
Auction Revenue in the General Spiteful-Utility Model

Jing Chen
CS Department, Stony Brook University

Stony Brook, NY 11794, USA
jingchen@cs.stonybrook.edu

Silvio Micali
CSAIL, MIT

Cambridge, MA 02139, USA
silvio@csail.mit.edu

ABSTRACT
It is well accepted that, in some auctions, a player’s “true
utility”may depend not only on the price he pays and whether
or not he wins the good, but also on various forms of exter-
nalities, such as the prices paid by his competitors, and the
identity and true value of the actual winner.

In this work, we study revenue generation in single-good
auctions under a very general model of externalities: the
General Spiteful-Utility Model. Specifically, we

• Put forward new revenue benchmarks and solution
concepts;

• Design new mechanisms when some information about
the players’ externalities is known; and

• Analyze the revenue of the second-price mechanism
when only the players have information about each
other.

Categories and Subject Descriptors
[Theory of computation]: Algorithmic game theory and
mechanism design

Keywords
externality; spitefulness; revenue; single-good auction; un-
dominated strategy; light Bayesian setting

1. INTRODUCTION
In single-good auctions, the famous second-price mech-

anism guarantees revenue equal to the second highest true
value in dominant strategies. This revenue guarantee is very
attractive and does not require the mechanism to have any
information about the players’ true values. However, it only
holds for players with classical utilities. The classical utility
of a player i is cui , vi − pi, if he wins the good, and −pi
otherwise, where vi and pi respectively are i’s value for the
good and i’s price.
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The General Spiteful-Utility Model.
It has been widely recognized (see, e.g., [29, 7, 30, 19]) that

classical utilities are only “part of the story”, and a player’s
“true utility” may also depend on various externalities, such
as the prices paid by his competitors or the identity of the
actual winner.

In this paper, we study auction revenue under a very gen-
eral externality model: the general spiteful-utility (GSU)
model. In this model, the utility of a player i is

ui = cui −
∑
j 6=i

αijcuj

where each αij is a constant in [0, 1], referred to as i’s utility
exchange rate for player j. In other words, for all players
i and j, a monetary gain/loss of x for j translates into a
corresponding loss/gain of αijx for i.1 When all exchange
rates are 0, the players have classical utilities. When αij > 0,
player i is spiteful of player j.

(Note: Our results hold also when spitefulness is recur-
sively defined, see Section 7.)

An important special case of the GSU model is when each
player i spites his opponents equally, but possibly differently
from other players. That is, for each i, there exists a value
αi such that αij = αi for all j 6= i (but αi and αj may be
different if i 6= j). We refer to this important case as the
individually uniformly spiteful model.

The GSU model is not a mere syntactic generalization of
the classical utility model, but is very natural and mean-
ingful. In particular, it may endogenously model the play-
ers’ strategic interests in their interactions after or outside
the auction. For instance, let the good be a large oil field
and players i and j two oil companies, which will continue
to compete fiercely after the auction. Assume now that j
wins the oil field for a minimal price, and i pays nothing at
all. Then, although i’s classical utility is 0, his ‘true’ utility
would actually be negative, because he will ‘suffer’ in the
future, as j will use his newly acquired resource against i.
However, if j paid a very high price for the oil field, then
i’s suffering would be amply mitigated, as j would have less
net resources to use against i in the future.

Related Work on Auctions.
Up to now, in auctions, mostly special cases of the GSU

model have been studied. In particular, [35] experimen-

1Although utility exchange rates > 1 could be justified in
some extreme settings, we prefer to assume that a player
strictly prefers receiving one dollar himself to having a com-
petitor lose one dollar or less.
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tally studies auctions and other games in which the utility-
exchange rates are severely restricted;2 [43] studies auctions
where all exchange rates are the same; and there is another
work which studied auctions where each player i has the
same number of non-zero utility-exchange rates and all such
rates are equal, but due to an unfixable problem in the analy-
sis the paper has been essentially retracted3 and the authors
have asked the paper not to be cited.

