculate that for a 2D kernelα=10.80, and for a 3D kernelα=10.40.

Finally, the Abel transformpm(r) (i.e., the X-ray projection) of the generalized Bessel-Kai-
ser functionb(m, α)(r) can be shown to be proportional tob(m + 1/2,α)(r):

(2.10)

b
m

r()
1 r a⁄() 2

–
 m

Im α 1 r a⁄() 2
–

Im α()
---= 0 r a≤ ≤

b
m

r() 0= otherwise

Bn
m ω()

2π() n 2⁄
a

nαm
In 2⁄ m+ α2

2πaω() 2
–

Im α() α2
2πaω() 2

–
 n 2⁄ m+

--= 2πaω α≤

Bn
m ω()

2π() n 2⁄
a

nαm
Jn 2⁄ m+ 2πaω() 2 α2

–

Im α() 2πaω() 2 α2
–

 n 2⁄ m+
---= 2πaω α≥

p
m

r() a 2π α⁄
Im α()

---------------------- 1 r a⁄() 2
–

 m 1 2⁄+
Im 1 2⁄+ α 1 r a⁄() 2

–

=

23

2.1.3 The Kaczmarz method for solving the system of linear equations

 Let me now return to equation system (2.1) and see how it can be solved. The first problem
is that we cannot assume thatR=N, actually in most applicationsR≠N. In some cases we
can enforceR=N by adding interpolated subpixels in the projection images or by adding
projections. But nevertheless, the enormous size ofW prohibits the use of matrix inversion
methods to solveWV=P for V. WhenR>N, least squares methods could be applied, but this
also proves to be computationally impractical ifN is large. In the most common case, where
N>R, many solutions exist that satisfyWV=P. It is the goal of ART to find that solution that
represents the closest approximation to the object function from which the projection
images were obtained.

Setting aside the issue that in most casesR≠N, it turns out that usually noise and sampling
errors in the ART implementation do not provide for a consistent equation system anyhow.
Thus, Gordon, Bender, and Herman [17] selected an iterative scheme proposed by Kacz-
marz [29] as early as 1937 to solve the equation system. In this procedure, one starts from
an initial guess for the volume vector,V=V(0), and selects at each iteration stepk, k>0, one
of the equations in (2.1), say the one forpi. A valuepi

(k) is measured which is the value of
pixel i computed using the voxel values as provided by the present state of the vector
V=V(k). A factor related to the difference ofpi

(k) andpi is then distributed back ontoV(k)

which generatesV(k+1) such that if a pi
(k+1) were computed fromV(k+1), it would be closer

to pi thanpi
(k). Thus, we can divide each grid update into three phases: a projection step, a

correction factor computation, and a backprojection step.

The correction process for one element ofV, i.e.vj, can be expressed by:

(2.11)

whereλ is therelaxation factor typically chosen within the interval (0.0,1.0], but usually
much less than 1.0 to dampen correction overshoot. This procedure is performed for all
equations in (2.1). After all equations have been processed, in some order, and the grid has
not converged to a solution fitting some convergence criterion, the just described procedure
is repeated for another iteration, and so on. See also Figure 2.6 for a detailed illustration of
the ART algorithm.

Figure 2.7 shows a geometric illustration of the Kaczmarz algorithm, solving a system of
two linear equations. The axes represent the two unknownsv1 andv2, while the lines rep-
resent the two equations (the slopes are given by the weight factors). The solution is the
intersection of the two lines. One starts with an initial guessV(0). It can be shown that aV
correction is equivalent to dropping a line perpendicular to the line representing the
selected equation, starting at the current state ofVk, and intersecting this line with the line

vj
k 1+()

vj
k() λ

pi winvn
k

n 1=

N

∑–

win
2

n 1=

N

∑
-----------------------------------wij+=

24

pi

vj wij

P45˚

P0˚
P90˚

vj
k 1+()

vj
k()

λ

pi winvn
k

n 1=

N

∑–

win
2

n 1=

N

∑
--- wij+=

Algorithm

Initialize volume
Until convergence
 Select a pixelpi from one of the scanner projectionsPϕ
 Projection: Compute line integral throughpi

 Correction factor: Subtract line integral from the value ofpi
 Backprojection: Distribute correction onto grid

Equation

Projection

FIGURE 2.6: The ART algorithm. The colors in the equation refer to the corresponding high-
lighting colors in the algorithm.

25

representing the selected equation. This intersection point represents the new state of the
vectorV, Vk+1. We then select a new equation and perform this procedure again. It is obvi-
ous that this procedure will converge faster the more orthogonal the lines (i.e., the equa-
tions) are. While orthogonalization using the Gram-Schmidt procedure is computationally
not feasible, attempts exist to pairwise orthogonalize the equation system [51]. These
attempts, however, have not become popular. A way to achieve anapproximate pairwise
orthogonalization is to carefully plan the order in which the equations are applied. It is
desirable that subsequently applied equations are as orthogonal as possible. In this manner,
one can reach the solution point faster. Chapter 3 of this dissertation will elaborate more on
this issue. For more than two unknowns, the equations become hyperplanes. Note, how-
ever, that once there are more then two equations, the lines (hyperplanes) may not intersect
at one single point. This could be due to noise in the projections (i.e., equations) or inaccu-
rate estimation of the weight factors. In this case, many (approximate) solutions exist, and
the relaxation factorλ, the initial guess, and the equation ordering potentially all have a
great effect on which solution of the many approximate solutions ART will come closest
to.

As was hinted on in the previous paragraph, the initial guessV(0), the order in which the
equations are chosen in corrective process, and the accuracy of the weight factorswij all
have a significant impact on what solutionV(s) the vectorV converges to. It was proven by
Tanabe [63] that the Kaczmarz approach will generally converge to a vectorV(s) such that
|V(0) - V(s)| is minimized. However, I have found that, in practice, the initial guess is not so

V0

v1

v2

w11v1 +w12v2 = p1

w21v1 +w22v2 = p2

FIGURE 2.7: Kaczmarz’ iterative procedure for solving systems of linear equations. This
example solves 2 equations for 2 unknowns,v1 andv2. Each equation is represented by a line.
The solution is the intersection of the two lines. To find the solution point, one starts with an
initial guess, selects one of the equation lines, and drops a line perpendicular to it, starting at
the initial guess. The intersection point then becomes the new guess. The procedure is contin-
ued until the solution point is reached, or one gets sufficiently close to it. In higher dimensions,
the lines become hyperplanes.

26

important. It is more the accuracy of the weights, the magnitude of the relaxation factorλ,
and the order in which equations are selected, that play a large role both in speed of con-
vergence and in the quality of the reconstruction that is converged to. I will expand on all
these topics in the subsequent chapters of this dissertation.

2.1.4 Efficient grid projection

The sum terms in the nominator and denominator of equation (2.11) require us to compute
the integration of a ray across the volume. However, we do not need to compute the ray
integrals via the slow process of raycasting. As we have already seen in Section 2.1.2, a
voxel weight factor corresponds to the integration of the ray across the interpolation kernel
function. So all we really need to do is to accumulate the individual kernel contributions
for a given ray (squared, in the denominator of equation (2.11), or scaled by the voxel value,
in the nominator). Very efficient methods exist to build a ray integral from these individual
voxel contributions. If the interpolation kernel is radially symmetric, we can pre-integrate
the kernel integrals (compare equation (2.7)), often analytically, into a lookup-
table. This lookup table is called the kernel footprint. In case of the Bessel-Kaiser function
we may use equation (2.10) to calculate the kernel footprint lookup-table. We then map all
voxel footprints to the screen, squared or scaled, where they accumulate into a projection
image. It was Lee Westover who first proposed this approach in [66]-[68] and termed it
splatting.He, however, did not use it for algebraic methods, but for volume rendering [28],
where it is very popular up to this day. Matej and Lewitt considered splatting later for
block-iterative, parallel-beam ART [33].

Alternatively, one can also use rays to intersect the lookup tables in volume space, again
scale or square the indexed value, and accumulate the density integrals ray by ray. This
approach was proposed much earlier than the splatting algorithm by Hanson and Wecksung
in [22], this time for algebraic reconstruction. Note, however, that none of these approaches
were ever extended to 3D cone-beam reconstruction. They were just used for 2D fan-beam
reconstruction (in [22]) or for parallel-beam geometries (in [33]). Chapter 5 of this disser-
tation will expand both the splatting and the ray-driven approach to 3D cone-beam recon-
struction and will also give very efficient implementations.

Both of these approaches capitalize on the fact that by placing an interpolation kernelh at
each grid voxelj and scaling it by the grid voxel’s valuevj, we obtain a field of overlapping
interpolation kernels that reconstructs the discrete grid functionfs into a continuous func-
tion f. Thus, both a projection of these voxel basis functions onto the screen and a traversal
of the grid by interpolating rays yield (potentially) the same (X-ray) image. However, the
former approach has the advantage that the footprint functions can be pre-integrated ana-
lytically or by good quadrature methods, which yields a highly accurate, almost analytical
ray integral summation on the screen. Raycasting, on the other hand, interpolates the vol-
ume at discrete locations, which necessarily gives only an approximation to the analytical
ray integral. How good this approximation will be depends on the ray step size and the
quadrature method. Hence, the splatting approach, be it voxel-driven or ray-driven, is the
best projection method, both for accuracy and for efficiency reasons.

h s() sd∫

27

So far, I have only discussed the projection step. But, as it turns out, backprojection is per-
formed in a similar way, only that here the voxels receive (corrective) energy, scaled by
their weight factors, instead of emitting it.

2.1.5 Why ART needs fewer projections than FBP

This question was answered by Guan and Gordon in [19] for the 2D parallel beam case. Let
me repeat it here.

Usually one reconstructs on a square voxel grid with a sidelength ofn voxels, thus the num-
ber of grid voxelsN=n2. Also, we generally assume a circular reconstruction region. Voxels
outside this region may be ignored. In this case we have unknown voxel values
andn pixels per 1D image. For equation system (2.1) to be determined, the number of pro-
jection imagesMARThas to be:

(2.12)

Let’s see how many projections are needed for Filtered Backprojection (FBP). The sam-
pling interval in Fourier space is at least∆ω=1/nTg, and the maximum frequency is given
by ωmax=1/(2Tg). Due to the polar sampling in frequency space, the density of samples
decreases as we go outward in the polar grid. To ensure a sampling rate of at least∆ω every-
where in the polar grid, even at the boundary, the angular spacing between the projections
(i.e., the Fourier slices) in frequency space needs to be:

(2.13)

In order to provide adequate sampling in the periphery, one must oversample in the interior
frequency regions. The number of projectionsMFBP is then:

(2.14)

Thus,MAlg=MFBP / 2.

In 3D reconstruction, one usually reconstructs on a cubic voxel grid, again with a side-
length ofn voxels. Thus the number of grid voxelsN=n3. Also, for a 3D single-orbit recon-
struction we generally assume a spherical reconstruction region. In this case we have

 unknown voxel values and relevant pixels per image. For the equa-
tion system (2.1) to be determined, the number of projection imagesMART3D has to be:

(2.15)

This means that forn=128, a total of 86 projection images is required.

The widely accepted rule of thumb is that FBP requires at leastn projection images [54] for

1 4⁄() πn
2

MART
1 4⁄() πn

2

n
-------------------------- πn

4
------ 0.785 n⋅= = =

∆ϕP
∆ω

ωmax

2Tg

nTg
--------- 2

n
---= = =

MFBP
π

∆ϕP
---------- πn

2
------ 1.57 n⋅= = =

1 6⁄() πn
3

1 4⁄() πn
2

MART3D
1 6⁄() πn

3

1 4⁄() πn
2

-------------------------- 0.67n= =

28

good image quality. The previous calculation showed that ART requires about half of that.
As a matter of fact, this is true for all algebraic methods, and not just ART.

We have now determined some of the factors in the cost equation (1.6), repeated here for
convenience:

With the new knowledge that we just gained, we can rewrite this equation:

(2.16)

We will find out about the other factors later.

2.2 Simultaneous ART (SART)

In 1984, Andersen and Kak noticed (in [2]) that a voxel may be traversed by many rays dur-
ing one iteration. They showed that ART’s method of updating the grid for every ray
caused “striping” in the reconstruction. These correction stripes in turn were blamed for the
high overall level of noise that existed in the ART reconstructions back in those days. The
authors argued further, that if, in contrast to ART, the correction terms were accumulated
for each voxel and the grid was only updated after each iteration, as was done in the Simul-
taneous Iterative Reconstruction Technique (SIRT) [14], then this “striping” was appar-
ently suppressed. The problem with SIRT, however, was the long time it needed for
convergence. In an attempt to combine the positive aspects of both techniques, i.e. ART
and SIRT, Andersen and Kak developed the Simultaneous ART (SART) [2]. In this
method, grid correction is not performed for each single pixel separately. Instead, a whole
projection image is computed first (say at the orientation ofPϕ), and then each voxel in the
reconstruction grid is corrected by an accumulated correction term that is due to all pixels
in Pϕ. Since ambiguities manifested as noise are introduced into the reconstruction image
if the correction terms are simply added, a weighted sum of the contributions is used to
update a voxel.

Mathematically, this can be expressed as follows:

(2.17)

Cost Algebraic()
Cost FBP()

2 aAlg I⋅ MAlg⋅ ⋅
1 aFBP+() MFBP⋅

--=

Cost Algebraic()
Cost FBP()

2 aAlg I⋅⋅

1 aFBP+() 2⋅

aAlg I⋅
1 aFBP+()

----------------------------= =

vj
k()

vj
k 1–() λ

pi winvn
k 1–()

n 1=

N

∑–

win
n 1=

N

∑
--

wij
pi Pϕ∈
∑

wij
pi Pϕ∈
∑

---+=

29

Note that equation (2.17) differs from equation (2.11) in two ways: First, the correction
terms imposed on a particular voxelvj by a set of neighboring projection image pixelspi
are pooled using the respectivewij factors to weight their influence. Second, we do not use
the square of thewij in the sum of weights in the denominator of the correction factor term.
Although ART in the spirit of Kaczmarz’ method requires the sum ofsquared weights,
SART seems to be more consistent with the concept of viewing ART as an inverse volume
rendering technique [28], where a volume is iteratively reconstructed by a sequence of
summed volume renderings (the projections) and inverse summed volume renderings (the
backprojections). In this context, it makes sense to normalize each ray integral by the phys-
ical length of the ray, represented by . The SART procedure is illustrated in Figure
2.6 in greater detail.

Later research [35], and also my own experience [38], has indicated, that it was probably
not the image-based SART correction procedure itself that has prevented the noise-like
artifacts from occurring, rather, it was Andersen and Kak’s use of a better interpolation ker-
nel, i.e. the bilinear function, as a voxel basis. Still, SART has many advantages, due to its
image-based approach:

• It proves to be the better method for cone-beam reconstruction (unless ART is modi-
fied, as we will see later).

• It lends itself very well for a graphics hardware-accelerated approach.

Both of these advantages have been discovered in the course of this dissertation research.
However, it was also discovered that SART is slightly slower than ART in software, due
to the voxel-based pooling of correctional updates.

2.3 Other Algebraic Reconstruction Methods

Finally, I would like to mention other existing algebraic methods. I have already touched
on the Simultaneous Iterative Reconstruction Technique, proposed shortly after ART by
Gilbert [14]. In this approach, the voxels are only updated after the corrections due to allR
projection pixels have been computed. These corrections are then properly weighted and
normalized (similar to SART) before adding them to the voxels. SIRT’s approach is rather
slow and has not gained a wide popularity due to that fact. The circumstance that the SIRT-
cousin SART does not perform quality-wise any better for cone-beam reconstruction than
(a modified version of) ART (as demonstrated in this dissertation) may serve as evidence
that SIRT probably will not do so either.

Algebraic reconstruction methods that update the grid separately for each ray (such as tra-
ditional ART) are called row-action methods, since each computation step is equivalent to
a dot product of one row in the weight matrixW and the object vectorV. In contrast, meth-
ods that correct the grid based on the projection of a block of rays involving a multi-element
set of such dot products are called block-iterative methods. These methods are discussed
for example in [7]. The block-iterative methods combine two or more (almost) parallel
hyperplanes (see Figure 2.7) to reach a convergence faster. SART and SIRT are not strictly

win∑

30

vj
wij

P45˚

vj
k 1+()

vj
k()

λ

p
i

winvn
k()

n 1=

N

∑–

win
n 1=

N

∑
---⋅

wij
pi Pϕ∈
∑

wij
pi Pϕ∈
∑

---+=

Algorithm

Initialize volume
Until convergence
 Select a projectionPϕ
 Image projection: Compute line integrals through allpi of Pϕ
 Correction image: For allpi, subtract line integrals frompi
 Image backprojection: Distribute corrections onto grid

FIGURE 2.8: The SART algorithm. The colors in the equation refer to the corresponding
highlighting colors in the algorithm.

Projection

pi

Equation

31

members of the traditional block-iterative algebraic methods. However, they also combine
equations (due to one projection or due to all projections) in an attempt to update the vol-
ume with a correction that is a is based on many equations, and not just one.

Along with (additive) ART, Gordon, Bender, and Herman also proposed Multiplicative
ART, or MART [17]. The correction equation is:

(2.18)

This method has the advantage that, in contrast to ART, a voxel can never be corrected to
values less than zero (which is not in the solution space). However, MART has never
reached the popularity of ART, and the original authors found that while ART seems to
minimize the overall variance of the reconstruction, MART maximizes the entropy.

vj
k 1+() λ

pi

winvn
k

n 1=

N

∑
------------------------vj

k
=

32

CHAPTER 3

A GLOBALLY OPTIMIZING
PROJECTION ACCESS ALGORITHM

As was mentioned in the previous chapter, the order in which the projections are applied in
the iterative reconstruction procedure has a crucial effect both on reconstruction quality and
speed of convergence. This chapter will present a new projection ordering method, termed
the Weighted Distance Scheme (WDS), that is superior to the existing methods of this kind.
I will start with some background on this topic, describe the existing methods and their
shortcomings, and then turn to the specifics of the new method. Note, that for the remainder
of this chapter, an iteration constitutes a sequence of grid corrections in which all available
projections are utilized exactly once.

3.1 Introduction

Due to the problems associated with the linear equation system (2.1), many solutions may
exist. It is thus the goal of ART to converge to the solution that represents the closest
approximation to the object function from which the projection images were obtained. In
this respect, it has been known for quite some time [23][51] that both the quality of the
approximation and the rate of convergence of the iterative reconstruction procedure
depends, among other factors, on the order in which the projections are selected for grid
correction.

A number of researchers have pointed out [18][25] that it is desirable to order the projec-
tions in such a way that subsequently applied projections are largely uncorrelated. This
means that consecutively applied projections must have significantly different angular ori-
entations. Indeed, it is intuitive to recognize that if subsequently selected projections are
chosen at similar orientations, one tends to overly bias the reconstruction with respect to
that viewing angle without adding much new information to the grid. Clearly, doing so pro-
longs the time for convergence and may also drive the approximate solution away from the
desired solution.

33

While all previously proposed ordering schemes take great care to space far apart consec-
utively chosen projections, they somewhat neglect the problem of optimizing the selection
in a global sense. It is the argument of this chapter that in the process of selecting a newly
applied projection all, or at least an extended history of, previously applied projection ori-
entations must be taken into account and weighted by their time of application.

In the following section, I will give a brief overview of previous work on projection access
ordering methods. Then, in Section 3.3, I will present a novel projection ordering method,
the Weighted Distance Scheme (WDS), which heuristically optimizes the angular distance
of a newly selected projection with respect to the complete sequence of all previously
applied projections (including those applied in the previous iteration) or any continuous,
time-wise adjacent subset thereof. Finally, Section 3.4 gives a numerical comparison of the
new method with respect to previous methods.

3.2 Previous Work

In order to minimize correlation in projection access it seems advantageous to arrange the
projections such that (Postulate 1):

a. a series of subsequently applied projections is evenly distributed across a wide angular
range,

b. at no time is there an angular range that is covered more densely than others.

All of the existing methods tend to be strong in one of the two aspects, but weaker in the
other. However, none of the previous methods comments on how one should proceed with
the projection selection at iteration boundaries. It is clearly necessary to also include pro-
jections applied in previous iterations into the selection process. A smooth transition
between iterations is warranted if the selection scheme is continuous across iteration
boundaries.

DenotingM as the total number of projections in the set and0≤j≤M-1 to be the number of
projections already applied, Hamaker and Solmon [21] demonstrate in a fundamental treat-
ment that a “good” permutationτ of the ordering of theM projections is obtained when the
minimum angle among (τ(l)-τ(k))⋅180˚/M, 0≤l≤j, 0≤k≤j, l≠k is maximized for eachj. Pos-
tulate 1 could be regarded as a more heuristic interpretation of this finding.

Many implementations have used a fixed angle for projection spacing: SART, for example,
uses a constant angle of 73.8˚ whenM=100. For mostM there is, however, no fixed angle
that satisfies the criterion of maximizing the minimum angle for all 1≤j≤M-1.

An alternative method that uses variable angles between subsequent projections was pro-
posed by Herman and Meyer [25]. It is based on the prime number decomposition (PND)
of M. This method, however, requires thatM be non-prime. The same authors also refer to
work performed by van Dijke [10] who concluded that, among all schemes he tried, a ran-
dom projection permutation gave the best results. However, we may prefer an ordering
scheme that is more controllable and deterministic than a random number generator.

