
Tolerating Overload Attacks Against Packet Capturing Systems

Antonis Papadogiannakis,* Michalis Polychronakis,† Evangelos P. Markatos*

*FORTH-ICS, †Columbia University

{papadog,markatos}@ics.forth.gr, mikepo@cs.columbia.edu

Abstract

Passive network monitoring applications such as in-

trusion detection systems are susceptible to overloads,

which can be induced by traffic spikes or algorithmic sin-

gularities triggered by carefully crafted malicious pack-

ets. Under overload conditions, the system may consume

all the available resources, dropping most of the moni-

tored traffic until the overload condition is resolved. Un-

fortunately, such an awkward response to overloads may

be easily capitalized by attackers who can intentionally

overload the system to evade detection.

In this paper we propose Selective Packet Paging

(SPP), a two-layer memory management design that

gracefully responds to overload conditions by storing se-

lected packets in secondary storage for later processing,

while using randomization to avoid predictable evasion

by sophisticated attackers. We describe the design and

implementation of SPP within the widely used Libpcap

packet capture library. Our evaluation shows that the de-

tection accuracy of Snort on top of Libpcap is signifi-

cantly reduced under algorithmic complexity and traffic

overload attacks, while SPP makes it resistant to both al-

gorithmic overloads and traffic bursts.

1 Introduction

Passive network monitoring systems have been increas-

ingly used to improve the performance and security of

our networks. These systems operate in unpredictable

and sometimes hostile environments where transient traf-

fic and malicious attackers may easily overload them

up to the point where they cease to function correctly.

Unfortunately, traditional packet capturing systems have

not been designed for such hostile environments, and do

not gracefully handle overload conditions. For exam-

ple, when faced with overload conditions and full packet

queues, most packet capturing systems start to discard all

incoming packets for as long as the overload persists.

This naive approach to packet discarding has three ma-

jor disadvantages: (i) it may drop packets that contain

important information, such as an attack or a particu-

lar pattern; (ii) it can be exploited by attackers to hide

their attack by flooding the system with bogus packets

up to the point where the system overloads and starts

discarding (i.e., not inspecting) most of the incoming

packets [2, 15, 17]; (iii) it robs monitoring applications

from the opportunity to selectively discard the unimpor-

tant packets in the traffic [9,10,12], and forward for pro-

cessing and further inspection the important ones.

To cope with high traffic volumes, several techniques

have been proposed for improving the performance of

Network Intrusion Detection Systems (NIDSs) by ac-

celerating the packet processing throughput [7, 14], or

by balancing detection accuracy and resource require-

ments [3, 8]. However, even after carefully tuning a

NIDS according to the monitored environment, it will

still have to cope with inevitable traffic bursts or unpre-

dictable algorithmic attacks.

To address these problems we propose Selective

Packet Paging (SPP), a novel approach for mitigating

both traffic overloads and algorithmic attacks by exploit-

ing the following two dimensions: (i) we introduce a

new level in the memory hierarchy of packet capturing

systems, a level which is able to store all packets dur-

ing overload periods; and (ii) we propose a randomized

timeout algorithm which is able to detect and isolate ma-

licious packets that trigger algorithmic overload attacks.

The main contributions of this paper are: (i) we

demonstrate that the root of packet discarding under

overload in the current packet capturing system in

Linux [11] is the poor design choices in memory man-

agement. (ii) we propose Selective Packet Paging, a

novel two-layer memory management system that can

store practically all network packets during overloads,

and resolve algorithmic complexity attacks by removing

from the critical path any malicious packets that slow-

down a monitoring system; (iii) we implement Selective

Packet Paging within the Libpcap packet capture library;

(iv) we experimentally evaluate our approach using the

Snort NIDS [16], and we show that it can sustain algo-

rithmic attacks and traffic overloads without discarding

any packets, while the traditional approach is forced to

discard the largest percentage of the incoming packets

and miss 100% of the attacks, and (v) we analytically

evaluate the randomized timeout selection approach of

SPP and show that the probability of detecting an algo-

rithmic attack reaches certainty exponentially fast.

2 Selective Packet Paging

The main cause of packet loss during overloads is usu-

ally the limited number of packets that the Operating

System’s packet capturing subsystem can store in main

memory. Thus, in case of traffic overloads or algorithmic

attacks, the main memory fills up quickly and the rest of

the incoming packets are just dropped. One obvious so-

lution would be to increase the main memory available

to the packet capturing subsystem. Unfortunately, main

memory typically can not store more than a few seconds

of network traffic for a high-speed link. Thus, an algo-

rithmic attack or a network overload that lasts for more

than a few seconds will eventually lead to packet drops.

