
 
 

Fig. 1. CT data acquisition, reconstruction and visualization pipelines for (a) D2VR [29], (b) unverifiable, (c) our verifiable framework.
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Abstract—Practical volume visualization pipelines are never without compromises and errors. A delicate and often-studied 
component is the interpolation of off-grid samples, where aliasing can lead to misleading artifacts and blurring, potentially hiding 
fine details of critical importance. The verifiable visualization framework we describe aims to account for these errors directly in the 
volume generation stage, and we specifically target volumetric data obtained via computed tomography (CT) reconstruction. In this 
case the raw data are the X-ray projections obtained from the scanner and the volume data generation process is the CT algorithm. 
Our framework informs the CT reconstruction process of the specific filter intended for interpolation in the subsequent visualization 
process, and this in turn ensures an accurate interpolation there at a set tolerance. Here, we focus on fast trilinear interpolation in 
conjunction with an octree-type mixed resolution volume representation without T-junctions. Efficient rendering is achieved by a 
space-efficient and locality-optimized representation, which can straightforwardly exploit fast fixed-function pipelines on GPUs. 

Index Terms— Direct volume rendering, computed tomography, filtered back-projection, verifiable visualization. 
 

1 INTRODUCTION 
Scientists and practitioners frequently utilize visualization tools for 
diagnosis and decision-making. One application is the visualization 
of volume datasets derived from medical and industrial computed 
tomography (CT). CT acquires X-ray projection data of an object or 
patient from different vantage points and subsequently employs CT 
reconstruction to produce these volume data sets. Via direct volume 
rendering (DVR), users can then look for fine details such as hairline 
fractures, small pathological features such as tumors, and textures of 
diagnostic value. To be useful, the volume visualization tools must 
form a reliable basis for their judgment. Additionally, users also 
require interactive rendering speed to freely examine the data.  

Conceptually, we may perceive CT reconstruction as a 
transformation of the acquired raw projection data into a spatially 
coherent format to make this analysis and interaction more direct and 
thus more efficient and effective. Since CT scanning potentially 
acquires redundant data, the spatial pooling of these data within the 
CT reconstruction can also be seen as producing a compression of 

the raw projection data. Our paper addresses the need for a loss-
bounded transformation and compression in volume visualization.  

Visualization researchers, as well as the users, either know or at 
least suspect that their visualization tools may not be completely 
truthful to the underlying data. This is often rooted in compromises 
that need to be made for balancing rendering speed and quality. 
Much research has focused on recovering fine details from 
volumetric data by designing and using interpolation filters of higher 
quality. These filters are mostly based on theoretical derivations and 
do not consider the origin of the data themselves. However, as is the 
case for CT, the volumetric data subject to interpolation in the 
rendering stage are often not the actual raw data, but only derived 
from them. Thus, any quality-enhancing effort neglecting this 
transformation stage cannot guarantee verifiable results.  

As motivated above, for CT data the raw scalar field is naturally 
available from the CT acquisition process and therefore a verifiable 
visualization pipeline must integrate the rendering stages with the 
scalar field generation. The recent insightful volume rendering 
approach by Rautek et al. [29] recognized this important relationship. 
Their algorithm, termed Direct DVR (D2VR), integrates the raw data 
transformation (the CT reconstruction) stage and the rendering stage 
by directly generating the samples required for rendering from the 
raw data (X-ray projections) in place. In other words, they generate a 
transient volume dataset that does not require any further 
interpolation in volume space. They convincingly show that this has 
great potential for improving rendering quality. Similarly, the CT 
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community also noticed these resampling issues that motivated 
D2VR, suggesting the same direct pipeline [16]. Yet, as we will 
argue, there is still an overlooked compromise in D2VR which 
degrades it into an unverifiable data visualization pipeline. 

As past efforts show, directly visualizing CT raw data is an 
expensive operation, since it neglects the inherent advantages of CT 
reconstruction, that is, the spatial coherence and data compression it 
provides. First, for standard DVR to render an image of pixels one 
requires  off-grid sample interpolations in volume space (to 
generate the densities along the rendering rays). On the other hand, 
assuming  projections, for D2VR to generate  volume 
samples one requires  projection data interpolations. 
Translating these complexity arguments into practice, this causes 
D2VR to be about 50 times slower than DVR, assuming tri- and bi-
linear interpolation for DVR and D2VR respectively. In fact, this led 
the CT D2VR researchers to only develop a real-time 2D slice-
viewer, shying away from volume rendering arguing the lack of 
sufficient computing power. Second, the prior CT reconstruction of a 
volume also avoids the poor locality of the projection data when 
mapping spatially coherent data access requests. The texture fetching 
pattern of D2VR in volume rendering is a sine function (also called 
the sinogram) which does not map well into a GPU rendering 
pipeline. We can observe this from the results obtained by Xu and 
Mueller [34]. Their GPU-accelerated D2VR only achieved speedups 
of 1.3-1.5 after applying a number of (albeit standard) acceleration 
schemes, such as occlusion culling and empty-space skipping. 

In order to bring verifiable visualization into practice, we propose 
a framework we call Verifiable DVR, or VDVR. Our verification 
procedure bridges the currently existing disconnect between the raw 
projection data and their visualization via volume rendering. It helps 
to make visualizations verifiable since we guarantee a preset error 
tolerance that is applied in the CT reconstruction step.  

The fundamental difference between D2VR, standard DVR and 
our VDVR is illustrated in Fig. 1. Apart from the nature of the 
interpolated data (raw projection data for D2VR, volume data for 
DVR and VDVR), the differences stem from the filter used for the 
interpolation. D2VR, shown in panel (a), interpolates the projection 
data using a bilinear filter rather than the ideal sinc filter. Thus, 
although D2VR effectively eliminates sampling errors in the volume 
domain, it still commits errors in the projections domain, which are 
not explicitly verified (we will show later that such a verification 
would lead to a prohibitively inefficient D2VR algorithm). We can 
observe the resulting fidelity losses especially for the fine details on 
the fish tail. Conversely, both standard DVR and VDVR can 
effectively use sinc-interpolated projections, since the CT 
reconstruction is only a one-time process. However, volumes used in 
standard DVR typically are not generated with the sample 
interpolation errors in mind, and so they must use an ideal sinc filter 
to make guarantees on accuracy. Therefore, when a more practical 
trilinear interpolation filter is used instead, fine details cannot be 
preserved which is evidenced in panel (b). On the other hand, a 
renderer presented with a VDVR-certified volume may safely use the 
interpolation filter for which the volume has been verified (we 
demonstrate this with the trilinear filter to show the gains in speed 
that can be obtained). This enables all details to be recovered in the 
rendering, as is evidenced in panel (c).   