34

More recently, Guan and Gordon [18] presented, what they termed, the Multilevel Access
Scheme (MLS). This method works best when the number of projections is a power of 2,
but can also be used, with minor modifications, in the general case. The following descrip-
tion is for the simple case ofM being a power of 2: First, for level one and two, the method
chooses the projections at 0˚, 90˚, 45˚, and 135˚. All subsequent levelsL=3, ..,log2M con-
tain2L views. The projection order at levelL is computed by simply going through the list
of all applied projections at levelsl<L and addingM/2L to their projection index. This
method clearly covers all angular regions evenly over time, but may not always maximize
the angle between subsequent projections.

Figure 3.1a shows, forM=30, the obtained permutation of the first 15 selected projection
views when the scheme of PND is applied. Figure 3.1b shows the permutation for the MLS
method under the same conditions. We observe that PND tends to cluster the projections
around certain viewing directions. This may not be advantageous in light of our earlier
comments with regards to an even spread of the applied projections around the reconstruc-
tion cycle. As expected, the MLS method generates a permutation that conforms more
closely to this criterion.

3.3 The Weighted Distance Projection Ordering Scheme

Let me now introduce a permutation scheme that seeks to enforce both parts of Postulate 1.
It is designed to maintain a large angular distance among the whole set of used projections

0
2

4
6

8
10

12
14

16
τ

0 3 6 9 12 15 18 21 24 27 30
V i e w

0 3 6 9 12 15 18 21 24 27 30
V i e w

(a) (b)

FIGURE 3.1: Projection order permutationτ for M=30 projections. For illustrative purposes
only the first 15 ordered views are shown. The height of a bar corresponds to a view’s place in
the ordered sequenceτ (For instance, in (a) projection 5 is applied as the third projection after
view 0 and view 15). The graphs shown are for: (a) Prime number decomposition (PND), (b)
Multilevel access scheme (MLS).

τ
0

2
4

6
8

10
12

14
16

35

while preventing clustering of projections around a set of main view orientations. The
method selects, from the pool of unused projections, that projection that optimizes both the
angular spacing and the spread with respect to the complete set or a recent subset of all pre-
viously applied projectional views. Hereby it takes into account that more recent applied
projections should have a stronger influence in the selection process than projections that
have been applied earlier in the reconstruction procedure.

The algorithm implements the permutation of the projection ordering as a circular queue
Θ. The lengthS of Θ depends on how much of the projection access history is to influence
the selection process. Since due to the decaying weighting function the influence of early
projections diminishes to insignificance over time, early projections can be replaced by
later ones inΘ as time evolves. In my implementation, I choseS=M: A projection’s influ-
ential power fades to zero afterM more projections have been selected. Note, however, that
the number of influential projections represented byS can be chosen arbitrary large.

The projectionsPi, 0≤i≤M-1, are assumed to be equally spaced by an angleϕ=180˚/M in
the interval 0≤i⋅ϕ<180˚. The first projection inserted intoΘ (at positionΘ[0]) and applied
in the reconstruction procedure is always the projection at orientation angleϕ=0˚, i.e.P0.
A list Λ is maintained that holds theL projections not yet used in the current iteration. At
the beginning of each iteration, Λ is filled with all M projections. When a projectionPi is
selected fromΛ by our selection criterion, it is removed fromΛ and inserted intoΘ. Inser-
tion can occur within two phases: the initial filling phase ofΘ and the update phase ofΘ.
Let Q denote the number of projections currently in Θ. In the filling phase,Q<S and sub-
sequently used projections are added to consecutive positions inΘ. In the update phase,
Q=S andΘ now functions as a circular queue: The oldest projection inΘ is overwritten by
the newly selected projection and ceases to influence the selection process. See Figure 3.2
for an illustration of the algorithm in pseudo-code.

InitCircularQueue(Θ); /* circular queueΘ is initially empty */

while not converged
FillProjectionPool(Λ); /* all projections are available (again) */

for i = 1 ... M
P=SelectProjection(Λ,Θ); /* select a projectionP from Λ based on the distance to

all previous applied projections in queueΘ */
RemoveFromList(P,Λ); /* P is removed fromΛ and no longer available for this

 iteration */

AddToEndOfCircularQueue(P,Θ); /*P goes at the end ofΘ, the oldest item in
Θ falls out ifΘ is full (Q = S) */

ApplyProjection(P); /* perform grid projection and backprojection forP */

FIGURE 3.2: Pseudo-code to illustrate insertion/removal of projections into/from circular
queueΘ and listΛ within the basic framework of ART.

36

Let me now describe the objective function used to select the next projection fromΛ (i.e.,
the routine SelectProjection() in Figure 3.2): First, for eachPl in Λ, 0≤l<L-1, the weighted
meanµl of the “repulsive forces” exerted ontoPl by the projectionsPq in Θ, 0≤q≤Q-1,
Θ[q]≠Λ[l], is computed. Therepulsive forceis considered a measure of how close one pro-
jection is to another, it decays linearly with increasing distance between two projections. A
smaller repulsive force results from a larger spacing of two projections. The minimal dis-
tance of two projectionsPl andPq is given by:

. (3.1)

The weighted mean of the repulsive forces acting on a projectionPl, denoted byµl, is given
by:

(3.2)

where a weight factor . The weighting ensures that projections applied
more recently have a stronger repulsive effect than projections applied earlier in the recon-
struction procedure.

However, using the distance criterion alone does not achieve the goals of Postulate 1. It was
observed that a newly selected projection could minimize the distance criterion by being
very distant to some projections inΛ, but at the expense of being very close to others. This
circumstance lead to a situation where projections were selected from one of several clus-
ters in a cyclic fashion, a condition we strived to avoid. In order to eliminate the large dis-
tance fluctuations that gave rise to this behavior I added a second measure to be minimized:
the weighted standard deviation of the distancesdlq, :

(3.3)

Here is the average distance ofPl to thePq. Maintaining a small of the
projection distances prevents projections from clustering into groups of angular viewing
ranges.

We then normalize theµl to a range of [0,1]:

(3.4)

The normalized standard deviations are computed from the in a similar fashion.

dlq Min l q– S l q––,()=

µl wq S 2⁄ dlq–()⋅
q 0=

Q 1–

∑ wq
q 0=

Q 1–

∑⁄=

wq q 1+() Q⁄=

σl

σl wq dlq dl–
 2

⋅
q 0=

Q 1–

∑ wq
q 0=

Q 1–

∑⁄=

dl dlq Q⁄∑= σl

µ̃l

µl M– in µk()
Max µk() Min µk()–
---=
0≤k<L-1 0≤k<L-1

0≤k<L-1

σ̃l σl

37

Finally, we select that projection Pl∈Λ to be applied next that minimizes the weighted L2-
norm:

. (3.5)

Experiments indicated that a factor of 0.5 to weigh seemed to yield the best results for
a wide range ofM.

3.4 Results

Table 3.1 gives the projection access orders for all six ordering schemes discussed in the
previous sections (M=30): Sequential Access (SAS), Fixed Angle at 66.0˚ (FAS), Prime
Number Decomposition (PND) [25], Random Access (RAS) [10], Multilevel (MLS) [18],
and Weighted Distance (WDS).

In order to compare all presented methods with regards to Postulate 1, we define a discrete
2D space that is spanned by the projection index number and the projection access time
instance. This space, called the Projection Access Space (PAS), is “sampled” by the pro-
jection ordering methods in a N-rooks fashion, i.e., no line and column can be sampled
twice since the tuple (projection index, access time) is one-to-one and onto. Figure 3.3
shows the sampling patterns for the six projection ordering schemes forM=30.

By visual inspection, FAS, PND, MLS and WDS all seem to have a fairly uniform sample
distribution. However, to capture the quality of the distributions in light of Postulate 1 in a
more quantitative way, a descriptive metric is needed. Part a) of this postulate calls for a
uniform distribution of the sample points in PAS. We may measure this property by sliding
a square box across the PAS, counting the number of sample points inside the box at each
box position, and computing the standard deviation of all counts. If all areas are equally
sampled then the standard deviation should be small. We performed this analysis forM=30,
80, and 100, respectively. The sliding square box was dimensioned to capture about 10%
of the samples on the average. Thus the box sizes were 10×10 forM=30, 25×25 forM=80,
and 30×30 forM=100. Part b) of the postulate was designed to prevent the clustering of pro-
jections around a few angular ranges. We evaluate this property after half of the projections
(i.e.M/2) have been applied. For this purpose, we slide aM/2×4 sized box along the vertical
direction of the PAS, aligned to the left PAS border. Ideally, all boxes should have an equal
number of applied projections in them (i.e., 2). Again, we count the number of incidences
within each box and compute the standard deviation of all counts. A larger standard devi-
ation is evidence for an uneven distribution caused by clustering.

The results of this analysis are listed in Table 3.2. We see, while PND performs well with
respect to projection access uniformity, it tends to cluster projections into angular groups.
On the other hand, MLS tends less to clustering (except forM=80), but exhibits inferior
projection access uniformity. Table 3.2 also shows that WDS behaves equally well in both
categories, access uniformity and cluster-freeness, where it is better or at least as good as
any other method investigated.

Finally, we tested all projection access schemes on the low-contrast 2D Shepp-Logan phan-

Dl µ̃l
2

0.5 σ̃l
2⋅+=

σl
2

38

tom as described in [61] and shown in Figure 3.5. 80 projections of 128 rays each were
computed analytically from the mathematical description of the ellipses that make up the
phantom. In the reconstruction procedure,λ was set to a fixed value of 0.30 and an inter-
polation kernel based on the previously mentioned Bessel-Kaiser function was used.

For estimation of the reconstruction error we use the normalizedroot mean squared error
measure[23]:

(3.6)

SAS FAS PND RAS MLS WDS

0 0 0 3 0 0
1 11 15 24 15 15
2 22 5 7 8 25
3 3 20 2 22 7
4 14 10 1 4 19
5 25 25 15 19 1
6 6 1 0 11 12
7 17 16 10 26 23
8 28 6 27 2 5
9 9 21 29 17 17

10 20 11 6 9 28
11 1 26 13 24 10
12 12 2 19 6 21
13 23 17 20 21 3
14 4 7 26 13 14
15 15 22 22 28 26
16 26 12 4 1 8
17 7 27 25 16 18
18 18 3 5 7 29
19 29 18 8 23 6
20 10 8 28 5 24
21 21 23 9 20 13
22 2 13 12 12 2
23 13 28 21 27 20
24 24 4 16 3 11
25 5 19 14 18 22
26 16 9 17 10 4
27 27 24 23 25 16
28 8 14 18 14 27
29 19 29 11 29 9

TABLE 3.1 Projection access orders for all six ordering schemes (M=30).

error oi vi–() 2

i 1=

N

∑ oi o–() 2

i 1=

N

∑⁄

1
2

=

39

Here,oi is the value of pixelvi in the original Shepp-Logan phantom. This error is plotted
in Figure 3.4 for all six permutation schemes (M=80) for a) the entire head and b) the region
around the three small tumors in the bottom half of the phantom (see Figure 3.5). We would
also like to compare the various methods in terms of the level of the noise-like reconstruc-
tion artifacts. For this purpose, we compute the variance within the union of two circular
regions to the right and left, respectively, of the two brain ventricles (i.e., the dark elliptical
structures in the head center, see Figure 3.5). These circular regions are homogeneous in
the original phantom. The variance is plotted in Figure 3.4c for all ordering methods.

The behavior of the selection process at iteration boundaries was as follows: While SAS,
FAS, PND, and MLS apply their previous access order anew (which is probably the strat-
egy used by the respective authors), RAS clears its list of used projections and chooses the
next projection at random, thus generating a different access order for each iteration. WDS
by design generates a different access sequence in every iteration as well, however, with
the additional constraint of optimal fit with regards to the previous sequence. At this point
it should also be mentioned that some authors (such as [1]) linearly increase the relaxation
factorλ from a small value at initial projections to a larger fixed value for use in later grid

FIGURE 3.3: Sampling patterns in projection access space for the six projection ordering
schemes (M=30). In all plots, the time coordinate runs from left to right, while the projection
index runs from bottom to top.

SAS FAS PND

RAS MLS WDS

40

corrections. To eliminate the effects of yet another variable in the comparison process, we
chose to use a fixed value ofλ throughout the reconstruction procedure. Here, λ=0.3 was
found to have the best convergence properties for all access ordering schemes.

For the full head section, all five non-sequential ordering schemes reach their minimum
error at about the same time, (i.e., at the end of the fourth iteration). However, this error is
smallest with WDS. Hence, even though WDS does not provide a faster convergence to its
minimum-error solution, the solution is more accurate compared to the solutions obtained
with the competing methods at all iterations (at least until the overall error increases again).
Although the difference in error is rather small for the full head section, it is considerably
more significant for the isolated tumor area. This could be viewed as evidence that by using
WDS small object detail can be better recovered. It is also interesting to note that all order-
ing schemes reach their error minimum for the tumor area about one iteration later than for
the full head section. We further observe that images produced by WDS have the least
amount of noise-like reconstruction artifacts, with RAS being the closest competitor.

Figure 3.6 shows the reconstruction results obtained after three iterations using the various
projection ordering schemes. Even though the numerical results are to a great extent visible
in the images, we would like to note that, for the human vision system, larger numerical
error does not always translate to a more visible artifact. For instance, larger random noise
is much more gracefully tolerated by the human eye than a small but periodic noise pattern
such as ringing. From Figure 3.6 we observe that, apart from SAS, which after 3 iterations
is far from reaching its minimal error, FAS and PND have considerably more reconstruc-
tion artifacts than MLS, RAS, and WDS. The artifacts are least noticeable with RAS and
WDS, while the contrast for the small tumors is best with MLS and WDS.

Projection
 access
scheme

Access uniformity Access clustering

M=30 M=80 M=100 M=30 M=80 M=100

SAS 3.251 8.224 9.859 0.333 0.216 0.195

FAS 0.650 0.808 0.905 0.133 0.075 0.066

PND 0.600 0.694 0.733 0.115 0.071 0.063

RAS 1.316 2.124 1.983 0.156 0.107 0.103

MLS 0.721 0.720 0.758 0.094 0.087 0.063

WDS 0.600 0.704 0.700 0.094 0.064 0.058

TABLE 3.2 Standard deviations of box counts for three projection set magnitudes (M=30, 80,
and 100) to measure projection access uniformity and clustering. (The fixed angle used in FAS
for M=30, 80, and 100 was 66.0˚, 69.75˚, and 73.8˚, respectively.)

41

FIGURE 3.4: Reconstruction errors for Shepp-Logan phantom (80 projections of 128 pixels
each, 128×128 grid): (a) Entire head segment, (b) Area with the three small tumors only, (c)
Reconstruction noise.

(a)

(b)

(c)

Sequential access
Fixed angle (69.75˚)
Prime number decomp.
Random access
Multiresolution selection
Weighted distance

0.2

0.8

1.2

1.8

E
 r

 r
 o

 r

1 2 3 4 5 6 7 8 9 10
I t e r a t i o n

Sequential access
Fixed angle (69.75˚)
Prime number decomp.
Random access
Multiresolution selection
Weighted distance

1 2 3 4 5 6 7 8 9 10
I t e r a t i o n

0.0

0.2

0.5

0.8

1.0

E
 r

 r
 o

 r

1 2 3 4 5 6 7 8 9 10
I t e r a t i o n

0.0

0.1

0.2

E
 r

 r
 o

 r

Sequential access
Fixed angle (69.75˚)
Prime number decomp.
Random access
Multiresolution selection
Weighted distance

42

In conclusion, WDS exhibits more uniform projection access space sampling than existing
methods and delivers more accurate reconstructions. In particular, fine detail is more faith-
fully recovered and the degree of noise-like reconstruction artifacts is smaller. Both of
these features are important as they reduce the chance of ambiguities for both the clinician
and computerized image analysis systems.

FIGURE 3.5: Original Shepp-Logan phantom with circled areas indicating the regions in
which the error measurements were performed: RegionsA were used to evaluate the level of
noise artifacts,B is the region in which the reconstruction error for the three small tumors was
measured. Notice that the pixel intensities in this and all other images involving the Shepp-
Logan brain phantom presented in this dissertation were thresholded to the interval [1.0,1.04]
to improve the displayed contrast of the brain features. For example, the contrast between the
three small tumors in region B and the background matter is only 0.5% of the full density
range.

A

B

43

FIGURE 3.6: Reconstruction of the Shepp-Logan phantom after 3 iterations on a 128×128
grid using 80 projections of 128 rays each andλ=0.3 for the six projection access schemes.

SAS FAS

PNDMLS

RAS WDS

44

CHAPTER 4

CONE-BEAM RECONSTRUCTION
WITH ART: ACCURACY ISSUES

In this chapter, we will analyze algebraic methods for the low-contrast cone-beam setting,
a scenario that has not been studied much in the past. In particular, we aim to provide algo-
rithms that make ART-type methods an attractive alternative to cone-beam FBP methods
with regards to accuracy. Speed will be the topic of the next chapter. We will analyze the
cone-beam reconstruction procedure of algebraic methods from a sampling theory point of
view which lets us identify and eliminate the additional set of problems that algebraic algo-
rithms have in the cone-beam setting. Most of these problems stem from the circumstance
that in cone-beam the diverging rays sample and update the reconstruction grid in a non-
uniform fashion, which leads to a considerable amount of aliasing-related noise artifacts for
cone angles greater than 20˚. Even though these artifacts may have never been noticeable
in high-contrast reconstructions, they become visible in the low-contrast case. We will then
devise several strategies to eliminate these artifacts. In our analysis, we will mainly con-
centrate on ART and SART, as they offer a relatively different perspective of the recon-
struction process, but are yet of similar efficiency.

The outline of this chapter is as follows. Section 4.1 moves ART into the cone beam setting,
analyzes its shortcomings and presents solutions to overcome these deficiencies. Next, Sec-
tion 4.2 discusses the use of SART for cone-beam reconstruction. Finally, Section 4.3 puts
everything together and presents a variety of results obtained with our algebraic reconstruc-
tion testbed software. In this section, the effects of a wide range of ART parameters on both
reconstruction quality and speed are investigated. The studied factors include: the value and
functional variation of the relaxation coefficientλ, the relevance of volume initialization,
and the effect of the algebraic correction algorithm (ART vs. SART).

4.1 Modified ART for Accurate Cone-Beam Reconstruction

In this section, we investigate the accuracy of ART in the context of low-contrast 3D cone-

45

beam reconstruction. We will find that ART in its present form is unsuitable in the cone-
beam setting as it produces reconstructions with significant reconstruction artifacts. Hence-
forth, we will prescribe a number of modifications of ART’s projection and backprojection
mechanisms with which accurate reconstructions can be obtained, and which do not com-
promise the efficiency of ART. For quality assessment we will use a 3D extension of the
Shepp-Logan brain phantom [61], similar to the one due to Axelsson [3]. The definition of
our phantom is given in Table 4.1, while two orthogonal slices across the phantom are
shown in Figure 4.1. From this phantom, we analytically compute 80 projection images of
128×128 pixels each, forcing equation (2.1) to be slightly underdetermined. The projec-
tions are obtained at equidistant anglesϕ within a range of [0, 180˚+γ], whereγ/2 is the
cone half-angle.

Although detailed quantitative results are postponed to Section 4.3, we would like to illus-
trate the material in this section by the use of some examples. These examples will assume

Center (mm) Half-axis (mm)
Angle

(degrees)
dens.

x y z x y z θ φ

1 0.0 0.0 0.0 69.0 90.0 92.0 0.0 0.0 2.0

2 0.0 0.0 -1.84 66.24 88.0 87.4 0.0 0.0 -0.98

3 -22.0 -25.0 0.0 41.0 21.0 16.0 72.0 0.0 -0.02

4 22.0 -25.0 0.0 31.0 22.0 11.0 -72.0 0.0 -0.02

5 0.0 -25.0 35.0 21.0 35.0 25.0 0.0 0.0 0.01

6 0.0 -25.0 10.0 4.6 4.6 4.6 0.0 0.0 0.01

7 -8.0 -25.0 -60.5 4.6 2.0 2.3 0.0 0.0 0.01

8 6.0 -25.0 -60.5 4.6 2.0 2.3 90.0 0.0 0.01

9 6.0 6.25 -10.5 5.6 10.0 4.0 90.0 0.0 0.02

10 0.0 62.5 10.0 5.6 10.0 5.6 0.0 0.0 -0.02

11 0.0 -25.0 -10.0 4.6 4.6 4.6 0.0 0.0 0.01

12 0.0 -25.0 -60.5 2.3 2.3 2.3 0.0 0.0 0.01

TABLE 4.1 The definition of our 3D extension of the Shepp-Logan phantom[61], similar to
the one used by [3]. The anglesθ andφ are the polar and azimuthal angles of the ellipsoidz-
axis. The scanner rotates about they-axis.

el
lip

so
id

46

certain settings of parameters such asλ, andV(0), which will later be shown to be a good
compromise between accuracy and speed of convergence.

4.1.1 Reconstruction artifacts in traditional cone-beam ART

Let us now use the ART algorithm of equation (2.11) to reconstruct a 1283 volume from 80
projections withγ=60˚. λ is set to 0.08 andV(0)=0. The reconstruction result of slice y=-
25mm after 3 iterations is shown in Figure 4.2a. Here, we observe significant reconstruc-
tion artifacts which obliterate the small tumors in the lower image regions almost com-
pletely. For a comparison, Figure 4.2b shows a 3D reconstruction from parallel beam data
with the same algorithm and parameter settings. No significant artifacts are present in that
case.