In modern systems, the available disk storage is up to

three orders of magnitude larger than the available stor-

age in main memory. Thus, captured packets can be

buffered on disk for several hours under overload con-

ditions, instead of just a few seconds in main memory.

2.1 Multi-level Memory Management

In this paper we propose to break away from the single-

level memory hierarchy traditionally used by packet cap-

turing subsystems and employ a multi-level memory hi-

erarchy consisting of at least two levels: a main memory

and a secondary storage. Under normal circumstances

captured packets are written in main memory. Under

traffic overload or algorithmic attacks, when the main

memory fills up, extra packets are written to secondary

storage. Figure 1 presents the two-level memory hier-

archy of our approach. As long as it is not full, newly

arriving packets are written in the memory buffer. Upon

filling up, newly arriving packets are stored in the second

layer of the memory hierarchy, i.e., the disk buffer.

Note that while newly arriving packets are being writ-

ten to disk, memory space is being freed up as monitor-

ing applications continue to consume existing packets. In

this case, we would like to be able to write newly arriving

packets in main memory and thus avoid the disk access

overheads. However, this choice implies that sequen-

tially arriving packets may be written to different levels

of the memory hierarchy, oscillating between main mem-

ory and disk. For this reason we use a Packet Receive

Index which keeps the incoming packets strictly in FIFO

order. To deliver packets in the correct order, we use one

bit for each incoming packet in the Packet Receive In-

dex, as shown in Figure 1. This bit indicates whether the

packet was stored in main memory or on disk.

2.2 Randomized Timeout Intervals

Although multi-level memory management makes sure

that no packets are lost during an overload, algorithmic

attacks may force the CPU to spend most of its time on

processing bogus attack packets that trigger an algorith-

mic overload—benign network packets will just keep ac-

cumulating on disk. Selective Packet Paging advocates

that instead of blindly sending subsequent packets to sec-

Memory Buffer

Disk Buffer

read_mem write_mem

D1 D2 D3 D4 D5 D6 D7 D8

M1 M2 M3 M4

read_disk write_disk

M M D

Packet Receive Index (bitmap)

M: packet stored in memory

D: packet stored in disk

Figure 1: A snapshot of Packet Paging for buffering pack-

ets to memory and disk. The Packet Receive Index indicates

that the first two packets are stored in the Memory Buffer, while

the third packet is in the Disk Buffer.

ondary storage when the main memory is full, we should

develop mechanisms to detect packets that trigger an al-

gorithmic overload, weed them out, and send them to

secondary storage for processing at a later point in time.

To detect packets that trigger algorithmic overload at-

tacks we could use a timeout counter: when a new packet

arrives, the counter is initialized to a timeout value larger

than the processing time of benign packets. If the time-

out expires while the application is still processing the

same packet, then this packet is considered suspicious.

Unfortunately, setting timeouts on each and every packet

imposes a prohibitively large processing overhead.

To reduce this overhead, the counter can be set at pe-

riodic intervals: if the packet being processed during the

interval expiration is the same packet that was being pro-

cessed at the time the counter was set, then SPP considers

this packet as suspicious. As a result, the packet, along

with all subsequent packets from the same network flow,

will be buffered to disk. Although setting the timeout

at periodic intervals has the potential to reduce the pro-

cessing overhead, choosing an appropriate timeout can

be challenging: a very large value may miss a lot of

attack packets, while a very small value may impose a

large processing overhead. To make matters worse, a

single predefined timeout value (or a deterministic se-

quence of timeout values) could theoretically be evaded

by a sophisticated attacker who manages to send all at-

tack packets between successive timeouts.

To solve this problem, SPP uses a randomized timeout

interval. Instead of choosing a predefined constant time-

out, SPP selects a random timeout uniformly distributed

in the interval [low, high]. Choosing a large value for

high reduces the average timeout overhead, while choos-

ing a small value for low makes detection of algorithmic

attacks easier. Indeed, to make sure they avoid detection,

attackers should only send attack packets that impose a

processing delay of no more than low seconds. There-

fore, a small low value forces a (what used to be) sophis-

ticated algorithmic attack to degenerate into a brute force

Denial of Service attack consisting of a torrent of attack

packets, which can be easily detected and filtered out.

