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Abstract—Correlation analysis can reveal the complex relationships that often exist among the variables in multivariate data. 

However, as the number of variables grows, it can be difficult to gain a good understanding of the correlation landscape and 

important intricate relationships might be missed. We previously introduced a technique that arranged the variables into a 2D 

layout, encoding their pairwise correlations. We then used this layout as a network for the interactive ordering of axes in parallel 

coordinate displays. Our current work expresses the layout as a correlation map and employs it for visual correlation analysis. In 

contrast to matrix displays where correlations are indicated at intersections of rows and columns, our map conveys correlations 

by spatial proximity which is more direct and more focused on the variables in play. We make the following new contributions, 

some unique to our map: (1) we devise mechanisms that handle both categorical and numerical variables within a unified 

framework, (2) we achieve scalability for large numbers of variables via a multi-scale semantic zooming approach, (3) we 

provide interactive techniques for exploring the impact of value bracketing on correlations, and (4) we visualize data relations 

within the sub-spaces spanned by correlated variables by projecting the data into a corresponding tessellation of the map.  

Index Terms—Visual analytics, Visual correlation analysis, Categorical data, Information visualization, Interactive interfaces 

——————————      —————————— 

1    INTRODUCTION

HE rapid development of information technology 
produces vast amounts of data with numerous at-
tributes. These high-dimensional datasets offer tre-

mendous opportunities for studying behavioral patterns 
and also for predicting future developments. Valuable 
insight often comes from intricate inter-relationships that 
exist among data attributes (or variables). For example, in 
psychology research, scientists try to find relationships 
between intelligence, aptitude and social behavior. In 
finance and economics, to maximize profit, economists 
look for the group of variables that are mostly related to 
profit. Finally, in the social and natural sciences, research-
ers seek to understand and explain the nature of relations 
between certain phenomena. To make progress in this 
wide gamut of areas, analysts require effective, sensitive, 
and intuitive tools to uncover these relationships.  

Correlation analysis is one such tool. It looks for rela-
tionships between variables and can show whether pairs 
of variables are related and how strongly. Correlation 
analysis has become increasingly popular in many fields, 
including psychology, education, finance, marketing, and 

climatology, just to name a few. Correlations, however, 
are difficult to interpret, manage, and survey once the 
number of variables becomes even moderately large. Giv-
en D variables, there are O(D2) correlation pairs, which 
makes complex relationships difficult to recognize from 
columns of numbers alone. Hence, there is a clear need 
for an effective visual interface that allows analysts to (1) 
quickly get an overview of the overall correlation rela-
tionships in the data, and (2) easily manipulate the data to 
reveal hidden relationships via different modes of interac-
tions, such as filtering, selection, bracketing, and cluster-
ing.  

Correlation analysis is related to regression analysis. 
While regression analysis quantifies the linear relation-
ship between a dependent variable and one or more in-
dependent variables, correlation analysis makes no dis-
tinction between independent and dependent variables – 
it is only a measure of linear association between two var-
iables. The strength of this linear association is gauged by 
the correlation coefficient r. It is this coefficient that links 
correlation and regression analysis, because squaring r, or 
r2, yields the coefficient of determination which is a measure 
of how well the regression line represents the data. It is 
important to realize, however, that neither correlation nor 
regression analysis can establish cause-and-effect rela-
tionships among the variables. These can only be inferred 
by a human analyst, and this circumstance forms a main 
motivation of our work.  

T 

———————————————— 

 Zhiyuan Zhang and Klaus Mueller are with the Visual Analytics and 
Imaging Lab at the Computer Science Department, Stony Brook Univer-
sity, Stony Brook, NY. Email: {zyzhang, mueller}@cs.sunysb.edu. 

 Klaus Mueller is also with the Computer Science Dept., SUNY Korea 

 Kevin T. McDonnell is with the Department of Mathematics and Com-
puter Science, Dowling College, Oakdale, NY. E-mail: 
mcdonnek@dowling.edu. 

 Erez Zadok is with the Filesystems and Storage Lab at the Computer 
Science Department, Stony Brook University, Stony Brook, NY. Email: 
ezk@cs.stonybrook.edu 

Manuscript received (insert date of submission if desired). Please note that all 
acknowledgments should be placed at the end of the paper, before the bibliography. 

This paper is © IEEE and appeared reformatted in IEEE TVCG 21(2): 289-303, 2015, DOI: 10.1109/TVCG.2014.2350494 

mailto:mueller%7d@cs.sunysb.edu


2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 

 

     
        (a)      (b)                 (c)         (d) 

Fig. 1. Examples of different correlation representations: (a) scatterplots of two variables, (b) parallel coordinates plot of the same two 

variables., (c) correlation matrix display of 7 variables with color and intensity coding correlation sign and strength, (d) our correlation map. 

Since we consider the variables the main actors, we 
seek a visual interface that can best show how variables – 
categorical and numerical – interact with one another, 
using spatial proximity encoding to convey the strength 
of these interactions. We call this visual interface the Cor-
relation Map. It builds on our prior effort reported in [33] 
where we first applied a force-directed algorithm to op-
timize a correlation-centric 2D layout of all variables and 
then computed a low-cost path across it to determine a 
good ordering of axes in a parallel coordinate display. 
Users could manipulate this path directly in the interface 
and so modify the axes orderings intuitively. Our present 
work also uses this layout but it does so for a different 
purpose – interactive visual correlation analysis. To ena-
ble this we have introduced a new set of interactions and 
visual representations. More concretely, we have devised:    

 new mechanisms that can handle both categorical 
and numerical variables within a unified framework 

 a multi-scale zooming approach to achieve scalabil-
ity for large numbers of variables 

 interactive techniques for exploring the impact of 
value bracketing on correlations 

 a tiled visualization of the subspaces spanned by 
sets of correlated variables 

Our article is organized as follows. Section 2 discusses 
related work and provides a contrast with our own. Sec-
tion 3 presents theoretical aspects. Section 4 introduces 
our algorithm for transforming categorical to numerical 
data. Section 5 describes our visual analytics framework. 
Section 6 reports on applications. Section 7 presents a dis-
cussion. Section 8 ends with conclusions. 

2    RELATED WORK  

2.1 Correlation Visualization – A View in Contrast  

Correlation is visually expressed as patterns the data 
form in the display. In 2D scatterplots, the more closely 
the point cloud adheres to a straight line, the greater the 
correlation of the two variables (Fig. 1a). On the other 
hand, in a parallel coordinate display [13] a strong posi-
tive correlation between two variables is visually ex-
pressed by coherent bundles of lines with similar slope 
(Fig. 1b). Likewise, a strong negative correlation causes 
these coherent bundles to form a classic bowtie shape 
with a focused cross-over point. The findings by Li et al. 
[15] (and others cited in Li et al.), however, indicate that 

both representations suffer from inaccurate assessment of 
correlations. The inaccuracies emerge because the viewer 
is asked to map a visual pattern to a numerical quantity – 
the correlation factor. This requires training in pattern 
recognition, falls victim to non-linear perceptual process-
es, and is thus prone to human judgment errors.   

At the same time, both 2D scatterplots and parallel co-
ordinates share one further shortcoming – they cannot 
easily show correlations that involve more than two vari-
ables. Although 2D scatterplots can be expanded into 
scatterplot matrices (SPLOM) [9] and the axes in parallel 
coordinates can be re-ordered [7][19] to expose relation-
ships of different sets of variables, integrating this dispar-
ate information across either tiles or axes is difficult.   