The economic literature contains many studies of auctions
where a player’s utility depends on (besides his own valua-
tion and price) just the valuation, or the price, or the identity
of the actual winner of the good. Games other than auctions
have also been studied under various models of externalities.
We provide a more detailed discussion about this literature
in Section 2.

To the best of our knowledge, [19] is the only work in
the literature studying an auction mechanism in the GSU
model; yet, as pointed out by the authors themselves, their
mechanism only works when the utility exchange rates are
“extremely small”: namely, when αij = O(1/n3) for any i, j,
where n is the number of players.

In sum, it is fair to say that, despite its meaningfulness,
the general spiteful-utility model remains vastly understud-
ied in auctions.

Our Goal.
We aim at starting the study of auction revenue in the

general spiteful-utility model, without any restrictions. By
contrast, the auction mechanism of [19] focuses on social
welfare. Accordingly, their paper aims at overcoming the
players’ spitefulness,4 so as to incentivize them to bid al-
most truthfully. We instead aim at leveraging the players’
spitefulness, so as to incentivize them to place bids higher
than their true valuations. Again, in [19], the exchange rates
are assumed to be extremely small; while by contrast, our
results hold for all (positive) exchange rates.

Participation.
Generating revenue is trivial when a mechanism is able

to impose arbitrarily high prices to ‘unwilling players’. An
important principle in designing revenue mechanisms is to
allow players to ‘opt out’ of the auction without paying any-
thing and without receiving the good. We do follow this
principle: all mechanisms studied allow a player to opt out
by bidding 0. In auctions without externalities, the utility of
a player opting out is 0. However, this may not be true for a
spiteful player. Indeed, if a player i opts out, and the good
is allocated at price 0 to a player spited by i, then, without
any fault of the mechanism, i’s utility will be negative.

Potential and Challenges of the GSU model.
Intuitively, an auction with spiteful players is ‘more com-

petitive than a classical one’. Thus, a properly designed

2Namely, there is a common parameter λ and each player i
has his own parameter ai (positive if the player is spiteful,
and negative if he is ‘altruistic’), so that i’s utility exchange

rate for an opponent j is
ai+λaj
1+λ

.
3We thank an anonymous reviewer for pointing this out.
4A player i is spiteful towards another player j if αij > 0,
and altruistic if αij < 0. Actually, [19] also wish to overcome
the players’ altruism. But, aiming at maximizing revenue,
we focus solely on spitefulness.

mechanism may be able to translate this additional com-
petition into additional revenue. To realize this potential,
however, several challenges must be met. Most importantly,
to act rationally in a mechanism, spiteful players in general
need to know their own utility functions exactly, which they
do only in auctions of complete information, where the true
valuation profile is common knowledge among the players.
Thus, analyzing classical and new mechanisms with spiteful
players less informed about each other requires the adoption
of new and appropriate solution concepts.

Results.
We show that the slightest information about the players’

exchange rates can be extremely powerful, even when the
players have no information about the valuations and ex-
change rates of their opponents. Informally, we prove that

1. A mechanism knowing a positive lower bound about the
exchange rate of just two players can extract arbitrarily
high revenue in strictly dominant strategies.

When the mechanism has no information about the spite-
ful players, they must have some information about each
other, as argued above, in order to be able to act rationally.
The first setting to consider is one of complete information.
Indeed, this extreme case allows us to study how spiteful
players behave in the GSU model when they know their
utility functions exactly. For auctions of complete infor-
mation we exactly characterize the players’ weakly undomi-
nated strategies in the classic second-price mechanism in the
GSU model and prove that

2. The revenue obtainable by the second-price mechanism
in weakly undominated strategies is at least the second-
highest virtual value, and this lower bound is tight.

Above, the second-highest virtual value, a new benchmark
for the GSU model, is always greater than or equal to a
half of the second highest true value, less than or equal to
the second highest true value when there are at least three
players, but can be much larger than the latter when there
are two players. Furthermore, for the same setting, we prove
that

3. The revenue obtainable by the second-price mechanism
in strategies surviving two levels of elimination of weakly
dominated strategies is at least the highest virtual value.

This lower bound is actually tight as well.
Settings of complete information are of course quite ideal.

