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Figure 1: Eye movement metrics visualized by a clustered matrix along with a dendrogram that shows the structure of the hierarchical clustering:
(a) metric M1 (path transition), (b) metric M2 (fixation duration), (c) metric M3 (saccade length), and (d) metric M4 (completion time).

ABSTRACT

We describe a matrix-based visualization technique for algorithmi-
cally and visually comparing metrics in eye movement data. To
reach this goal, a set of scanpath trajectories is first preprocessed
and transformed into a set of metrics describing commonalities and
differences of eye movement trajectories. To keep the generated
diagrams simple, understandable, and free of visual clutter we vi-
sually encode the generated dataset into the cells of a matrix. Apart
from just incorporating one individual metric of the dataset into a
matrix cell, we extend this standard visualization by a dimensional-
stacking approach supporting the display of several of those metrics
integrated into one matrix cell. To further improve the readability
and pattern finding among those values, our approach supports a
metric-based clustering and further interaction techniques to ma-
nipulate the data and to navigate in it. To illustrate the usefulness
of the system, we applied it to an eye movement dataset about the
reading behavior of metro maps. Finally, we discuss limitations and
scalability issues of the approach.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces (GUI);

1 INTRODUCTION

Exploring and finding correlations among a group of data entities
can become a challenging task, in particular, if the number of data
entities exceeds a certain size in terms of number of metrics as
derivable from eye movement data. This is typically becoming
more serious, if we are interested in metric comparisons, not only
individual ones but also sets of them, building a multivariate dataset
for pairwise comparisons. Those data metrics can, for example, be
the number of fixations, the average saccade length, the average
fixation duration, or the average saccade orientations to mention a
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few [5, 8]. Comparing those metrics between pairs of eye track-
ing study participants can give additional insights into their com-
mon and different strategies, but also becomes a tedious task if the
dataset grows large and unstructured having many dimensions.

To support the exploration of such a dataset scenario we designed
a matrix-based visualization with which we are able to see all cor-
relations between pairs of eye tracked people. Moreover, a matrix
visualization is free of visual clutter [13] and additionally allows us
to show several of the data features in each individual cell. This
cell-stacking technique is useful, but it has drawbacks for compari-
son tasks if the data remains unstructured.

To solve this issue to some extent we implemented a metric-
based clustering technique that works algorithmically fast and
hence, focuses on efficient interactivity of the system. With our
approach, we are consequently able to directly explore the corre-
lation patterns of eye tracking study participants based on a list of
user-defined data features.

For illustrative purposes, we applied our visualization technique
to an eye movement dataset formerly recorded [11]. The origi-
nal data consists of the recorded eye tracking data of 40 partic-
ipants who were solving a path-finding task in 48 metro maps.
The recorded data were first preprocessed into a high-dimensional
dataset. From the visual and analytical concepts, we are able to
extract visual patterns that can further be remapped to the data in
order to derive knowledge from the eye movement data. Finally, we
describe limitations of our approach and discuss scalability issues
that are worth discussing for a future extension of this work.

2 RELATED WORK

Analyzing eye movement data is difficult due to its spatio-temporal
nature and the fact that a certain number of eye tracking study par-
ticipants brings another data dimension into play, perhaps becom-
ing big data at one point [2]. Visualization can be a helpful tool
to explore such vast amounts of data [3], in particular, when we
are interested in pairwise comparisons of eye movement trajectory
data [1].

Matrix visualizations serve as a good candidate for supporting an
analyst, since they scale to very large datasets using a pixel-based



representation [14] and they do not suffer from visual clutter [13].
An issue of matrices is the ordering of both axes, i.e., vertically as
well as horizontally, in particular when several data features have to
be displayed in a matrix cell. Multivariate data generated for each
of the pairwise comparisons generates relationships among indi-
vidual multi-dimensional data entities worth exploring, but percep-
tually difficult to understand. Consequently, we have to enhance
our matrix-based visualization by a metric-based clustering tech-
nique [6, 10] that builds some kind of grouping and hence, a struc-
ture among the pairwise data comparisons.

In particular for eye tracking data, there are several visualiza-
tion techniques that explicitly focus on comparing individual eye
movement trajectories (scanpaths). For example, the parallel scan
paths [12] make use of an axis and show how the fixation sequences
are changing over time, to better compare them to each other. Al-
though comparison tasks are supported, such diagrams are not vi-
sually scalable to long sequences, many participants, and a certain
number of generated eye movement data metrics.

3 DATA MODEL

From the original dataset [11], we used only the data of 20 partici-
pants P̂i who were looking at 24 stimuli s. A participant looking at
a specific stimulus is then referenced as P̈i,s.

In the following, we describe the used metrics and similarity cal-
culation in more detail.