An alternative approach is to visualize the correlation 
matrix directly, providing a holistic view over the varia-
ble space (Fig 1c). In this representation, each matrix cell 
denotes the correlation of one variable pair. The matrix 
view has found a wide set of applications. Seo and Shnei-
derman [24] use a matrix-based visualizer to provide an 
overview of the ranking of features, while Henry and Fe-
kete [10] integrate the node-link diagram with a matrix-
based display to support the exploration of social net-
works. Many of these methods support interactive filter-
ing and clustering, and also matrix reordering [26]. In our 
case it can reveal clusters of correlated variables. 

The perception of the clusters can be further enhanced 
by coding correlation strength to color, yielding a 
heatmap [24]. However, according to Bertin’s levels of 
organization [2], brightness and color are poor visual var-
iables for quantitative information – spatial variables such 
as size and proximity are far better choices.  

It is for these various reasons why we prefer spatial 
representations over color, brightness, and data patterns 
to encode correlation strength and other statistical infor-
mation about data variables (Fig. 1d). Whereas Ghoniem 
et al. [8] find that matrix representations outperform 
graphs when the number of nodes exceeds 20, our appli-
cation only minimally shares the tasks they test, mainly 
because our representation is not a graph, but a map. We 
also reduce edge and node complexity by interactive 
thresholding, filtering, and level-of-detail management.   

The notion of correlation has been widely used in in-
formation visualization and visual analytics. Yang et al. 
[32] present the Value and Relation (VaR) framework that 
allows users to explore large datasets with large numbers 
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of dimensions. In their work, glyphs are used to represent 
values in dimensions, and the locations of the glyphs re-
veal relationships among dimensions. Qu et al. [20] visu-
alize correlated dimensions in terms of a network layout 
in which the relative distance of vertices encodes strength 
of correlation, but no facilities for visual correlation anal-
ysis are presented. Chen et al. [4] and Sukharev et al. [28] 
utilize visualization techniques to show correlations in 
time-varying multivariate climate datasets with 3D spa-
tial references. More recently, also for time-varying mul-
tivariate data, Biswas et al. [3] used mutual information 
and information overlap as correlation. They utilized our 
layout optimization technique [33] to construct a com-
plete connected graph for all variables. In their system, 
only nodes were colored based on hierarchical clustering.    

A recent example for attribute space visualization is 
the work by Turkay et al. [29], which supports visual ex-
ploration in both data space and dimension space. Their 
system, however, focuses on other statistical quantities, 
such as mean and standard deviation, and not correlation. 

2.2 Unifying Categorical and Numerical Variables 

Realistic datasets often contain a mix of numerical and 
categorical variables. Although there are well-defined 
statistical techniques to handle categorical and numerical 
variables in isolation, mixtures of these have received less 
attention. A few methods [14][22] employed and extend-
ed correspondence analysis to transform either categori-
cal or numerical variables into appropriately spaced and 
ordered categorical variables. We discuss these methods 
and their limitations more closely in Section 3. Ma and 
Hellerstein [16] re-order the categories by inter- and intra-
cluster ordering. However, using an equal distance be-
tween adjacent categories does not convey the degree of 
their similarity. In the statistics literature, a popular ap-
proach has been to discretize numerical variables into 
bins and apply statistical methods for categorical varia-
bles on them. The inherent problem with this approach – 
the loss of detail after binning – has been well-reported 
[23][30]. On the other hand, methods have also been de-
vised that encode categories as numerical values [6][31] 
which enables one to apply statistical methods designed 
for numerical data. Typically, however, these methods do 
not consider the ordering and the distances between cate-
gories, which are important features for correlation analy-
sis. We provide a method that also maps categorical vari-
ables to numerical ones but optimizes the distances.  

2.3 Data Integration 

Our method integrates the data into a tessellation derived 
from the layout of variables. This is another reason why a 
matrix view is not a feasible option for our system – such 
a view would not allow a tight data integration. On first 
glance the visualizations we produce somewhat resemble 
the hyperbox [1], but we allow scatterplot tiles of more 
than two variables. Finally, Claessen and van Wijk [5] 
describe a system that uses tiles of 2D scatterplots and 
links their axes by the corresponding parallel coordinates 
display segments. The tiles in our framework are more 
general and are directly linked at their shared axes.  

3    THEORETICAL BACKGROUND 

The methods available for correlation analysis can be di-
vided into three major groups based on their target varia-
bles: (1) methods applicable only to numerical variables, 
such as Pearson’s correlation coefficient; (2) methods ap-
plicable only to categorical variables, such as Cramér’s V; 
and (3) methods applicable to computing correlations 
between numerical and categorical variables, such as the 
t-test, ANOVA, and MANOVA.  

Pearson's correlation coefficient [6] is one of the most 
popular measures for defining linear relationships be-
tween two variables: 
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where x and y are two vectors of the same size, μ(x) and 
μ(y) are their respective means, and N is the number of 
data points.  The correlation, r, ranges from −1 to +1. The 
closer r is to −1 or +1, the more closely the two variables 
are linearly related, whereas r close to 0 means that there 
is no linear relationship between the two variables. 

Cramér’s V [6] is computed from the 𝜒2 statistic and 
can be applied to two categorical variables of any type:  
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Here, 𝜒2 is derived from Pearson's chi-squared test and k 
is the number of rows or columns, whichever is smaller. 
The metric v  ranges from 0 to 1. The closer v is to 1, the 
more association the two variables have, while a value of 
v close to 0 means no association between them; 𝑣 equals 
1 only when the two variables are identical. Similar to 
Pearson’s correlation coefficient, Cramér’s V is a symmet-
rical measure – it does not matter which variable is placed 
in the columns and which in the rows. Also, the order of 
categories in the rows/columns does not matter. This 
makes it an appropriate general-purpose measure. 

In comparison, the results from the t-test, ANOVA, 
and MANOVA, which can handle both numerical and 
categorical variables, are not normalized. This means that 
they will have different values under different conditions. 
Thus, to determine if a relationship is strong or not, one 
must consult specific significance tables. This makes these 
measures awkward to integrate into an interactive appli-
cation such as ours. Hence, it is best to first transform a 
pair of mixed variables into a homogenous pair, either 
both categorical or both numerical, and then apply Cra-
mér’s V for categorical variable pairs and Pearson’s equa-
tion for numerical variable pairs. Next, we describe alter-
natives to resolve these mixed variable pairs.  

3.1 Dealing with Mixed Variable Pairs 

When dealing with two categorical variables it is often 
important to define a proper ordering and spacing of the 
individual categories (levels) of each variable. The aim is 
to order and space the levels of one categorical variable 
with respect to the other, and the essential task here is to 
gauge the distribution similarity of the levels of the first 
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1 RSS=∑(𝑦𝑖 − �̂�) and TSS=∑(𝑦𝑖 − �̅�) where �̂� is the predicted 

value of y given x, using the regression equation (3), 𝑦𝑖 is the 

actual observed value of y, and �̅� is the mean of y. 

variable with those of the second variable. Levels with 
similar such distributions are then spaced closer together 
and others are spaced further apart. This is a global opti-
mization problem and is commonly solved with Corre-
spondence Analysis (CA). Starting from a contingency 
table, CA computes the set of independent components—
similar to PCA for continuous variables. Then the projec-
tive coordinates of the first independent dimension give 
the transformed numerical values. Rosario et al. [22] de-
vised a method that used CA in the context of parallel 
coordinates. They then extended the scheme to Multiple 
Correspondence Analysis (MCA) in which the operations 
are performed with respect to all categorical variables.  