We thus consider the Light Bayesian Setting. In this setting,
essentially, the true value of each player i is independently
drawn from a distribution Di and each player i individually
knows D−i. (Note that the Light Bayesian Setting is much
weaker and more realistic than the traditional common prior
model, where the distribution profile (D1, . . . ,Dn) is com-
mon knowledge to the players, and often to the mechanism
as well!) Here we prove that

4. In the individually uniformly spiteful model, the ex-
pected revenue of the second-price mechanism, in Bayesian
undominated strategies, can be smaller than the ex-
pectation of the second-highest valuation, but is never
smaller than a half of it.
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Above, implementation in Bayesian undominated strategies
is a new and very compelling solution concept put forward
by us. We consider this as a conceptual contribution that
will prove useful in mechanism design in the GSU model.

In Sum.
We show that spitefulness can yield very high revenue

when a mechanism designer has even a small amount of in-
formation about the exchange rate of the players, or when
the players have a lot of information about each other, but
otherwise can lead to much less revenue than when the play-
ers have classical utilities (e.g., a half in the worst case).
For an auctioneer, the latter information, although demor-
alizing, is useful to know. Since the auctioneer in general
has no way to tell whether the players have externalities
or not, he is better off knowing how much revenue he is
risking losing if he decides to adopt a classical mechanism
like the second-price. And he may actually be encouraged
to investigate totally new mechanisms designed to take ad-
vantage of this difficult setting. One step at a time. We
believe mechanism analysis and design in the GSU model to
be challenging, meaningful, and fun.

2. ADDITIONAL RELATED WORKS

Generating Revenue in Auctions with Externalities.
There have been many works on financial externalities in

auctions; see, e.g., [16, 8, 15, 17, 25, 37]. In general, they
assume that the losers’ utilities in an auction depend on the
payment of the winner, but not on the true value or the
identity of the winner. Moreover, the parameters for mea-
suring externality have the same values for all players. In
[36], the author studies financial externalities among players
with regular i.i.d. values, where different players have differ-
ent externality parameters. The author allows each player
to have a non-negative gain from the winner’s value—rather
than a loss as in our model—and characterizes the optimal
Bayesian mechanisms.

In another line of works [29, 30, 28, 44, 1, 31], the ex-
ternalities in auctions come from the identity of the winner
rather than his payment, and may not be the same among
the players.

In [18] and [21] the authors consider models where the
players hold “shares” in the goods, so that the losers receive
positive externality from the winner’s utility. Recall that
in our model the players are spiteful and the loser receives
negative externality from the winner’s utility.

Most of the works mentioned above have focused on ana-
lyzing the revenue performance of the first-price mechanism
and/or the second-price mechanism (sometimes with reserve
prices), under various equilibrium-based solution concepts.
In [29, 30] the authors studied mechanism design for single-
good auctions to generate revenue, and characterized the op-
timal mechanisms in complete information as well as Bayesian
settings. As mentioned above, the externality model they
use is identity-based and does not depend on the players’
payments.

Finally, the above models of externalities are one sided
—only the losers have externality from the winner and not
viceversa. This is without loss of generality for their studies,
since in both the second-price and the first-price mechanisms
the loser does not get any good and does not pay anything,

and in the identity-based model the value received by the
losers is 0. By contrast, our model allows the possibility
that the mechanism gives all players positive prices, and
thus externalities are defined for both the winner and the
loser.

Externalities in Other Contexts.
As mentioned, in [19] the externality model is the same

as ours, but the major goal there is to generate social wel-
fare, and their mechanism works when the exchange rates
are extremely small. There are many other studies on games
with externalities, but the contexts, models, and goals are
all quite different from ours. Thus we do not elaborate on
them here, and only mention several examples. In [33, 4, 13]
the authors mainly focus on the computational complexity
for finding/approximating desired outcomes when there are
externalities. In [40, 20, 24, 32, 23, 26, 41, 14] the authors
examine sponsored-search auctions and incorporate the ex-
ternalities affecting the probability for an advertisement to
receive a click, caused by other advertisements shown on the
same webpage. In [22] and [10] the authors study externali-
ties raised on social networks, in [2] and [42] externalities in
congestion games, in [6] network formation with externali-
ties, and in [5, 9, 45, 38] coalition formation with external-
ities. Finally, [34] is on experimental study, [12] on traffic
routing, and a detailed review of the literature can be found
in [11].