Our paper is structured as follows. In Section 2 we discuss related 
works. Section 3 provides the theoretical derivations of our research, 
while Section 4 discusses practical issues. Section 5 presents 
implementation aspects. Section 6 shows results, Section 7 offers 
some discussions, and Section 8 presents conclusions.  

2 RELATED WORK 
Volume rendering includes a wide range of techniques. Engel et al. 
give an overview of real-time volume rendering methods [10]. Most 
approaches focus on overcoming discretized representations to 
recover a smooth signal. This also includes high-quality normal 
vector reconstruction. These methods treat volume grids rather than 

scalar fields as raw data, which do not conform to the notion of 
“verifiable visualizations” as proposed by Kirby and Silva [19]. 
Kirby and Silva considered the errors committed within the 
visualization process in the data generation process, using flow 
simulation as an example. They also later applied their verifiable 
visualization to iso-surface extraction [13]. Our work proposes a 
similar verifiable framework but we focus on volume rendering and 
target one of the prominent sources of volumetric datasets, CT 
scanners and CT reconstruction. In their work, Kirby and Silva 
proposed convergence tests for benchmarking different visualization 
methods. In our case we perform evaluations via Root-Mean-Square 
(RMS) error between the scanned and the reconstructed object.  

In volume visualization, off-grid sample points are typically 
estimated via interpolation1. There has been a great deal of work on 
interpolation and filters in the volume rendering community [25] 
[32][11][4] and a variety of trade-offs have been identified. A major 
finding in this regard is that filters with good anti-aliasing properties 
do exist but these (i) tend to be expensive to evaluate and (ii) also 
tend to suppress frequencies in the higher portions of the pass-band 
more than inexpensive low-quality filters, smoothing the results.  

To cope with the latter shortcoming, recent work [6] proposed to 
pre-filter the data first, using deconvolution in the frequency domain, 
to then produce the undistorted function at interpolation time. 
Formalizing the pre-filtering as a projection of the acquired signal 
into the space of band-limited signals has been the subject of a paper 
by Unser [33]. In this theoretical framework the error is predicted by 
averaging the amplitudes of the signal’s frequency spectrum, which 
however is, as we will show, a rather conservative bound. We find 
that by considering the spectrum of phase-shifts as well, via a 
curvature-based metric, the error bound can be made significantly 
tighter without loss in signal fidelity, and this greatly reduces the 
number of required grid points for a given verifiable accuracy.  

To deal with the other factor, filter evaluation cost, recent work 
by Csébfalvi and Domonkos [7] has proposed (uniform) upsampling 
as a means to facilitate the use of less expensive interpolation filters 
without impairing rendering quality. They show that an upsampling 
rate of 2 is roughly sufficient to reduce the filter complexity from 
cubic to linear and so gain an order of magnitude speedup in GPU. 
We aim for a similar goal but add grid points adaptively and not 
uniformly. Specifically, but without loss of generality, we focus on 
the trilinear interpolation filter to take advantage of the hardwired 
support offered by fixed-function GPU pipelines.  

In this context, we would like to distinguish between upsampling 
and oversampling. The former occurs as a post-process on existing 
volume data with the goal of increasing their resolution (see above), 
and an efficient method is to zero-pad the volume data in the 
frequency domain (as was done in [7]). Conversely, we attack the 
data fidelity problem at its root, that is, during volume data 
generation, and at that stage oversample the volume data in areas 
with critical detail. In other words, we sample the (potentially 
continuous) function being reconstructed at a higher rate to represent 
all detail (under the constraint of the interpolation filter used later on).  

The mixed-resolution representation we devise has a 
fundamentally different goal than octree-based multi-resolution 
frameworks, such as [20][12][23]. For example, the Gigavoxel 
framework [5] can provide interactive rendering of massive volume 
data. Aimed at providing aliasing-free level-of-detail (LOD), most of 
these multi-resolution approaches store multi-resolution data in 
different textures and render each brick individually. The high 
resolution of their input also hides, to some extent, aliasing issues [5]. 
Similarly, in the physics simulation domain, AMR is a refinement 
structure which was first developed by Kähler et al. [17] [18] and 
further improved by Marchesin et al [27]. In contrast to these 
methods, our representation data is directly derived from the raw 
projection data and can so extend resolution only when needed to 
                                                           
1 One may consider this sample interpolation also a reconstruction of the 
continuous signal at the sample’s location. We use the term ‘interpolation’ 
since ‘reconstruction’ is already used in the context of CT reconstruction. 
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Fig. 2. The X-ray transform and its Fourier spectrum in 2D. 

(a) (b) 

preserve detail. Therefore, our mixed-resolution framework is more 
adaptive and less brute force when it comes to data storage. In 
addition, we do not aim for a multi-resolution representation that can 
provide smooth transitions from low-resolution to high-resolution. 
Rather, we only keep the leaves of the octree, at the local level that 
preserves the fidelity of the (transformed) raw data. 

T-intersections occur when two boundaries of different 
resolutions meet. They can cause visible banding artifacts if not 
handled properly. The approach by Ljung et al. [24] smoothly 
interpolates between these mixed-resolution boundaries, and Beyer 
et al. [2] introduce a scheme that blends samples nearby. This 
approach does not give explicit error control and therefore it is not 
verified by the raw data. Also, because the refinement cell position is 
grouped into a coarse granular octree (only 2 levels), it is inefficient 
to handle sparse refinement regions (void region and thin structure). 
In contrast, our data method can directly account for visualization 
errors and support finer granularity.  

Finally, we note that noise in the projection data has a definite 
influence on the complexity of the volumes our framework will 
generate. The more noise in the raw data exists the more (albeit false) 
detail would be reconstructed. We assume that noise (or better, what 
has been identified as noise) is removed from the raw data either in a 
pore-processing step or during the CT reconstruction itself. Proven 
methods (for example, [21][36]) exist for either of these strategies 
and so this does not represent an obstacle for our framework. Also, 
in practice detector binning is often applied to remove noise and 
aliasing, in particular in low-energy imaging scenarios. 