For mixed variable pairs, Johansson et al. [14] pro-
posed to first transform all numerical variables into cate-
gorical ones and then use the techniques prescribed for 
categorical values from thereon. They offered two trans-
formation techniques—an interactive approach tied to a 
parallel coordinate visual interface and an automated one 
based on k-means clustering. However, transforming 
numerical to categorical variables always results in some 
amount of discretization, unless the objective number of 
bins equals the set of unique numerical values. But as the 
number of bins increases, the computation of any subse-
quent analysis becomes exceedingly expensive. This 
makes interactive application of this approach difficult.  

Given the disadvantages associated with the typical 
numerical-to-categorical transformation approach, we 
chose to devise a scheme that goes the other direction – 
from categorical to numerical. This avoids the problems 
with binning and enables the use of Pearson’s correlation 
exclusively. It also allows us to find, for a given categori-
cal-numerical variable pair, the spacing and order of the 
categorical variable’s levels that maximize correlation. 

Lastly, we need to define the scope of our transfor-
mations. Stevens [27] distinguishes four scales of meas-
urement – nominal, ordinal, interval, and ratio. Nominal 
variables are the least restrictive. They have no intrinsic 
ordering in their levels, no fixed interval between them, 
and no natural zero point. Examples are gender, occupa-
tion, or color attributes. Ordinal variables have an intrin-
sic ordering, such as rankings. Interval variables have an 
intrinsic ordering and fixed intervals. Finally, ratios also 
have a natural zero point. There are varied opinions 
which of these four scales fall into the set of categorical 
variables. The visualization literature [14][16][22] general-
ly considers only nominal variables which allows a reor-
dering of the levels. 

3.2 Regression Model for Categorical Variables 

As mentioned, the coefficient of determination r2 is the 
square of the correlation coefficient, r, and as such ranges 
only between [0, 1]. It indicates how well the data points 
fit a line (if it is a linear model). The objective function for 
least squares regression is the residual sum of squares (RSS) 
which is the data variance unexplained by the regression 
model. The goal is to minimize RSS which maximizes r2 

(and therefore r) since r2=1-RSS/TSS 1. TSS is the total sum 
of squares—the sum of squared deviations of the depend-
ent variable values from their mean. We note that since 
we maximize r2 the correlation factors that result will al-
ways be maximally positive. This, however, is no contra-
diction since we can always reverse the transformed data 
axis to reverse the sign of the correlation factor as well.   

Regression deals with categorical variables via the in-
troduction of dummy variables. There is one such variable 
for each categorical level minus 1. Let us assume we have 
an independent, 3-level categorical variable and a numer-
ical dependent variable. This results in the following re-
gression model:  

0 1 1 2 2i i i i
Y I I e       (3) 

where 0 ≤ 𝑖 ≤ 𝑁 − 1, Y is the dependent variable, I1,2 are 
indicator variables (value 0 or 1),  are the coefficients 
returned by the regression, and e is the normally distrib-
uted error. The indicator variables are only set to 1 when 
the data point indexed by i is at the corresponding cate-
gorical level. The baseline 𝑌𝑖 = 𝛽0 + 𝑒𝑖 at which neither I1 
nor I2 is set to 1 is when the third categorical level is active. 
This model is solved via least squares optimization as 
usual. Since there is only one dependent variable, this 
model is called a univariate multiple regression model. It can 
be written in matrix form as y=X∙b where y is the N1 
vector of N observations, b is the M1 vector of coeffi-
cients with M categorical levels, and X is the NM inde-
pendent variable matrix with indicator values I.      

The task we are faced with in our specific problem is to 
determine the spacing and ordering of the levels of a cat-
egorical variable with respect to a numerical variable. 
Conceptually, this can be accomplished by solving a re-
gression model in which the categorical variable is the 
independent variable—one dummy variable per level less 
baseline—and the numerical variable is the dependent 
variable. The coefficients returned by the least squares 
optimization then determine the desired order and spac-
ing of the corresponding categorical levels.   

3.3 Multivariate Regression Model 

In our application a categorical variable may participate 
in more than one pairing with a numerical variable. Using 
the arguments in Section 3.2 this is equivalent to having 
more than one dependent variable. It extends the univari-
ate multiple regression model to a multivariate multiple 
regression model. In matrix form such a model is written as 
Y=X∙B where Y is the N×P dependent variable matrix 
with P paired numerical variables, B is the M×P coeffi-
cient matrix, and X is the N×M independent variable ma-
trix as before. In multivariate multiple regression, each 
column of B is solved independently and hence there are 
different dummy variable coefficients for each of the P 
numerical variable pairings this categorical variable has. 
The implication for our transformation scheme is that the 
transformed categorical variable will potentially have 
different level orders and spacings, one for each of its P 
numerical variable parings, maximizing the correlation.      
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Dataset 
Variable pair categori-

cal/numerical 
Corr (Rand) Corr (Opt) 

(b) 

(d) 

                    

(c) 

(e) 

 

Auto 

make/length 0.115 0.831 

make/price 0.152 0.8871 

make/MPG 0.051 0.712 

make/HP 0.049 0.690 

Car 

origin/HP 0.034 0.573 

origin/weight 0.112 0.620 

origin/MPG 0.145 0.579 

origin/acceleration 0.054 0.322 

(a)  

Fig. 2: (a): Correlation coefficients obtained by randomly assigning an integer value 1 through M to each of the M categories (Rand) 
and by using the spacing and ordering computed by our optimization (Opt): The correlations achieved by optimization are significant-
ly higher, in many cases by an order of magnitude, for both datasets we tested: Auto and Car. (b), (c) and (d), (e) are two pairs of the 
parallel coordinate tiles where the visual improvement after the transformation can be informally clearly observed.  

 
        (a)           (b)  

Fig. 3: Our visual exploration framework employs two coordinated 

displays for dual-space analytics: (a) the correlation map display, 

and (b) an adjunct parallel coordinates (PC) plot. This example 

uses the car dataset. The route in the correlation map indicates the 

axis order in the parallel coordinate display. We observe that cylin-

ders (Cyld) and weight are close in the correlation map and posi-

tively correlated (green-colored edge). The PC plot confirms this – 

the lines do not overlap much. Conversely, we observe an approx-

imate bowtie shape in the horsepower (HP) – acceleration tile (Acc 

is proportional to time, not 1/time) and indeed these variables are 

also appropriately close in the correlation map with a red-colored 

edge for negative correlation. Finally, Year and MPG are more dis-

tant in the correlation map which is confirmed by the reduced line 

structure in the PC plot. 