3. OUR FIRST RESULT
Given a mechanism, letting Si be the set of available

strategies of each player i, a strategy si ∈ Si is a strictly
dominant strategy if ui(si, s−i) > ui(s

′
i, s−i) for all strategy

subprofiles s−i ∈ S−i and all strategies s′i ∈ Si\{si}. Notice
that if a strictly dominant strategy exists, then it must be
unique.

Below, we construct a normal-form mechanism, MP , that
takes an arbitrarily high number P as an input and generates
revenue at least P at the strictly dominant strategy profile.
Surprisingly, the mechanism MP never sells the good, but
generates revenue solely by leveraging the players’ spiteful-
ness.

Of course, we do not consider never selling the good as
an ‘advantage’ (particularly when the auctioneer wishes to
guarantee a minimum of social welfare). But we consider
it important to highlight how much revenue potential lies
in knowing the players’ spitefulness. Actually, a minimum
amount of such knowledge suffices. Indeed, to use MP , the
auctioneer need only know `, i and j, such that 0 < ` ≤ αij ,
but nothing else about the players’ values or exchange rates.

Letting, without loss of generality, i = 1 and j = 2; and
recalling that the number of players is n, our mechanism
MP works as follows.

Mechanism MP

Each player i announces bi ∈ {0, 1}, where 0 means
“opting out” and 1 means “participating”.

The good is unsold and each player i 6∈ {1, 2} receives
a payment equal to bi. The prices of players 1 and 2
are as follows:

If b2 = 0, then player 1 receives a payment equal
to b1 and player 2 receives 0.
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If b1 = 0 and b2 = 1, then player 2 receives P+n
`

and player 1 receives 0.

If b1 = b2 = 1, then player 1 pays P + n− 1 and
player 2 receives 1

2
.

We have the following theorem, whose proof is provided
in the appendix.

Theorem 1. For any n ≥ 2 and P > 0, in mechanism
MP , it is strictly dominant for each player to announce 1;
and the revenue of MP under the strategy profile (1, 1, . . . , 1)
is at least P .

Remark.
We stress that MP making a big payment is just a threat:

at the unique dominant-strategy equilibrium, he only re-
ceives payments from the players. Yet, as proven by the
extraordinary revenue performance that it entails, such a
(credible) ability cannot be taken for granted.

4. OUR SECOND RESULT
Now we consider the extreme, yet fundamental, case where

the players have complete information about each other’s
valuation and exchange rates.

To begin with, the second-price mechanism naturally al-
lows players to ‘opt out’: if a player bids 0, then he is con-
sidered non-participating and the mechanism is run on the
remaining players. It is not hard to see there is no (strictly
or weakly) dominant strategies for players with externali-
ties, thus the solution concept we consider is undominated
strategies:

A strategy si ∈ Si is weakly dominated by s′i ∈ Si if

(a) ui(si, s−i) ≤ ui(s
′
i, s−i) for all strategy subprofiles

s−i ∈ S−i, and

(b) ui(si, s−i) < ui(s
′
i, s−i) for at least one strategy

subprofile s−i ∈ S−i.

If si is not weakly dominated by any other strategy, then it
is undominated.

In the individually uniformly spiteful model, for each player

i, let mi = argminj 6=i vj and v′i =
vi+αivmi

1+αi
. The value v′i is

referred to as player i’s virtual value. We have the following
theorem.

Theorem 2. The revenue of the second-price mechanism
at any undominated strategy profile is at least the second
highest virtual value, and this lower bound is tight.

To prove Theorem 2, the lemma below, proved in the
appendix, characterizes the players’ sets of undominated
strategies.

Lemma 1. For each player i, a strategy bi is undominated
if and only if bi ≥ v′i.

That is, with spitefulness, a player will not bid anything
lower than a convex combination of his own true value and
the lowest one among all other players. This lower bound of
his bid is determined by his exchange rate and may be lower
than his true value.