3.1 Eye Movement Metrics
For demonstration purposes, we have decided to use three common
metrics in eye tracking: average fixation duration (M2), average
saccade length (M3), and average task completion time (M4).

Additionally, we used the similarity of transition matrices (M1)
as a metric [11]. A 3D transition matrix is computed based on
all sub-scanpaths with three subsequent fixations. More precisely,
the fixation labels were used to generate a 3D transition matrix by
counting how often a particular label sequence occurred. Thereby,
a 3D transition matrix was created for each scanpath, which was in-
terpreted as a 1D vector. The similarity calculation is now reduced
to calculating the Euclidean distance of two vectors.

For each metric, we calculate similarity values svMi for each pair
of participants P̃l,m (for a given stimuli s). We denote the similarity
values as svl,m,M1 , svl,m,M2 , svl,m,M3 , and svl,m,M4 .

In total, for 20 participants, we will have 80 different values for
one participant in the form of P̄lsvMi , where 1≤ l ≤ 20 and 1≤ i≤
4.

3.2 Data Transformation
We calculate similarity values svl,m,Mi between two participants P̂l
and P̂m based on metric Mi using the Euclidean distance (Equa-
tion 1) to find similarities between the reading behavior of partici-
pants based on their eye movement data.

svl,m,Mi = d(Pl,Mi ,Pm,Mi) = || Pl,Mi −Pm,Mi ||2 (1)

Pl,Mi is a scalar value in case of M2, M3 and M4 whereas vector in
case of M1. In our example, this resulted in four similarity matrices
of size 20×20. We combined them in one matrix of the same size,
but with four similarity values in one matrix cell.

4 VISUALIZATION TECHNIQUE

Our visualization technique uses dimensional-stacked rectangular
sub-grids, where we added a sub-grid in each matrix cell. The
sub-grid contains the calculated similarity values svl,m,Mi . They are
stored in clock-wise direction. This is illustrated in Figure 2. We
use Color Brewer palettes [7] to encode data into color for an im-
proved visualization.

Figure 2: Stacking of dimensions.

4.1 Matrix Representation
There are many visualization techniques that can be used to show
multi-dimensional data. In general, it is very easy to use a matrix-
based visualization scheme for visual exploration as shown in Fig-
ure 1, but it becomes more challenging with an increasing number
of attributes. This is in particular the case, if a larger number of
matrices is involved, where each encodes the information of one
metric.

To overcome the problem of comparing several matrices, we in-
troduced a matrix-based visualization that we used to explore the
features extracted from eye movement data. A matrix cell is used
to encode multiple similarity values computed with Equation 1,
following the concept of dimensional stacking: embedding dimen-
sions within other dimensions [9].

4.2 Metric-Based Clustering
We have used agglomerative hierarchical clustering of the partic-
ipants P̂l for each chosen metric for the visual exploration. Hi-
erarchical clustering is one of the mainstream clustering methods
that is generally applicable to most types of data with a complex-
ity of O(N2 logN). It does not require any predefined parameter
and, hence, is suitable for handling real-world data where finding a
suitable set of parameters can be tricky [4]. A dendrogram is then
generated for all the clustered results for exploring the similarity
among participants for all the four metrics, shown in Figure 3.

5 CASE STUDY

We used eye movement data from a previously conducted exper-
iment about the reading behavior of metro maps [11] to demon-
strate the effectiveness of our visualization. The stimulus cho-
sen for this case study is the colored version of the metro map
of Düsseldorf. The eye movement data were recorded by a To-
bii T60XL eye-tracking system with a sampling rate of 60 Hz. We
used the recorded data of 20 participants.

We compared the Euclidean distance for each metric during the
hierarchical clustering to quantify similarities between groups of
participants. The results of the clustering are depicted in Figure 3.

As stated in the original work [11], each stimulus was assigned
to one of four groups depending on the average solution time of the
stimulus over all participants.

Clustering was performed for each of the groups, resulting in
three clusters per group. The clustering was performed based on the
3D transition matrix of each scanpath. One matrix had a size of 123

(12 labels per dimension) and corresponds to M1. The authors of the
original paper [11] did not comment on the groups of participants
in particular, which we are able to do with our method.

In principle, we expect the same behavioral pattern in the case
of our approach, where we applied agglomerative hierarchical
clustering on the distance matrix calculated from the same high-
dimensional feature vector. In Figure 3(a), we can see that we also



(a) M1 (b) M2 (c) M3

(d) M4 (e) Weighted average of all metrics

Figure 3: Hierarchical clustering dendrogram of four metrics: M1 (path transition), M2 (fixation duration), M3 (saccade length), M4 (completion
time), and weighted average of all metrics.

get three clusters, if we exclude clusters of size one.
This motivated us to find the groups of participants on the basis

of other metrics of eye movement data. By applying a clustering
on the similarity matrix of feature M2, we got a similar structure
with three strongly connected groups, but with a different grouping
of participants as shown in Figure 3(b), and Figure 1(b) with three
separated rectangular blobs, where P3 and P9 add to the exception
list.