 

4    TRANSFORMING THE CATEGORICAL VARIABLES 

Although a regression model serves as a good theoretical 
background we do not need to solve one to determine the 
transformation. Instead, we can simply minimize RSS. 
Suppose we are given a dataset Ω with two variables: one 
categorical variable vc and one numerical variable vn. Let 
us assume there are N data points and M levels in vc. Let 
Mi be the total number of data points that fall into cate-
gorical level 𝑣𝑐(𝑖) and let 𝑣𝑛

𝑖 (𝑗) represent the jth numerical 
data point that falls into category level 𝑣𝑐(𝑖). The goal is 
to transform each categorical level 𝑣𝑐(𝑖) in vc to numerical 
values 𝑣𝑐

, (𝑖) that maximize r. As discussed in Section 3.2, 
maximizing r2 (and therefore r) is equivalent to minimiz-
ing RSS to yield the RSS of the transformation, RSS’:  

2,

1 1

' ))()(( ivjvRSS c

M

i

Mn

j

i

n

i

 




 (4) 

Letting µ(𝑣𝑛
𝑖 ) be the mean of all numerical data points that 

fall into categorical level 𝑣𝑐(𝑖) allows a sequence of ma-
nipulation of Eq. (4) which are outlined in Appendix 1. 
We then arrive at the following expression that needs to 
be minimized:  

2,

1 1
))()(( ivv c

M

i

Mn

j

i

n

i

 




  (5) 

Minimization occurs when:  

)()(, i

nc viv   (6) 

Hence, RSS’ is minimized for a transformation at which 
each categorical level 𝑣𝑐

, (𝑖) is the mean of the correspond-
ing numerical values falling into it, µ(𝑣𝑛

𝑖 ). This scheme is 
not only elegant but also computationally very efficient 
since it only requires the calculation of a set of means. 

Lastly, the extension of this method to parings of a cat-
egorical variable to multiple numerical variables is 
straightforward since each pairing can be treated sequen-
tially and in isolation, as was shown in Section 3.3.   

4.1 First Transformation Results 

Fig. 2a shows how this optimization performs for the Au-

to MPG (car) dataset [34] (N=398) and the automobile 

dataset [35] (N=205). In the table, the second column 
gives the variable pairs, and the third column shows the 
outcome for a random value assignment for each level. 
The fourth column shows the (greatly improved) correla-
tions obtained with our optimization method. Fig. 2b, 2c 
and 2d, 2e show two pairs of parallel coordinate tiles be-
fore and after the transformation, respectively. We can 
informally observe that after the transformation, (1) cate-
gories (levels) that behave similarly are put close to each 
other; and (2) the correlation is more visible in the parallel 
coordinate plots. 

5    THE CORRELATION MAP 

Our visual exploration framework employs two coordi-
nated displays for dual-space analytics – the correlation 
map display and an adjunct parallel coordinate (PC) dis-
play. Both are shown in Fig. 3. The correlation map in Fig. 
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        (a)             (b)              (c)                (d) 

Fig. 4. (a) Correlation map for the automobile dataset. (b) The edge correlation filter δe is set to 0.5 to remove low correlation edges. To ob-
tain (c) and (d), the user first filters out Height, Body, Door and Make due to small accumulated correlations. (c) The vertex-browsing corre-
lation map with focus only on Price. All edges incident on Price are highlighted. We quickly see that the type of drive-wheels (Wheels – 4×4, 
fwd, rwd) and car length (Length) have a much smaller effect on Price than horsepower (HP) and MPG, which is negatively correlated since, 
as we learn, more expensive cars also cost more gas. (d) The edge-browsing correlation map after selecting a group of variables (shown 
with thicker outlines). Only correlations (edges) within the group are shown to help users to focus on this local set of variables. This view 
helps users appreciate the ‘eco-system’ of Weight, Wheels, Price, and HP centered about MPG. Via this graph, users can quickly learn 
about the relationships and tradeoffs that exist among the car properties closely related to MPG. It can be seen in one view that high MPG 
requires low weight and low HP cars and that the type of wheel drive (Wheels: fwd, rwd, 4×4) also matters. We further confirm that cars with 
these properties are fortunately inexpensive (which is also suggested by the negative correlation of MPG with Price).   

3a provides an overview of all dimensions in terms of 
their pairwise correlations in variable space, whereas the 
PC display in Fig. 3b shows the raw data with sequential-
ly ordered dimensions in data space and serves as an ad-
ditional manipulation interface for the correlation map. 
Our work presented in [33] describes how the correlation 
map can be transformed into a network and be used to 
control the axes ordering in the PC display. The directed 
path of thick lines in Fig. 3b denotes an optimal (but user-
configurable) route found by running a Traveling Sales-
man solver over the network and ordering the PC axes 
accordingly. This path ensures that neighboring PC axes 
exhibit a high degree of correlation, which promotes the 
discovery of salient relationships in the PC display. The 
caption of Fig. 3 has a narration of some of the findings 
that can be made for the car dataset [34] using this display.     

5.1 Interacting with Correlations 

In the correlation map (Fig. 3a), vertices correspond to 
variables. The vertices are laid out via a mass-spring 
model [12] in which spring rest length is a function of the 
absolute value of the pairwise correlation strength among 
variables. The mass-spring model seeks to produce a lay-
out in which the spatial distance among each pair of ver-
tices is equivalent to their spring rest length. The vertex 
size, on the other hand, encodes a variable’s standard 
deviation (variance). We chose this coding because vari-
ance is an important factor in correlation analysis. Map-
ping correlation strength to spatial proximity and vari-
ance to vertex size allows users to quantitatively assess 
and compare these statistical properties and do so in a 
combined and holistic map layout display.   

5.1.1 Visual Edge and Vertex Enhancement  

In correlation analysis, if a variable is highly correlated 
with other variables, it often plays an important role in 
the analysis process. We use the accumulated correlations 
from all other variables to compute the significance factor, 
Ri for a specific variable vi: 
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Here, D is the number of variables and the denominator 
normalizes Ri. A value of 𝑅𝑖 = 0 means that variable vi has 
no linear relationship with any other variables; while 
𝑅𝑖 = 1 means that vi has a strong linear correlation with 
all other variables. We use opacity to visually encode Ri.  

Conversely, the edge significance is weighted by the 
correlation between the two dimensions linked through 
the edge. The correlation is encoded by color and opacity. 
Green encodes positive correlation while red encodes 
negative correlation. Edge opacity is determined by the 
strength of correlation.  

5.1.2 Focus + Context Browsing 

In the correlation map, visual clutter can arise when the 
number of dimensions grows large (Fig. 4a). Since the 
correlation map is a complete graph, the high dimension-
ality makes it difficult to follow the edges [8]. We provide 
several options to help reduce the clutter, following the 
information seeking mantra: overview first, zoom and 
filter, then details-on-demand [25].  

Specifically, we provide two correlation filtering oper-
ators for vertices, and one such filter for edges. The filter-
ing operators for vertices are used to control two objective 
parameters – accumulated correlation, R, and standard 
deviation, σ – which are controlled by two sliders defin-
ing thresholds δR and δσ. Only vertices with Ri > δR and σi 
> δσ are deemed significant and shown in the map. The 
filtering operator for edges allows users to define a 
threshold, δe. For correlation strengths (absolute value) 
smaller than δe, the corresponding edges will be filtered 
out from the correlation map, as shown in Fig. 4b. These 
filtering operators help users guide their focus on highly 
correlated variables only (those with r>0.8) but dismiss 
weak correlations (those with r<0.5).  

Detail-on-demand is supported by two interactive dif-
ferent browsing modes: vertex-browsing mode and edge-
browsing mode. In vertex-browsing mode (Fig. 4c), hover-
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            (a)                (b)                               (c) 

              
 (d)                               (e) 

Fig. 6. Multi-scale zooming: The original correlation map is shown in Fig. 4a. As one zooms out, (a), (b) and (c) show the result sequences 
of correlation map views. From (c) we can see that variables Weight, Length, Width, Price, Cylinder, and HP have been merged into one 
(Price) because all are positively correlated. Although MPG is close to them, it has a negative correlation with the others, so it is not 
merged. But MPG and Drive Wheel have positive correlation, so they also merge into one (MPG). The number of variables packed into the 
representative variable is given by the small number in the upper left corner of representative vertex. Panels (d) and (e) show the corre-
sponding PCP displays of (b) and (c), respectively. The representative dimensions are denoted by double-line axes. 