Theorem 2 follows directly from Lemma 1.

Proof of Theorem 2. For any undominated strategy
profile b, the revenue is the second highest in b, which is
at least the second highest in (v′i)i∈[n], since by Lemma 1,

bi ≥ v′i for each player i. Moreover, this lower bound is tight
when bi = v′i for each i.

We denote the lower bound in Theorem 2 by rev(2ndP ).
Notice that when n = 2, rev(2ndP ) is at least the sec-
ond highest (i.e., the smaller) true value of the players;
while when n ≥ 3, it is at most the second highest true
value. To see more clearly how it compares with the mecha-
nism’s revenue when there is no externality, without loss
of generality we assume v1 ≤ v2 ≤ · · · ≤ vn. Accord-
ingly, m1 = 2, mi = 1 for any i 6= 1, the second highest
true value is vn−1, and rev(2ndP ) is the second highest in
T = { v1+α1v2

1+α1
}∪{ vi+αiv1

1+αi
}i6=1. We have the following corol-

lary.

Corollary 1. As a function of the profile of exchange
rates (α1, . . . , αn), rev(2ndP )

1. is continuous on (0, 1]n;

2. is decreasing when n ≥ 3 and increasing when n = 2;

3. goes to vn−1 when all αi’s go to 0, goes to
vn−1+v1

2

when n ≥ 3 and all αi’s go to 1, and goes to v1+v2
2

when n = 2 and both αi’s go to 1; and

4. is also continuous at (α1, . . . , αn) = (0, . . . , 0).

Proof. Property 1 is true since all the v′i’s are continu-
ous. To see why Property 2 is true, notice that vi+αiv1

1+αi
is

decreasing in αi for any i 6= 1, and v1+α1v2
1+α1

is increasing in
α1. Because

v1 + α1v2
1 + α1

≤ v1 + v2
2

,
v1 + v2

2
≤ v2 + α2v1

1 + α2
,

and
v1 + v2

2
≤ v1 + vi

2
≤ vi + αiv1

1 + αi
∀i > 2,

we have that v1+α1v2
1+α1

is the smallest in T . Accordingly,
when n ≥ 3, the second highest value in T is the same as
the second highest value in ( vi+αiv1

1+αi
)i6=1, which is decreasing

in the profile (α1, . . . , αn). When n = 2, the second high-
est value in T is v1+α1v2

1+α1
, which is increasing in the profile

(α1, α2).
Property 3 holds by continuity, and Property 4 holds be-

cause vn−1 is exactly the revenue when there is no external-
ity (that is, when each player reports his true value).

We say that the players have symmetric externality if there
exists α such that αi = α for each player i. When this is the
case, we further have the following corollary, whose proof is
omitted.

Corollary 2. When the players have symmetric exter-
nality, rev(2ndP ) =

vn−1+αv1
1+α

when n ≥ 3, and rev(2ndP ) =
v1+αv2
1+α

when n = 2.

5. OUR THIRD RESULT
Now, a natural question raises: if a player knows that his

opponents’ bids are lower bounded as described above, can
he further refine his undominated strategies? In this section,
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we answer this question by fully characterizing the players’
strategies surviving such a 2-step elimination procedure.

More precisely, the solution concept used below is two-step
elimination of weakly dominated strategies. That is, starting
from the strategy set Si for each player i, all players elim-
inate all of their weakly dominated strategies; and then, in
the new game where the strategy set of each player i is his
set of surviving strategies, all players again eliminate all of
their weakly dominated strategies. A strategy si is level-2
undominated if it survives such a two-step elimination proce-
dure. (For a thorough discussion about iterated elimination
of dominated strategies, see, e.g., [39].)

In the individually uniformly spiteful model, assume there
is a unique player i∗ such that v′i∗ = maxi v

′
i: in particular,

this is true when the players are in a generic position.

Theorem 3. The revenue of the second-price mechanism
at any level-2 undominated strategy profile is at least v′i∗ , and
this lower bound is tight.

Theorem 3 follows directly from the following lemma, which
is proved in the appendix.