3 Implementation

We have implemented Selective Packet Paging within

the popular packet capturing library Libpcap [11], so

that existing network monitoring applications can benefit

from SPP without any code modifications. In our proto-

type implementation we use three separate threads: (i)

the packet capturing and storing thread, which receives

packets from the NIC and stores them to memory or disk;

(ii) the packet processing thread, which finds the next

packet through the Packet Receive Index, and calls the

callback function for processing each packet; and (iii)

the disk I/O thread, which handles all communication

with the secondary storage. We give higher priority to the

packet capturing thread over the packet processing thread

to ensure that all packets will be stored during overloads.

To optimize disk throughput, the disk I/O thread trans-

fers packets between main memory and disk in batches.

Moreover, to avoid delays from blocking read operations,

the disk I/O thread prefetches the next batch of packets

from disk to a memory cache.

The processing thread keeps a counter of the processed

packets. When the timer expires, it checks how many

packets have been processed from the previous timer ex-

piration. If the number of processed packets remains the

same, then the current packet delays the system for an

unreasonably long time. Thus, the packet is evicted and

buffered to disk, while its flow and source IP address

are marked as suspicious. Packets belonging to suspi-

cious flows are written to disk as low priority packets. If

there are no normal priority packets in the queues, then

a low priority packet is processed. The next timer inter-

val is scheduled to a random time between the low and

high limits. The timer expires based on the time passed

while only the current process is executing, so SPP is

not affected by external background activities. To avoid

false positives, a proper value for the low limit should

be used. Then, only packets with significant processing

delays will be detected as suspicious. But even in case of

false positives, packets will not be dropped. They will be

processed when the system has the available resources.

4 Analytical Evaluation

Using a random timeout uniformly distributed in the

range [low, high], SPP makes it difficult for attackers to

evade detection, while keeping the timeout overhead rea-

sonably low. Since, however, the timeout is a random

variable, it is theoretically possible even for an attack

packet that triggers a long algorithmic attack to evade

detection. This is especially true if the timeout interval

chosen while the attack packet is being processed is rel-

atively large. In this section we show that although it is

theoretically possible for one attack packet to evade de-

tection, it is very unlikely that several attack packets will

go undetected. An attacker who wants to sustain an al-

gorithmic attack has to send several attack packets, and

it is improbable that none of them will be detected.

To simplify our analysis, we initially assume that there

are only attack packets, that each attack packet is being

analyzed for a constant interval of d µs, and low < d.

Selective Packet Paging can detect an attack if two suc-

cessive timeouts expire within the same interval for the

same attack packet. The first timeout expires at time t1,

which will fall within an interval i of an attack packet.

Thus, i× d < t1 < (i+ 1)× d. The probability that the

second timeout t2 will also fall within the interval i is:

P (t2 < (i+ 1) × d) =
d− t1 − low

high− low
(1)

since there are high− low possible choices for a timeout

but only d− t1− low accepted choices so that the second

timeout expires within the interval i. In the unfortunate

for the attacker case that t1 falls in the beginning of the

interval i, there are d − low accepted choices for t2. In

case t1 falls in the position (i+ 1)× d− low − 1 of the

interval i, there is only one accepted choice for t2: the

low timeout value. On average, there are (d − low)/2
accepted choices for t2 in case t1 falls within the first

(d − low) values of the interval i. If t1 falls in the last

low values of the interval i, there is no accepted choice

for t2. Overall, the probability for detection with two

timeouts in the same interval is:

P (det) =
(d − low)2

2× d× (high− low)
(2)

since the possible choices for two timeouts are (high−

low) × (high − low), the accepted choices for the first

timeout are (high − low), and the accepted choices for

the second timeout are (d− low)/2× (d− low)/d.

The probability of not detecting an attack after N
timeouts have expired is (1 − P (det))N , and thus the

probability of detecting the attack after N timeouts is

1 − (1 − P (det))N : we see that the detection proba-

bility approaches 1 very fast as N increases. Also, the

detection probability from Equation 2 implies that, on

average, SPP will need T = 1/P (det) + 1 timeouts

to detect the attack. This number corresponds on aver-

age to T × (high − low)/(2 × d) attack packets and

T × (high− low)/2 µs.

The outcomes of our analysis are also valid in case

that the attack packets induce variable delays with an av-

erage delay of d µs. In a more realistic scenario there will

be both benign and attack packets, so that attack packets

will be a percentage a of the total packets, with 0<a<1.