 

ing over a vertex highlights all of its adjacent edges, and 
clicking on a vertex keeps the adjacent edges highlighted.  
Conversely, in edge-browsing mode (Fig. 4d), the user can 
select a group of interesting vertices; only edges with 
both adjacent vertices inside the group will be highlight-
ed. In both modes, the selected vertices are rendered with 
thicker outlines to distinguish them from others. These 
interactions can help users to interactively explore the 
correlation space for interesting discoveries. The reader is 
directed to the caption of Fig. 4 to see illustrative use cas-
es for both of these modes, and their findings.   

We end by stating that after the mass-spring model 
layout, the relative locations of vertices alone can already 
give indications of the correlation strength information 
among variables. Thus, users can set δe = 1 to turn off all 
edges without losing much correlation strength infor-
mation. By default, however, all thresholds are set to 0, 

which shows all edges without filtering. 
 

5.1.3 Multi-Scale Zooming 

To support the visualization of datasets with many varia-
bles in a limited screen space, we refined the multi-scale 
zooming interface described in [33]. This technique uses 
the (distance-mapped) correlation strength between verti-
ces to decide whether variables should be merged or not. 
In our current work we propose a more accurate criterion 
to control the merging (Fig. 5), and we also add a new 
rule for selecting the variable to be used for representing 
the merged variables. Both of these contributions are dis-
cussed in the following paragraphs. 

When merging variables, one needs to be careful not to 
abstract correlation information in inconsistent ways. 
Note that two highly positively correlated variables be-
have similarly in terms of correlations with other varia-
bles (Fig. 5a), while two negatively correlated variables 
behave differently (Fig. 5b). When considering merging 
close variables, we merge only those that have positive 
correlations. Thus, after the merging, the edges adjacent 
to the merged variable remain consistent with the original 
edges. With this merging criterion, as users zoom out of 
the display, nearby variables with positive correlations 
merge into one, and as users zoom back in, the merged 
variables split into the original variables. In our imple-
mentation, users can also manually control whether to 
merge or collapse a representative vertex via mouse-
clicks. 

When considering a representative variable for a set of 
merged variables, we choose the one with the largest ac-
cumulated correlation (Ri). This is justified because Ri not 
only takes correlation into account, but it is also a data-

 
             (a)      (b) 
Fig. 5. Vertex merging: (a) Variables E and F are positively correlat-
ed. As a result, both of them have the same correlation type with 
variable D. Then, when merging E and F, the merged vertex retains 
the same type of correlation as before: edge(D, EF) vs. edge(D, E) 
and edge(D, F). (b) Variables B and C are negatively correlated. 
Therefore, they have different correlations with variable A. If we 
merged B and C, the edge from BC to A would be inconsistent with 
those before the merging: edge(A, BC) vs. edge(A, B) and edge(A, 
C). Hence, we do not merge negatively correlated variables. 
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                  (a)                                (b)                                (c)  

Fig.7: The influence of bracketing on correlation for a fictitious 

product’s price and sales. (a) Full price range, no correlation; (b) 

bracketed to lower price range, positive correlation; (c) bracketed to 

higher price range, negative correlation.  

centric measurement, encoding the variable’s significance 
with regards to other variables. Moreover, the variable 
with a larger accumulated correlation tends to better indi-
cate or predict the other variables. Another option would 
be to use factor analysis or PCA to extract the main factor 
or component as the representative variable. We did not 
implement this since it is not straightforward to under-
stand what a factor or component actually means, making 
it hard to interpret relationships from them.  

Fig. 6 shows a simple example for how the multi-scale 
zooming works, again for the car dataset. Zooming activi-
ties in the correlation map are also reflected in the adjunct 
PC display, whose complexity is reduced as well.  

5.1.4 Exploring Correlation Sensitivity 

Correlation strength can often be improved by constrain-
ing a variable’s value range. This will limit the applicabil-
ity of the derived relationships to this value range, but 
such limits are commonplace in targeted marketing and 
elsewhere. We shall illustrate this point by ways of an 
extreme example. Let us assume we have a variable pair x 
and y, where for half the samples the pairs have the same 
sign, say y=x, and for the other half the pairs have the 
opposite sign say y=-x. Then for the first half r=1 and for 
the second half r=-1. This would mean that the total r=0 
and that the correlation map would display the two vari-
ables far apart. However, this is not really a complete 
analysis. Rather, one should separate the two sub-ranges 
(if this is meaningful to the task at hand) and look at them 
in isolation. But recognizing such a situation can be chal-
lenging, since it is usually not as clear cut as in this ex-
treme example. The adjunct parallel coordinate display is 
a good instrument for this – we can isolate the sub ranges 
via interactive bracketing and view the effects this has in 
the correlation map. Our system provides such a facility. 

Fig. 7 shows a simple example examining the relation-
ship of price and sales for a fictitious product. Fig. 7a 
shows that there is no correlation when the full price 
range is considered. However, bracketing on the lower 
price range yields a positive correlation of price and sales 
(Fig.  7b), while bracketing on the higher price range 
yields a negative correlation (Fig. 7c).  

5.2 Integrating Data—the Subspace Scatterplot 

While the adjunct PC display provides access to the raw 
data, it requires users to transition their eyes to a different 
screen area. Further, due to PC’s sequential axis ordering, 
multivariate data relationships are difficult to detect 
across more than three dimensions. Multivariate scatter-

plots can overcome these problems (see [18] for example). 
In the following section we describe our attempt to inte-
grate multivariate scatterplots into the correlation map.  

5.2.1 Tessellating the Correlation Map  

As a first step, we need to create bounded areas into 
which we can project the data. We accomplish this by 
tessellating the scattered point set formed by the correla-
tion map’s vertices. We use the following strategy:  
1. Triangulate the domain using Delaunay triangulation. 

Delaunay triangulations maximize the minimum an-
gle of all triangle angles in the triangulation. It tends 
to avoid skinny triangles which are less capable of 
showing the details of the corresponding subspace. 
Furthermore, the triangulation will generate a planar 
graph that avoids edge crossings. 

2. Sort all the edges in ascending order by edge length, 
which is equivalent to sorting the correlation coeffi-
cients in descending order.   

3. Optionally, for edges with length less than some 
threshold, (i.e., a correlation greater than some value), 
if removing the edge will not cause concave polygons, 
remove it. Concave polygons are not suitable since 
our data mapping method requires convex primitives.   

4. Create the scatterplot for each of these subspaces us-
ing the method outlined in Section 5.2.2.  

The third operation will yield polygons with more than 
three vertices and can be used to visualize data distribu-
tions due to higher-order subspaces. Since the variables 
used to create the polygon are close, the dimensions in 
these subspaces are sufficiently correlated to give rise to 
meaningful data configurations in the projections. 