Lemma 2. For each player i, a strategy bi is level-2 un-
dominated if and only if bi ≥ v′i∗ .

We denote the lower bound in Theorem 3 by rev(2)(2ndP ):

that is, rev(2)(2ndP ) = v′i∗ . Again, assuming without loss
of generality v1 ≤ v2 ≤ · · · ≤ vn, we have the following
corollary.

Corollary 3. As a function of (α1, . . . , αn), rev(2)(2ndP )

1. is continuous and decreasing on (0, 1]n;

2. goes to vn+v1
2

when all αi’s go to 1, and goes to vn
when all αi’s go to 0; and

3. is discontinuous at (α1, . . . , αn) = (0, . . . , 0).

In particular, notice that when all αi’s become arbitrarily
close to 0 but are still positive, the revenue of the second-
price mechanism under level-2 undominated strategies be-
comes arbitrarily close to the highest true value. However,
when there is no externality, the revenue is the second high-
est true value (as is well known). Thus, when the players
further refine their strategies from their undominated strate-
gies, the existence of externality makes a big difference for
the revenue of the second-price mechanism.

What if the players continue refining their strategies based
on level-2 undominated strategies? Technically, one can de-
fine k-step elimination of weakly dominated strategies and
level-k undominated strategies. However, they will not make
a difference here: it is not hard to verify that no strategy
can be further eliminated from level-2 undominated strate-
gies, thus the revenue guaranteed by the second-price mech-
anism under level-k undominated strategies with k > 2 is
still rev(2)(2ndP ). Finally, we have the following corollary.

Corollary 4. When the players have symmetric exter-
nality, rev(2)(2ndP ) = vn+αv1

1+α
.

6. OUR FOURTH RESULT
When the players have incomplete information, we con-

sider the Light-Bayesian Setting:

• The true value of each player i, vi, is independently
drawn from a distribution Di. Without loss of gen-
erality, Di has support Ti = [ai, ai] with ai ≥ 0, and
the probability density function of Di is positive on Ti.
Let D = ×iDi and D−i , ×j 6=iDj for each i.

• Each player i individually knows his own true value,
utility-exchange rates, and D−i.

• The auctioneer has no information about D or the
utility-exchange rates of the players.

For a player i to determine whether a strategy si is domi-
nated by another strategy s′i, he need not only know his own
true value vi, but also the others’ true value subprofile v−i.
This is not a problem if the auction is of complete informa-
tion, but some care is needed when i only knows D−i.

Revenue under non-Bayesian Undominated Strategies.

Before defining our new solution concept for Bayesian set-
tings, let us first consider an existing notion of weak dom-
ination in auctions of incomplete information and with ex-
ternality [19]. For any player i and value vi ∈ Ti, a strategy
si is weakly dominated by another strategy s′i under vi if,
for every value subprofile v−i ∈ T−i, si is weakly dominated
by s′i when the true value profile is (vi, v−i).

5 Since this
notion does not depend on the distribution D, if a strategy
si is not weakly dominated by any other strategy under vi,
we say that si is non-Bayesian undominated under vi. In
the individually uniformly spiteful model, our Proposition 1
below fully characterizes each player’s non-Bayesian undom-
inated strategies in the second-price mechanism. The proof
is similar to that of Lemma 1 and thus omitted.

Proposition 1. For any player i and value vi ∈ Ti, a
strategy bi is non-Bayesian undominated under vi if and only

if bi ≥
vi+αi minj 6=i aj

1+αi
.

For any profile of reals b, let Second(b) be the second
highest value in b. For any distribution D, the expected
revenue that the second-price mechanism guarantees under
non-Bayesian undominated strategies, denoted by

revnonB(2ndP ), is E(v1,...,vn) Second

((
vi+αi minj 6=i aj

1+αi

)
i∈[n]

)
.

It is not hard to see that revnonB(2ndP ) ≥ ESecond((vi)i∈[n])

2
∀n ≥ 2 and revnonB(2ndP ) ≤ ESecond((vi)i∈[n]) ∀n ≥ 3,
where ESecond((vi)i∈[n]) is the expected revenue without
externality.