3 THEORETICAL CONSIDERATIONS 

3.1 Background: CT Reconstruction 
Here we provide some background on CT reconstruction and use the 
2D case for ease of illustration (pictured in Fig. 2). Any point within 
the circle defined by the intersection of all detector shadows can be 
accounted for in the X-ray projections and later be reconstructed via 
filtered back-projection (FBP). The back-projection is essentially 
inverse (X-ray) volume rendering, that is, a volume point is 
calculated by summing the contributions of all rays that emanate 
from the corresponding projection pixels and pass through the point. 
For parallel-beam projection geometries, the Fourier transform for 
each projection constitutes a radial slice of the imaged signal's 
Fourier spectrum, as shown in Fig. 2b for the amplitude portion. This 
spectrum is available on a polar grid and is bandlimited to ±N/2, 
where N is the projection’s resolution (the number of pixels). This 
existence of a bandlimit will play an important role in our error 
analysis (more on this later). Also note that the outer circle areas are 
less tightly sampled. This can be compensated for by pre-filtering the 
data by a ramp (Ram-Lak) filter, but we might also use more noise-
suppressing filters, such as the Shepp-Logan filter [31], which 
multiply the ramp by a window to de-emphasize high frequencies.  

The (analytical) 2D filtered back-projection formula is:  
2
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where  are the ramp-filtered projections. Eq. (1) and (2) 
formalize the reconstruction pipeline. For each 1D projection , 
we first apply a 1D Fourier transform to yield . Each  is 
ramp filtered and then an inverse Fourier transform computes  
(for 2D data the ramp filtering needs to be done along the projection 
rows in 1D). Finally, we sum all back-projected  at the voxels 
and divide this sum by the number of projections . This  should 
be at least  such that the polar Fourier transform has about 
the same resolution in θ at the periphery and k (see Fig. 2b) [31]. 

3.2 Frequency Domain Projection Upsampling 
In FBP, after ramp-filtering, the projections are stored as discrete 
samples, to be interpolated in the later back-projection stage. Here, 
bilinear interpolation is mostly used in GPU-based CT reconstruction 
for its fast speed performance. But as discussed in Section 2, 
inexpensive filters cause artifacts which we would like to avoid. 

The general mindset of our approach is to provide a sufficient 
amount of up/oversampling to allow for a verifiable approximation 
of the underlying continuous function by a piecewise linear function, 
which we can then interpolate by means of a linear filter. This 
mindset applies to both the projection domain and later to the volume 
domain. Our first task is to provide such a faithful upsampling for 
the projection data. As mentioned, frequency domain upsampling is 
the most appropriate solution for this. It is equivalent to using an 
ideal sinc filter, but without the high cost of its infinite support. In a 
2D Fourier transform, a signal given in frequency space can be up-
sampled by padding zeros at both ends of the spectrum (used, for 
example, in [26] to improve the quality of Fourier volume rendering). 
One can then convert the obtained signal back into signal space at 
the new (higher) resolution. A potential issue in frequency domain-
based upsampling are sharp boundaries that may exist in the signal. 
Discontinuities at these boundaries introduce high frequencies. These 
high frequencies can be avoided by a mirror extension, which 
ensures a smooth transition at the boundaries [1]. Alternatively, one 
can also use spatial-domain windowing [22]. 

More concretely, our goal is a high-quality upsampling of the 
ramp-filtered data. Let us denote the signal as S, the upsampling 
operator as U and the ramp filter as F. Since the operators are linear 
we may either perform  or . If we use filters 
other than the sinc either option will contain strong aliasing, since 
the affected high frequency bands are magnified by the high-pass 
filtering of F. It is straightforward to either integrate on-the-fly sinc-
interpolation or prior frequency domain upsampling into the VDVR 
pipeline. It merely forms a pre-processing stage and the additional 
computation or samples will only be needed in the CT reconstruction. 
On the other hand, D2VR cannot incorporate on-the-fly sinc-filtering 
or pre-computed upsampling easily. For the former the 
computational overhead would be prohibitive, and for the latter a 
64× storage increase in GPU memory (for 8× upsampling) would be 
challenging. Therefore they do not perform any projection 
upsampling.  

To illustrate the need for frequency domain upsampling, we 
performed tests on a challenging dataset, the Marschner-Lobb 
function [27]. Fig. 3 shows the RMS error (RMSE) behavior of 
filtered back-projection for projections obtained from the analytical 
ML function (also in Figs. 11-13 and 15) set within a  
cube. We observe that the RMS error is still decreasing after 

 projections, which is the theoretical minimum number 
of projections needed (see Section 3.1). Further, since the ML 
function is set into a cube, these sharp boundaries extend its 
frequency space to infinity, causing Gibbs phenomenon on the cube 
boundary which would interfere with the measurement. Therefore we 
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Fig. 3. Reconstruction error of filtered back projection methods.
Volume registration is done by normalizing standard deviation and
sample mean. Measurements are based on 448×448×512 samples. 
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perform the test in the cube interior only (  of the cube length). 
The RMSE for  projections is  (blue curve). In contrast, the 
red curve shows that the RMSE for sampling used in D2VR stops 
improving after 30 projections, at about  RMSE. We therefore 
conclude that frequency-based (or sinc-based) upsampling is clearly 
needed to create a verifiable result. 

The upsampling process is plugged into the CT reconstruction 
pipeline as follows. The inputs are the 2D X-ray projections obtained 
from the CT scanner (or obtained with a high-quality raycaster used 
in our simulations). For each projection, a 2D FFT is obtained, zero-
padded, and a 2D inverse FFT is run. Following, we perform a 1D 
FFT for each line, ramp-filter, and do a 1D inverse FFT. 

3.3 Interpolation Error Assessment 

3.3.1 Error assessment for the Linear Filter 
For the linear filter the largest error occurs at the local peak or valley 
where the maximum curvature is located [30]. Fig. 4a illustrates this 
scenario for a single frequency, where the largest error occurs around 
the sine function’s peak. Given the sampling distance , the max 
absolute error  for a specific wavelength with amplitude  is: 

2 1 | | (1 sin( ( )))     / 2
4 2i i i i

i

dE A T d T
T
π= − − < (3) 

where the maximum interpolation error  is a function of the 
sampling distance  and the signal period . The distance  and 
period are connected by the oversampling rate. If , the 
sampling rate is just below the Nyquist sampling rate. In this case, 
the maximum error for linear interpolation could be  of the 
sine peak value. If  (equivalent to an 8× oversampling 
rate), this will guarantee that the error is less than 1.92% of the 
maximum (peak) value. Fig. 4b illustrates the error as a function of 
oversampling rate and signal frequency. The error decreases with 
increasing oversampling rate and/or decreasing signal frequency.  