5.2.2 Generating the Subspace Scatterplots 

After the tessellation, the map is divided into a mesh of 
polygons, each corresponding with a data domain sub-
space. The next step is to project the subspace data into 
their associated polygons, generating the subspace scat-
terplots. For this we require a method that can forward-
project a high-dimensional data point p into the geometry 
of a concave polygon P defined by S vertices qi (0 ≤ 𝑖 ≤
𝑆 − 1), where S is the dimensionality of p’s subspace. The 
projection of p into P’s 2D domain yields a point p’ and is 
a function of the spatial coordinates of the qi that repre-
sent the variables spanning the subspace. In other words, 
if p’s only non-zero coordinate were in variable i, it would 
map directly to vertex qi. For all other constellations, the 
following weighted mapping is utilized, where the 
weights are the attribute values normalized by the sum of 
values for all of subspace attributes of p:  

1 1

0 0

'         ( ) ( )

S S

i i i

i j

p w q w p i p j

 

 

    (8) 

where the p(j), 0 ≤ 𝑗 ≤ 𝑆 − 1, (likewise p(i)), are the coor-
dinates of p in its high-dimensional subspace and the qi 
are the spatial coordinates of the subspace polygon’s ver-
tices in the correlation map. This mapping is adapted 
from the method of generalized barycentric coordinates 
[17]. The coordinates of p are measured with respect to 
the subspace origin which in our case is the vertex of the 
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subspace (hyper) bounding box that has the minimum 
value in all subspace dimensions. We note that while the 
relationships among the projected points are not exactly 
correlations or cosine similarities, they share some prop-
erties of these metrics, such as the insensitivity to scaling 
in high-dimensional space. 

Finally, the color of a point is determined by its cluster 
membership. The mapped points are organized into pix-
el-bins in the subspace polygons. We record the maxi-
mum/minimum extent of the S-dimensional bounding 
box of each point cluster, use it to determine density, and 
indicate denser bins by higher intensity. There might be 
cases in which some regions have very high density while 
most other regions have low densities. The low density 
points will then become difficult to see after intensity 
normalization. We provide a slider bar that allows users 
to control the degree of transparency of the scatterplot. If 
the value is 0, all points will have the maximum intensity, 
that is, there will be no transparency at all.  

5.2.3 Reading the Subspace Scatterplots 

The subspace scatterplot 
generalizes RadViz [11] 
from a circle to a general-
ized polygon. Similar to 
Radviz, the location of a 
projected point indicates 
how much it gravitates to-
wards a particular attribute 
(or set of attributes). This 
allows the assessment of 
biases, trends, and trade-

offs. For example, in Fig. 8, we observe a positive correla-
tion between Weight and Horsepower and a negative corre-
lation between MPG and both Weight and Horsepower. In 
the corresponding scatterplot we observe that all cars 
map to a long cluster centered between Weight and Horse-
power and reaching towards MPG. This effectively visual-
izes the trade-off that exists between weight and horse-
power—there are no light cars with high horsepower and 
vice versa – and it also shows that high MPG requires one 
to lower both weight and horsepower, but that this trade-
off function is smooth and continuous. 

6    APPLICATIONS 

We have used the following three datasets to demonstrate 
applications that highlight the features of our framework. 

University dataset: This dataset consists of 50 colleges 
with 14 attributes: academics, athletics, campus housing, 
night life, safety, transportation, weather, dining, PhD/faculty 
ratio, population, household income, USNews score, tuition, 
and location. The dataset is an amalgamation of data ob-
tained from two different sources: the College Prowler 
website [36] and US News & World Report [37]. The for-
mer ranks each school across the 20 most relevant campus 
life attributes. We took the top 50 colleges from US News 
and three attributes USNews score, tuition, and location. All 
the other attributes are from from College Prowler. In this 
dataset, location is a categorical variable in terms of city, 
the others are numerical ones. 

Sales campaign dataset: It was obtained from a busi-
ness intelligence company and has data quantifying pa-
rameters in sales and marketing. There are 900 data 
points (one per salesperson) and 10 attributes: %Complet-
ed, #leads, leads won, #opportunity, pipeline revenue, expected 
ROI (Return on Investment), actual cost, cost/wonLead, 
planned revenue, and planned ROI. This is a synthetic da-
taset, but it was built based on actual models that realisti-
cally describe sales behavior. All variables are numerical. 

File compression dataset: It captures parameters from 
computer and file systems and consists of 864 data points 
and 10 attributes: file type, compression algorithm, compres-
sion level, CPU frequency level, compression ratio, energy, 
performance, time, CPU temperature, and current. The da-
taset was captured via experiments that measured differ-
ent parameters when conducting file compressions. Vari-
able file type (all zeros, text, binary, random), compression 
algorithm (gzip, bzip2, lzop, or none), compression level (1 
to 9), and CPU dynamic voltage and frequency level (8 levels) 
are the inputs, and the others are the measured outputs. 
Energy is measured in Watt-hours. Performance is meas-
ured as the number of files compressed per second. File 
type and compression algorithm are categorical variables.   

6.1 Correlation Analysis: The University Dataset 

We first demonstrate the basic concepts of our framework 
with the university dataset. Fig. 9a shows the correlation 

           
                           (a)                              (b)                                (c) 

Fig. 9. Correlation map for the University dataset: (a) Original correlation map generated by assigning random numerical values to variable 
location (loc) – no significant correlations seem to exist. (b) Correlation map after transforming loc with our algorithm – now loc’s positive 
correlation with nightlife, population and transportation are apparent. (c) After applying the edge correlation filter (setting δe=0.3) – the data 
divide into two fairly independent clusters – one (lower left) dealing with academic aspects, the other (upper right) with student life.  

 
Fig. 8: Subspace scatterplot. 
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      (a)                           (b) 

          
                                  (c)                   (d)                              (e) 

Fig. 10. Business strategizing with the sales campaign dataset (a) Aggregate correlation map for all three sales teams. (b) Parallel 

coordinate plot for the three sales teams (clusters), colored red, green, and blue. (c)-(e) Correlation maps for the red, green, and blue 

teams, respectively. All edges with correlation strength less than 0.2 have been filtered out to extract the main structure of the map. 

 

map, in which the attribute location was randomly as-
signed to numerical values to compute correlations. We 
see that there is no strong correlation with any other vari-
able. Next we apply our transformation algorithm and the 
corresponding correlation map is shown in Fig. 9b. Now 
we observe that location is in fact quite strongly correlated 
with a number of variables nearby, such as night life, safe-
ty, transportation and population. The last attribute is par-
ticularly interesting in that its large vertex size indicates 
that the dataset contains a large variety of university set-
tings—urban, suburban, and rural.  

From Fig. 9b we observe that the majority of correla-
tions are not overly strong, as is apparent from the mildly 
saturated edges and vertices. So in order to isolate the 
more significant correlations we raise the edge correlation 
threshold to δe=0.3. The resulting map is shown in Fig. 9c 
where we observe two fairly independent clusters—one 
dealing with academic aspects, the other with student life. 
This reveals that these two aspects of the college experi-
ence tend to be largely independent in general. 

Analyzing the map 

We observe that the correlations within either of these 
clusters are mostly positive (indicated by the green edg-
es). In the ‘academic’ cluster at the bottom left of Fig. 9c 
all variables (US News Score, PhD/Faculty ratio, Tuition, 
and Academics) are positively correlated with one another. 
Hence, when one variable increases, all others will in-
crease too, and vice versa. This observation is consistent 
with our knowledge that highly ranked universities (high 
US News Scores) usually have better academics and higher 

tuition. Yet, because students are more willing to go there, 
the PhD/faculty ratio is higher.  

On the other hand, in the ‘student life’ cluster on the 
right of Fig. 9c we observe that athletics is negatively cor-
related with income, whereas income is positively correlat-
ed with population. A possible explanation for this is that 
the universities with good athletics are usually located in 
rural areas, which are less densely populated, and the 
income in these areas is relatively low compared to other 
more populated areas (e.g., New York City). We also find 
that night life has a high positive correlation with location 
and population, which is also justifiable.  