Moreover, when there are two players j and j′ such that
aj = aj′ = 0, we have

revnonB(2ndP ) = E
(v1,...,vn)

Second

((
vi

1 + αi

)
i∈[n]

)
.

That is, even if vj and vj′ are very high with probability
close to 1, the expected revenue only depends on their small-
est possible value (i.e., 0). With symmetric externality, we

5The definition in [19] is slightly different: it does not require
the utility of s′i be strictly larger than that of si in any case.
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further have

revnonB(2ndP ) =
1

1 + α
· E
(v1,...,vn)

Second
(

(vi)i∈[n]

)
.

Proposition 1 shows that, if the players do not know the
distributions of each other and only know the lower bounds
of their supports, then the revenue guaranteed by the second-
price mechanism is diluted by the smallest value in the sup-
port of every player’s distribution, and in the worst case
it can be a half of the expected revenue when there is no
externality.

When a player i does know D−i, it is natural that he
will reason about his strategies based on this information.
Below, we provide a new solution concept to formalize this
reasoning.

Revenue under Bayesian Undominated Strategies.
Our solution concept, implementation in Bayesian un-

dominated strategies, generalizes the classical notion of im-
plementation in undominated strategies [27] to the GSU
model and the light-Bayesian settings.

For any player i, let ui(si, s−i; vi, v−i) be the utility of i
under strategy profile (si, s−i) and true value profile (vi, v−i).
A strategy si is weakly Bayesian dominated by another strat-
egy s′i under vi if

(a) ∀s−i ∈ S−i,
Ev−i∼D−i ui(si, s−i; vi, v−i) ≤ Ev−i∼D−i ui(s

′
i, s−i; vi, v−i);

and
(b) ∃s−i ∈ S−i such that

Ev−i∼D−i ui(si, s−i; vi, v−i) < Ev−i∼D−i ui(s
′
i, s−i; vi, v−i).

When the distribution D is clear from the context, we may
write Ev−i ui(·) instead of Ev−i∼D−i ui(·). Notice that player
i can indeed make the comparisons in (a) and (b), because
he knows D−i.

If si ∈ Si is not weakly Bayesian dominated by any s′i ∈
Si under vi, then si is Bayesian undominated under vi. A
Bayesian strategy of player i is a function mapping Ti to
Si.

6 Such a strategy si is Bayesian undominated if, for each
vi ∈ Ti, si(vi) is Bayesian undominated under vi.

The intuition behind weak Bayesian domination is that,
as in any other notion of domination, a player i does not
need to believe that his opponents are rational, and consid-
ers it possible for them to use arbitrary strategies no mat-
ter what their true values are. Thus, seeing a particular
strategy subprofile s−i being used does not give player i
any posterior information about v−i, and from his point of
view, v−i is still distributed according to D−i. Accordingly,
player i’s perceived utility under strategy profile (si, s−i) is
Ev−i ui(si, s−i; vi, v−i).

At the highest level, a Bayesian undominated strategy for
a player i is any strategy that is ‘not blatantly stupid for i
to play in light of his knowledge of D−i and his exchange
rates’. Our notion of implementation is then very robust, as
it ensures that a desirable outcome occurs for any possible
profile of such non-stupid strategies.

6In general, a Bayesian strategy maps player i’s possible
types to strategies. Thus, strictly speaking, it should map
Ti × [0, 1]n−1 (i.e., the set of possible values and exchange
rates of i) to Si. However, since only player i’s true value is
drawn from a distribution, for simplicity we define Bayesian
strategies over player i’s possible values only. Similarly,
we write player i’s utility as ui(si, s−i; vi, v−i) instead of
ui(si, s−i; vi, v−i;αi1, . . . , αin).

In the individually uniformly spiteful model, for each player

i and value vi, letm′i = argmin
j 6=i

E
vj∼Dj

vj and gi(vi) =
vi+αi E vm′

i
1+αi

.

We have the following.

Theorem 4. The expected revenue of the second-price mech-
anism under Bayesian undominated strategies is at least

E
(v1,...,vn)

Second
(

(gi(vi))i∈[n]

)
,

and this lower bound is tight.