Thus the artifacts must result from the cone-beam configuration in which rays emanate
from the source and traverse the volume in a diverging fashion before finally hitting the
projection plane. It may be suspected that it is this diverging nature of the rays that causes
the reconstruction artifacts in Figure 4.2a. And indeed, more evidence is provided by Fig-
ure 4.3, where we show the reconstruction volume of a solid sphere (diameter=0.75n) after
the first correction image (atϕ=0˚) was applied, for both 60˚ cone-beam data (Figure 4.3a)
and parallel-beam data (Figure 4.3b). In these figures, we choose thez-axis to coincide with
the beam direction andzc to be the location of the volume center slice perpendicular to the
beam direction (see also Figure 4.4). In the cone-beam correction of Figure 4.3a, the non-
uniform density distribution in the volume center slice along the cone direction (Figure
4.3a, side view) can be easily noticed. We see that much more energy is deposited in the
volume slices close to the source where the ray density is high (Figure 4.3a, near slice,

FIGURE 4.1: Slices across the 3D Shepp-Logan brain phantom: (a)y=-25mm, (b)z=8mm.
The pixel intensities in these and all other slice images presented in this paper were thresh-
olded to the interval [1.0,1.04] to improve the displayed contrast of the brain features. For
example, the contrast between the three small tumors in the lower portion of the slice in (a)
and the background matter is only 0.5% of the full density range.

(a) (b)

47

z=zn=zc-0.25n), while only little energy is deposited in the volume slices further away from
the source where the ray density is low (Figure 4.3a, far slice,z=zf=zc+0.25n). In particular,
the far slice displays a grid-like pattern which indicates an undersampling of the volume by
the rays in this slice. This inadequate ray sampling rate potentially gives rise to aliasing,
which is very likely to have caused the reconstruction artifacts of Figure 4.2a. The effects
of aliasing are amplified since in ART the volume is projected and updated continuously,
with every projection introducing additional aliasing into the reconstruction.

In contrast to the cone-beam case, the parallel-beam correction, shown in Figure 4.3b, pro-
vides a homogeneous density distribution. No excess density is deposited in the near slice
at z=zn and no aliasing-prone, grid-like pattern is generated in the far slice atz=zf. Thus
reconstruction artifacts are unlikely to occur and, indeed, have not been observed in Figure
4.2b. In the following section, we will now investigate our observations more formally.

4.1.2 New scheme for projection/backprojection to prevent reconstruc-
tion artifacts

Both the projection and the backprojection algorithms must be adapted to avoid the aliasing
problems outlined in the previous section. These enhancements make it necessary to mod-
ify ART’s basic correction algorithm. We now describe these new concepts in more detail.

FIGURE 4.2: (a) The slice of Figure 4.1a reconstructed with traditional ART from cone-beam
projection data (λ=0.08,γ=60˚,V(0)=0, 3 iterations). Notice the significant stripe artifacts that
completely obliterate the small tumors. (b) A reconstruction of the same slice from parallel
beam data using the same algorithm and parameter settings. This reconstruction does not have
the strong artifacts of (a).

(a) (b)

48

4.1.2.1 Adapting the projection algorithm for cone-beam ART

In the usual implementation of ART, a pixel value is computed by the ray integral:

(4.1)

whereri is the ray going from the source to image pixeli, and is the interpolation kernel
functionh pre-integrated in the direction of rayri. The ART weight factorwij that deter-
mines the amount of influence of voxelvj on the pixel sum is thus given by .

FIGURE 4.3: Reconstruction of a solid sphere (diameter=0.75n) after one correction atϕ=0˚
was applied: (a) cone angleγ=60˚, (b) parallel beam,γ=0˚. The side view shows a cut across
the center of the volume along z, e.g. the direction of the cone beam. Withz=zc being the loca-
tion of the volume center slice perpendicular to the cone direction (see also Figure 4.4), the
near slice is the volume slice at z=zn=zc-0.25n and the far slice is the volume slice at
z=zf=zc+0.25n. Notice the uneven density distribution for the cone-beam reconstruction, while
for parallel-beam the density is uniformly distributed.

(a)

(b)

side view near slice,z=zn far slice,z=zf

pi
k()

pi
k()

vjwij
i 1=

N

∑ vjh ri()
i 0=

N

∑= =

h

pi
k()

h ri()

49

Although in ART a volume is updated for each ray separately, it is convenient for our dis-
cussion to treat all rays that belong to one projection image as an ensemble and act as if grid
correction is performed only after all image rays have completed their forward projection.
Doing so allows us to use principles from sampling theory to explain and subsequently
eliminate the reconstruction artifacts observed before. We admit that this approach is
slightly incorrect since in ART the projection sum of a ray belonging to a particular projec-
tion image always contains the grid corrections performed by the previous ray(s) of the
same projection image. Due to this circumstance the projections and corrections obtained
with ray-based ART and image-based ART are not strictly the same. However, this simpli-
fication has only a minor effect on the correctness of our analysis.

Consider now Figure 4.4a where the 2D case is illustrated. Here, the dashed lines denote
the linear rays along which the volume is integrated. The rays that emanate from the source
traverse the volume in form of a curved rayfront. Within this curved rayfront the rateωr=1/
Tr at which the ensemble of rays samples the grid is constant (see Section 4.4). The further
the rayfront is away from the source, the smaller is the ray ensemble’s grid sampling rate.
If one characterizes the position of the rayfront by the closest distance from the source,s(z),
then there is a s(z)=z=zc at which the rayfront samples the grid at exactly the grid sampling
rateωg, e.g.,ωr=ωg=1/Tg. Then, forz<zc, the rayfront sampling rate is higher than the grid
sampling rate, while forz>zc, the rayfront sampling rate is lower than the grid sampling
rate. For our discussion, we approximate the curved rayfronts by planar rayfronts or slices
(see Section 4.4 for an error analysis). Thus, in Figure 4.4a,zn is the location of the near
slice of Figure 4.3 andzf is the location of the far slice.

We mentioned earlier that by placing an interpolation kernelh at each grid voxelj and scal-
ing it by the grid voxel’s valuevj, we obtain a field of overlapping interpolation kernels that
reconstructs the discrete grid functionfs into a continuous functionf. Let us now decom-
pose the volume into an infinite set of parallel slices alongz. The contribution of a voxelj
to the functiong(z) represented by a slice is then given by the 2D intersection of its inter-
polation kernel and the slice, denotedh(z), while the sum of all scaled kernel intersections
h(z) produces the continuous slice functiong(z). A ray integral for pixel value is then
computed by sampling all slices in the ray direction alongz, which changes equation (4.1)
into:

(4.2)

The rayfront as a whole produces a sampled slice imagegs(z) at each depthz (see Figure
4.4b). Hence, a complete projection image can be formed by adding these sampled slice
imagesgs(z). This leads to an alternate expression for :

(4.3)

Figure 4.4b illustrates that the ray sampling rate 1/Tr within each sampled slice image is not
constant but is a linear function ofz.

pi
k()

pi
k()

vjwij z()
j 1=

N

∑
z
∫ vjh z ri,()

j 1=

N

∑
z
∫= =

pi
k()

pi
k()

gs z iTr,()
z
∫=

50

The process in which an ensemble of rays in a rayfront at depthz generates a sampled slice
imagegs(z) can be decomposed into two steps:

1. Reconstruction of the discrete grid signalfs(z) into a continuous signalf(z) by convolv-
ing fs(z) with the interpolation filterh.

2. Samplingf(z) by a comb function with periodTr=Tgz/zc.

This can be written as:

(4.4)

Here, and in all following equations, .

projection plane

pi

pi+1

pi-1

pi-2

pi+2

FIGURE 4.4: Perspective projection for the 2D case. (a) Rays emanate from the source into
the volume along a curved rayfront which position is quantified bys(z), the closest distance of
the rayfront to the source. For our discussion, we approximate the curved rayfronts by planar
rayfronts or slices. Then,zc is the location of the volume center slice,zn is the location of the
near slice of Figure 4.3a andzf is the location of the far slice of Figure 4.3a. (b) Slice images
gs(z) for z=zn, zc, andzf. The sampling periodTr in each of the slice images is determined by
the distance z of the slice image from the source:Tr(zn)<Tr(zc)<Tr(zf).

Source

rayfront

zczn zf

z

y

s(z)

gs(zn) gs(zc) gs(zf)

(a) (b)

Tr(zf)

gs z iTr,() comb
y
Tr

 fs z kTg,() ✻h
y
Tg

 ⋅=

comb
y

Tgz zc⁄

 fs z kTg,() ✻h
y
Tg

 ⋅=

k ℵ∈

51

In the frequency domain, equation (4.4) is expressed as follows:

(4.5)

using the relationship

(4.6)

If the backprojection is performed correctly, we must assume that the grid contains fre-
quencies of up to but not greater thanωg/2. Then, sinceh has bandwidthωg and subse-
quentlyf=h✻fs has also bandwidthωg, there is a chance that the signal aliases ofGs overlap
in the frequency domain wheneverωr<ωg, i.e.,z>zc (see Figure 4.6a and b). Thus each slice
with z>zc potentially contributes an aliased signal to the composite projection image.

We can fix this problem by adding a lowpass filterLP betweenH and the sampling process
for all slices withz>zc:

(4.7)

An efficient way of implementing this concept is to pre-convolveH with a lowpass filter
Lp, say a boxfilterB of widthz/zc, and use this new filterHB in place ofH for interpolation.
An alternative method is to simply decrease the bandwidth ofH to ωgzc/z. which gives rise
to a filterH’:

(4.8)

This technique was also used in [62] to achieve accurate perspective volume rendering with
the splatting technique. The frequency response ofH’ is shown in Figure 4.5a for the slice
atz=zf where . The frequency response ofHB is also shown. We notice that
the frequency responses of both filters are similar and we also observe that both effectively
limit the bandwidth toωr=0.7ωg. Note, however, that although reducing the bandwidth of

Gs z v,() 1
ωgzc z⁄
-----------------comb

v
ωgzc z⁄

✻ F v k ωg⋅–() H

v
ωg

 ⋅
∞–

∞

∑

=

F v k ωgzc z⁄⋅–()
∞–

∞

∑ F v k ωr⋅–()
∞–

∞

∑==

X comb vX()⋅ δ v
k
X
---–

i ∞=

∞

∑=

Gs z v,() 1
ωgzc z⁄
-----------------comb

v
ωgzc z⁄

 =

✻ F v k ωg⋅–() H
v

ωg

 LP
v

ωgzc z⁄

 ⋅ ⋅
∞–

∞

∑

z zc>

Gs z v,() 1
ωgzc z⁄
-----------------comb

v
ωgzc z⁄

 =

✻ F v k ωg⋅–() H
v

ωgzc z⁄

 ⋅
∞–

∞

∑

z zc>

zf zc⁄ 1.42Tg=

52

h for z>zc properly separates the signal aliases, the upper frequency bands of the grid signal
in these regions have been filtered out by the lowpass operation and will not contribute to
the projection images (see Figure 4.6c).

According to the Fourier scaling property,h’ is obtained fromh by stretching and attenu-
ating it in the spatial domain. The sampled slice signal is then:

(4.9)

This filter h’ is shown in Figure 4.5b and is also contrasted withhb. The spatial extent of
hb is |hb|=|h|+|b|, while the spatial extent ofh’ is |h’|=|b||h|=z/zc|h| (for Tg=1.0). Thus for
|b|<|h|/(|h|-1), |h’|<|hb|. Therefore, if |h|=4.0, then as long asz/zc<1.33,h’ is more efficient
to use for interpolation. Since the majority of all interpolations occur in this range, the use

0 0.5 1 1.5 2 2.5 3
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

frequency u

po
w

er
 (

db
)

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

distance

am
pl

itu
e

FIGURE 4.5: (a) Frequency response of the interpolation filterH’ and the combined filterHB,
at , (b) Impulse response of the same filtersh’ and hb at z/zc=1.42Tg (dash-
dot:h’, solid:hb).

zf zc⁄ 1.42Tg=

(a)

(b)

gs z iTr,() comb
y
Tr

 fs z kTg,() ✻
1

z z⁄ c
----------h

y
Tgz z⁄ c

 ⋅= z zc>

53

of h’ is to be preferred.

Finally, although one must use a stretched and attenuated version ofh to lowpassf before
sampling it intogs whenz>zc, one cannot use a narrow and magnified version ofh when
z<zc. Doing so would increaseh’s bandwidth aboveωg and would introduce higher order
aliases offs into the reconstructed f (see Figure 4.6d). Hence, we must useh in its original
width whenz<zc (Figure 4.6e).

Not only the ART projection step is affected by the non-uniform grid sampling rate of the
cone-beam rays, the backprojection step must also be adapted. This is discussed next.

4.1.2.2 Adapting the backprojection algorithm for cone-beam ART

In backprojection, just like in forward projection, the volume is traversed by an ensemble
of divergent rays. However, in backprojection the rays do not traverse the volume to gather
densities, instead they deposit (corrective) density into the volume. In other words, the vol-
ume now samples and interpolates the ensemble of (correction) rays instead of the rays
sampling and interpolating the volume. For the following discussion recall that, for conve-
nience, we assume that allNr rays of a projectionPϕ first complete their projection and then
all simultaneously correct the volume voxels. Let us now again decompose the volume into
an infinite set of slices along thez axis, oriented perpendicular to the beam direction, and
consider the corrections for the voxels within each slice separately. Each rayri carries with
it a correction factorcorri, computed by the fraction in equation (2.11). Like in the projec-
tion phase, we useh(z) as the interpolation filter within a slice. Then the total correctiondvj
to updatevj is given by the sum of all ray correctionscorri, 1≤i≤Nr, for voxel j within a
slice, integrated over all slices. This gives rise to the following equation which is similar to
equation (4.2):

(4.10)

This equation is in line with the traditional viewpoint of ART. Let us now consider an alter-
native representation that will help us to explain the aliasing artifacts of cone-beam. We
observe from Figure 4.4 that the intersection of the ensemble of rays with a slice, say the
one atz=zf, gives rise to a discrete imagecs(z) with the pixel values being the correction
factorscorri. Note that the pixel rate in thecs(z) is a linear function ofz,which is equivalent
to the situation for thegs(z) in the projection case (illustrated in Figure 4.4b). In order to
compute the correction factorsdvj, the voxel grid then samples and interpolates each of the
slice imagescs(z) into a correction imageds(z) with constant pixel periodTg, and each
voxel j integrates all its correction factors in theds(z) alongz. Again, we useh(z) as the
interpolation filter within a slice, only now it is indexed by the discrete voxel locations and
not by the traversing rays. The correctiondvj for voxel j can then be expressed as follows:

(4.11)

dvj corri wij⋅ z()
i 1=

Nr

∑
z
∫ corri h⋅ z ri,()

i 1=

Nr

∑
z
∫= =

dvj cs z iTr,() h z v, j()
i 1=

Nr

∑
z
∫ ds z jTg,()

z
∫= =

54

-1/Tg

-1/Tg

-1/Tg

-1/Tg

-1/Tg

1/Tg

1/Tg

1/Tg

1/Tg

-1/Tr

1/Tg

-1/Tr

-1/Tr 1/Tr

-1/Tr

-1/Tr

1/Tr

1/Tr

1/Tr

1/Tr

0

0

0

0

0 0

0

0

0

0ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

Fs F Gs

(a)z = zc, Bandwidth(H) = 1/Tg = 1/Tr

H

(b) z> zc, Bandwidth(H) = 1/Tg

(c) z> zc, Bandwidth(H) = 1/Tr

(e)z < zc, Bandwidth(H) = 1/Tg

(d) z< zc, Bandwidth(H) = 1/Tr

FIGURE 4.6: Grid projection at different slice depths in the frequency domain. Shown in the
left column is the frequency spectrum of the sampled grid signal,Fs, with the filterH super-
imposed. In the center column is the reconstructed signalF, while in the right column
is the reconstructedF resampled into the slice imageGs.

55

Let us concentrate on one interpolated correction imageds(z). Since the interpolated signal
is now the ensemble of rays and the sampling process is now the volume grid, the roles of
ωr andωg in equations (4.4) and (4.5) are reversed. The interpolation of the rayfront slice
imagecs(z) into a correction imageds(z) by the voxel grid can be decomposed into two
steps:

1. Reconstruction of the discrete correction rayfront signalcs(z) into a continuous signal
c(z) by convolvingcs(z) with the interpolation filterh. Notice that, for now, in order to
capture the whole frequency content ofcs, we set the bandwidth ofh to the bandwidth
of the rayfront grid, 1/Tr=zc/zTg. This is a new approach to ART, as usually the band-
width of h is always set toωg, along with an amplitude scale factor of 1.0.

2. Samplingc(z) into ds(z) by a comb function with periodTg.

This is formally written as:

(4.12)

In the frequency domain, this is expressed as follows:

(4.13)

again using the relationship of equation (4.6). SinceC’s bandwidth is alwaysωr, con-
strained byH, we get overlapping aliases inDs whenz<zc (see Figure 4.6b). However,
whenz≥zc, no overlap occurs (Figure 4.6a). This means that only forz<zc we need to limit
H to the bandwidth of the grid,ωg, resulting in a filterH’ (Figure 4.6c). For all otherz, we
use the bandwidth of the rayfrontωr. More formally:

(4.14)

ds z jTg,() comb
y
Tg

 cs z kTr,() ✻h
y
Tr

 ⋅=

comb
y
Tg

 cs z kTgz zc⁄,() ✻h
y

Tgz zc⁄

 ⋅=

Ds z v,() 1
ωg
------comb

v
ωg

✻ C v k ωr⋅–() H

v
ωr

 ⋅
∞–

∞

∑

=

C v k ωg⋅–()
∞–

∞

∑= C v k ωrz zc⁄⋅–()
∞–

∞

∑=

Ds z v,() 1
ωg
------comb

v
ωg

✻ C v k ωr⋅–() H

v
ωg

 ⋅
∞–

∞

∑

= z zc<

1
ωg
------comb

v
ωg

✻ C v k ωr⋅–() H

v
ωrz zc⁄

 ⋅
∞–

∞

∑

= z zc<

56

Again, according to the Fourier scaling property,h’ is obtained fromh by stretching and
attenuating it in the spatial domain. The sampled slice signal is then:

(4.15)

Thus forz<zc the bandwidth ofH’ is ωg and the scaling factor in the spatial domain isz/zc.
Reducing the amplitude ofh whenz<zc prevents the over-exposure of corrective density in
the volume slices near the source (as evident in Figure 4.3a). On the other hand, forz>zc,
the bandwidth ofH’ is ωr=ωgzc/z and the scaling factor in the spatial domain is 1.0. Increas-
ing the width ofh whenz>zc prevents the under-exposure of some voxels in the volume
slices far from the source and facilitates a homogenous distribution of the corrective
energy. If we used a more narrow filter forz>zc then we would introduce the higher order
aliases ofcs(z) into the reconstructedc(z), which is manifested by the aliased grid-like pat-
tern in the far-slice of Figure 4.3a (see also Figure 4.6d and e).

Note that if projection and backprojection are performed with the proper filtering as
described here, then the reconstruction volume will never contain frequencies greater than
ωg. Thus our previous argument that the grid projection may assume that the volume fre-
quencies never exceedωg is correct. Of course, there is a small amount of aliasing intro-
duced by the imperfect interpolation filter, but these effects can be regarded negligeable as
the Bessel-Kaiser filter has a rather fast decay in its stop-band (see Figure 4.5a).

4.1.2.3 Putting everything together

Since we are using an interpolation kernel that is pre-integrated into a 2D footprint table we
cannot represent the depth dependent kernel size accurately and still use the same footprint
everywhere in the volume. An accurate implementation would have to first distort the 3D
kernel with respect to the depth coordinatez and then integrate it alongz. Since the amount
of distortion changes for everyz, we would have to do this process for every voxel anew.
Since this is rather inefficient, we use an approximation that utilizes the generic footprint
table of an undistorted kernel function and simply stretches it byzv/zc whenever appropri-
ate. Here,zv is the depth coordinate of the voxel center. Thus the volume regions covered
by the voxel kernel for whichz<zv are lowpassed too much, while forz>zv the amount of
lowpassing is less than required. However, since the kernel extent is rather small and the
volume bandlimit rarely reaches the Nyquist limit, this error is not significant.

Another issue is how one goes about estimating the local sampling rateωr of the grid of
rays. Highest accuracy is obtained when the curved representation of the rayfronts is used
(see Figure 4.4). In this case one would compute the normal distance between the set of
neighboring rays traversing the voxel for which the kernel needs to be stretched (see also
Section 4.4). An easier way that is nevertheless a good approximation is to just use the

ds z jTg,() comb
y
Tg

 cs z kTr,() ✻
1

zc z⁄
----------h

y
Trzc z⁄

 ⋅= z zc<

comb
y
Tg

 cs z kTr,() ✻
1

zc z⁄
----------h

y
Tg

 ⋅= z zc<

57

-1/Tr

-1/Tr

-1/Tr

-1/Tr

-1/Tr

1/Tr

1/Tr

1/Tr

1/Tr

-1/Tg

1/Tr

-1/Tg

-1/Tg 1/Tg

-1/Tg

-1/Tg

1/Tg

1/Tg

1/Tg

1/Tg

0

0

0

0

0 0

0

0

0

0ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

Cs C Ds

(a)z= zc, Bandwidth(H) = 1/Tr = 1/Tg

H

(b) z < zc, Bandwidth(H) = 1/Tr

(c) z < zc, Bandwidth(H) = 1/Tg

(e)z > zc, Bandwidth(H) = 1/Tr

(d) z > zc, Bandwidth(H) = 1/Tg

FIGURE 4.7: Backprojection at different slice depths in the frequency domain. Shown in the
left column is the frequency spectrum of the discrete correction signal,Cs, with the filterH
superimposed. In the center column is the reconstructed correction signalC, while in
the right column is the reconstructedC resampled into the grid slice imageDs.