Of course, a signal is a composite of multiple frequencies and 
therefore these errors would possibly compound. However, most 
likely these frequencies would be phase shifted which would reduce 

the local curvature and thus alleviate the error. Given a set of ,the 
largest error occurs when all sine peaks accumulate in one point. The 
largest error for this composite signal is:  
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where  is the length of the signal which is also the number of 
frequencies obtained with the FFT. 

We shall now give a general impression on what this means in 
practice. In Fig. 5a the blue curve shows the frequency amplitude for 
the central line of the X-ray projection of the carp dataset, while the 
red curve shows these amplitudes after ramp-filtering. For the blue 
curve, we see that the highest amplitudes are located at the low 
frequencies (left). The panel (b) shows the errors as a function of 
frequency and oversampling. We observe that for 1× resolution the 
highest error (100%) is located at the highest frequencies and falls 
off according to Eq. (3), while for 8× resolution the errors all stay 
below 2%. Next, panel (c) shows the product of the amplitudes (the 
blue curve) and the error map. The plot shows the error at the 
traditional resolution on a scale from 0 to 0.006 (1.0 is the 
maximum). Summing the errors for the full amplitude spectrum will 
amount to  of the maximum scalar value of the carp. Conversely, 
the errors for the 8× oversampling case are reduced by almost two 
orders of magnitude, and their sum is 0.4% of the maximum scalar 
value. We thus conclude that the residual’s overall impact is 
negligible. Furthermore, for the filtered signal (red curve), the sum is 
even less. 

As mentioned, the amplitude-based theoretical error assuming the 
worst phase shift is too conservative and likely impractical to use. 
Another error can be derived by taking phase shift into consideration. 
Let  be the maximum absolute value of the curvature. Then the 
maximum error for the sampling distance  is  

2222
max 8

)
2

(
2

dMdME =≤
 

(5) 

The proof [30] of Eq. (5) is based on Taylor’s Theorem. In 
general, the amplitude-based error bound is tighter for single 
frequency signals and the curvature-based error bound is tighter for 
compound frequency signals. We can use both to estimate the error. 

3.3.2 Error assessment for the Bilinear Filter 
For the 2D case, the amplitude-based error bound is 

1 1
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where  and  are the width and height of the signal as a 2D image. 
Since there is no straightforward analytical solution, we computed 
the resulting 2D percentage-error map by extensive exhaustive 
search. For a given frequency ,we generated 2D sine waves with a 
uniform distribution of phase shifts  and then find the maximum 
error inside a bilinearly interpolated unit square. 

Fig. 5(d-f) show the results for this 2D analysis, for a 2D X-ray 
projection of the carp dataset. We observe similar effects than in the 
1D case. Panel (d) shows the image’s amplitude spectrum using a 
log-scaled colormap. Panel (e) shows the error for the regular 1× 
sampling case (top) and the 8× oversampling case (bottom). Finally, 
panel (f) shows the errors multiplied by the amplitude spectrum. We 
observe that 8× oversampling removes the error almost completely.  

An important observation we can make in Fig. 5e is that the 8× 
sampling error map is a direct copy of the 1/8×1/8 center square in 
the 1× sampling error map (see the illustration linking the top and 
bottom plots of panel (e)). So the higher degree of oversampling, the 
more one zooms into the 1× error map. Also, since the raw data (the 
sinogram) is bandlimited, the amplitude spectrum of the 
reconstructed signal stays constant but the overall spectrum 
bandwidth grows at the rate of the oversampling. Both of these facts 
have important implications for the maximally needed resolution of 
the verifiable grid, as we shall see soon.  
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Fig. 5. Linear interpolation error for oversampling. (a-c) show the largest errors for frequencies in 1D and (d-f) show the largest error for
frequencies in 2D. (a) shows one half of the spectrum obtained by FFT since the other half is symmetric.  
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Fig. 6. VDVR pipeline. 

The curvature-based error bound can be derived similarly for the 
bilinear filter. We use this notation later although it is not exactly the 
definition of curvature. The paper’s supplement document proves an 
error bound based on the local second order Taylor expansion which 
is similar to [30][8]. Assuming the signal  is of class , let , 

,  and  be the largest absolute values of , ,  
and  respectively. An error bound for the sampling distance  is 
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We can use this error bound in similar ways as in the 1D case.  

3.3.3 Error assessment for the Trilinear Filter 
If ,  and  are the size of the 3D signal, the maximum error is 
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Similarly to the 2D case, we compute the 3D error map in 3D by 
exhaustive search. For a sine function with frequency , we test a 
uniform distribution of phase shifts and measure for each the error 
inside a trilinear interpolated unit cube. Also similar to the 2D case, 
the oversampling error map can be obtained by extracting the center 
cube of the standard 1× error map volume and expanding it. Then 
given all  (the 3D amplitude spectrum), we multiply this 
spectrum by the error volume and compute the sum, which will give 
us the error bound at the worse phase shift constellation.  

For the trilinear filter, the curvature-based error bound can also 
be derived, as detailed in the paper’s supplement. If  is the max-
absolute value of  and  

, an error bound for the sampling distance  is 
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3.4 Error Control for the Verification 
Our aim is use linear interpolation within our verifiable visualization 
framework and use FBP for CT reconstruction. This requires us to 
formally quantify the errors incurred with FBP using bilinear or 
trilinear interpolations (note that other constellations are possible but 
would have to be formally evaluated as well). There are two sources 
of error: (i) the interpolation of the 2D projection (raw) data during 
CT reconstruction of the verifiable volume and (ii) the interpolation 
of this volume during rendering. We discuss these two errors next.     

Error control in 2D projection interpolation: In FBP, the 
ramp-filtering is performed in the frequency domain so no error is 
incurred at this stage. Then, following Eq. (2), the filtered 
projections are interpolated and the values summed, multiplied by  

and divided by the number of projections . Directly applying the 
bilinear interpolation error on the filtered projections will give us  
errors (one error per projection). However, we are interested in how 
these errors are reflected in the 3D scalar field. Essentially, this error 
bound is the sum of all maximum errors for the  projections, 
multiplied (normalized) by .  