The average processing time for a benign packet is t µs,

and we expect that t < d. In this case the detection prob-

ability from Equation 2 is:

P (det) =
a× d

d+ t
×

(d − low)2

2× d× (high− low)
(3)

since the probability of the first timeout to expire within

an interval of an attack packet is a× d/(d+ t).
To validate our analysis we compare its results with

a simulation-based evaluation. Figure 2 presents the de-

tection time as a function of the processing time for each

Processing time for each attack packet (microseconds)
0 200 400 600 800 1000

T
im

e
to

 d
et

ec
t

th
e

at
ta

ck
 (

m
il

li
se

co
n

d
s)

1

2

5

10

20

50

100

200 Simulation (25% attack packets)

Analytical Evaluation (25% attack packets)

Simulation (100% attack packets)

Analytical Evaluation (100% attack packets)

Figure 2: Detection time as a function of the processing

time of attack packets.

attack packet for two attack scenarios: i) when all pack-

ets are attack packets, and ii) when the percentage of at-

tack packets is 25%. The processing time t of each be-

nign packet is uniformly distributed between 1 and 30 µs,

while the processing time d of each attack packet is con-

stant for each simulation. We vary d from 100 to 1000 µs

to examine how the detection time is affected. The ran-

domized timeout for SPP is randomly chosen between

low=50 and high=1000 µs. When two successive time-

outs expire during the processing interval of the same at-

tack packet, the experiment ends and the detection time is

recorded. Each experiment was repeated a million times.

For the analytical evaluation we used the probability

from Equation 3 to compute the number of timeouts T
needed for the detection:

T = 1/P (det) + 1 =
2× d× (high− low)× (d+ t)

(d − low)2 × a× d
+ 1 (4)

The average detection time is T × (high− low)/2 µs.

In Figure 2 we can see that simulation results are very

close to the expected results based on our analysis. We

observe that SPP with the randomized timeout can detect

even attacks with very small delays within just a few mil-

liseconds. For instance, when the processing time of an

attack packet is 200 µs, SPP detects the attack within the

first 10 ms in case all packets belong to this attack. In

a more conservative attack, where only 25% of the total

packets impose 100 µs processing time, SPP needs about

170 ms to detect it. However, such a conservative attack

for a period of a few milliseconds will not affect signif-

icantly the system. More aggressive attacks are detected

by SPP within less than 2 ms.

5 Experimental Evaluation

Our testbed consists of two PCs interconnected through

a 10GbE switch. The first is used for traffic generation,

which is achieved by replaying real network traffic at dif-

ferent rates. The second (NIDS PC) is equipped with

two quad-core Intel Xeon 2.00 GHz CPU with 6 MB L2

cache, 4 GB RAM, and a 10GbE network interface. Be-

yond the system disk, the NIDS PC has four 750 GB

7200 RPM SATA disks organized in RAID 0 (totaling 3

TB of secondary storage for SPP), which can sustain a

3 Gbit/s read and 1.8 Gbit/s write throughput. The size

of the memory buffer for storing packets is set to 1 GB

in all cases. We use Snort v2.8.3.2 [16] with the latest

official Sourcefire VRT rule set, containing 9276 rules.

For our evaluation we use three traces. As real back-

ground traffic, we replay a one-hour full payload trace

(named T1) captured at the access link that connects a

large university campus to the Internet. The trace con-

tains 58,714,906 packets, corresponding to 1,493,032

flows, with an average traffic rate of 110 Mbit/s. The

second trace (T2) is used to trigger an algorithmic over-

load in Snort using crafted packets that exploit the back-

tracking vulnerability of a regular expression used in a

particular rule. The third trace (T3) contains 120 real at-

tacks that are detected by Snort using the default rule set,

resulting to 276 alerts from 14 different rules. We replay

this trace continuously and measure the alerts that Snort

was able to detect with the original Libpcap and SPP.

5.1 Algorithmic Complexity Attack

In this experiment we perform an algorithmic complex-

ity attack against Snort, which uses the PCRE library [5]

for regular expression matching, as described by Smith

et al. [17]. For a given input string, PCRE iteratively

explores paths in its internal tree-like structure until it

finds a matching state. If it fails to find a match, it back-

tracks and tries another path until all paths have been

explored. As the number of backtracks increases, more

time is spent on matching, and overall performance de-

creases. The attack we use targets the Snort rule 2682,

which detects exploitation attempts of a known vulnera-

bility that allows e-mail attachment execution. We cre-

ated 1500-byte packets belonging to an established con-

nection destined to port 25 (trace T2). When processed,

each crafted packet results to a processing time about

1360 times slower compared to the average time that

Snort spends for processing SMTP packets in trace T1.