58

voxel’sz-coordinate in conjunction with the method of similar triangles to estimateωr (see
Section 4.4 for a quantitative error analysis). This approximates the curved rayfronts to pla-
nar rayfronts, as we did in our theoretical treatment. Various fast algorithms for the estima-
tion of ωr are subject of the next chapter.

Since the interpolation kernel is stretched and scaled differently for projection and back-
projection, the computed weights in these stages are different as well. Thus equation (2.11)
changes to:

(4.16)

Here, is the weight factor used for the forward projection and is the weight factor
used for backward projection.

Figure 4.8 shows images of a reconstruction obtained with the same parameters settings
than Figure 4.2a, but using the new approach for cone-beam ART. Figure 4.8a shows the
cone-cut of Figure 4.3a after one projection was processed. As was to be expected, the cor-
rection cone has now uniform intensity. Finally, Figure 4.8b shows the reconstructed slice
of Figure 4.1a. Here we observe that this reconstruction no longer displays the strong alias-
ing artifacts that dominated Figure 4.2a.

vj
k 1+()

vj
k() λ

pi win
F

vn
k

n 1=

N

∑–

win
F

win
B

n 1=

N

∑
-----------------------------------wij

B
+=

FIGURE 4.8: Reconstruction with ART utilizing the new variable-width interpolation kernels:
(a) The cone-cut of Figure 4.3a after one projection was processed: we observe a uniform dis-
tribution of the correction factors. (b) The slice of Figure 4.1a (λ=0.08,γ=60˚,V(0)=0, 3 itera-
tions): the cone-beam reconstruction artifacts apparent in Figure 4.2a were successfully
eliminated by using the new filter.

(a) (b)

win
F

win
B

59

4.2 3D Cone-Beam Reconstruction with SART

Let us now investigate SART and its behavior in the cone-beam setting. The bracketed part
in the numerator of equation (2.17) is equivalent to the numerator of equation (2.11).
Hence, the projection process of SART is identical to the one of ART and Section 4.1.2.1
applies again. However, SART’s backprojection process differs from the one of ART. In
contrast to ART, in SART, after the ray grid has been interpolated by the volume grid, a
voxel correction is first normalized by the sum of influential interpolation filter weights
before it is added to the voxel. This changes equation (4.10) to:

(4.17)

We will see that this provides for a smoothly interpolated correction signal, even when the
bandwidth of the interpolation filter is a constantωg, as is the case in the traditional ART
and SART approaches. Let us now illustrate this behavior by ways of an example, illus-
trated in Figure 4.9. Here, we utilize a uniform discrete correction signal (spikes,cs(z) in
Section 4.1.2.2), a 1D version of the one used in Figure 4.3, and a linear interpolation filter
h (dotted line) for ease of illustration. In this figure, we show the result of the signal recon-
struction withh, i.e., the signalc(z) prior to sampling intods(z) by the voxel grid. Consider
now Figure 4.9a, where the situation forz<zc is depicted. In this case, the uniform correc-
tion signal has a rateωr>ωg. In accordance to our previous results, we see that ifcs(z) is
reconstructed with traditional ART utilizing anh with constant bandwidthωg, we obtain a
signalc(z)ART with an amplitude much higher than the original correction signal. We know
that we can avoid this problem by reducing the interpolation filter magnitude, which gives
rise to the correctly scaled signal . The correction signal reconstructed with
SART,c(z)SART, on the other hand, does not require a reduction of the interpolation filter
amplitude, since for each voxel the sum of interpolated ray corrections is normalized by the
sum of the respective interpolation filter weights. Thus, with SART the reconstructed cor-
rection signal has always the correct amplitude. Forz>zc (see Figure 4.9b) whenωr<ωg, we
observe an aliased signal of half the grid frequency forc(z)ART instead of the expected con-
stant signal. Samplingc(z)ART into ds(z) would then result in a grid-like pattern, similar to
the one observed in the far slice of Figure 4.3a. We know, however, from the previous dis-
cussion that we can eliminate this effect by wideningh with respect toωr. This yields the
correct signal . For SART, on the other hand, a smooth and uniformc(z)SART
of correct amplitude is obtained even with the original interpolation filter width - again due

dvj

corri wij z()⋅
i 1=

Nr

∑
z
∫

wij z()
i 1=

Nr

∑
z
∫

--

corri h⋅ z ri,()
i 1=

Nr

∑
z
∫

h z ri,()
i 1=

Nr

∑
z
∫

corri h⋅ r i()
i 1=

Nr

∑

h ri()
i 1=

Nr

∑
---= = =

c z() ART
var. kern.

c z() ART
var. kern.

60

to the normalization step.

Consider now Figure 4.10a which shows the actual cone-cut of Figure 4.3a for SART. We
see that the distribution of correction energy is homogeneous, even though the bandwidth
of the interpolation filter was set toωg everywhere in the volume. Finally, Figure 4.10b
shows a reconstruction obtained with SART under the same conditions than the previous
ART reconstructions. We observe that no significant reconstruction artifacts are noticeable.
Thus we can conclude that the SART approach is inherently more adequate for algebraic
cone-beam reconstruction than the traditional, unmodified, ART approach.

4.3 Results

In order to assess the goodness of the reconstructions, we define two figures of merit: (i)
the correlation coefficient CC between the original 3D Shepp-Logan brain phantom (SLP)
and the reconstructed volume and (ii) the background coefficient of variation CV. These
measures were also used by Ros et.al. [55].

We calculate CC within two selected regions of the SLP: (i) the entire inside of the head
(without the skull) and (ii) an ellipsoidal volume containing the three small SLP tumors, as
shown at the bottom of the brain section of Figure 4.1a and described by ellipsoids 7, 8, and

FIGURE 4.9: Reconstructing a uniform discrete correction signalcs(z) (spikes) into the con-
tinuous signalc(z) with ART and SART using a linear interpolation filterh (depicted here for a
bandwidth ofωg in a dotted line). Signalc(z)ART is the reconstruction ofcs(z) with ART and
the traditional interpolation filter of bandwidthωg. In case (a), whenz<zc, the correction signal
is magnified, as in Figure 4.3a, near slice. In case (b), whenz>zc, the correction signal is
aliased, as in Figure 4.3b, far slice. As previously discussed, we can avoid these effects using
variable interpolation kernels, i.e., by scaling the amplitude ofh in case (a) and by wideningh
in case (b), which yields the correct signal in both cases. The normalization pro-
cedure of SART prevents magnification and aliasing artifacts and thus in both cases (a) and (b)
a correctly reconstructed signalc(z)SART identical to is produced.

c z() ART
var. kern.

c z() ART
var. kern.

(a)z<zc, Tr<Tg, ωr>ωg (b) z>zc, Tr>Tg, ωr<ωg

c(z)ART c(z)ART

c (z)SARTandc z() ART
var. kern.

Tg
Tr TrTg

yy

61

12 in the SLP definition (see Table 4.1). While (i) measures the overall correlation of the
reconstructed volume with the original, (ii) captures the sensitivity of the reconstruction
algorithm to preserving small object detail. The CC is defined by:

(4.18)

whereoi andvi are the values of the voxels in the original phantom volume and the recon-
structed volume, respectively, andµo andµv are their means.

The background coefficient of variation CV is calculated within four ellipsoidal featureless
regions located in different areas of the SLP. Since these regions are ideally uniform, CV
represents a good measure for the noise present in the reconstructed SLP. The overall CV
is the average of the four individual CVs and is defined as:

(4.19)

whereσi is the standard deviation of the voxel values within regioni.

Using CV and CC to assess reconstruction quality, we have conducted a thorough study of
the effects of various parameter settings:

• The initial state of the reconstruction volume: (i) zero, (ii) the average value of one of
the projection images, properly scaled, and (iii) the average value of the SLP brain
matter (e.g. 1.02). The last initialization method is hard to achieve in practice, since
one usually does not know the average value of the reconstructed object in advance.

FIGURE 4.10: Reconstruction with SART: (a) The cone-cut of Figure 4.3a, after one projec-
tion was processed. (b) The slice of Figure 4.1a (λ=0.3,γ=60˚,V(0)=0, 3 iterations). The alias-
ing artifacts apparent in Figure 4.2a do not exist.

(a) (b)

CC

vi µv–() oi µo–()
i

∑

vi µv–() 2
oi µo–() 2

i
∑

i
∑

---=

CV
1
4

σi

µv

i

4

∑=

62

• The setting of the relaxation coefficientλ: experiments revealed that values in the
range of [0.02, 0.5] yielded reconstructions that offered the best balance with respect
to reconstruction quality and number of iterations. Therefore, reconstructions were
obtained forλ=0.5, 0.3, 0.1, 0.08, 0.05, and 0.02.

• Time-weighted variation ofλ during the first iteration: starting from 10% of the final
value we have used: (i) immediate update to the final value, (ii) a linear increase and
(iii) an increase due to a shifted cosine function (similar to [1]).

• The correction algorithm: (i) ART and (ii) SART.

• The size of the interpolation kernel: (i) constant and (ii) depth-dependent, as described
in Section 4.1.2.

• The cone angle: 20˚, 40˚, and 60˚.

• The number of iterations: 1 through 10.

During our experiments we found that there is no significant difference in reconstruction
quality whether λ is varied linearly or with a cosine function. Thus we only report results
using a linear variation.

Figure 4.11 shows a number of plots illustrating CC and CV for various reconstruction
methods and parameter settings. Figure 4.12 shows reconstructed SLP slice images after 3
iterations. The number of 3 iterations was chosen because the plots indicate that after this
number of iterations both CC and CV have reached a level close to their final value. In both
Figure 4.11 and Figure 4.12 the following terminology is used. Each parameter combina-
tion is described by a 3 digit code. The first digit codes the size of the interpolation kernel
(C for constant, V for variable, depth-dependent). The second digit codes the volume ini-
tialization method (- for zero, I for projection average, I* for SLP average). Lastly, the third
digit codes the function at whichλ is varied during the first iteration (- for no variation, G
for linear increase). Reconstructions were obtained for each combination of parameter set-
tings over the length of 10 iterations for all six settings of λ. In order to keep the amount of
presented data manageable, we do not plot the effect ofλ in Figure 4.11. Instead, at every
iteration and parameter combination we pick the lowest CV or highest CC, respectively,
that was obtained in the set of six λ-dependent reconstructions. As the idealλ is somewhat
object-dependent anyway [25], this does not represent a serious trade-off. During the
course of our experiments, we found that for ART and the SLP theλ that produces good
reconstructions within four iterations is somewhere around 0.08, for SART thisλ setting is
around 0.3.

Figure 4.11a-c shows the CC for the SLP tumors at a cone angle of 40˚ for the three main
correction methods used: ART using the constant interpolation kernel, ART using the vari-
able-size interpolation kernel, and SART using both kernels. In Figure 4.11a we see that
the reconstructions for G are always better than the respective ones without G. Since it is
not any costlier to do G, the following plots will always use G. In Figure 4.11b we see that
reconstruction results with VIG are similar to the ones with VI*G. Since VI*G is not real-
istic anyway, we will use only VIG for the remaining discussion. In the same figure we also
observe that V-G, VI- and VI*- yield only marginally worse results than VIG, thus we will

63

Iteration

1 2 3 4 5 6 7 8 9 10
Iteration

0.30

0.40

0.50

0.60

0.70

0.80

 C--
 C-G
 V--
 V-G

FIGURE 4.11: Correlation Coefficient (CC) and Background Coefficient of Variation (CV) for
ART and SART with constant and variable interpolation kernel size for 3 regions of the SLP (u
80 projections of 1282 pixels each). Each reconstruction was performed for λ=0.5, 0.3, 0.1,
0.08, 0.05, and 0.02, the graphs plot the highest CC/lowest CV of allλ settings at each itera-
tion. (C: constant sized kernel, V: variable sized kernel, I: volume initialized to average of pro-
jection 0, I*: volume initialized to average of the SLP, G: linear increase ofλ during the first
iteration, -: volume initialization to zero or constantλ.)

(c)

ART, const. kern. size, tumors, 40˚

SART, tumors, 40˚
(a) (b)

1 2 3 4 5 6 7 8 9 100.30

0.40

0.50

0.60

 V--
 VI-
 VI*-
 V-G
 VIG
 VI*G

0.70

C
C

C
C

C
C

1 2 3 4 5 6 7 8 9 10
Iteration

0.30

0.40

0.50

0.60

0.70

ART, var. kern. size, tumors, 40˚

(d) - (l):

1 2 3 4 5 6 7 8 9 10
Iteration

0.00

0.20

0.40

0.60

0.80

C
C

all methods, tumors, 60˚

all methods, tumors, 40˚

1 2 3 4 5 6 7 8 9 10
Iteration

0.30

0.40

0.50

0.60

0.70

C
C

(e)

 ART C--
 ART CIG
 ART CI*G
 ART V--
 ART VIG
 SART C-G
 SART V-G

all methods, tumors, 20˚

1 2 3 4 5 6 7 8 9 10
Iteration

0.25

0.35

0.45

0.55

0.65

0.75

C
C

(f)

(d)

 C--
 CI-
 CI*-
 C-G
 CIG
 CI*G

64

1 2 3 4 5 6 7 8 9 100.0

5.0

10.0

15.0

C
V

 (
10

-3
)

Iteration

Iteration Iteration

FIGURE 4.11: Continued from previous page.

(j)

(l)(k)
1 2 3 4 5 6 7 8 9 100.0

1.0

2.0

3.0

4.0

5.0

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

1.5

2.0

2.5

3.0
all methods, noise, 20˚all methods, noise, 40˚

all methods, noise, 60˚

Iteration(i)

C
V

 (
10

-3
)

C
V

 (
10

-3
)

all methods, full head, 60˚

1 2 3 4 5 6 7 8 9 10
Iteration

0.30

0.40

0.50

0.60

0.70

0.80
C

C

(g)

all methods, full head, 40˚

1 2 3 4 5 6 7 8 9 10
Iteration

0.60

0.70

0.80

0.90

C
C

(h)

 ART C--
 ART CIG
 ART CI*G
 ART V--
 ART VIG
 SART C-G
 SART V-G

all methods, full head, 20˚

(d) - (l):

C
C

1 2 3 4 5 6 7 8 9 100.60

0.70

0.80

0.90

FIGURE 4.12: (next page): Reconstructions of the 3D Shepp-Logan brain phantom for cone
angles of 20˚, 40˚, and 60˚ with different ART and SART parameter settings.

65

60˚ cone angle 40˚ cone angle 20˚ cone angle

ART C--

ART CIG

ART CI*G

ART VIG

SART C-G

66

eliminate these settings from further plots. Finally, in Figure 4.11c, we see that SART C-G
is either similar or always better than SART C--, and the same is true for SART V-G and
SART V--. Thus we will be using only SART C-G and SART V-G. Also, preceding exper-
iments revealed that SART is not dependent on the initial state of the volume. This is
largely due to the circumstance that SART corrects the volume on an image basis, which
provides a good initialization after the first image was spread onto the volume.

The following plots (Figure 4.11d-l) illustrate the effects of the settings of the remaining
parameters on CC and CV. (Please use the legends inserted into Figure 4.11f and i). In Fig-
ure 4.11d, g, and j, we observe that when using the constant sized interpolation kernel for
ART, CC and CV for reconstructions at a 60˚ cone angle improve significantly as volume
initialization is made more accurate. This can also be seen in the reconstructed images
shown in the first column of Figure 4.12. If the volume is initialized to zero, the small SLP
tumors (and other portions of the image) are completely obliterated by aliasing artifacts
(ART C--). The artifacts are reduced somewhat if the volume is initialized to the average
value of one of the projection images (ART CIG). The artifacts are reduced further, but still
well noticeable, if the volume is initialized to the average value of the SLP brain matter
(ART CI*G). It is apparent that volume initialization alone cannot remove all artifacts.
However, the reconstructions obtained with the variable sized interpolation kernel in con-
junction with ART and the ones obtained with SART are all artifact-free. The plots support
these observation with only SART and the ART V-methods having good CC and low CV.
The plots also indicate that reconstruction quality increases when SART is used with a V-
kernel instead of a C-kernel, however, the improvements are not large. At the same token,
reconstruction quality also improves when the ART-V methods are used in conjunction
with volume initialization and gradually increasing relaxation coefficient, but the rate of
improvement is at a much smaller scale than in the ART-C case.

From the images in the second column in Figure 4.12 we observe that for a cone angle of
40˚ considerable artifacts around the tumors still remain for ART C-- and ART CIG. Again
notice the improvements with more accurate volume initialization. For ART CI*G, the arti-
facts are more attenuated but are still visible (however, note again that ART CI*G may not
always be realizable). On the other hand, with ART VIG and SART C-G, the artifacts are
completely eliminated. The plots of Figure 4.11e, h, and k support these observations: the
CCs are consistently higher, especially for small object detail like the SLP tumors, and the
CVs are consistently lower with the ART V-methods and SART than for the ART C-meth-
ods (with ART CI*G being closest to ART V and SART).

The plots of Figure 4.11f, i, and l indicate that for a smaller cone angle of 20˚ the differ-
ences between the methods are not as pronounced as for the larger cone angles, as long as
one initializes the volume at least with the average projection image value. The circum-
stance that ART VIG and SART maintain a marginally better CC for the SLP tumors in a
quantitative sense could be relevant for automated volume analysis and feature detection.
However, in a visual inspection the differences are hardly noticeable, as indicated in the
reconstruction images in the third column of Figure 4.12.

67

4.4 Error Analysis

In Section 4.1 we used the approximate ray grid sampling rateωr to simplify our analysis.
We shall now formally investigate the magnitude of the error committed by this approxi-
mation.

Consider Figure 4.13 where we show one of several ways to estimate the accurate ray grid
sampling rate at a volume grid position withz=zs andy=iTr. Here, is the index of
the projection pixel andTr is the distance between the points of intersection of the lines that
go from the source to the pixel boundaries with the volume slice plane being located atz=zs.
The method uses the perpendicular distance between these two pixel bounding lines to
compute for the ray of pixeli. See the description in the caption of Figure 4.13
for a more detailed explanation.

The perpendicular distance is given by:

(4.20)

A plot of the rayfront for which is shown in Figure 4.14.

The relative errorestretch when usingTr instead of for stretching the kernel functions is

ωr
ˆ i ℵ∈

Tr
ˆ

ω̂r 1 Tr
ˆ⁄=

zc zs z

y=iTg

ϕ
Tr

Tr
ˆ

Tg

FIGURE 4.13: Computing the perpendicular ray distance to estimate the accurate ray grid
sampling rate . The dashed line is the ray that traverses from the source through the center
of projection pixeli=2. The lines (shown in solid) that connect the pixel boundaries with the
source intersect the volume slice atz=zs. The distance between these intersections isTr, and1/
Tr was used in Section 4.1 as the approximate ray grid sampling rate.Tg is the period of the
volume grid andzc is the slice in whichTr=Tg. Finally, is given by the perpendicular dis-
tance of the two pixel boundary rays atz=zs.

Tr
ˆ

ωr
ˆ

Tr
ˆ

0
Tg

2Tg

3Tg

-Tg

p2

p0

p1

p-1

Projection plane

Tr
ˆ

Tr
ˆ Tr ϕcos

zs

zc
----Tg ϕcos≡≈

zs

zc
----Tg

zc

iTg〈 〉2
zc

2
+

-------------------------------⋅
zsTg

iTg〈 〉2
zc

2
+

-------------------------------= =

Tr
ˆ Tg 1= =

Tr
ˆ

68

given by:

(4.21)

This error is plotted in Figure 4.15. We observe that further away from the cone center the
kernel is stretched too much if the curved ray front is approximated by a planar rayfront to
estimateωr. This means that the grid signal is overly smoothed when sampled. The maxi-
mum error of 15% occurs at the cone boundary, i.e., here the kernel is stretched 15% more
than necessary.

FIGURE 4.14: Shape of the rayfront with constant . Here the case of is shown.
In the regions on the left side of the curve the ray grid sampling rate is higher than the sam-
pling rate of the volume grid, while in the regions on the right of the curve the ray grid sam-
pling rate is lower than the volume grid sampling rate.

ωr
ˆ ωr

ˆ 1.0=

z

iTg

estretch Tr Tr
ˆ⁄

zs

zc
----Tg〈 〉

zsTg

iTg〈 〉2
zc

2
+

-------------------------------〈 〉⁄
iTg〈 〉2

zc
2

+

zc
-------------------------------= = =

FIGURE 4.15: The relative errorestretch when usingTr instead of for stretching the kernel
functions.

Tr
ˆ

iTg

e s
tr

e
tc

h

69

CHAPTER 5

CONE-BEAM RECONSTRUCTION
WITH ART: SPEED ISSUES

The previous chapter has shown how we can make algebraic methods accurate for the gen-
eral cone-beam case. This chapter will demonstrate how they can be made efficient. The
ultimate goal is to reduce the cost of algebraic methods to a level at which they become fea-
sible for routine clinical applications. A good measure to determine this level of feasibility
is the cost of the popular Filtered Backprojection (FBP) algorithm. However, we don’t nec-
essarily need to match or exceed the computational expense of FBP (although that would,
of course, be the utmost desirable). We just need to get reasonably close to the cost of FBP,
as the many advantages that algebraic methods have over FBP will offset a small amount
of extra computational work (at least in those applications where ART actually produces
better results).