Error control in 3D volume interpolation: After FBP, the 
reconstructed 3D scalar field is sampled and stored as a volume array 
of discrete samples. Thanks to the important fact that the 3D signal is 
band-limited we can perform the analysis outlined in Section 3.3.2 
on a volume reconstructed at Nyquist resolution (1× oversampling). 
Based on this reconstruction we can then estimate the error bound for 
any oversampling rate, for both amplitude and curvature-based error. 

In the carp dataset, assuming 8× sampling, the amplitude-based 
bound is 0.4 and the curvature-based error bound is 0.01 (1 is the 
maximum scalar value). Note that even the curvature based error 
bound is an over-estimation. As shown in Fig. 3 above, we can get 
the reconstruction error very close to the original data (  RMSE) 
even for a challenging dataset, if we first use 8× oversampling. 

4 PRACTICAL CONSIDERATIONS 
The entire verifiable pipeline is shown in Fig. 6. The inputs are the 
X-ray projections and an error threshold . We first determine the 
upsampling rate of the filtered projections by estimating the error 
bound. This analysis is based on the projections after ramp-filtering. 
Then we run frequency domain upsampling according to the verified 
upsampling rate and ramp-filter the upsampled projections. 
Following, we perform a CT reconstruction at the Nyquist resolution 
(1× up-sampling), perform the error analysis and determine the -

1519ZHENG ET AL: VDVR: VERIFIABLE VISUALIZATION OF PROJECTION-BASED DATA



 

 
 

(a) (b) 

Fig. 7. (a) shows the volume samples at traditional resolution. (b)
shows the volume samples with adaptive refinement. 

Fig. 8. Adaptive refinement (totally 3 levels) validated by the
interpolation filter (trilinear in our case) and the error threshold . 
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verified oversampling rate for the 3D volume. Then we perform 
back-projection again but now on a high-resolution grid which 
captures all possible details. We call this the gold-standard. To keep 
within the memory limit, we generate the gold standard in blocks of 
multiple cells. Within each such block, and from the gold-standard, 
we then build the mixed-resolution representation only keeping the 
detail needed. Starting from the typical base resolution commonly 
used, we classify those cells as subdivision cells which contain finer 
details. These cells are then represented with more data points. 
Finally, any potential T-junctions in the mixed-resolution data are 
removed. In the following, we describe this process in more detail.  
4.1 Determining the Verification Parameters 
Verifying the projections: For the amplitude-based error bound, the 
maximum error for a filtered projection is the sum of its frequency 
errors. The final reconstruction error then multiplied by  as 
noted in Section 4.4. We compute the curvature-based error bound in 
the frequency domain as well. Taking the derivatives of a signal in 
the spatial domain corresponds to multiplying it by a unit ramp 
function (the radial frequency ) in the frequency domain [3]. Thus, 
if the amplitude spectrum is multiplied by  the IFFT will 
reconstruct the analytical derivative at the grid points. We use this 
approach to a compute a set of images, one for each derivative 
specified in Eq. (7).  We then find the maximum values in each and 
compute the error according to Eq. (7). The reconstruction error is 
then the sum of the  errors for the  filtered projections, multiplied 
by .  

If both error bounds are larger than , this means we need to 
increase the upsampling rate. For the amplitude based error, we 
replace the error map with the one for a 2-times higher sampling rate. 
The curvature-based error can be simply re-evaluated. We continue 
this iterative process until the error is below . 

Verifying the gold-standard volume: The error of the gold-
standard volume can be estimated also by ways of these two methods. 
Both use back-projection to reconstruct a volume at the traditional 
resolution. For the amplitude-based error bound, we take a 3D FFT, 
multiply the spectrum by the 3D error map for a certain 
oversampling rate and sum the errors. For the curvature-based error 
bound, we use Eq. (9) and estimate the maximum derivatives by 
taking derivatives in frequency space. Note that here the error 
bounds are already in 3D space and there is no  factor involved. 
With these two error bounds, the resolution of the gold-standard can 
be determined.  

4.2 Building the Mixed-Resolution Grid 
To enable verifiable visualization with efficient hardware-
accelerated trilinear filtering (instead of the ideal sinc filter or 
higher-order filters), we need to keep the data at a higher resolution. 
As argued above, our goal is to preserve the local maxima/minima of 
the reconstruction, because the trilinear filter cannot interpolate 
values beyond these limits. In our mixed-resolution building stage, 
given a set tolerance (the verification/certification stamp) some cells 
may be classified as subdivision cells. As mentioned above, these 
cells contain fine details and must be represented by additional data 

sample points, generated within a progressive refinement process. 
We store these cells separately as a progressive refinement structure. 

Compared to the gold-standard the coarse volume can usually 
represent the data fairly well and only needs a few locations to refine. 
The refinement regions contain high frequencies in forms of sharp 
edges, as pictured in Fig. 7. The high frequencies give rise to a line-
shape which is typically sparse in nature. It often occurs across the 
whole volume which makes brick-boundaries inefficient.  

Our mixed-resolution based adaptive refinement has the storage 
cost of a 3D index volume. The index granularity can be chosen as a 
certain level of the octree. Each level has a 1/8 smaller storage (1/2 
sampling rate in 1D) than its next-lower level. The error determining 
the local sampling rate is described as: 

, ,
, ,

( , , )   | ( , , ) ( , , ) |i j k i i i
i j k N

E x y z f x y z w g x y z
∈

= − (10) 

Here, the oversampled reconstruction data  is the gold 
standard,  represent the filter's weights (we use the trilinear 
filter) and  are the grid samples at the coarser level. If 
the reconstructed signal error compared to the gold standard is larger 
than the (verified) fidelity threshold , we subdivide the current cell 
and increase the sampling rate by two. We illustrate our refinement 
procedure in Fig. 8.  

Cell-based and node-based methods are two applicable schemes 
to represent octree subdivisions. We chose to implement a cell-based 
octree because the duplicated value on the boundary can overcome 
the boundary discontinuity problem well. We need the boundary 
values to preserve the thin structures that often occur in medical 
datasets (see also Fig. 7). In this cell-based method, the base cell has 
2×2×2 elements, while the refinement cell could have 3×3×3 or 
5×5×5 elements. A 2×2×2 base cell can be subdivided into eight 
children (a 3×3×3 cell) or sixty-four children (a 5×5×5 cell). As 
shown in Fig. 8, our scheme first estimates the error for a 2×2×2 cell, 
which is the traditionally used resolution in CT. If in this cell all the 
errors (compared to the 9×9×9 gold standard) are below the 
threshold , then we stop and return the refinement index as 0. If 
there is any estimator reporting an error larger than , we try a 3×3×3 
cell. When the 3×3×3 cell is good then we return a positive index. 
Otherwise, when the 3×3×3 cell fails then we try a 5×5×5 cell whose 
refinement index is always returned as a negative number. We end 
up with a coarse volume, an index volume and two volume stacks.  