We set out to explore what is the packet loss of the

Libpcap and SPP during this algorithmic overload attack.

While we replay the background traffic and the actual at-

tacks (traces T1 and T3) at low rates, we also replay the

T2 trace at a variable rate, from 10 crafted packets up

to 106 crafted packets/min. Figure 3(a) shows the per-

centage of dropped packets when Snort runs on top of

the original Libpcap and on top of SPP. We observe that

when the traffic load reaches a mere 103 packets/min,

Libpcap starts losing packets, and when the load exceeds

104 it loses more than 80% of the packets. On the con-

trary, at these loads, SPP loses no packets and manages to

store them to disk. Figure 3(a) also shows that the pack-

ets buffered to disk by SPP are fewer than those dropped

by Libpcap at similar rates. This is because by identi-

fying and weeding out algorithmic attack packets, SPP

frees more CPU cycles for processing ordinary packets.

Offered load (packets per minute in trace T2)

10 1 10 2 10 3 10 4 10 5 10 6 10 7

P
ac

k
et

s
(%

)

0

20

40

60

80

100
Packets dropped with original pcap

Packets dropped with SPP

Packets buffered to disk

(a) Percentage of dropped packets and packets

buffered to disk as a function of the offered load.

Offered load (packets per minute in trace T2)

10 1 10 2 10 3 10 4 10 5 10 6 10 7

A
tt

ac
k
s

d
et

ec
te

d
 (

%
)

0

20

40

60

80

100

Snort with Selective Packet Paging

Snort with original pcap

(b) Percentage of detected attacks as a function

of the offered load.

Attack starts

Attack ends

Time (minutes)

0 10 20 30 40 50 60

B
u
ff

er
 s

iz
e

(M
B

)

0

20

40

60

80

100

120

140

160

180

Memory buffer

Disk buffer

(c) Size of memory and disk buffers over a 60-

minute time period when sending 10,000 crafted
packets/minute for the first 10 minutes.

Figure 3: Performance of SPP and original Libpcap under an algorithmic complexity attack.

Traffic burst rate (Mbit/s)
0 500 1000 1500 2000 2500

P
ac

k
et

s
(%

)

0

20

40

60

80

100
Packets buffered to disk

Packets dropped with original pcap

Packets dropped with Selective Packet Paging

(a) Dropped packets and packets buffered to disk

as a function of the traffic burst rate.

Traffic burst rate (Mbit/s)
0 500 1000 1500 2000 2500

A
tt

ac
k

s
d

et
ec

te
d

 (
%

)

0

20

40

60

80

100

Snort with Selective Packet Paging

Snort with original pcap

(b) Detected attacks as a function of the traffic

burst rate for 30-second bursts.

Attack starts

Attack ends

Time (minute)
0 10 20 30 40 50 60

B
u
ff

er
 s

iz
e

(G
B

)

0

5

10

15

20

25

Memory buffer

Disk buffer

(c) Size of memory and disk buffers over a 60-

minute time period when sending 30-second traf-
fic bursts of 1.5 Gbit/s for the first 10 minutes.

Figure 4: Performance of SPP and original Libpcap in case of 30-second traffic bursts.

Packet loss is directly translated to undetected attacks.

Figure 3(b) shows the percentage of attacks detected by

the two systems. We see that Snort on top of Libpcap

starts missing attacks when the traffic load exceeds 102

packets/min, and misses all attacks as the load reaches

105 packets/min. At the same rates, Snort on top of

SPP detects all attacks, as all packets are stored to sec-

ondary storage and are eventually inspected, and does

not miss any attack for rates up to 106 packets/min. That

is, an attacker needs to send about 107 packets/min to re-

duce the probability of being detected just by 17%. In

this extreme case, SPP was not able to store all incom-

ing packets to disk due to the high traffic rate. Com-

pared to the original Libpcap, SPP can handle 10,000

times more crafted packets, offering significant tolerance

against highly efficient algorithmic complexity attacks.

To measure the time that the system needs to recover

from overload, we replayed traces T1 and T3 at low rates

for 60 minutes, and replayed the T2 trace at a rate of 104

packets/min for the first 10 minutes of the experiment.