Most of the computational expense of ART is spent for grid projection and backprojection,
thus our main effort should go into optimizing these operations. It turns out that the com-
putational cost and accuracy of grid projection is greatly affected by the perspective cone-
beam geometry. In the following sections, we will give a detailed description of two new,
highly accurate projection algorithms, one voxel-driven and one ray-driven, and analyze
their efficiency in both the parallel-beam and cone-beam setting. Although other voxel-
driven projectors [67] and ray-driven projectors [31][33] have been described, these algo-
rithms are only efficient for the parallel-beam case or do not allow the stretched interpola-
tion kernels prescribed in Section 4.1 as necessary for accurate cone-beam reconstruction.
Furthermore, our new voxel-driven perspective projection algorithm is considerably more
accurate than the one described by Westover [67]. Our ray-driven algorithm, on the other
hand, is a 3D extension of the 2D algorithm proposed by Hanson and Wecksung [22].

However, a fast projection algorithm is not enough. We must also reduce the actual com-
plexity of the overall projection-backprojection framework (refer to equation (1.6) and our
comments above). Ideally, we only want to do the computational equivalent of one projec-
tion operation per image instead of one projection and one backprojection. This can only

70

be achieved by re-using some of the earlier computed results for later calculations, which
is a technique termed caching. Our paper will give caching schemes for both ART and
SART, which will bring the computational cost of these two popular algebraic methods
close to the theoretical cost of FBP methods. These reduction factors will then be discussed
in the framework of equation (1.6), and a final feasibility analysis will contrast algebraic
methods with FBP in terms of cost to determine ART’s utility in a clinical setting.

Thus the outline of this chapter is as follows. After presenting relevant previous work in
Section 5.1, we describe, in Section 5.2, a new voxel-driven projection algorithm for cone-
beam that is considerably more accurate for perspective projection than existing ones, but
does not improve the state of the art in terms of speed. With this in mind, we present, in
Section 5.3, a new ray-driven projection algorithm for cone-beam ART and SART that is
both accurate and efficient. Next, in Section 5.4, we discuss various caching schemes that
reduce the overall complexity of ART and SART and speed these methods up considerably.
Finally, Section 5.5 puts everything together and presents a variety of results obtained with
our ART testbed software. We conclude, in Section 5.6, with an analysis of the feasibility
of algebraic methods for routine clinical use. Two appendices have been added, in Section
5.7, to discuss two side-issues raised in the main text.

5.1 Previous Work

While the concept of representing a volume by a field of interpolation kernels and pre-inte-
grating a 3D kernel into a 2D footprint is common to all existing splatting-type implemen-
tations, the strategy chosen to map the footprint table onto the screen (in the voxel-driven
approach) or to map the rays into the footprint table (in the ray-driven approach) varies. The
mapping task is facilitated since we only use spherically symmetric kernels and cubic grids,
which yields a circular footprint. For voxel-driven splatting, both Westover [67] and Matej
and Lewitt [33] simply map the circular footprint to the projection screen for one voxel and
use incremental shifts for the remaining voxels at that projection angle. This, however, is
only correct for parallel projections, since in perspective projection the elliptical shape and
size of the footprint is different for every voxel. (More detail is given in Section 5.2.)

In the case of ray-driven splatting we again assume a spherically symmetric interpolation
kernel, but here the approaches are more diverse. For instance, Lewitt [31] computes the
magnitude of the cross-product of the ray unit vector with the vector from a point on the
ray to the voxel center. This yields the perpendicular distance of the ray to the voxel center
which can be used to index a 1D footprint table storing the radially symmetric projection
of the 3D kernel. Efficient incremental algorithm can then be used to find all other voxel
distances along the ray. This approach, however, is not appropriate for cone-beam recon-
struction, as it does not allow independent footprint stretching in the two ray sheet direc-
tions. In another approach, Matej and Lewitt [33] decompose the voxel grid into a set of 2D
slices. Here, the orientation of the slices is that orientation most parallel to the image plane.
Recall that a footprint is the pre-integrated kernel function in the direction of a ray, thus a
footprint is not necessarily planar with the slice planes. The authors project this footprint
function onto a slice plane which results in an elliptical footprint. Since in parallel projec-

71

tion all rays for a given projection angle have the same angle with the volume slices, this
re-mapped elliptical footprint can be used for all slices and for all rays that are spawned for
a given projection orientation. Simple incremental algorithms can be designed to trace a ray
across the volume slices, computing all indices into the elliptical footprints that are inter-
sected. However, for perspective projection, every ray has a different orientation, necessi-
tating a footprint re-mapping for every ray, which is inefficient both to compute on the fly
and to store. A more appropriate approach was outlined for the 2D case by Hanson and
Wecksung [22]. These authors model a 2D ray as an implicit line equation. If one runs a
line parallel to the ray across the center of a given voxel, then the offset difference of the
equations of these two lines yield the perpendicular distance of the ray to the voxel center.
This distance can then be used to index a 1D footprint table. Our ray-driven approach is a
3D extension of this algorithm, optimized for speed, that enables the efficient use of the
same footprint table for all projection rays everywhere in the volume.

5.2 An Accurate Voxel-Driven Splatting Algorithm for Cone-
Beam ART

Let us first introduce some terminology. As suggested by Crawfis and Max [8], we can
think of the interpolation kernel footprint as a polygon with a superimposed texture map
that is placed in object (volume) space. Here, the texture map is given by the projected ker-
nel function, i.e. the array of line integrals. For the remainder of our discussion we will refer
to the footprint in object space as thefootprint polygon, while the projection of the footprint
polygon onto the image plane will be called thefootprint image. Recall that splatting accu-
mulates the same value in a pixel on the image plane as a ray would accumulate when tra-
versing the volume. Thus, when projecting the footprint polygon to obtain the line integral
for the pixel in the footprint image we must ensure that we position the footprint polygon
orthogonal to the direction of the sight-ray in object space. The line integrals are retrieved
from the footprint table by indexing it at the ray-footprint polygon intersection point. Thus,
for splatting to be accurate, the 2D footprint must be mapped to the pixel as if the ray ema-
nating from the pixel had traversed it at a perpendicular angle. Only then does the looked-
up pre-integrated integral match the true kernel integration of the ray. Westover’s perspec-
tive extension to voxel-driven splatting violates this condition at three instances:

• He does not align the footprint polygon perpendicularly to the voxel center ray when
calculating the projected screen extent. Instead he aligns it parallel to the screen and
stretches it according to the perspective viewing transform.

• When mapping the footprint to the screen pixels he uses a linear transform instead of a
perspective one.

• The footprint polygon is not rotated for every mapped pixel such that the correspond-
ing pixel ray traverses it at a perpendicular angle.

While the error for the last approximation is rather small (see Section 5.7.1), the former two
are more significant. The first approximation computes footprint screen extents that are
smaller than the actual ones. For example, for a cone angle of 30˚ and a 1283 volume the

72

maximum error ratio between correct and approximate footprint extent is 1.15 and the max-
imum absolute difference between the two is 1.46 pixels (see Section 5.7.2). Here, the abso-
lute error is largest for those voxels that are located close to the sourceandclose to the view
cone boundary. It causes the footprints of these voxels to cover less area on the projection
plane than they really should. The second approximation has a similar effect. In that case,
the mapping of the footprint table entries to the screen is slightly squashed. Again, voxels
close to the source and close to the view cone boundary are most affected.

Consider now Figure 5.1, where we illustrate a new and accurate solution for perspective
voxel-driven splatting. For simplicity of drawing, we show the 2D case only. Note that the
coordinate system is fixed at the eye point. To splat a voxelvx,y,z, it is first rotated about the
volume center such that the volume is aligned with the projection plane. Then the footprint
polygon is placed orthogonal to the vector starting at the eye and going through the center
of vx,y,z. Note that this yields an accurate line integral only for the center ray, all other rays
traverse the voxel kernel function at a slightly different orientation than given by the place-
ment of the 2D (1D in Figure 5.1) footprint polygon in object space. Thus the first error in
Westover’s approximation still survives. This error, however, can be shown to be less than
0.01, even for voxels close to the source.

The coefficients of the footprint polygon’s plane equation are given by the normalized cen-

ExtLeft(vx,y)

ExtRight(vx,y)

Proj(vx,y)

vx,y

Sourcex

y

VLeft(vy,z)

VRight(vx,y)
pi+3

pi

pi+1

pi+2

Image plane

Projected kernel
(footprint image)

Footprint table

(footprint polygon)
 in object space

FIGURE 5.1: Perspective voxel-driven splatting: First, the footprint polygon of voxelvx,y is
mapped onto the image plane, then the affected image pixelspi...pi+4 are mapped back onto
the footprint table.

pi+4
Rotated volume

u

73

ter ray (the vectorsource-vx,y,z). From this equation we compute two orthogonal vectorsu
andw on the plane (onlyu is shown in Figure 5.1). Here,u andw are chosen such that they
project onto the two major axes of the image. Usingu andw, we can compute the spatial
x,y,z positions of the four footprint polygon vertices in object space (VRight(vx,y) and
VLeft(vx,y) in the 2D case depicted in Figure 5.1). These four vertices are perspectively pro-
jected onto the image plane. This yields the rectangular extent of the footprint image,
aligned with the image axes (ExtRight(vx,y) andExtLeft(vx,y) in the 2D case). By expressing
the intersections of the pixel rays with the footprint polygon in a parametric fashion, we can
then set up an incremental scheme to relate the image pixels within the footprint image with
the texture map entries of the footprint table.

The computational effort to map a footprint polygon onto the screen and to set up the incre-
mental mapping of the pixels into the footprint table is quite large: Almost 100 multiplica-
tions, additions, and divisions, and two square root operations are necessary. No
incremental scheme can be used to accelerate the mapping of neighboring grid voxels. The
high cost is amplified by the fact that the expensive mapping has to be done at O(N)=O(n3).
And indeed, in our implementation, perspective projection was over twice as expensive
than parallel projection.

5.3 A Fast and Accurate Ray-Driven Splatting Algorithm for
Cone-Beam ART

We saw in the previous section that perspective voxel-driven splatting can be made accu-
rate, however, the expense of perspective voxel-driven splatting seems prohibitive for use
in cone-beam reconstruction. In this section we take advantage of the fact that, in contrast
to voxel-driven approaches, ray-driven methods are generally not sensitive to the non-lin-
earity of the perspective viewing transform. It can thus be expected that ray-driven splatting
is more advantageous to use in the perspective cone-beam situation. The new ray-driven
approach is in some respect a 3D extension to the 2D algorithm sketched by Hanson and
Wecksung [22] and will work both for constant-size kernels as used in cone-beam SART
and variable-size kernels as required for cone-beam ART.

5.3.1 Ray-Driven Splatting with Constant-Size Interpolation Kernels

In ray-driven splatting, voxel contributions no longer accumulate on the image plane for all
pixels simultaneously. In contrast, each pixel accumulates its raysums separately, which
makes it also more suitable for ART than voxel-driven splatting. Our algorithm proceeds
as follows. The volume is divided into 2D slices formed by the planes most parallel to the
image plane. When a pixel ray is shot into the 3D field of interpolation kernels, it stops at
each slice and determines the range of voxel kernels within the slice that are traversed by
the ray. This is shown in Figure 5.2a for the 2D case: The ray originating at pixelpi pierces
the volume slice located atxs aty=y(i,xs). The voxel kernels within the slicexs that are inter-
sected by the ray are given by the interval [Ceil(yLeft(i,xs)), Floor(yRight(i,xs))]. We compute
yRight(i,xs) as:

74

(5.1)

whereα is the inclination of the ray. The computation foryLeft(i,xs) is analogous. After
determining the active voxel interval [yLeft(i,xs), yRight(i,xs)] we must compute the indices
into the voxel footprint table. This can be efficiently implemented by realizing that the
index into the footprint table of a grid voxelv located at coordinates (yv,xv) is given by the
distancedr of the two parallel lines (planes in 3D) that traversev’s center point and the slice

FIGURE 5.2: Ray-driven splatting: (a) Determining the range of voxels within a given volume
slice plane that are traversed by a ray originating at pixelpi. (b) Computing the indexdr into
the footprint table.

α

α

pi

yLeft(i,xs)

yRight(i,xs)

x

y

y(i,xs)

xs

rr’

dr

y

pi

v

xv=xs

yv

y(i,xs)

a
bα

(a)

(b)

x

yRight i xs,() y i xs,()
extentkernel

α()cos
----------------------------+=

75

intersection point of the ray aty(i,xs), respectively (see Figure 5.2b). One finds:

(5.2)

wherea andb are the coefficients of the implicit line equation of
the ray and are also given by the components of the (normalized) ray vector. Maintaining
the variablesyLeft(i,x), yRight(i,x), anddr along a ray can all be done using incremental addi-
tions.

For the 3D case, we need to replace the linear ray by two planes. A 3D ray is defined by the
intersection of two orthogonal planes cutting through the voxel field. The normal for one
plane is computed as the cross product of the ray and one of the image plane axis vectors.
The normal of the second plane is computed as the cross product of the ray and the normal
of the first plane. Thus, the two planes are orthogonal to each other and are also orthogonal
to the voxel footprint polygons. Thus the ray pierces the footprint polygon in a perpendic-
ular fashion, as required. Intersecting the horizontal plane with a footprint polygon and
using plane equations in the spirit of equation (5.2) results in the horizontal row indexdrrow
into the footprint table, while the intersection with the vertical plane yields the vertical col-
umn indexdrcol. Using these two indices, the value of the ray integral can be retrieved from
the 2D footprint table. Note that the two orthogonal directions of the indices,drcol and
drrow, on the footprint polygon plane allow us to implement the bi-directional footprint
stretching required for the variable-size interpolation kernels in cone-beam ART.

There are now three nested loops: The most outer loop sets up a new ray to pierce the vol-
ume, the next inner loop advances the ray across the volume slice by slice and determines
the set of voxels traversed per slice, and finally, the most inner loop retrieves the voxel con-
tributions from the footprint tables. For perspective projection, the plane equations have to
computed for every ray. This amounts to about 50 extra additions, multiplications, and divi-
sions, and three square roots per pixel. The cost of advancing a ray across the volume and
determining the footprint entries is comparable to the cost of rotating a kernel and splatting
it onto the image plane in the orthographic voxel-driven approach. The ray-driven approach
changes the splatting algorithm from voxel order to pixel order. Thus, the most outer loop
is of O(n2). This has the advantage that the complexity of any extra work that has to be done
for perspective projection (e.g. recomputing the two planes that define the ray in 3D) is
roughly one order of magnitude less than in voxel-driven splatting. Note also that ray-
driven splatting does not introduce inaccuracies. As a matter of fact, it prevents the index-
ing errors in the voxel-driven approach by design.

5.3.2 Ray-Driven Splatting with Variable-Size Interpolation Kernels

We have discussed in the previous chapter that the aliasing artifacts caused by the diverging
set of rays in cone-beam can be eliminated by progressively increasing the interpolation fil-
ter width (or magnitude, in backprojection fors(z)<zc) as a linear function of ray depth.
This requires us to express the sampling rateωr of the arrangement of rays in grid coordi-
nates (x,y,z). Once the functionωr is known, we can determine the required interpolation
filter width or magnitude at each location along a ray. We saw in Figure 4.4 thatωr is con-

dr a xs⋅ b y i xs,()⋅ a xs⋅– b yv⋅–+ b y i xs,() yv–()⋅()= =

a x⋅ s b y i xs,() 0=⋅+

76

stant along the curved rayfront iso-contours and decreases linearly with increasing distance
of the iso-contours from the source. This linear dependence on ray depth means that each
voxel kernel must undergo a non-uniform distortion along a ray. However, since we use
identical, pre-integrated kernels in the form of 2D footprint polygons, we cannot realize this
non-uniform distortion function. Hence, as an approximation, we only estimateωr at the
location of each kernel center and distort the generic 2D footprint.

Consider now Figure 5.3. The coordinates of an image pixel can be expressed as
pij=image_origin+iu+jv, whereu, v are the orthogonal image plane axis vectors. The grid
of diverging rays is organized into horizontal and vertical sheets, or cutting planes, that
intersect the image plane and are spaced byu andv. The ray grid sampling rateωr is then
a 2D vector (ωru, ωrv) that is related to the local sheet spacings. Figure 5.3 illustrates how
ωrv is calculated. Here, we see the two horizontal cutting planescpj andcpj+1 embedding
the rays ri,j andri,j+1 , respectively. To approximateTv=1/ωrv at the location (xv yv zv) of the
kernel center of voxelvx,y,z, we measure the distance betweencpj andcpj+1 along the vector
orthogonal tocpj passing through (xv yv zv). This distance can be written asTv=ax+by+cz+k
where (a b c) is a linear function of (x,y,z) and the plane equations ofcpj andcpj+1, and can
thus be updated incrementally for all intersected voxels along a ray. If we select the hori-
zontal and vertical cutting planes such that the image plane vectorsu andv, respectively,
are embedded in them, then we can simply stretch the footprint polygon by a scale factor
of magnitudeTv to achieve the proper lowpassing in that ray grid direction. (Recall that, in
forward projection, we also have to scale the kernel’s amplitude by a factor 1/Tv.) An anal-
ogous argument can be given for the vertical cutting planes andTu=1/ωru. Also recall that
we only stretch the footprint polygon ifTu>1 or Tv>1. If, in forward projection, Tu≤1 or
Tv≤1 then the ray grid sampling rate in that direction is sufficient such that no aliasing can
occur. However, in backprojection we do need to scale the magnitude of the kernel when-
everTu<1 orTv<1. Here, the scale factor is 1/Tv or 1/Tu, respectively.

Note that in order to preserve orthogonality of the two cutting planes, in the general case
one cannot achieve thatu lies in the horizontal cutting planes and, at the same time,v lies
in the vertical planes. But since we flip the main viewing direction as soon as the angle
between the ray direction and the major viewing axis exceeds 45˚, the angular deviation of
the true orientation of the cutting plane and the correct orientation is small (less than 5
degrees).

The method outlined above can be efficiently implemented by using an incremental scheme
that requires about one addition per voxel in each slice for computing the distance between
two cutting planes. However, due to the fact thatu lies in thex-z plane andv is aligned with
they-axis of the volume grid, we may employ a simpler method that does not compute the
perpendicular distance between two adjacent cutting planes, but uses theslice-projected
distance between two adjacent cutting planes as they intersect with the volume slice most
parallel to the projection plane. This approximation is shown for the 2D case in Figure 5.4,
(we have also looked at this approximation, in a slightly different context, in Section 4.4).
In this figure,Tcorr is the distance measured by the scheme described first, whileTapprox is
the volume slice-projected measurement. The error is given by .
This means that the simpler method underestimates the grid sampling rate by some amount.

Tcorr TTapprox ϕccos⋅≈

77

In the case ofωrv, the maximum error occurs for voxels on the view cone boundary. Here,
for a cone half-angleϕc=30˚, the simpler method would choose a kernel that is about 1/
0.86=1.15 times larger than it needs to be, and thus lead to a greater amount of lowpassing
of voxelvx,y,z in thev-direction than is required. However, the fact that the factor cos(ϕ) is
rather small and approaches values close to 1.0 quickly as we move away from the view
cone boundary, makes this approximation a justifiable one. In the case ofωru, which deter-
mines the kernel stretching factor in thex-z plane, the error can get a bit larger. Here, the
rays can meet the volume slice plane most parallel to the viewing plane at an angle of up to
45˚. Greater angles are avoided since we flip the major viewing direction as soon as an
angle of 45˚ is exceeded, as was mentioned above. Thus the errorTapprox/Tcorr when deter-
mining the kernel stretch factor for theu-direction can grow up to 1/cos(45˚)=1.41.

x

y
z

v
pi,j

pi+1,j

pi,j+1

FIGURE 5.3: Determining the local sampling rate of the arrangement of diverging rays. The
arrangement of rays traverses the volume grid in two orthogonal sets of ray sheets (two hori-
zontal sheets, i.e. the cutting planescpj andcpj+1, are shown). Each 3D ray is part of one sheet
in each set and is defined by the intersection of these two sheets. Depending on the location of
the kernel with respect to each sheet set, the 2D kernel footprint must undergo different distor-
tions in its two principal coordinate axes.

u

Image plane

yv

xv

Volume

Source

Kernel of voxelvx,y,z

Tv

ri+1,j

ri,j

ri,j+1

cpj

cpj+1

image_origin

78

5.4 Caching Schemes for Faster Execution of ART and SART

In the previous section, we have discussed a ray-driven projection algorithm that minimizes
the number ofnecessary calculations per projection by utilizing fast incremental ray tra-
versal schemes. In this section we will investigate to what extent previously computed
results can be re-used, i.e. cached, so the number ofredundant calculations can be mini-
mized.

Caching can be performed at various scales, with the largest scale being iteration-based, in
which all weights are pre-computed and stored on disk. The number of weights to be stored
can be estimated as follows. If we only consider voxels in the spherical reconstruction
region then the total number of relevant voxelsN≈0.5n3. With a square footprint extent of
4.0, the average number of rays traversing a footprint polygon is 16. Thus the number of
relevant weights per projection is 8n3. For a number of projectionsS=80 and a voxel grid
of 1283 voxels, the total number of relevant weight factors is then about 1.3G floating point
values, 5.3GB of actual data. This is clearly too much to hold in RAM. On the other hand,
if we just held the coefficients for one projection at a time, we would need 67MB of RAM.
This is in addition to the volume data and other data structures, but is feasible with today’s
workstations. However, then we would have to load a 67M file for every new projection
that we work on. It is likely that the disk transfer time exceeds the savings in that case. In
addition, the memory demands grow dramatically for larger volumes, since the number of
weights to store is 8 times the number of voxels.