Finally, in Fig. 9b we observe that one of the stronger 
connections between the academic and student life clus-
ters is the (negative) correlation of academics and athlet-
ics. Indeed, athletics, like football or basketball, are often 
public hallmarks of a university. The negative correlation 
clearly shows that academically highly ranked schools, 
which are most often private, typically do not have na-
tionally visible athletic teams, with some exceptions.  

Overall impact 

Many more conclusions can be drawn from this single 
visualization. Therefore we believe that these maps can be 
helpful for students to select universities, as well as for 
university executives to plan policies and campaigns.  

6.2 Case Study: The Sales Campaign Dataset 

We use the sales campaign dataset to show how our 
framework can help business executives in making mar-
keting decisions. Let us first review some basics. The typ-
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ical corporate sales pipeline begins with a lead generator 
whose job is to produce a number of prospective custom-
ers that have some level of probability that a salesperson 
will actually close a deal with them. Upon a positive re-
sponse, these leads become won leads (qualified lead) and 
receive an increased sales pitch at a cost per won lead. If 
this pitch wins further positive response, then these won 
leads become opportunities, which might be potential cus-
tomers in the future. In practice there are many more lev-
els, but this may serve as a sufficient model here. Of 
course, cost is involved in each step of the pipeline, and 
the eventual pipeline revenue is the ultimate important fac-
tor. In [33] we outlined an example that used the correla-
tion map’s network interface to determine an ordering of 
the parallel coordinate axes by which the best sales strat-
egy among three sales teams could be discovered. For this 
paper, we place more focus on the correlation map itself.    

6.2.1 Business Strategizing 

As a practical scenario, let us imagine a meeting of com-
pany executives who would like to make sales policies for 
the next year based on their three sales teams’ behaviors 
of this year. John from the marketing department always 
wants more opportunities. By looking at the correlation 
map of the three teams (Fig. 10a) he states that since cost 
does not have strong correlations with other variables, the 
company can make any strategies for other variables, and 
it will not influence the actual cost. So, he proposes that 
the company should improve efforts to create more oppor-
tunities for the next year without considering the money 
issue. Based on the correlation map, such efforts could be 
reducing the number of leads and won leads, thus increas-
ing the cost per won lead.  

Consulting the Parallel Coordinate display 

Emily, from the financial department, believes that there 
must be something wrong with this statement since cost 
should play an important role in the sales pipeline. By 
looking at the data space, the PCP plot, which is shown in 
Fig. 10b, she notices that these three sales teams behave 
quite differently. It is likely a mistake if they consider the 
three teams together. Hence, she suggests that they plot 
the correlation maps for the three teams separately. The 
results are shown in Fig. 10c, d, and e, for the red, green, 

and blue teams, respectively. It is interesting to note that 
the three teams have quite similar correlation patterns, 
which is consistent with her expertise that there must be 
some marketing model that guides the sales behaviors 
and the model should involve cost in it. From the plots, 
one can see that there are 7 variables involved in the pat-
tern: opportunities, cost, cost per won lead, lead, lead won, 
expected ROI, and pipeline revenue; other variables are not 
as closely related. As a result, these 7 variables should be 
focused on as references to make decisions.  

Detailed analysis with the correlation map 

Based on these observations, Emily claims that the actual 
influences of increasing the opportunities should be: (1) 
cost per won lead will be increased because it is the only 
one that is related to opportunities in the plot, with posi-
tive correlation. However, cost per won lead is highly corre-
lated with four other variables. As a result, (2) the number 
of leads and won leads will be decreased due to the nega-
tive correlations; (3) the cost will be increased and the ex-
pected ROI will be decreased. So she proposes to reduce 
the cost for the next year. The corresponding impacts are: 
(1) the expected ROI will be increased due to its negative 
correlation with cost, which is another good factor; (2) the 
cost per won lead will be reduced due to its positive corre-
lation with cost; (3) the opportunities will also be reduced 
which is a negative effect. After listening to these two 
proposals, CEO Tom is about to make final the decision. 
First, increasing cost is not preferred because this year’s 
expense already exceeds the budget. Second, although the 
number of opportunities is reduced, the expected ROI will 
go up. By considering these conditions, Tom decides that 
the policy should follow Emily’s proposal.  

6.2.2 Subspace Scatterplot Based Analysis   

Manipulating the subspace scatterplots can also reveal 
many interesting relationships, in situ with other infor-
mation in the correlation map. Then, by switching to the 
parallel coordinates these relationships can be examined 
more quantitatively. Let us now look at a few examples.  

Visualizing clusters and priorities 

Fig. 11a shows the correlation map of Fig. 10a now aug-
mented with the subspace scatterplots that were automat-
ically generated by our tessellation algorithm. Already at 

         
(a)         (b) 

Fig. 11: Scatterplot analysis: (a) default layout, (b) mesh after removing the edge between subspace 1 and 3 as well as 4 and 5.  
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first glance it becomes obvious that the blue team is quite 
different from the green and red teams—the latter two 
clusters overlap often while the blue cluster is disparate 
in most subspaces. In subspace 1 we observe that the red 
team’s focus seems to be on generating many leads—but 
only few converted into opportunities. On the other hand, 
the blue and green teams seem to have better priorities by 
focusing on opportunities instead of leads. In subspace 2 
we learn that the blue team spends much money per won 
lead, but this does not seem to translate to high pipeline 
revenue. In this aspect the red and green teams do better.  

We now wish to get a more comprehensive picture 
about these issues and remove the edge separating these 
two subspaces. This generates subspace 3 in Fig. 11b. 
Now we see the three teams well separated and learn that 
while the blue team does great on winning opportunities, 
it does poorest among all teams in terms of final pipeline 
revenue, while incurring more cost (relatively speaking) 
than the other two teams. Surprisingly, the red team (and 
also the green team to a lesser extent), despite the rela-
tively few opportunities it creates, has a much better pipe-
line revenue emphasis than the blue team, possibly be-
cause it spends little money on its leads.  

Finding appropriate subspace dimensionalities 

Our tessellated map effectively “unrolls” the high-
dimensional space into the plane as a mesh of subspace 
scatterplots. But merging some of the plots can bring an 
even better understanding. In the previous example, we 
saw that for neither subspace 1 nor subspace 2 all three 
clusters could be separated at the same time. This indi-
cates an insufficient number of dimensions for the sub-
spaces the three clusters reside, and indeed we saw that 
by merging the two subspaces the clusters could be well 
separated. Hence, this configuration of the scatterplot 
mesh constitutes a better unrolling of the high-
dimensional space, accounting for the intrinsic dimen-
sionality of subspace 3. Similar is true for subspaces 4 and 
5 in Fig. 11a where we see strong overlaps for some of the 
red and green cluster. Merging these two subspaces into 
subspace 6 (Fig. 11b) has a similar effect than with sub-
space 3—the three clusters are now much better separated.     

6.3 Application in Control Theory 

Given a complex system (plant), the goal of control theory 
is to develop techniques for the semi-automatic synthesis 
of a controller. This requires the existence of models of 
the plant and there are two types of models: Single-Input-
Single-Output (SISO) model and Multiple-Input-

Multiple-Output (MIMO) model. A SISO model has only 
one input parameter and one output parameter while a 
MIMO model could have multiple input parameters and 
multiple output parameters. Models are learned from an 
approximation of the input and output behaviors of the 
plant. The choice of the input parameters is very im-
portant: they should expose the associations with the 
outputs. However, the multitude of parameters and asso-
ciations are buried in various configuration scripts. Find-
ing these parameters and associations from the many in-
puts and measured outputs poses challenges to analysts, 
engineers, and researchers alike.   