Figure 3(c) presents the size of memory buffer and disk

buffer over time. We observe that with SPP the size of

the memory buffer was always less than 6 MB, for the

whole 60-minute period. The attack packets (and their

associated flows) identified by SPP were sent to disk. In-

deed, to accommodate the attack packets, the disk buffer

size increased from 16.23 MB (at minute 1) to 165 MB

(at minute 10, which was the highest point of the attack),

and then slowly decreased back to zero at minute 48.

5.2 Traffic Overload

In this experiment we explore how Snort on top of SPP

and the original Libpcap responds to traffic bursts. We

replay trace T1 at its original rate as background traffic

and trace T3, containing the 120 real attacks, at 1 Mbit/s

for the entire duration of the experiment. At each minute

we send a traffic burst that lasts for 30 seconds using traf-

fic from T1. The peak rate of the burst is varied from

1 Gbit/s up to 2.5 Gbit/s, to evaluate how burst intensity

may influence SPP. Each experiment lasts 10 minutes.

Figures 4(a) and 4(b) present the percentage of

dropped packets and detected attacks as a function of

the rate of the 30-second traffic bursts. We observe that

Libpcap starts dropping packets when the traffic bursts

are around 1 Gbit/s, resulting in about 17% undetected

attacks. When the bursts reach a rate of 2 Gbit/s, 53%

of the packets are dropped and 32.5% of the attacks are

missed. On the other hand, Snort with SPP drops no

packets and misses no attacks even at rates as high as

2 Gbit/s. Although our disk system writes packets with

a throughput of 1.8 Gbit/s, the two-level memory hierar-

chy allows processing of 2 Gbit/s traffic without packet

loss. Only when the burst rates exceed 2.25 Gbit/s the

secondary storage is not able to keep up with network

traffic and SPP starts losing packets.

Figure 4(c) shows the size of memory and disk buffers

when sending 30-second traffic bursts with a rate of

1.5 Gbit/s for 10 minutes, and continue sending only

background traffic for another 50 minutes. The memory

buffer remains full at 500 MB for the first 12 minutes,

while the disk buffer fills up continuously during the first

10 minutes, all the way up to 21.3 GB. From minute 11

to minute 13, the disk buffer size is reduced from 21.3 to

3.5 GB, as the system’s resources are sufficient to process

the excessive packets buffered during the traffic bursts.

Thus, in the 14th minute, both memory and disk buffers

are empty, so the system has fully recovered from the

traffic overload attack. Compared with the algorithmic

complexity attack, the system recovers faster from this

traffic overload, (within just four minutes) because pack-

ets are not maliciously crafted to further slowdown Snort.

6 Related Work

To cope with high traffic volumes, several research ap-

proaches propose to distribute the load across multiple

computers instead of using a single sensor [7], or uti-

lize multi-core processors for parallel inspection [4, 14].

Other approaches propose to dynamically reconfigure a

NIDS based on the run-time conditions [3,8], or use load

shedding techniques to defend against overloads [1, 13].

Recent works deal with high traffic volumes by applying

a per-flow cutoff to selectively discard most of the traffic

and focus on the beginning of each connection when the

system is under load [9,10,12]. Unfortunately, overloads

are still possible in all these systems, especially in case

of algorithmic attacks [15, 17].

Smith et al. [17] propose memoization as an algo-

rithmic solution to prevent overload attacks targeting

backtracking-based algorithms. Crosby and Wallach [2]

present an algorithmic complexity attack that exploits de-

ficiencies of common data structures, and propose new

hashing techniques which sacrifice average case perfor-

mance for worst case performance. Khan and Traore [6]

propose a model to detect algorithmic complexity attacks

based on historical information of execution time and in-

put characteristics, using regression analysis.

7 Conclusion

We presented Selective Packet Paging, a two-level

memory management approach that buffers (otherwise

dropped) packets to tolerate algorithmic complexity at-

tacks and traffic overloads for network monitoring and

security applications. Empowered with a randomized

timeout, SPP can detect and isolate algorithmic attack

packets, enabling the CPU to be used for more useful

purposes. We have implemented SPP within the popu-

lar Libpcap packet capture library, so that existing appli-

cations can use it without any code modifications. Our

experimental evaluation shows that NIDS, such as Snort,

are vulnerable to both algorithmic complexity and traffic

overload evasion attacks. Using SPP, a NIDS can handle

both algorithmic and traffic overload conditions.