Since caching on both the iteration and the image level is not practical, one may exploit

ϕ

pi+1

pi

image plane

ri+1

ri

voxel grid

Tapprox

Tcorr

Source
Kernel of voxel vxy

xvy

yv

FIGURE 5.4: Error for different schemes of measuring the ray grid sampling rate.

x

79

caching on the ray level. ART is an easy candidate for this form of caching since a pixel
projection is immediately followed by a pixel backprojection. So one can just cache the
weight factors calculated in the projection step for the backprojection step, and speedups
of close to 2.0 can be realistically expected with only little memory overhead.

For SART, two special problems need to be addressed, one has to do with the use of a ray-
driven projection algorithm, the other deals with caching. While ART was easy to pair with
a ray-driven projection algorithm since it itself is ray-driven, the backprojection step of
SART is inherently voxel-based and requires some adaption in order to limit memory
requirements. In a brute-force implementation, a backprojection would require two addi-
tional volumes, one to store the weight accumulation and one to store the correction accu-
mulation per voxel (see equation (2.17)). Only after all backprojection rays have been
traced, the correction buffer of each voxel can be divided by the weight buffer to form the
voxel correction value. Thus we need extra memory to hold 2n3 floating point values. We
can reduce this amount by an order of magnitude to 2n2 by tracing all rays simultaneously
in form of a ray-front. Since the projection algorithm is slice-based, i.e. it considers all vox-
els in one volume slice before it moves to the next, we can step the entire ray-front from
one slice to the next, buffering and updating only the voxels within the active volume slice.

In SART, the caching of weights computed during projection is also more difficult, since
first an entire image must be projected before the grid corrections can be backprojected.
Thus, at first glance, we may only be able to use caching at an image level. This would
require us to allocate memory space for 8n3 floating point weights, e.g. 32n3 bytes, which
is in addition to other memory requirements. While forn=128, this may be feasible for an
average workstation (the required memory is then 67MB), forn=256 the memory require-
ments would be a hefty 536MB, which may not be readily available in most workstations.
Thus, in real world applications, caching on the image-level is not feasible, at least with
today’s workstations, and one must design a caching scheme at a finer granularity.

For this purpose, we designed a scheme that keeps two active slabs, composed of sheets of
voxel cross-sections. These voxel cross-sections are formed by intersecting the voxel ker-
nels by consecutive horizontal cutting planes (recall Figure 5.3). In this scheme, one active
slab,slabp, is composed of voxels that are currently projected, while the other,slabb, is
composed of currently backprojected voxels. The correction and weight buffers are kept
with slabb, andslabb is always trailingslabp. At first, slabp caches the weights computed
in the projection step. Then, asslabp moves upward in the volume, voxels on the bottom of
slabp have eventually been completely projected and can be removed fromslabp and added
to slabb, along with all cached weights. A linked list can be used to facilitate passing the
data. Asslabb moves upward as well, voxels at the bottom ofslabb can eventually be
updated by the accumulated correction buffer term and be removed fromslabb. The width
of a slab is about four sheets. Recalling that a voxel is traversed by about four rays in each
sheet, the memory complexity for the slab buffers is roughly . This
includes the memory for the correction and accumulation buffers ofslabb. Thus we would
require approximately 4M of memory for a 1283 volume. Note that this scheme goes well
with the variable-size voxel kernels since here the slab width is constant forz>zc.

4 4 12+() n
2

64n
2

=

80

5.5 Results

Table 5.1 lists the runtimes of the various ART and SART incarnations that were discussed
in the previous sections. The runtimes were obtained on an SGI Indigo2 workstation and
refer to a reconstruction based on 80 projections with a cone angleγ=40˚.

Let us first look at the SART correction algorithm. We observe, in Table 5.1 that for paral-
lel-beam reconstruction with SART the voxel-driven approach is about 33% faster than the
ray-driven approach. Hence, it is more advantageous in the parallel-beam case to perform
the grid projection in object-order (i.e. to map the footprint polygons onto the screen) than
to perform the projection in image-order (i.e. traverse the array of footprint polygons by the
pixel rays). The computational savings in the voxel-driven algorithm for parallel-beam pro-

Method beam
splatting
method

cache
var-
size

kernel

Tcorr
(sec)

Titer
(hrs)

T3iter
(hrs)

SART parallel voxel - - 35.3 0.78 2.35

SART parallel ray - - 47.1 1.04 3.14

SART cone voxel - - 144.9 3.22 9.66

SART cone ray - - 60.9 1.35 4.05

SART cone ray - ✓ 73.2 1.63 4.89

SART cone ray ✓ - 43.6 0.97 2.90

SART cone ray ✓ ✓ 52.4 1.16 3.49

ART cone ray - - 54.2 1.20 3.60

ART cone ray - ✓ 68.2 1.51 4.53

ART cone ray ✓ - 30.3 0.67 2.01

ART cone ray ✓ ✓ 38.1 0.85 2.55

TABLE 5.1: Run-times for SART, using both voxel-driven and ray-driven splatting, and for
ART using ray-driven splatting (voxel-driven splatting is not applicable for ART). The effect
of caching and variable-size interpolation kernels on the run-time is also shown. (Tcorr: time
for one grid correction step, consisting of one projection and one backprojection, Titer: time for
1 iteration (assuming 80 projection images and a cone angle of 40˚), T3iter: time for 3 itera-
tions, the minimum time to obtain a reconstruction of good quality. Timings were obtained on
a SGI Iris Indigo2 with a 200MHz RS4000 CPU.)

81

jection come from the fact that here the footprint-screen mapping is much simpler than the
mapping described in Section 5.2, since the perspective distortion does not have to be
incorporated. In cone-beam reconstruction, on the other hand, the situation is reversed in
favor of the ray-driven projector. Here, the speedup for using the ray-driven projector over
the voxel-driven projector in SART is about 2.4. Thus, since for ART the use of the image-
based voxel-driven splatting algorithm is not practical anyhow, we conclude that cone-
beam reconstruction should always be performed with ray-driven projectors.

Now let us investigate the computational differences of ART and SART and the effects of
caching and variable-size splatting kernels on run-time. Comparing the costs for SART and
ART, we notice that uncached SART is about 12% slower than uncached ART. This is due
to the extra computations required for weighting the corrections before a voxel update and
the overhead for managing the additional data structures. The timings also indicate that the
use of a depth dependent kernel size incurs about a 25% time penalty for ART and 20% for
SART. In terms of the benefits of caching, we notice that the straightforward caching for
ART speeds reconstruction by a factor of 1.78, while the more involved caching for SART
achieves a speedup of 1.4. The speedups for caching in conjunction with the variable-size
kernels are similar. Since the reconstruction results for SART using constant sized kernels
and ART using variable-size kernels looked similar, it makes sense to compare these two
methods as well. In this respect, ART with variable-size kernels and easy-to-implement
caching is about twice as fast as uncached SART. However, if SART is enhanced with elab-
orate caching schemes, this speed advantage shrinks to a factor of 1.15

5.6 Cost and Feasibility of Algebraic Methods: Final Analysis

So how does the computational effort of cached cone-beam ART compare with the effort
required for FBP-type methods? We shall conduct a rough estimate by using the following
results:

• Cached ART requires the time-equivalent of 1.12 projections per projection/back-
projection operation. This factor is computed as follows (using adaptive kernels). As
indicated by the results listed in Table 5.1, a cone-beam projection with ART takes
half the time of a projection/backprojection operation withuncached ART, i.e., 68.2/
2s=34.1s. A cone-beam projection/backprojection withcached ART takes 38.1s. This
is 1.12 times more than just a projection. Hence,aAlg=2/1.12=0.56.

• ART requires only half the number of projectionsM that are needed for FBP (shown
by [19]).

• ART must conduct three iterations to achieve a reconstruction of satisfactory quality
(revealed in Section 4.3).

• FBP must perform a convolution step that bears the cost of some fractionaFBP of a
projection operation.

• The time required for a projection operationTproj is similar for FBP and ART.

82

Let us now recall the cost equation (1.6) from Section 1.1.3:

Incorporating the results listed above we get:

(5.3)

If we want the costs of the two methods to be equal, then the filtering operation step of FBP
must take at least 68% of a projection operation. However, if we grant the higher recon-
struction quality obtained with ART an extra 20% computation time, then we get:

(5.4)

 This is certainly a realistic value. We may conclude from this — admittedly approximate
— analysis, that we have come very close to making ART a serious contender to FBP in
the clinical arena.

5.7 Error Analysis of Westover-Type Splatting

This section serves more as an appendix to this chapter. We have mentioned, in Section 5.2,
that Westover’s perspective extension to voxel-driven splatting commits the following
errors when mapping a footprint to the projection screen:

• It does not align the footprint polygon perpendicularly to the voxel center ray when
calculating the projected screen extent. Instead, it aligns the polygon parallel to the
screen and stretches it according to the perspective viewing transform.

• When mapping the footprint to the screen pixels it uses a linear transform instead of a
perspective one.

• The footprint polygon is not rotated for every mapped pixel such that the correspond-
ing pixel ray traverses it at a perpendicular angle.

We now present a quantitative analysis if these errors.

5.7.1 Errors from non-perpendicular traversal of the footprint polygon

This section addresses the last error in the list given above. Figure 5.5 shows, for the 2D
case, the footprint polygon being aligned perpendicularly to the center ray.

We observe that pixel rays other than the center ray traverse the footprint polygon at an

Cost Algebraic()
Cost FBP()

2 aAlg I⋅ MAlg⋅ ⋅
1 aFBP+() MFBP⋅

--=

Cost Algebraic()
Cost FBP()

--- 2 0.56 3⋅ ⋅
1 aFBP+() 2⋅

----------------------------------- 1.68
1 aFBP+()

----------------------------= =

aFBP
1.68
1.2
---------- 1– 0.4= =

83

oblique angle. However, they should really have the footprint polygon aligned as depicted
by the dotted line. The error when computing the lookup table indext for these rays is given
by:

(5.5)

wheretcorr is the correct index andtapprox is the computed index. The angleϕ is largest for
voxels close to the eye and at the center of the projection plane (ϕ is largest there). For a
cone half-angle ofγ=30˚ and a 1283 volume, the angleϕ<1˚ and the approximationtcorr/
tapprox=0.99 at the polygon boundary is rather good.

5.7.2 Errors from non-perpendicular alignment of footprint polygon

This section addresses the other two errors in the list given above. Figure 5.6 compares (for
the 2D case) the projection of a footprint polygon of a voxel kernel located at (xv, yv). The
footprint polygon has extent2⋅extand is projected onto the projection plane, located atxs
on the viewing axis. We illustrate both the correct case, where the footprint polygon is
perpendicular to the center ray, and the approximate case, in which the footprint polygon
is aligned with the voxel grid. We observe that the projected polygon extent∆yapproxin the
approximate case is slightly smaller than the projected polygon extent∆ycorr in the correct
case.

Using simple trigonometric arguments one can show that:

(5.6)

pi

pi+1

projection plane

tapprox

tcorr

ϕc

ϕ

footprint polygons

kernel

Source

FIGURE 5.5: Errors from non-perpendicular traversal of footprint polygon

tcorr tapprox ϕcos⋅=

∆ycorr

2 ext xs yv ϕcsin xv ϕccos–()⋅ ⋅

xv
2

ext
2 ϕcsin

2⋅–
--=

84

One can also show that:

(5.7)

Thus:

(5.8)

since . This means that the error is largest at the boundary of the viewing
cone. For a cone half-angleγ=ϕc=30˚, the scaling factor is 1.15. The absolute error∆yapprox
- ∆ycorr between the correct and the approximate screen projection of a kernel with extent
ext is given by:

(5.9)

projection plane

ϕc

xv

yv

∆yapprox

∆ycorr

x

y

approx. footprint

polygon
correct footprint

polygon

Source xs

FIGURE 5.6: Errors from the non-perpendicular alignment of the footprint polygon.

∆yapprox

2 ext xs⋅ ⋅
xv

------------------------=

∆ycorr ∆yapprox

xv
2

ϕc xv
2

ext
2 ϕcsin

2⋅–

cos
--⋅ ∆yapprox

1
ϕccos

--------------⋅≈=

xv
2

ext
2 ϕcsin

2⋅»

∆ycorr ∆yapprox–
xv

2 ϕc xv
2

ext
2 ϕcsin

2⋅–

cos–

xv ϕc xv
2

ext
2 ϕcsin

2⋅–

cos
---=

2 ext xs⋅ ⋅ 1 ϕccos–()
xv ϕccos

---≈ 2 ext
xs

xv
---- 1

ϕccos
-------------- 1–

 ⋅ ⋅=

85

To express this error in pixels, we scale by the pixel width∆pix=n/ws.
Here,n is the number of image pixels andws is the width of the projection plane, given by

. This normalized absolute error is then written as:

(5.10)

We observe that the error is largest for voxels close to the source and out on the cone bound-
ary. Recall that we are only considering voxels within a spherical reconstruction region (a
circle in 2D). Hence, the error is largest along the boundary of this sphere, whereϕc is given
by the following expression (see also Figure 5.7):

(5.11)

Here,xctr is the location of the volume center slice.

Plugging the angleϕc given by equation (5.11) into equation (5.10) yields the maximum
normalized absolute error due to the non-perpendicular alignment of the footprint polygons
in the context of 3D reconstruction. This error is plotted in Figure 5.8 forx≤xctr (andn=128,
γ=30˚,ext=2.0). We observe that the largest error is close to 0.8 pixels.

Note that these type of errors are not only committed when mapping the extent of the poly-
gon, but also when mapping the inside of the polygon, i.e. the footprint lookup table, onto
the projection plane.

∆ycorr ∆yapprox–

ws 2xs γtan=

∆ycorr ∆yapprox–

∆pix
-- ext

n
xv γtan⋅
-------------------- 1

ϕccos
-------------- 1–

 ⋅=

ϕc

n
2

 2
xctr xv–() 2

–

xv

atan=

xv xctr

ϕc

x

y

n/2

FIGURE 5.7: The angleϕc as a function of boundary voxel location on the reconstruction cir-
cle.

Reconstruction circle
boundary voxel

86

FIGURE 5.8: Maximum normalized absolute error that occurs due to non-perpendicular align-
ment of the footprint polygons. The error is largest for the voxels located on the boundary of
the reconstruction circle (sphere in 3D). (n=128,γ=30˚,ext=2.0.)

x

∆y
corr

∆y
approx

–

∆
pix

87

CHAPTER 6

RAPID ART BY GRAPHICS
HARDWARE ACCELERATION

In the previous chapter, we have outlined a number of fast implementations of algebraic
methods that only require the presence of a general purpose CPU. We have then contrasted
the computation time of these implementations with a CPU-based implementation of the
Filtered Backprojection (FBP) algorithm. This comparison revealed that both CPU-based
ART and CPU-based FBP have similar runtimes. We then concluded that ART and FBP
may be used interchangeably in a clinical setting, depending on the reconstruction task at
hand. This conclusion, however, hides some of the facts of clinical reality. Today’s CT
scanners do not use general purpose CPUs, rather, they always incorporate custom DSP
(Digital Signal Processing) chips which run the FBP algorithm extremely fast. At first
glance, we may take this reality-check as a hint that our cost analysis of Section 5.6 has only
theoretical merit. However, that is not quite true either. The cost analysis of Section 5.6
compares the runtime complexities of the two algorithm, and we have shown that these
runtime complexities are about equal. So if we took ART and built custom hardware to run
it on, we would expect it to run just as fast as the accelerated FBP algorithms. However,
custom hardware is expensive to build and it limits the scope at which an algorithm can be
used. Once the hardware is in place, modifications and adaptations are difficult to make,
which hampers the evolution of a technology. Acknowledging all these drawbacks, we
have taken a different approach. Instead of designing special chips to implement our ART
and SART algorithms, we have chosen widely available graphics workstations as our accel-
eration medium. Great prospects can be expected from this choice, as the graphics hard-
ware resident in these workstations is especially designed for fast projection operations, the
main ingredients of the algebraic algorithms. Another plus of this choice is the growing
availability of these machines in hospitals, where they are more and more utilized in the
daily task of medical visualization, diagnosis, and surgical planning. The feature of these
graphics workstation we will rely on most istexture mapping. This technique is commonly
used to enhance the realism of the polygonal graphics objects by painting pictures onto
them prior to display. Texture mapping is not always, but often, implemented in hardware,

88

and runs at fill rates of over 100 Megapixels/sec. However, hardware texture mapping is
not limited to graphics workstations only, many manufacturers offer texture-mapping
boards that can be added to any modern PC.

In the following section, we will describe aTexture-Mapping hardwareAccelerated version
of ART (TMA-ART) that reconstructs a 1283 volume from 80 projections in less than 2
minutes — a speedup of over 75 considering the software solution outlined in Chapter 5.
The programs were written using the widely accepted OpenGL API (Application Program-
ming Interface).

6.1 Hardware Accelerated Projection/Backprojection

TMA-ART decomposes the volume into slices and treats each slice separately. In grid pro-
jection (shown in Figure 6.1), each slice is associated with a square polygon with the vol-
umetric slice content texture-mapped onto it. A projection image is then obtained by
accumulatively rendering each such polygon into the framebuffer.

The ray integrals so computed are equivalent to the ray integrals obtained in a software
solution that uses a trilinear interpolation filter and samples only within each volume slice.
Note that since the distance between sample points is not identical for every ray (due to the
perspective distortion), we have to normalize the projection image for this varied distance.

ϕ

texture polygons

screen (projection image)

cone angleγ
 (volume slices)

Projection Algorithm

Rotate texture polygons by projection angleϕ
Texture map the volume slices onto texture polygons

Project textured polygons onto the screen

Accumulate screen contributions at each pixel

FIGURE 6.1: Grid projection with TMA-ART.

89

This can be conveniently achieved by normalizing the scanner images by the inverse
amount in a pre-processing step.

After a projection image has been generated, a correction image is computed by subtracting
this projection image from the scanner image. Hence, due to this image-based approach,
we are using SART and not ART. Not only is this necessitated by the image-based projec-
tion approach of the graphics hardware, it is also convenient with regards to SART’s insen-
sitivity to the cone-beam related reconstruction artifacts, as discussed in Section 4.2.

In backprojection (shown in Figure 6.2), we need to distribute a correction image onto the
volume slices. This is achieved by associating each volume slice with the framebuffer onto
which the correction image, mapped to a polygon, is rendered. (This is the inverse situation
of Figure 6.1.) Although projection is simple, backprojection is not as straightforward,
since here the main viewing direction is not always perpendicular to the screen. This, how-

ϕ

projective texture screen
projected polygons (volume slices)

rs

-z

x

γ

dvc-ts

slice screen

FIGURE 6.2: Backprojection with TMA-ART.

 (correction image)

T1: translate by dvc-ts R: rotate byϕ
T1

-1: translate by -dvc-ts P: perspective mapping
S: scale by 0.5 T3: translate by 0.5

Backprojection algorithm

Set texture matrix toTM =T1⋅R⋅T1
-1⋅P⋅S⋅T3

For each volume slice

 Associate 3D-texture coordinates with each vertex,

 set r-coordinate to z-coordinate

 Render the polygon

 UseTM to map texture coords. onto texture screen

 Add the rendered slice image to the volume slice

90

ever, is required by the graphics hardware. To enable this viewing geometry, we imple-
mented a virtual slide-projector (using the projective texture approach of Segal et. al. [56])
that shines the correction image at the oblique projection angle onto a polygon, which in
turn is orthographically viewed by the framebuffer. This is shown in Figure 6.2 for one rep-
resentative volume slice. The correction image is perspectively mapped, according to the
cone-geometry, onto the volume slice that has been placed at the appropriate position in the
volume. This “slide” projection is then viewed by the screen.

Let me explain this slide-projector approach in some more detail. In OpenGL, a polygon is
represented by three or more vertices. When the polygon is projected onto the screen, the
coordinates of its vertices are transformed by a sequence of matrix operations, as shown in
Figure 6.3. (For more detail on these fundamental issues refer to [46] and [13].)

A texture is an image indexed by coordinates in the range [0.0..1.0, 0.0...1.0]. When a tex-
ture is mapped onto a polygon, the polygon’s vertices are associated with texture coordi-
nates [s,t], as shown in Figure 6.4. The viewing transformation of the polygon vertices
yields a closed region on the screen. In a process calledscan conversion,all pixels inside
this region are assigned (via interpolation) texture coordinates within the range assigned to
the bounding vertices. Note that this transformation can lead to a stretching or shrinking of
the texture.

The texture mapping coordinates need not be two-dimensional. As a matter of fact, they
can be up to four-dimensional (involving a homogeneous coordinate), just like the vertex
coordinates. In addition, OpenGL provides a transformation facility, similar to the one sup-
plied for vertex transformation, with which the interpolated texture coordinates can be
transformed prior to indexing the texture image. We can use this facility to implement our
virtual slice projector.