For parameter selection, unfortunately, the plants have 
a large number of compile-time and run-time parameters, 
which poses challenges to model identification. Take the 
SISO model, for example. Suppose there are NI measured 
inputs and NO measured outputs; in the worst case, the 
users need to try every possible combination of the input 
variables and output variables (which are NI*NO possible 
cases) for model identification. The MIMO model could 
result in even more possible cases. Thus, it is infeasible to 
explore all possible model settings. As a result, efficient 
tools are needed to suggest a manageable subset of con-
trollable parameters. The guidance for parameter selec-
tion is that within one model, the input(s) and output(s) 
should be highly correlated with one another. At the 
same time they should have low correlation with other 
parameters that do not belong to the model.  

6.3.1 Initial Analysis with the Correlation Map 

Fig. 12 narrates how our correlation map can help ana-
lysts in the selection of parameters for model discovery. 
Fig. 12a is generated by randomly assigning categorical 
variables to equal distance numbers (1, 2,…, M). We ob-
serve one dense cluster in the lower left corner, but it is 
formed solely by numerical variables—all categorical var-
iables (inputs) remain on the map’s boundary, indicating 
only limited correlation with the other variables. This is 
problematic since it suggests that there is no relationship 
between the inputs and the outputs which is doubtful. To 
resolve this problem, the analyst transforms the categori-
cal levels into numerical values. The outcome is shown in 
Fig. 12b. We now observe two clusters (blue boxes). The 
cluster in the upper right blue box contains only two vari-
ables: file type and compression ratio. Their correlation is 
highly positive with almost no correlation with other var-
iables. This suggests that they form a good SISO model.  

However, the model of interest to the analyst focuses 

 
             (a)       (b)                  (c)             (d)          (e) 

Fig. 12. Controller design for the file compression dataset: (a) Correlation map generated by assigning random numerical values to the cat-
egorical variables. (b) Correlation map computed by our new transformation algorithm. (c) Correlation map after selecting only high com-
pression levels. (d) Correlation sensitivity map change from (b) to (c). (e) Correlation map for data with high compression levels only, laid out 
by the correlations of the data with high compression levels. 
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on energy and performance. These variables are part of the 
other cluster, shown in the lower left blue box. He notices 
that compression algorithm is in the cluster while compres-
sion level is not. Yet, drawing on domain expertise, the 
analyst knows that compression level should have some-
thing to do with the other parameters, such as performance 
or current, but he suspects that this might only occur at 
sufficiently high levels. So he uses the parallel coordinate 
display (not shown) to interactively select the data points 
that have higher values in their compression levels. The 
corresponding correlation map is shown in Fig. 12c. The 
map reveals strong correlations, both positive and nega-
tive, suggesting a correlation function and control model 
only valid within a certain range of compression levels.    

6.3.2 Using the Correlation Sensitivity Map 

Having discovered that filtering out the lower compres-
sion levels adds strength to the overall model, the analyst 
would like to know which parameters in particular bene-
fit. To provide visual support in this analysis, we apply a 
different edge encoding scheme in our correlation map—
one that emphasizes the sensitivity of relationships with 
respect to value bracketing. We call this visualization the 
correlation sensitivity map (Fig. 12d). In this map, an edge is 
colored by the change in correlation strength (absolute 
value) instead of absolute strength. This quantity, corr, is 
obtained by subtracting the (absolute) unfiltered correla-
tion from the (absolute) filtered one: 

corr = |corrfiltered|—|corrunfiltered|    (8) 

In this scheme, a green edge indicates that the strength 
of the correlation between the two corresponding varia-
bles has increased after the change, while a red edge indi-
cates that the strength has decreased. From Fig. 12d, the 
analyst learns after disqualifying low compression levels, 
the correlation of this variable with the energy-performance 
cluster can be made highly significant. This then renders 
the cluster variables much more predictable, which is 
very helpful for model identification.  

Finally, we note that the correlation sensitivity map 
still uses the map layout of the unmodified data configu-
ration. To visualize the new correlation relationships, the 
analyst re-layouts the correlation map based on the new 
correlation strengths computed from only the data points 
of high compression levels. Fig. 12e shows this new layout 
with a focus on the two important output parameters: 
performance and energy via the vertex-browsing mode. The 
analyst quickly learns that both compression parameters—
algorithm and level—are significant to energy use and per-
formance, indicated by their strong positive correlation to 
them. This also means that both of them should belong to 
one model. Hence a MIMO model is required here. 

7    DISCUSSION 

We showed that correlation analysis is useful for explor-
ing the relationships between pairwise variables and for 
predicting one variable’s behavior based on another. 
However, a main drawback of correlation analysis is that 
a relationship between two variables does not imply a 

causal effect—any two variables could be correlated, but 
this does not necessarily mean that one is the cause of the 
other. One example is found in the automobile dataset 
(Fig. 4d). Price has a strong positive correlation with 
Weight. We can only say that given a high price, usually 
we can predict that the car has high weight, or vice versa. 
But we cannot say that high price causes high weight, or 
vice versa. The other drawback of the correlation is that it 
applies only to variable pairs. Sometimes we need multi-
ple factors to explain one behavior. Just as shown in Fig. 
12d, we can see that performance and energy exhibit a 
strong negative correlation with each other. Yet, we can-
not draw the conclusion that high-performance compres-
sion algorithms will consume low energy. To explain this 
behavior, we need to include other variables—time and 
task. Given a specific task, high performance algorithms 
use less time (red edge), and as a result, they consume 
less energy (red edge). This makes sense since energy is 
performance integrated over time, and so a causal net-
work path between energy and performance must in-
clude time. Nevertheless, we note that the purpose of our 
framework is not to provide innovations in addressing 
limitations of correlation analysis, but to provide an effi-
cient tool to help analysts to do interactive correlation 
analysis and predictions. 

8    CONCLUSION AND FUTURE WORK  

We have presented an interactive framework that enables 
correlation analysis and visual association mining for 
high-dimensional data. Our correlation map can serve 
both as a data exploration environment and as a platform 
to visually demonstrate, explain, and justify associative 
relationships that exist in the data. Our framework is 
quite general and applicable to a wide set of applications. 
It handles both categorical and numerical variables, scales 
to large numbers of variables via a multi-scale semantic 
zooming approach, and allows interactive value bracket-
ing to discover correlations hidden in value intervals. The 
correlation map also allows users to interactively visual-
ize data relations within the subspaces spanned by corre-
lated variables by projecting the data into a correspond-
ing tessellation of the map. 

A present limitation is that correlation can show only 
pairwise relationship of two single variables, but strong 
relationships may exist between two sets of variables. For 
example, while area (=width*length) could be correlated 
with price, neither width nor length might be. Possible 
solutions to explore are regression and subspace analysis. 

Also, correlation can be affected by outliers, non-linear 
relationships, heteroskedasticity, and multicollinearity. 
To gain more statistical robustness, we would like to use 
techniques for outlier detection and/or removal, and 
methodologies for detecting and visualizing non-linear 
relationships and relationships among multiple variables. 

Finally, the points projected into our subspace scatter-
plots do not indicate the vector magnitude in data space. 
They only indicate relative proportions in the attributes 
spanning the subspace. We hope to study how visual at-
tributes such as intensity, saturation, opacity, and size 
(e.g. [21]) can be employed to visualize this strength.  
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