The error checking process can be straightforwardly computed on 
the GPU using 3D textures mapping. The equation to guide the 
texture coordinate transform is: 
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where  is the texture coordinate in a  cube and  is the 
texture coordinate in a  cube. In our implementation, to better 
utilize the GPU bandwidth, we process multiple cells simultaneously 
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Fig. 9. The data feeding algorithm ensuring a trillinearly interpolated
C0 continuous boundary. A 2 level boundary region is shown in (a-c)
and a 3 level boundary region is shown in (d-g). 

(a) (b) 

(d) (e) 

(c)

(f) (g)

in multiple threads, which can greatly accelerate this pre-processing 
procedure. 

4.3 Adding a Continuous Boundary  
In the end, there are two texture stacks storing all refinement cells, 
first level and second level. The element size of these two stacks is 
3×3×3 and 5×5×5. Along with the 2×2×2 cell in the coarse 
resolution, we have a 3-level mixed-resolution data representation. 

Problems in this mixed-resolution representation arise when we 
are trying to reconstruct values on a mixed-level cell boundary. The 
trilinear filter itself can preserve C0 continuity across a uniform grid. 
However, if we have a high resolution cell on one side and low 
resolution cell on the other, the interpolation scheme would result in 
a C0 discontinuity. To keep with our verified rendering approach, we 
need to avoid schemes that blur this T-junction. Instead, we augment 
the T-junction with the underlying continuous data and upgrade the 
low-resolution side into a finer resolution. Any cell with high 
resolution neighboring this cell is affected by it and changes its 
interface accordingly. Filling the low resolution cell with original 
data selectively will not dramatically increase the data storage. Most 
importantly, feeding the gold-standard data will preserve the 
verifiable threshold in Eq. (10). 

The key idea is to only upgrade the high-low resolution 
boundaries, while the rest of the points are generated by trilinear 
interpolation (to comply with the low-low resolution boundary). 
Otherwise the high-low resolution boundary will propagate and we 
will end up with high resolution everywhere. We illustrate our data 
feeding process in 2D in Fig. 9. In panel (a), there are eight base 
2×2×2 cells and one 3×3×3 cell with refinement. Each of the 4 
neighbors of the refinement cell contains a high-low resolution 
boundary. In panel (b), we feed the center elements from the gold-
standard into the affected cells (with the same blue color). Finally in 
panel (c), the yellow points are further added into the 4 affected cells. 
These yellow points are obtained from interpolations and all the T-
junctions can be removed. By adding the raw-data rather than 
blending, our method can adhere to previous error thresholds, and 
even further increase the authenticity.  

The algorithm ensuring a C0 continuous boundary in 3-level 
overlapping regions is shown in Fig. 9d-g. If the cell is only affected 
by a 3×3×3 region, then data filling occurs similarly as before. If the 
cell is also affected by a 5×5×5 region, we first fill 3×3×3 data 
accordingly (panel (e)), perform another linear interpolation (green 
samples in panel (f)) and then fill 5×5×5 data accordingly (panel (g)). 

Our framework performs two processes after building the initial 
index of data refinement. They are the affected neighbor checking 
and the data feeding as shown in Fig. 9. The first process scans the 
initial index and generates maps recording all affected neighbors and 
the affected boundaries. We use 18 bits to encode different cases 
because between two neighboring cells, the possible sharing 

boundaries can be 6 faces and 12 edges resulting in a total of 18 
boundaries. Thus we store 18 bits information for each 2×2×2 base 
cell. Totally there are totally 18×2=36 bits recording the affected 
cells by 3×3×3 and 5×5×5 cells. 

The next procedure is filling the low-resolution cell accordingly, 
as shown in Fig. 9. The previously generated high-resolution data are 
stored on disk so we do not need to re-generate the original data 
again. Firstly we look at the cells affected by 3×3×3 cell, fill the low-
resolution cell accordingly and add those newly upgraded cells into 
the texture stacks. Then we process the cells affected by 5×5×5 cell 
similar. The added interpolated data of a new 5×5×5 cell can be 
based on interpolating a 2×2×2 cell or a 3×3×3 cell. 

4.4 Rendering  
While our framework can be generally applied to high order filters, 
we choose the trilinear filter in this paper for its efficiency, as 
discussed above. Our fine granular octree framework lends itself 
quite well to GPU acceleration. We store the base volume and index 
volume into 3D textures. During ray tracing, each sample position is 
interpolated and if the current region indicates a finer subdivision 
then the index points to corresponding children in the octree. 

To correctly fetch the index, the index volume should be shifted 
by  before applying the nearest-neighbor 
filter. When the ray enters into a refinement cell, the local 
coordinates will be changed. The texture coordinate mapping 
between two levels follows the same procedure as the data 
refinement. So, if one cell has more detail and needs finer resolution, 
then via the index pointer, the fragment program goes to that position 
in the corresponding level refinement texture stack to fetch the data. 
The positive index will be directed to the first level refinement and 
the negative index will be directed to the second level refinement.  

Finally, since our framework serves as an extension of the DVR 
pipeline, many existing acceleration techniques available to DVR 
can be incorporated into our pipeline without much modification. We 
currently use block-based empty space skipping and early fragment 
kill [10] in our visualization pipeline. But facilitated by our mix-
resolution data representation, we can also readily perform ray-
tracing with adaptive step sizes controlled by the local resolution. 

5 IMPLEMENTATION 
We use the FFTW library [15] to perform the Fourier and inverse 
Fourier transform. The GPU components are based on NVIDIA CG.  