The algorithm proceeds as follows. First, we create an array ofn square texture coordinate
polygons with vertex coordinates (s,t,r). Here, we set the (s,t) coordinates to (n, n), i.e.,
the extent of the volume slices. Ther-coordinate we vary between [dvc-ts-n/2, dvc-ts+n/2].
(dvc-ts is the distance of the source to the volume center.) Refer now back to Figure 6.2,

Modelview
Matrix

Projection

Matrix

Perspective

Division

Viewport
Transfor-

eye
coordinates

clip
coordinates

normalizedwindow
coordinates

x

y

z

w

object
coordinates

Vertex

mation

 coordinates
device

FIGURE 6.3: Stages of vertex transformation

91

where we show the decomposition of the texture transformation matrix. The Modelview
matrix is set to the productT1⋅R⋅T1

-1, i.e., each polygon is rotated about the volume center
by the viewing angleϕ. The Projection matrix is set to a perspective mapping of the texture
coordinates onto the projective texture screen. After the perspective divide, the texture
coordinates would be in the range [-1.0...1.0]. Since we can only index the texture image
within a range of [0.0..,1.0], we need to scale and translate the texture perspective texture
coordinates prior to indexing. This is achieved by incorporating a scale and translation
given byS⋅T3 into the Projection matrix.

We can now perform the backprojection of the correction image, represented by the texture,
onto the volume slices. Let us just look at one of the volume slices, represented by polygon
Ps with vertex coordinates (n, n, z), which is projected orthographically on the slice
screen. Depending on itsz-location, the polygon is assigned one of the texture coordinate
polygons. When mappingPs onto the screen, texture coordinates are generated for each
pixel within the projected polygon extent. However, these texture coordinates are not used
directly to index the correction image, but are first passed through the texture transforma-
tion pipeline. The transformed coordinates then index the correction image texture as if this
image had been projected ontoPs at the backprojection angleϕ.

One should add that this process is not any more expensive than direct texture mapping.
Once the texture transformation matrix is compounded, just one hardware vector-matrix
multiplication is needed. As a matter of fact, this multiplication is always performed even
if the texture transformation is unity.

Utilizing the texture mapping hardware for the grid projection and backprojection opera-
tions resulted in a considerable speedup: a cone-beam reconstruction of a 1283 volume
from 80 projections could now be performed in 15 minutes, down from the 2.5 hours that
were required in the software implementation. These were certainly encouraging results,

texture image

polygon

mapped texture

FIGURE 6.4: Texture mapping an image onto a polygon. The texture coordinates assigned to
the polygon vertices are given in parenthesis.

(0.0,0.2)

(0.9,1.0)(0.0,1.0)

(0.9,0.2)

92

which prompted us to seek further avenues for hardware acceleration. For this purpose we
dissected the program flow in its main constituents, as reported in the next section.

6.2 Potential for Other Hardware Acceleration

Consider Figure 6.5 for a detailed analysis of the program flow (compare also Figure 2.6).
The portions of the program that use hardware acceleration are highlighted. We notice that
a substantial part of the program deals with transferring data to and from the graphics
engine, and also to and from main memory. We also notice that there are three steps in the
program that have potential for hardware acceleration. These portions are:

• The accumulation of the projection image (in the projection step).

• The computation of the correction image.

• The volume update, i.e., the addition of the rendered correction slice to the respective
volume slice in main memory (in the backprojection step).

Before we consider each of these items in detail, let us first introduce the main datastruc-
tures used in the program. They are listed in Table 6.1.

The graphics hardware buffers and texture memory can only hold values in the range
[0.0...1.0]. If these values are exceeded, saturation (clamping) occurs. Therefore, all data
structures that use the graphics pipeline must have their values scaled to this range. Since
we project the volume slices via the graphics hardware, we cannot have volume values out-
side the range [0.0...1.0]. The ranges of all other data structures follow from that constraint.
If the volume is the range [0.0...1.0], the projections will necessarily be in the range
[0.0...n]. Most likely, the scanner images will not be within this interval, but a simple scal-

Data structure ART value range TMA-ART value range

volume array [0.0...1.0] [0.0...1.0]

weight image [0.0...n] [0.0...n]

scanner image [0.0...n] [0.0...n]

projected slice image [0.0...1.0] [0.0...1.0]

full projection image [0.0...n] [0.0...n]

correction image [-1.0...1.0] [0.0...1.0]

backprojecton image [0.0...1.0] [0.0...1.0]

TABLE 6.1 Data structures of ART and TMA-ART and their pixel value ranges.

93

read volume slice from memory

load slice data into texture memory

render volume slice

add to projection image

compute correction image

load correction image into texture memory

render correction image onto volume slice

read framebuffer

read framebuffer

compute volume update

store volume slice into memory

next projection

start

converged

next slice

next slice

FIGURE 6.5: Flow chart of TMA-ART.

fo
rw

ar
d

pr
oj

ec
tio

n
ba

ck
pr

oj
ec

tio
n

94

ing will get them there.

The backprojected correction image is a special case. Since the volume values are within
[0.0...1.0], the corrections must be within [-1.0...1.0]. Obviously, we cannot render this
image directly, since the graphics hardware only supports values in [0.0...1.0]. Instead, we
scale the values by the following expression:

(6.1)

The scaled values are then written to the texture memory and projected onto the back-
projection images using the slide projector algorithm described before. The rendered back-
projections must then be scaled back prior to adding them to the respective volume slices:

(6.2)

Recall from equation (2.17) that we need to normalize the correction images by sums of
weights. These can sums of weights can be conveniently represented byM weight images,
one for each projection angleϕ, which can be pre-computed by projecting a volume that is
unity everywhere within the reconstruction sphere.

Let us now consider the three candidates for hardware acceleration.

6.2.1 Accumulation of the projection image

In most graphics workstations that come equipped with texture mapping hardware, the
framebuffer can hold up to 12 bits, although there are some low-end machines that offer
only 8 bits. The texture memory usually matches the resolution of the framebuffer. Our
base implementation accumulates the projected volume slices in a software buffer. This
requires a (relatively expensive) framebuffer read for each projected volume slice. We
could decrease the number of framebuffer reads by performing some of the accumulations
directly in the framebuffer. This comes at a price, however, since in order to accomplish
these accumulations, we must sacrifice framebuffer precision bits. Obviously, this would
not be wise as it would decrease the accuracy of the rendered projection images.

There is, however, a trick that we can use. The framebuffer has three color channels, Red,
Green, Blue, and an Alpha channel. Usually, we are only reconstructing grey level data, so
all we utilize is a single color channel, say Red, both in texture memory and in the frame-
buffer. This is shown in Figure 6.6.

However, if we partition the 12bit data word into two components, one 8 bit and one 4 bit,
and render it into two separate color channels, Red and Green, then we can accumulate data
into the remaining upper 4 bits of the two framebuffer channels. This is illustrated in Figure
6.7.

These 4 bits allow us to accumulate up to 16 images, which decreases the number of nec-
essary framebuffer reads by 2/16 (we now have to read two color channels). Notice, how-
ever, that bit8-11of the texture word are not interpolated by the texture mapping hardware

corrImgTMA ART–

corrImgART 1.0+

2.0
--=

backprojImgART backprojImgTMA ART– 2.0 1.0–⋅=

95

in 12 bits, but only in 8 bits. This may cause inaccuracies. To illustrate this problem, image
the following simple case. Assume atexel (texture element) has a binary value of
1,0000,0000 (only bit8 is set) and its immediate neighbors are all 0. Thus the red texture
channel contains 0, and the green texture channel contains 1,0000. Now let’s say that the

Graphics
 Hardware

Red

Red

texture

framebuffer

bit0-3bit4-7bit8-11

FIGURE 6.6: Rendering a full 12bit data word into a 12bit framebuffer. The full range of the
framebuffer is exploited, no accumulations can be made.

FIGURE 6.7: Rendering a 12bit data word using 2 color channels. The shaded upper 4 bits in
the framebuffer can be used for accumulation. After the 4 upper bits have been filled by 16
projections, we must add the two channels in the CPU. For this purpose, the green channel
must be shifted to the left by 4 bits.

Red

Green

Red

Green

Sum

+

Graphics

CPU

Hardware

memory

texture

framebuffer

framebuffer

texture

bit0-3

bit8-11

bit4-7

up to 16 projections

0 0 0 0

96

texture mapping interpolation of this texel neighborhood yields a binary value of 1000. In
the first approach (Figure 6.6), the framebuffer would contain that value, in the second
approach (Figure 6.7), however, the framebuffer would contain 0.

Finally, we should note that there exists graphics hardware that offers a dedicated hardware
accumulation buffer [20]. This hardware, however, is relatively rare and also rather expen-
sive.

6.2.2 Computation of the correction image

A correction image is computed as follows (incorporating our earlier comments about scal-
ing):

(6.3)

The associated value ranges are as follows:

(6.4)

We see that, due to the excessive value ranges,corrImgART cannot be computed in hard-
ware. The scaling cannot be done in hardware either, due to the extended range [-1.0...1.0]
of corrImgART.

6.2.3 Volume update

Our basic TMA-ART implementation performs the volume update on the CPU. But maybe
this can be done using the texture mapping facility. Let us look at the equation involved:

(6.5)

The ceiling and floor operations bound the volume density values to a range [0.0...1.0].
This is in line with general practices in algebraic methods, as the original object did not
occupy these density values either.

The associated ranges are as follows:

(6.6)

corrImgTMA ART–
scannerImg projImg–

weightImg

 = 0.5 0.5+⋅

corrImgART

2.0
------------------------------ 1.0+=

0.0…1.0[] 0.0…n[] 0.0…n[]–
0.0…n[]

--
 = 0.5 0.5+⋅

1.0…1.0–[]
2.0

------------------------------- 1.0+=

volSlice volSlice backprojImgTMA ART– 2.0 1.0–⋅+
1.0

0.0=

0…1.0[] 0…1.0[] 0…1.0[] 2.0 1.0–⋅+
1.0

0.0=

0…1.0[] 0…2.0[] 1.0–+
1.0

0.0=

0…1.0[] 1.0…1.0–[]+
1.0

0.0=

97

Due to the excessive ranges of the values, updating of the volume is not easily done in hard-
ware. However, we can think of a more elaborate scheme that updates the volume in two
stages. First, it is updated with the negative part of the correction, then it is updated with
the positive part. This is illustrated in Figure 6.8.

By using the OpenGL functionglAlphaFunc()one can limit the value interval of the pixels
that is accepted by the framebuffer. Values outside the specified interval are not written to
the framebuffer. UsingglAlphaFunc() mechanism allows us to specify pixel intervals other
then the default [0.0...1.0]. OpenGL also provides a functionglLogicOp() that can be used
to complement a pixel value. This function is employed to invert the images where speci-
fied in the diagram of Figure 6.8. Note that all operations can be performed by copying
images back and forth within the several GL buffers that are available (such as front and
back buffers, auxiliary buffers, and pBuffers). Thus expensive framebuffer reads and tex-
ture memory loads can be avoided. Recall that thecorr image is the backprojection image
that was rendered using the slide projector and already resides in the front framebuffer.
Thus, updating a volume slice with the correction image takes one polygon projection and

corr corr 2·corr-+ -vol vol

[0..1.0][0..0.5][0..0.5] [0..1.0][1.0..0][0..1.0]

invert

- Part [0..0.5]

corr corr 2·corr++ +vol vol

[1.0..0][0.5..0][0.5..0] [0..1.0][0..1.0][0..1.0]

invert

+ Part [0.5..1.0]

invert invert

Equation: vol vol 2.0 corr⋅ 1.0–+ vol 2.0 corr
-

⋅ 2.0 corr
+

⋅+–= =

Hardware implementation:

FIGURE 6.8: Hardware implementation of the volume update. The boxes denote images and
the intervals printed above the boxes denote the intervals of the image that are used for blend-
ing. Thecorr image is the backprojection image that was rendered using the slide projector
and now resides in the front framebuffer. Thevol image is the volume slice to be updated.

2·corr-

2·corr+

98

four framebuffer-based additions.

We now turn to the other main constituent of Figure 6.5: the transfer of data to and from
main memory.

6.3 Optimal Memory Access

The volume data is stored as 16 bit unsigned shorts, while the projection and weight image
data are stored as 32 bit unsigned integers, since they represent accumulations of many 16
bit voxel slices. The correction image is stored in 16 bit, since it is normalized to one vol-
ume slice prior to backprojection. Thus the precision of the reconstruction process is inher-
ently 16 bit, hampered, however, by the limited 12 bit resolution of the framebuffer. We
will look into a virtual bit extension of the framebuffer later.

Consider Figure 6.9 where we illustrate the three different viewing directions (VDs) at
which the memory is accessed during the reconstruction.

Usually, computers organize their memory in a hierarchy of several levels: a small primary
on-chip cache, a larger secondary on-chip cache, main memory, and some swap partition
on disk. Whenever a datum requested from the CPU is not found in one level, a cache or
memory fault is generated and the datum is fetched from the next lower memory level, and
so on. When the datum has reached the CPU, it is also stored in all memory levels that were
traversed on the quest. Usually, the data are fetched in blocks, following the law of locality-
of-reference which states that once a datum is requested it is likely that the neighboring
datum will be needed soon. Since memory access time is generally much larger than trans-

ϕ
ϕ>135˚ϕ<45˚

45 ≤̊ϕ≤135˚

x

y

z

VD I

VD II

VD III

FIGURE 6.9: Memory access order for different projection anglesϕ. There are three major
viewing directions (VDs). For VD I and VD III the volume data are accessed onez-slice at a
time, while for VD II, the volume data are accessed oney-slice at a time.

99

fer time, it is thus more efficient to transfer a whole block once the memory access is per-
formed, than to access every datum anew. Therefore, once a block of data is loaded into
cache, no more faults are generated for any data in the block. Fetching data from the caches
is generally much faster than retrieving the data from main memory. In case of a secondary-
cache fault, the CPU will in many cases switch to another job until the data block is in,
while at a primary cache-fault the CPU will just introduce a few wait states. Hence, we want
to keep the number of secondary cache faults as low as possible. (For more details on mem-
ory hierarchies please refer to [58])

Our SGI Octane workstation with a Mips R10000 CPU has a secondary cache of 1MByte,
with 128-byte slots and 2-way set-associativity. The secondary cache has a peak transfer
rate of 3.2GByte/s to the CPU, which is magnitudes higher than the transfer rate from main
memory. Since each volume voxel occupies 2 bytes, we can store 64 voxels in each cache
slot.

We need to be intelligent about how we store the data in memory. The minimum number
of cache faults isN/64 (whereN is the number of voxels). Consider Figure 6.10 where we
show the case in which the data are stored inx-y-z order, i.e.,x runs fastest. If we access the
data from VD I or VD III inx-y order for each slice, we will encounter a cache fault every
64 voxels, the minimum cache-fault rate. However, if we access the data from VD II inz-
y order (ory-z order) for each subsequentx-slice, we will have a cache fault for every voxel.
This is 64 times more cache faults than for VD I and VD III, and will slow the reconstruc-
tion down considerably. Note also that these cache faults may occur not only for the loading
of the volume slices, but also for the storing of the corrected volume slices, if a write-back
cache-policy is used.

z

y

x

FIGURE 6.10: Voxels are stored inx-y-z order. No extra cache faults are generated for VD I
and VD III. For VD II, however, a cache fault is generated for every voxel.

64 voxels

64 voxels

64 voxels

Memory

x

100

Consider now Figure 6.10 where we show a different, more favorable memory organization
in which the voxels are stored iny-x-z order. Let us look at VD I and VD III first. If we
access the data iny-x order for everyz-slice, then we generate a cache fault every 64 voxels,
just like before. On the other hand, for VD II, if we access the data iny-zorder for everyx-
slice, then we will not have any extra cache faults either. Thus they-x-z storage arrange-
ment in conjunction withy-first memory traversal will yield the optimal cache behavior.

The following example may serve as a demonstration for the importance of optimizing
cache behavior. In our initial implementation, we used the most natural storage scheme, the
x-y-z order, with which a reconstruction could be performed in 15 minutes. After observing
the large number of cache faults (using SGI’sperfex utility), we switched to they-x-z stor-
age order and they-first data traversal. Doing so enabled a reconstruction to be completed
in a mere 2 minutes — a speedup of 7.5.

6.4 Increasing the Resolution of the Framebuffer

We have mentioned before that all data are stored in 16 bit precision, although the frame-
buffer is only capable of generating the projection images in 12 bit resolution. Hence, 4 bits
of resolution are practically wasted — a lack of precision that could be crucial for recover-
ing small detail in the reconstruction. In this section, we shall explore a scheme that con-
quers the remaining 4 bits of resolution from the framebuffer.

Recall Section 6.2.1 where we showed how the width of the framebuffer can be extended
to implement an accumulation buffer. A similar scheme can be used for enhancing the

z

y

x

FIGURE 6.11: Voxels are stored in y-x-z order. No extra cache faults are generated for VD I,
VD II and VD III.

64 voxels

64 voxels

64 voxels

Memory

y

101

framebuffer’s precision. The two schemes can also be combined to yield a high precision
accumulation buffer.

6.4.1 Enhancing the framebuffer precision

Consider Figure 6.12 where these concepts are illustrated. The lower 12 bits of the volume
data (or correction image data) are written to the Red texture channel, while the upper 4 bits
of the data are written to the upper 4 bits of the Green texture channel. Rendering is per-
formed as usual, and the Red and the Green framebuffer is read into two software buffers.
The 16 bit result is constructed by adding the two software buffers, with the data in the
Green buffer shifted to the left by 4 bits.

Note that, similar to the accumulation buffer, the (virtual) 16 bit data in the Green channel
are not interpolated in 16 bits, but only in 12 bits. This will have effects similar to the ones
outlined in Section 6.4.1. Hence, the presented implementation is not a true 16 bit extension
to the framebuffer, it is only an approximation. However, it will still produce considerably
more precise results than the original 12 bit implementation.

Red

Green

Red

Green

16 bit pixel

+

Graphics

CPU

Hardware

memory

texture

framebuffer

framebuffer

texture

bit0-3bit8-11 bit4-7

0 0 0 0bit12-15 0 0 0 0

FIGURE 6.12: Increasing the framebuffer resolution from 12 bit to 16 bit by adding up two
color channels, properly shifted.

102

6.4.2 A high precision accumulation framebuffer

We can combine the concepts of Section 6.4.1 (high precision framebuffer) and Section
6.2.1 (accumulation framebuffer) to create a high precision accumulation framebuffer used
in the projection portion of TMA-ART. This is shown in Figure 6.13. The result is a 20 bit
sum that is an accumulation of up to 16 16-bit texture projections. This scheme is similar
to the one proposed by Shochet [57]. It reduces the number of framebuffer reads to 3/32 of
the non-accumulative high precision implementation. Note that both the words in the Green
and the Blue channel are not interpolated to the full extent (see our comments above).

Red

20 bit sum

Graphics

CPU

Hardware

memory

texture

framebuffer

bit0-3

bit8-11

bit4-7

0 0 0 0

0 0 0 0

FIGURE 6.13: Accumulation framebuffer with 16 bit precision. The shaded areas denote the
bits used for accumulation.

bit12-15

Green

Blue

Red

Green

Blue

up to 16 projections

framebuffer

framebuffer

texture

texture

+

+

103

6.5 Results

Table 6.2 presents the time effort spent for each of the program portions (tasks) listed in the

flow chart of Figure 6.5. The values shown represent the wall-clock time compounded over
one iteration of cone-beam TMA-ART, reconstructing from 80 projections on a 1283 grid.
The timings are given for the basic implementation using they-x-zvolume storage and the
y-first traversal scheme, but none of the other enhancements discussed. We notice that the
time spent on image projection is insignificant compared to the time required for loads and
stores, and the time spent on CPU tasks, such as for projection accumulation and the com-
putation of the volume update.

Table 6.3 lists the runtime of TMA-ART when the enhancements described previously in
this chapter are added. We observe that by adding the virtual accumulation buffer to reduce

task
compounded

time (sec)
percentage/total

read volume slices 4.6 10.9

load volume slices into texture memory 4.3 10.1

render volume slices 0.2 0.5

read framebuffer 5.6 13.3

accumulate projection image 4.7 11.1

compute projection image 0.3 0.7

load correction image into texture memory 0.04 0.1

render correction image onto volume slices 0.1 0.2

read framebuffer 6.3 15.0

compute volume update 12.0 28.4

store volume slices into memory 4.1 1.0

total time for 1 iteration 42.2 100.0

TABLE 6.2 Time performance (in seconds) of cone-beam TMA-ART for the different constit-
uents (tasks) of the program flow chart given in Figure 6.5. Each number represents the wall-
clock time, compounded over one iteration (80 projections of 1272 pixels each, reconstructing
on a 1283 grid). The percentage of the computational effort of each task with respect to the
total time is also given. The timing were obtained on a SGI Octane with a R10000 CPU.

104

the amount of expensive framebuffer reads in the projection phase of ART, we can reduce
the runtimes considerably. We can even compensate for the cost of the 16 bit extension of
the framebuffer.

Let us now discuss TMA-ART in terms of reconstruction quality. Consider Figure 6.14
where several reconstructions of the 3D Shepp-Logan phantom are illustrated. On the left
we show three reconstructions obtained with the basic 12-bit framebuffer TMA-ART,
while on the right we show three reconstructions obtained with the enhanced 16-bit frame-
buffer TMA-ART. The contrast of the imaged phantom doubles in every row from top to
bottom (see Table 4.1 for the phantom definition). We observe that the basic TMA-ART
produces reconstructions with consistently higher noise levels than the 16 bit TMA-ART.
The difference is particularly striking in the first row for the original contrast. Here, the
three small tumors in the lower third of the slice are only discernible in the 16-bit TMA-
ART reconstruction. However, the higher the contrast, the lesser the impact of the frame-
buffer precision. The reconstructions obtained at twice the contrast of the Shepp-Logan
phantom are already of acceptable quality.