Similar observations were made elsewhere. In case of metrics
M3 and M4, we could see different patterns in Figure 3(c) and Fig-
ure 3(d) respectively, where two groups of participants are strongly
connected while one or two groups could be formed from the rest of
the participants, resulting into more than three groups with strong
proximity. This is also evident in Figure 1(c) and 1(d) respectively,
where we can find more than three rectangular blobs.

However, comparing all four metrics at the same time is chal-
lenging, while using multiple images. That led us to the generation
of a dimensional-stacked matrix with four sub-cells within one ma-
trix cell. We generated a dimensional-stacked matrix as shown in
Figure 4(a), without any clustering and simply filled the sub-cells
with distance values of all the participants for all the four metrics
in clockwise direction, which follows the order shown in Figure 2.
We could find the outlier behavior of P4 for metric M1 individually,
but we are not in the position to say anything concrete as a whole,
which is our main goal. In order to generate visible patterns, we
adapted the order of the participants on the x- and y-axis according
to the clusters produced by the hierarchical clustering using M2.
The result is shown in Figure 4(b). Here, the patterns are getting
more distinct.

We tried to fill the dimensional-stacked matrix in the order of the
clustered pattern of feature M2. With the grouping of the partici-
pants according to M2, we could see the overall divisions of groups
motivated by the feature value M2.

In this case, the result is changed to only one metric, but it would
be better to find an ordering that includes all metrics. Therefore, we
created a numeric value based on the weighted sum of all available
metrics. For simplicity, we have chosen a weight of 0.25 for all

metrics. This led to a different order of participants and to a vi-
sualization with even more visible patterns (see Figure 4(c)). The
detailed visually inspected annotation of Figure 4(c) shows the four
different groups of participants. We further classify these groups
into sub-groups; for example, group C is further sub-divided into
C1, C2, and C3. On the basis of the visual inspection method, we
see that a part of group B (i.e., A2 and A3) belongs to group A, which
shows that the participants are still not grouped properly. This in-
dicates that the order of the participants can be further improved to
achieve a better separation of different classes.

6 LIMITATIONS AND SCALABILITY

Although our visualization technique is useful for visually explor-
ing eye movement metrics, there are several limitations, in partic-
ular, if the eye movement trajectories become long and if many
of those exist like in experiments involving many study partici-
pants [2].

• Algorithmic issues: The applied clustering algorithm has to
work rather fast to achieve an interactively responding visual-
ization system. Since the clustering algorithm depends on the
number of eye movement trajectories, the number of study
participants plays a crucial role in this respect. The lengths of
the trajectories are also important, not for the clustering, but
for the data preprocessing into eye movement data features.

• Visual scalability: Due to display limitations, only a small
number of metrics comparisons can be displayed in a single
static diagram. If the matrix cells are split due to an increas-
ing number of metrics, the display regions for each individual
comparison become rather small, leading to problems while
visually comparing the displayed data.

• Perceptual challenges: Since color is used as a visual vari-
able to represent the set of pair-wise compared metrics, color
perception issues play an important role when interpreting the
visualization. To mitigate this problem, we allow the user to
interactively select a color palette from a given repertoire.
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Figure 4: Dimensional-stacked matrix visualization with different ordering along the axes: (a) ordering according to participant ID, (b) ordering
based on clustering according to metric M2, (c) ordering based on clustering according to the weighted average of all metrics. A, B, C, and D are
areas that exhibit similar visual properties and represent the four overarching classes. A and C are further sub-divided into sub-classes.

7 CONCLUSION AND FUTURE WORK

We have presented a visualization to find patterns within data based
on multiple metrics utilizing a similarity matrix. In order to use
a single matrix for each metric, we applied the concept of dimen-
sional stacking. The effectiveness of this method is demonstrated
on eye tracking data. Furthermore, we show that the order of ele-
ments of the x- and y-axis highly influences the visible patterns of
our approach that is mainly driven by the ordering of the partici-
pants in a group. Therefore, we discuss possible ways to improve
the order. Still, the order of the elements is an issue and we have to
work in the future on the optimization of the order. We currently do
not have much interactive filtering and ordering techniques, which
we will be addressing in the future, to enable a desired order of the
participants with different combinations of weighted metric values.
We also want to change the representation of the metrics from small
rectangles to a possible radial design in order to address the issue
of non-squared numbers of metrics.
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