We believe that as network monitoring applications

get more complicated, they will be increasingly vulnera-

ble to algorithmic and traffic overload attacks. SPP offers

a memory management approach and a dynamic over-

load detection technique that provide a seamless solu-

tion to this problem without requiring any changes to the

monitoring applications themselves.

Acknowledgments

We would like to thank our shepherd Samuel T. King and the anony-

mous reviewers for their valuable feedback. This work was supported

in part by the FP7-PEOPLE-2009-IOF project MALCODE and the
FP7 project SysSec, funded by the European Commission under Grant

Agreements No. 254116 and No. 257007.

References

[1] P. Barlet-Ros, G. Iannaccone, J. Sanjuàs-Cuxart, D. Amores-
López, and J. Solé-Pareta. Load shedding in network moni-
toring applications. In Proc. of the USENIX Annual Technical
Conf. (ATC), 2007.

[2] S. A. Crosby and D. S. Wallach. Denial of service via algorith-
mic complexity attacks. In Proc. of the 12th Conf. on USENIX
Security Symp., pages 3–3, 2003.

[3] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Opera-
tional experiences with high-volume network intrusion detec-
tion. In Proc. of the 11th ACM Conf. on Computer and commu-
nications security (CCS), pages 2–11, 2004.

[4] F. Fusco and L. Deri. High speed network traffic analysis with
commodity multi-core systems. In Proc. of the 10th annual
Conf. on Internet measurement (IMC), pages 218–224, 2010.

[5] P. Hazel. Pcre: Perl compatible regular expressions.
http://www.pcre.org.

[6] S. Khan and I. Traore. A prevention model for algorithmic
complexity attacks. In Detection of Intrusions and Malware,
and Vulnerability Assessment, Second Intern. Conf., (DIMVA),
pages 160–173, 2005.

[7] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer. Stateful
intrusion detection for high-speed networks. In Proc. of the
IEEE Symp. on Security and Privacy, pages 285– 294, 2002.

[8] W. Lee, J. B. D. Cabrera, A. Thomas, N. Balwalli, S. Saluja, and
Y. Zhang. Performance adaptation in real-time intrusion detec-
tion systems. In Proc. of the 5th International Symp. on Recent
Advances in Intrusion Detection (RAID), pages 252–273, 2002.

[9] T. Limmer and F. Dressler. Improving the Performance of In-
trusion Detection using Dialog-based Payload Aggregation. In
14th IEEE Global Internet Symp. (GI), pages 833–838, 2011.

[10] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson, and
F. Schneider. Enriching network security analysis with time
travel. In Proc. of the 2008 Conf. on Applications, technolo-
gies, architectures, and protocols for computer communications
(SIGCOMM), pages 183–194, 2008.

[11] S. McCanne, C. Leres, and V. Jacobson. libpcap. Lawrence
Berkeley Lab., Berkeley, CA. (http://www.tcpdump.org/).

[12] A. Papadogiannakis, M. Polychronakis, and E. P. Markatos.
Improving the accuracy of network intrusion detection systems
under load using selective packet discarding. In Proc. of the
Third European Workshop on System Security (EUROSEC),
pages 15–21, 2010.

[13] V. Paxson. Bro: A system for detecting network intruders in
real-time. Computer Networks, 31(23-24):2435–2463, 1999.

[14] V. Paxson, R. Sommer, and N. Weaver. An architecture for ex-
ploiting multi-core processors to parallelize network intrusion
prevention. In Proc. of the IEEE Sarnoff Symp., 2007.

[15] T. H. Ptacek and T. N. Newsham. Insertion, evasion, and de-
nial of service: Eluding network intrusion detection. Technical
report, Secure Networks, Inc., 1998.

[16] M. Roesch. Snort: Lightweight intrusion detection for net-
works. In Proc. of the 1999 USENIX LISA Systems Administra-
tion Conf., 1999.

[17] R. Smith, C. Estan, and S. Jha. Backtracking algorithmic com-
plexity attacks against a nids. In Proc. of the Annual Computer
Security Applications Conf. (ACSAC), 2006.

	Introduction
	Selective Packet Paging
	Multi-level Memory Management
	Randomized Timeout Intervals

	Implementation
	Analytical Evaluation
	Experimental Evaluation
	Algorithmic Complexity Attack
	Traffic Overload

	Related Work
	Conclusion