It is now clear that with 16 bit framebuffer resolution the quality of the software implemen-
tation cannot be reached. However, it is hoped that the next generation of graphics work-
stations will add 4 extra bits to the framebuffer, which would then enable a virtual 20 bit
framebuffer extension. It is expected that this will bring the reconstruction quality closer to
the maximum.

Since I did not have a clinical cone-beam projection dataset available to me at the time of
submission of this dissertation, I could not assess the fitness of cone-beam TMA-ART for
real clinical applications. However, the fact that cone-beam TMA-ART reconstructs the 3D
Shepp-Logan phantom — a widely accepted benchmark — rather well, leaves no doubt
that the algorithm has great potential to succeed in the clinical world. The reconstruction
speed of less than two minutes for a complete reconstruction of a 1283 dataset is competi-
tive, even in comparison with dedicated hardware boards.

accumulation
 buffer

16 bit
framebuffer

 time / iteration
(sec)

reconstruction
 time (sec)

added cost
(%)

- - 42.2 126.6 -

✓ - 33.18 99.54 -21

- ✓ 62.0 186.0 +32

✓ ✓ 37.2 111.6 -12

TABLE 6.3 Runtimes per iteration for different enhancements of TMA-ART. Timings refer to
the conditions listed in the caption of Table 6.2. A reconstruction takes 3 iterations.

105

6.6 Future Work - Parallel Implementations

I shall close with another look at the flow chart of Figure 6.5. We realize that none of the
large blocks in this flow chart can be interleaved. Framebuffer reads and texture memory
writes involve the CPU, and the rendering time is minimal compared to all other costs.
However, one can easily parallelize the projection image accumulation in the projection
phase and the volume update computation in the backprojection phase. One could think of
a scheme in which one or more CPUs accumulate the projection image/do the volume
update computation (basically a multiplication, an addition, and two clamping operations
per voxel), while another CPU feeds and retrieves the graphics data. Then the graphics-
related CPU operations (with only one graphics engine available) are parallel to the pure
CPU-related operation. Looking at the timings of Table 6.2, good balance may already be
achieved with two processors in the projection phase and three processors in the back-
projection phase. We plan to investigate this concept further in the future.

106

basic TMA-ART
with 12 bit framebuffer 16 bit framebuffer extension

enhanced TMA-ART with

original contrast

2×original contrast

4×original contrast

FIGURE 6.14: 3D Shepp-Logan brain phantom reconstructed with both basic TMA-ART and
precision-enhanced TMA-ART. Contrast was varied from the original contrast to 4 times the
original contrast. Notice that the precision-enhanced TMA-ART consistently reconstructs the
phantom with less noise artifacts than the basic TMA-ART. (1283 grid, 80 projection, cone
angleγ=40˚, and 3 iterations.)

107

CHAPTER 7

CONCLUSIONS

The contributions of this dissertation, along with their corresponding publications, are as
follows:

• Analysis of the accuracy and efficiency of various existing projection algorithms in the
context of cone-beam projection. ([37])

• Extension of a well known projection algorithm, i.e., splatting [66]-[68], from ortho-
graphic to perspective (cone-beam) projection. Although perspective splatting has
been proposed before (by the original author), the new extension is considerable more
accurate and also optimized for speed. ([37][39][41])

• Cost analysis of object-order (i.e., splatting) vs. image-order projection algorithms in
the context of perspective projection. This analysis revealed that image-driven algo-
rithms are inherently better suited for fast perspective projection. Hence, a 3D exten-
sion of an existing 2D image-order projection algorithm [22] was proposed (and
termed ray-driven splatting) and optimized for speed. ([37][39][41])

• Application of the new perspective ray-driven splatter as the projection engine in iter-
ative 3D cone-beam tomographic reconstruction with algebraic methods. While these
algebraic methods are well-known for their use in parallel-beam and 2D fan-beam
reconstruction, their extension for low-contrast, cone-beam reconstruction is new.
([37])

• Extension of the most common algebraic method, the Algebraic Reconstruction Tech-
nique (ART), to properly handle the non-uniform grid sampling situation of perspec-
tive rays. The undersampling in some grid regions causes ART, in the present line-
integral configuration, to generate reconstructions with considerable aliasing artifacts.
Various new solutions to alleviate these problems were proposed: 1. Pixel supersam-
pling; 2. Pyramidal rays in conjunction with summed-area tables; 3. Increasing the
size of the splatting kernels as a function of viewing depth. An analysis was given that
relates the three solutions in terms of their accuracy and efficiency. All methods fulfill
the goal of removing the aliasing artifacts, however, only (3) is efficient enough for
practical application. A frequency domain analysis reveals that (3) is similar to (2).
([38])

• Formal quantitative analysis of ART and other related algebraic schemes in the new
setting of low-contrast 3D reconstruction from cone-beam projection data. All imple-
mentations utilize the ray-driven splatter described above as the projection engine.

108

Several parameters were investigated in their impact on reconstruction quality and
speed: 1. Algorithm used (ART vs. Simultaneous ART (SART)); 2. Line-integrals vs.
pyramid-integrals vs. variable-size splatting kernels; 3. Value and functional variation
of the relaxation coefficientλ; 4. Reconstruction grid initialization. The main results
indicate that ART requires variable-sized splats to produce artifact-free reconstruc-
tions. For cone-angles less than 40˚ one could achieve satisfactory results without vari-
able-size kernels by tweaking the other parameters, however, for larger cone angles
variable-sized kernels are the only solution. ART is also faster, since it allows caching
of previously computed results. SART, on the other hand, produces good results with-
out the need of variable-size splats and tedious parameter tweaking, but requires 20%
more computations since caching is more difficult. ([38])

• New, previously unpublished, caching schemes for ART and SART that re-utilize pre-
viously computed results. For ART, computation time can be cut into half relatively
easy, without incurring much memory overhead. SART, however, requires elaborate
caching schemes to keep memory requirements at a reasonable size. The savings
achieved with caching and the theoretical result of [19] bring equation (1.6) near a
ratio of 1.0, i.e., close the gap between ART’s computational expense and that of FBP,
at least theoretically. ([38])

• Development of a new projection access scheme, termed the Weighted Distance
Scheme (WDS), for algebraic methods, which optimizes the projection ordering in a
global sense. Quantitative comparison of WDS with all other existing projection
ordering schemes is conducted. Results indicate that reconstructions generated under
WDS have the least amount of noise-like artifacts and best detail fidelity. ([40])

• Accelerating ART-type methods with texture mapping hardware available on mid-
range graphics workstations or PC’s equipped with graphics boards. While Cabral et.
al. [6] have used this kind of hardware for cone-beam reconstruction in conjunction
with the non-iterative FBP algorithm, work that realizes algebraic methods on this
hardware has never been published. A first implementation achieves a speedup of 10
over the optimized software implementation of [39]. By optimizing cache access
behavior the speedup is improved to 75. New schemes for virtual framebuffer exten-
sions to improve the accuracy of the projections were also described. Finally, a possi-
ble extension of the algorithm to graphics workstations with multiple processors was
given. In this setting, the loading of the graphics engine and the updating of the vol-
ume data structures are handled in parallel, which should result in a further significant
speedup. The texture-mapping hardware accelerated ART (TMA-ART) reconstructs a
1283 volume from 80 projections in less than 2 minutes, with only a little decline
reconstruction quality (due to the limited bit resolution of the framebuffer, which,
however, may improve over the years). Hence, using this widely available form of
hardware acceleration, ART is ready to be applied in real-life clinical settings, where
reconstruction results are needed right away. ([45])

109

BIBLIOGRAPHY

[1] A. H. Andersen, “Algebraic Reconstruction in CT from Limited Views,”IEEE
Trans. Med. Img., vol. 8, no.1, pp. 50-55, 1989.

[2] A.H. Andersen and A.C. Kak, “Simultaneous Algebraic Reconstruction Technique
(SART): a superior implementation of the ART algorithm,”Ultrason. Img., vol. 6,
pp. 81-94, 1984.

[3] C. Axelson, “Direct Fourier methods in 3D reconstruction from cone-beam data,”
Thesis, Linkoping University, 1994.

[4] R.N. Bracewell,The Fourier Transform and Its Applications, 2nd ed., McGraw-
Hill, Inc., 1986.

[5] R.N. Bracewell and A.C. Riddle, “Inversion of fan-beam scans in radio
astronomy,”Astrophysics Journal, vol. 150, pp. 427-434, Nov. 1967.

[6] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and tomographic
reconstruction using texture mapping hardware,”1994 Symposium on Volume
Visualization, pp. 91-98, 1994.

[7] Y. Censor, “On variable block algebraic reconstruction techniques,”Mathematical
Methods in Tomography, Vol. 1497, ed. G.T. Herman, A.K. Louis, and F. Natterer
(Oberwolfach:Springer), pp. 133-140, 1990.

[8] R. Crawfis and N. Max, “Texture splats for 3D scalar and vector field
visualization,”Visualization’93, pp. 261-266, 1993.

[9] C. R. Crawford and K. F. King, “Computed tomography scanning with
simultaneous patient translation,”Medical Physics, vol. 17, pp. 967-982, 1990.

[10] M.C. van Dijke, “Iterative methods in image reconstruction,”Ph.D. Dissertation,
Rijksuniversiteit Utrecht, The Netherlands, 1992.

[11] R. Fahrig, D. Holdsworth, S. Lownie and A.J. Fox, “Computed rotational
angiography: system performance using in-vitro and in-vivo models,”Proc. SPIE
Medical Imaging 1998: Physics of Medical Imaging, SPIE vol. 3336, 1998.

[12] L.A. Feldkamp, L.C. Davis, and J.W. Kress, “Practical cone beam algorithm,”J.
Opt. Soc. Am., pp. 612-619, 1984.

110

[13] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes,Computer Graphics:
Principles and Practice.New York: Addison-Wesley, 1990.

[14] P. Gilbert, “Iterative methods for the three-dimensional reconstruction of an object
from projections,”J. Theo. Biol., vol. 36, pp. 105-117, 1972.

[15] P. Grangeat, “Mathematical framework of cone-beam 3D reconstraution via the
first derivative of the Radon transform,”Proc. Mathematical Models in
Tomography (Oberwohlfach, 1990), Springer Lecture Notes in Mathematics, 1497,
pp. 66-97.

[16] P. Grangeat, “Analyse d’un system d’imagerie 3D par reconstruction a partir de
radiographie X en gemetrie conique,” Ph.D. disseration (Ecole Nationale
Superieure des Telecommunications, Paris), 1987

[17] R. Gordon, R. Bender, and G.T. Herman, “Algebraic reconstruction techniques
(ART) for three-dimensional electron microscopy and X-ray photography,”J.
Theoretical Biology, vol. 29, pp. 471-481, 1970.

[18] H. Guan and R. Gordon, “A projection access order for speedy convergence of
ART: a multilevel scheme for computed tomography,” Phys. Med. Biol., no. 39,
pp. 1005-2022, 1994.

[19] H. Guan and R. Gordon, “Computed tomography using algebraic reconstruction
techniques (ARTs) with different projection access schemes: a comparison study
under practical situations,”Phys. Med. Biol., no. 41, pp. 1727-1743, 1996.

[20] P.E. Haeberli and K. Akeley, “The Accumulation Buffer: hardware support for
high-quality rendering,”Computer Graphics (Proc. SIGGRAPH’90), vol. 24, pp.
309-318, 1990.

[21] C. Hamaker and D.C. Solmon, “The angles between the null spaces of X rays,”J.
Math. Anal. Appl., vol. 62, pp. 1-23, 1978.

[22] K.M. Hanson and G.W. Wecksung, “Local basis-function approach to computed
tomography,”Applied Optics, Vol. 24, No. 23, 1985.

[23] G.T. Herman,Image Reconstruction from Projections: The Fundamentals of
Computerized Tomography. New York: Academic Press, 1980.

[24] G.T. Herman, R.M. Lewitt, D. Odhner, and S.W. Rowland, “SNARK89-a
programming system for image reconstruction from projections,” Tech. Rep.
MIPG160, Dept. of Radiol., Univ. of Pennsylvania, Philadelphia, 1989.

[25] G.T. Herman and L.B. Meyer, “Algebraic reconstruction can be made
computationally efficient,”IEEE Trans. Med. Img., vol. 12, no. 3, pp. 600-609,
1993.

[26] G.N. Hounsfield, “A method of and apparatus for examination of a body by
radiatation such as X-ray or gamma radiation,” Patent Specification 1283915, The
Patent Office, 1972.

111

[27] W.A.Kalender, Polacin A., “Physical performance characteristics of spiral CT
scanning,”Medical Physics, vol. 18, no. 5, pp. 910-915, 1991.

[28] A. Kaufman, Ed., Volume Visualization, IEEE Press 1991.

[29] S. Kaczmarz, “Angenäherte Auflösung von Systemen linearer Gleichungen,”Bull.
Int. Acad. Pol. Sci. Lett., A, vol. 35, pp. 335-357, 1937.

[30] A.C. Kak and M. Slaney,Principles of Computerized Tomographic Imaging. IEEE
Press, 1988.

[31] R.M. Lewitt, “Alternatives to voxels for image representation in iterative
reconstruction algorithms,”Phys. Med. Biol., vol. 37, no. 3, pp. 705-715, 1992.

[32] R.M. Lewitt, “Multi-dimensional digital image representations using generalized
Kaiser-Bessel window functions,”J. Opt. Sec. Am. A, vol. 7, no.10, pp. 1834-
1846, 1990.

[33] S. Matej and R.M. Lewitt, “Practical considerations for 3-D image reconstruction
using spherically symmetric volume elements,” IEEE Trans. Med. Img., vol. 15,
no. 1, pp. 68-78, 1996.

[34] S. Matej and R.M. Lewitt, “Efficient 3D grids for image reconstruction using
spherically-symmetric volume elements,”IEEE Trans. on Nucl. Sci., vol. 42, no 4,
pp 1361-1370, 1995.

[35] S. Matej, G.T. Herman, T.K. Narayan, S.S. Furuie, R.M. Lewitt, and P.E. Kinahan,
“Evaluation of task-oriented performance of several fully 3D PET reconstruction
algorithms,” Phys. Med. Biol, Vol. 39, pp. 355-367, 1994.

[36] E.J. Mazur and R. Gordon, “Interpolative algebraic reconstruction techniques
without beam partioning for computed tomography,”Med. & Biol. Eng. &
Comput., vol. 33, pp. 82-86, 1995.

[37] K. Mueller, R. Yagel and J.J. Wheller, “Fast implementations of algebraic methods
for the 3D reconstruction from cone-beam data,” in review, 1998.

[38] K. Mueller, R. Yagel and J.J. Wheller, “Accurate low-contrast 3D cone-beam
reconstruction with algebraic methods” in review, 1998.

[39] K. Mueller, R. Yagel and J.J. Wheller, “ A fast and accurate projection algorithm
for the Algebraic Reconstruction Technique (ART),”Proceedings of the 1998
SPIE Medical Imaging Conference, Vol. SPIE 3336, pp. , 1998. (won Honorary
Mention Award.)

[40] K. Mueller, R. Yagel, and J.F. Cornhill, “The weighted distance scheme: a globally
optimizing projection ordering method for the Algebraic Reconstruction
Technique (ART),”IEEE Transactions on Medical Imaging, vol. 16, no. 2, pp.
223-230, April 1997.

[41] K. Mueller and R. Yagel, “Fast perspective volume rendering with splatting by
using a ray-driven approach,”Proceedings, Visualization’96, pp.65-72, 1996.

112

[42] K. Mueller and R. Yagel, “The use of dodecahedral grids to improve the efficiency
of the Algebraic Reconstruction Technique (ART),”Annals of Biomedical
Engineering, Special issue, 1996 Annual Conference of the Biomedical
Engineering Society, p. S-66, 1996.

[43] K. Mueller, R. Yagel, and J.F. Cornhill, “The weighted distance scheme: a globally
optimizing projection ordering method for the Algebraic Reconstruction
Technique (ART),”IEEE Transactions on Medical Imaging, vol. 16, no. 2, pp.
223-230, April 1997.

[44] K. Mueller, R. Yagel, and J.F. Cornhill, “Accelerating the anti-aliased Algebraic
Reconstruction Technique (ART) by table-based voxel-backward projection,”
Proceedings EMBS’95 (The Annual International Conference of the IEEE
Engineering in Medicine and Biology Society), pp. 579-580, 1995.

[45] K. Mueller and R. Yagel, “Rapid Algebraic Reconstruction Technique (ART) by
Utilizing Graphics Hardware,” submitted toIEEE Medical Imaging Conference,
November 1998.

[46] J. Neider, T. Davis, M. Woo,OpenGL Programming Guide, Addison-Wesley,
1993.

[47] R. Ning and S.J. Rooker, “Image intensifier-based volume angiography imaging
system: work in progress,”Proc. SPIE Medical Imaging 1993: Physics of Medical
Imaging, SPIE vol. 1896, pp. 145-155, 1993.

[48] R. Ning, Y. Zhang, D. Zhang, and D. Conover, “Image intensifier-based volume
tomographic angiography imaging: animal studies,”Proc. SPIE Medical Imaging
1998: Physics of Medical Imaging, SPIE vol. 3336, 1998.

[49] A.V. Oppenhein and R.W. Schafer,Discrete-Time Signal Processing, Prentice-
Hall, 1989.

[50] G.N. Ramachandran and A.V. Lakshminarayanan, “Three-dimensional
reconstruction from radiographs and electron micrographs: Application of
convolution instead of Fourier transforms,”Proc Nat. Acad. Sci., vol. 68, pp.
2236-2240, 1971.

[51] R.S. Ramakrishnan, S.K. Mullick, R.K.S. Rathore, and R. Subramanian,
“Orthogonalization, Bernstein polynomials, and image restoration,” Appl. Opt,
vol. 18, pp. 464-468, 1979.

[52] P. Rizo, P. Grangeat, P. Sire, P. Lemasson, and P. Melennec, “Comparison of two
three-dimensional cone-beam reconstruction algorithms with circular source
trajectories,”J. Opt. Soc. Am. A, vol. 8, no. 10, pp. 1639-1648, 1991.

[53] R.A. Robb, E.A. Hoffman, L.J. Sinak, L.D. Harris, and E.L. Ritman, “High-speed
three-dimensional X-ray computed tomography: The Dynamic Spatial
Reconstructor,”Proceedings of the IEEE, vol. 71, no. 3, pp. 308-319, 1983.

113

[54] R.A. Robb, ” The Dynamic Spatial Reconstructor: An x-ray video- fluoroscopic
CT scanner for dynamic volume imaging of moving organs,”IEEE Transactions
on Medical Imaging, vol. 1, no. 1, pp. 22-23, 1982.

[55] D. Ros, C. Falcon, I Juvells, and J. Pavia, “The influence of a relaxation parameter
on SPECT iterative reconstruction algorithms,”Phys. Med. Biol., no. 41, pp. 925-
937, 1996.

[56] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P.E. Haeberli, “Fast
shadows and lighting effects using texture mapping, ”Computer Graphics (Proc.
SIGGRAPH’92), vol. 26, pp. 249-252, 1992.

[57] O. Shochet, “Fast back-projection using hardware texture mapping with limited
lit-precision,” Internal communication, Silicon Graphics Biomedical, Jerusalem,
Israel.

[58] A. Silberschatz, J.L. Peterson, P.B. Galvin,Operating Systems, Addison-Wesley
Publishing Company, 1991.

[59] B. Smith, “Image reconstruction from cone-beam projections: necessary and
sufficient conditions and reconstruction methods,” IEEE Trans. Med. Img., vol. 4,
no. 1, pp. 14-25, 1985.

[60] D. Saint-Felix, Y. Trousset, C. Picard, C. Ponchut, R. Romeas, A. Rougee, “In vivo
evaluation of a new system for 3D computerized angiography,”Phys. Med. Biol,
Vol. 39, pp. 583-595, 1994.

[61] L.A. Shepp and B.F. Logan, “The Fourier reconstruction of a head section,”IEEE
Trans. Nucl. Sci., vol. NS-21, pp. 21-43, 1974.

[62] J.E. Swan, K. Mueller, T. Moeller, N. Shareef, R. Crawfis, and R. Yagel, “An anti-
aliasing technique for splatting,”Proceedings Visualization’97, pp. 197-204, 1997.

[63] K. Tanabe, “Projection method for solving a singular system,”Numer. Math., vol.
17, pp. 203-214, 1971.

[64] H.K. Tuy, “An inversion formula for cone-beam reconstruction,”SIAM J. Appl.
Math., vol. 43, pp. 546-552, 1983.

[65] Y. Weng, G.L. Zeng, and G.T. Gullberg, “A reconstruction algorithm for helical
cone-beam SPECT,”IEEE Trans. Nucl. Sci., vol. 40, pp. 1092-1101, 1993.

[66] L. Westover, “Interactive volume rendering,”1989 Chapel Hill Volume
Visualization Workshop, pp. 9-16, 1989.

[67] L. Westover, “Footprint evaluation for volume rendering,”Computer Graphics
(SIGGRAPH), vol. 24, no. 4, pp. 367-376, 1990.

[68] L. Westover, “SPLATTING: A parallel, feed-forward volume rendering
algorithm,”PhD Dissertation, UNC-Chapel Hill, 1991.

[69] G. Wolberg,Digital Image Warping, IEEE Computer Society Press, 1990.

114

[70] G.L. Zeng and G.T. Gullberg, “A cone-beam tomography algorithm for orthogonal
circle-and-line orbit,”Phys. Med.Biol., vol. 37, no. 3, pp. 563-577, 1992.