There are some implementation issues related to storage and 
speed. To avoid having to store all high-resolution data in memory at 
once, we use a block-marching approach which keeps the size of 
active memory reasonable. The block size should not be too small 
because the CT reconstruction is done on the GPU [35] (using 
projective textures) and the bandwidth between GPU memory and 
CPU memory is relatively low. Therefore we take 32×32×32 of 
9×9×9 cells as a block and reconstruct all of them together. Each 
block is a 257×257×257 floating point data array which takes 64.75 
MB of storage. This structure is scalable to large datasets with high 
resolution. Afterwards, some parameters in our framework can also 
be fine tuned for better performance. Note that the finer granularities 
of refinement cells will have more duplicated boundaries. In order to 
have better storage, we chose the granularity of the refinement to be 
a factor of 4. Therefore, 64 neighboring 2×2×2 cells correspond to 
one element in the index volume instead of 64 elements. The merged 
index volume then consumes about 1/64 of the storage of a 
traditional scalar volume. 

In practice the height of the refinement stack could be larger than 
the current dimension limit of 3D textures. It is often necessary to 
regroup the two refinement stacks. Under the 4-granular index, the 
refinement cell would be 9×9×9 and 17×17×17. Instead of a 
9×9×9×h 3D volume texture stack, we can regroup the data into 
90×90× 9h/100 . For a 17×17×17×h volume stack, we can regroup 
the data into 170×170× 17×h/100 . The rearrangement of the stack 
will affect the transform parameters according to Eq. (11). 
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Fig. 11. Iso-surface rendering (using trilinear interpolation) of the ML
dataset represented by the same number of volume samples: (a)
volume resolution doubled via frequency space upsampling; (b)
mixed-resolution reconstructed from upsampled projections and a 2%
error threshold.  

(a) (b) 

Fig. 12. Error in (a) D2VR, (b) DVR at uniform coarse resolution and
(c) VDVR using the ML dataset at a 3% error threshold. Projections of
(b)(c) are interpolated via the frequency domain interpolation method.
(b)(c) use the trilinear filter to interpolate the volume samples.  

(a) (b) (c) 

Fig. 13. ML comparison between analytical function (a) and D2VR (b).
(a) (b) 

Fig. 10. Shepp-Logan phantom in 2D slice view. The projections were
upsampled using the frequency domain method. (a) is based on a
uniformly coarse resolution (traditional resolution) and (b) is based on
a mixed resolution. Both (a) and (b) use a trilinear filter. 

(a) (b) 

6 RESULTS 
In this section, we compare results obtained with traditional 
resolution, D2VR, and using our verifiable pipeline. First, we 
compare the results obtained using the traditional resolution with 
those from the verified mixed-resolution representation, both based 
on the verified (frequency-space upsampled) set of projections. Fig. 
10 shows a modified Shepp-Logan phantom, with intensity shown as 
grey values. The image on the left has been rendered at traditional 
resolution and the one on the right is our verifiable result. In the 
phantom’s definition, the three upper thin tumors have the same 
intensity as the adjacent smaller but thicker tumor just below (but 
higher than the three tumors further below). The lower resolution of 
the traditional method misses the high-intensity peak and thus 
renders the three thin tumors at a lower intensity than the thicker 
tumor just below. Our verifiable method, on the other hand, 
preserves the intensity peaks and visualizes all tumor intensities 
correctly. Note also the sharper details on strong edges. 

The next experiment compares traditional volume upsampling 
(increasing a volume’s resolution via frequency space upsampling) 
and our verifiable volume oversampling (reconstructing the volume 
at a higher resolution from upsampled projection data). For this, we 
simulated a set of 74 X-ray projections (size 652) of the analytical 
Marschner-Lobb (ML) function [27]. Fig. 11a shows the results of 
upsampling pipeline: from the projection data, reconstruct a volume 
at the base resolution of 643 and then double the resolution to 1283 
using frequency-space upsampling (note that this is different from 
sampling the original 3D ML function and upsampling it, our 
experiment more closely simulates a practical case – one in which an 
object is acquired via CT scanning). Conversely, Fig. 11b shows the 
result of our verifiable pipeline: upsample the projection data by 8× 
using the frequency space method and then reconstruct a mixed-
resolution volume (2% error threshold) that also has about 1283 data 
points. We can clearly observe that both renderings are of fairly high 
quality, but only the verifiable method can represent all function 
detail (the deep grooves between the rings).   

Fig. 12 plots an error map of the results obtained with (a) D2VR, 
(b) DVR (uniform resolution), and (c) VDVR (mixed resolution). 
For the projection data, both (b) and (c) use frequency space 
projection upsampling while (a) uses bilinear interpolation as 
described in [29]. We observe that all pixels in the VDVR panel (c) 
fall below the set error level of 3%, while without the verifiable 
mixed-resolution the error increases to 4%. D2VR has strong ringing 
errors in the high frequencies (up to 6%). These error rings cause the 
6% RMSE in Fig. 3, and they also result in some missing or reduced 
high frequency rings in the function (rings 4 and 6 in Fig 13).  

We also performed these comparisons using a practical dataset. In 
clinical or industrial settings the CT scanner X-ray detectors often 
have higher resolution, and typically a bin decimation procedure I 
used to remove noise and aliasing. In order to mimic a real-life CT 
scanning scenario, we performed an 8×8 down-sampling for 
decimation. Fig. 14 shows volume renderings of the carp dataset, 
where 142 projections of resolution 256×129 each were used for 
reconstruction to obtain both the traditional volume dataset pictured 
on the top and the verifiable representation pictured at the bottom. 
However, the trilinear filter in the X-ray projection simulation would 
result in strong aliasing, especially along the z-axis. The D2VR paper 
[29] suggests a solution employing a spiral CT simulator. We chose 
a different route. We first generated an 8× high-resolution sinogram, 
added Gaussian noise with density 0.05, and then convolved the 
projections with a 5×5 Median kernel and a Gaussian kernel with 

 before performing an 8× downsampling. This 
procedure effectively eliminated the aliasing along the z-axis and 
also reduced the noise.  

Using these simulated projections the dataset was reconstructed 
and then rendered using a standard trilinear interpolation filter. Fig. 
14 panels (a), (d) and (f), were rendered from a uniform 1282×256 
volume (base) resolution, which is the resolution one would typically 
pick given the 256×129 projection data. We observe strong aliasing 
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Fig. 14. Renderings of the carp dataset represented in the various grid resolution types. (a)(d)(f)  uniform (coarse) resolution, (c)(e)(h) mixed-
resolution, (b)(d) frequency-domain upsampled resolution using the same storage than the mixed resolution (magnified cuts only).    

(e)

(h) 

Table 1. The Performance of VDVR with 3% error tolerance 

Dataset Base Resolution  
(# of 2×2×2 cells) 

Pre-
processing Rendering Storage 

Shepp-
Logan 128×128×128 12 min 10 fps 4× 

Carp 128×128×256 35 min 11 fps 2× 
Beetle 102×62×128 6 min 13 fps 5× 

ML 643 4 min 20 fps 6× 

Fig. 15. ML rendered with VDVR at different error thresholds. 
  4%   3%   2%   1% 

Table 2. The effects of different error thresholds  

Dataset Threshold RMS Rendering Storage 

ML 

4% 
3% 
2% 
1% 

0.0156 
0.0123 
0.00917 
0.00747 

20 fps 
20 fps 
20 fps 
20 fps 

2.34× 
6.04× 
8.35× 
32.0× 

Carp 
3.0% 
2.5% 
2.0% 

NA 
12 fps 
11 fps 
8.6 fps 

2.41× 
3.03× 
4.23× 

artifacts in these renderings. On the other hand, the renderings 
obtained from the mixed-resolution volume (3% error threshold, 
2.4× more storage) and shown in panels (c), (e) and (h) can resolve 
small detail, such as the thin bones, rather well. We also took the 
base resolution volume of (d) and used frequency domain 
upsampling to generate a volume of the same storage than the mixed 
resolution of (e). Panels (b) and (g) show magnified cuts of a 
rendering of this volume. These images exhibit similar effects than 
Fig. 11 – while aliasing is suppressed, small detail cannot be solved. 
The highlighted fish tail is shown in the beginning of the paper (Fig. 
1) which compares our VDVR with D2VR. Panel (a) shows that 
D2VR still smoothes out some fine details on the tail, while VDVR 
in panel (c) provides sharper images, showing the thin bones clearly. 

All experiments were performed on a PC with Intel Core 2 Duo 
3.00GHz CPU, 1.75GB RAM, and a NVIDIA GeForce 9800 GX2 
GPU. Table 2 gives insight into the rendering speed and compares it 
with D2VR. For these results, we rendered into a 512×512 window 
and used a ray step size of 1. Volume textures were RGBA 32 bit 
floating point. Central-difference-based gradient estimation was used 
in the volume rendering. Since the Shepp-Logan dataset has very low 
contrast tumors and high intensity bones, verification was only 
performed on intensities around this tissue intensity range.  

In Table 1, the error threshold was set to 0.03 for all datasets. We 
observe that a rendering speed of about 10 frames/s is possible for 
practical datasets. VDVR requires about 4 times more storage than 
DVR and likewise D2VR. However, we also note that if D2VR were 
to store high-resolution projection data to overcome the aliasing 
effects incurred from sampling ramp-filtered projection data with an 
inferior filter, its storage requirements would be significantly higher.  

Fig. 15 shows the qualitative effects of the error threshold, using 
the ML projection data. It appears that refinements will first pick up 
high-frequency details (the outer rings), and then expand to lower-
frequency details (the ring close to the center). Eventually, fine 
details no longer improve due to the implicit band limit of the ML.  

Finally, Table 2 examines the effect of different error thresholds 
on rendering performance. While the ML function is small, it is rich 
in fine details. Therefore its storage increases dramatically when the 
error threshold is lowered. The rendering speed, however, is stable 

since the required rendering effort is still small for the GPU. 
Conversely, the carp dataset is larger in size overall and so requires a 
larger rendering effort, but it contains only sparse details. Therefore 
the storage is less sensitive to the error threshold. 

7 DISCUSSION 
The question arises who might benefit from VDVR. Given the 
traditionally closed architecture of commercial CT scanners, 
researchers in visualization have no access to raw projection data and 
so would not be able to generate verifiable volume data themselves. 
However, an encouraging development in this regard is the currently 
emerging paradigm shift to flat-panel detector based CT. These 
panels are likely to produce CT systems that are more open, allowing 
access to the acquired projection data as well, in addition to the 
reconstructed volume data. These systems may follow the standard 
practice of professional SLR cameras that give also access to the raw 
sensor data, in addition to the processed data. 

Further, for simplicity we have only discussed the parallel beam 
case. Flat-panel detectors, however, produce cone-beam data. Our 
framework extends quite naturally to this case. First, the 
corresponding reconstruction algorithm would be the FDK algorithm 
[14][35]. While the max errors for each 2D projection can be 
analyzed similarly, depth-weighting factors are now involved in the 
backprojection. These depth-weighting factors will multiply the 
projected values and so amplify the errors. Therefore the resulting 
error bound will be the sum of the max errors multiplied by the max 
depth-weight factor. The rest of the error analysis factors in the beam 
geometry but is principally the same than for the parallel beam case.   
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8 CONCLUSIONS 
We have described an error-aware volume visualization method for 
data derived from projection-based raw data as occurring in medical, 
industrial, and security scanning applications. Our method is tightly 
coupled with the data generation process itself, and it prevents, or at 
least bounds, the loss of accuracy associated with off-grid sample 
interpolation during rendering. Our method is able to certify a CT 
reconstructed volume for use with a given interpolation filter, 
explicitly specifying the maximum error that might occur in the 
rendering. It uses a mixed-resolution volume encoding computed in a 
pre-process. This representation can maintain the advantages of real-
time rendering, and at the same time gives the verifiable results. 

In our experiments the reconstruction-based error (at 8× 
maximum oversampling in our verifiable mixed-resolution volume) 
was typically less than 1% for real-life dataset while the error 
threshold in the mixed-resolution volume construction was set to 3%. 
In contrast, traditional DVR that uses volumes reconstructed at no 
oversampling (at the projections’ resolution) would have maximum 
errors as high as 20% and more. While one could also oversample 
the volumes used with DVR, our VDVR will always return a more 
efficiently sampled volume since it is informed by the theoretical 
error propagation and the data generation process itself.  

On the other hand, the spatial coherence that VDVR maintains 
allows it to render volumes much more efficiently than D2VR which 
has a (raw projection-based) error bound twice as high (6%) than 
VDVR (3%). Lowering this error would require an upsamplimg of 
the projections, further impeding speed and storage. 

Future work will adapt these concepts for more efficient grids, 
such as BC, and we also plan to evaluate and incorporate other errors 
occurring in the rendering such as shading, gradient estimation, 
transfer functions, perception, and the like. Finally, to boost 
rendering performance, we would like to devise a coarser mixed-
resolution scheme  one which would have large sub-volumes of 
equal resolution that would generate more coherent ray traversals. 
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