Theorem 4 follows directly from Lemma 3 below, whose
proof is provided in the appendix.

Lemma 3. For any player i, a Bayesian strategy bi is
Bayesian undominated if and only if bi(vi) ≥ gi(vi) for each
vi ∈ Ti.

Notice that for a player i to compute his undominated
strategies, he does not even need to know D−i: it is sufficient
that he knows the expected values of his opponents.

Let revB(2ndP ) = E(v1,...,vn) Second((gi(vi))i∈[n]). When
the players have symmetric externality and their true values
are i.i.d., we have

revB(2ndP ) = E
(v1,...,vn)

Second

((
vi + αE v1

1 + α

)
i∈[n]

)

= E
(v1,...,vn)

Second((vi)i∈[n]) + αE v1
1 + α

=
E(v1,...,vn) Second((vi)i∈[n]) + αE v1

1 + α
.

Similar to what we have seen before, this revenue goes to
the expected revenue with no externality when α goes to 0,
and goes to the average of the two when α goes to 1.

Following Theorem 4, it is not hard to see that

revB(2ndP ) ≥ revnonB(2ndP )

for all D and αi’s. In the worst case (e.g., when all exchange
rates are 1 and when there are two players whose values
are 0 with probability 1), revB(2ndP ) may be as low as
ESecond((vi)i∈[n])/2. However, different from revnonB(2ndP )
which is upper bounded by ESecond((vi)i∈[n]) when n ≥ 3,
revB(2ndP ) may actually be strictly larger than
ESecond((vi)i∈[n]).

As an example where revB(2ndP ) > ESecond({vi}i∈[n]),
consider the case where n = 3, each player’s value is 0 with
probability 0.99 and 100 with probability 0.01, and αi =
1/2 for each i. We have ESecond({vi}i∈[n]) ≈ 0.03 and

revB(2ndP ) ≈ 0.35. Moreover, revnonB(2ndP ) ≈ 0.02.
Furthermore, as an example where

revB(2ndP ) < ESecond((vi)i∈[n]),

consider the case where n = 9, all players’ values are uni-
form from [0, 100], and α1 = · · · = αn = 1/2. We have

ESecond({vi}i∈[n]) = 80 and revB(2ndP ) = 80+50/2
3/2

= 70.

Moreover, revnonB(2ndP ) = 160/3.
In general, the relation between revB(2ndP ) and

ESecond((vi)i∈[n]) depends on the relation between the (n−
1)st order statistics and the expectations of the Di’s, which
is beyond the scope of this paper.
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Remark.
We believe the characterization of Bayesian undominated

strategies provided in Lemma 3 to be of interest too, in light
of both the centrality of the second-price mechanism in the
auction literature and the fact that so little is known about
the general spiteful-utility model, whether in undominated
strategies, at Bayesian Nash equilibrium, or under other so-
lution concepts.

One might also consider two-step (or more generally, k-
step) elimination of dominated strategies in Bayesian auc-
tions with externality. However, the revenue of the second-
price mechanism under this solution concept will be much
harder to analyze than with complete information. Indeed,
in Bayesian auctions a player only knows a distribution over
possible sets of surviving strategies of the other players, and
can only refine his own set of surviving strategies based on
this distribution. We leave the analysis of the second-price
mechanism under this solution concept as an open problem.

7. RECURSIVE EXTERNALITY
In the last secion, we briefly discuss an extension of our

model, which defines the players’ utilities recursively. For
any player i, player j 6= i and k ≥ 1, the level-k exchange
rate of i about j, αkij , is such that α1

ij ∈ (0, 1] and αkij ∈
(0, αk−1

ij ] for any k > 1. Given an outcome ω, each player

i’s level-0 utility, u0
i (ω), is defined to be his classical utility

cui(ω). Recursively, for each k ≥ 1, each player i’s level-k
utility, uki (ω), is defined to be −

∑
j 6=i α

k
iju

k−1
j (ω). Player

i’s utility is ui(ω) =
∑
k≥0 u

k
i (ω). That is, player i cares

about not only the other players’ classical utilities, but also
the external utilities they get from their opponents’ classical
utilities (i.e., their level-1 utilities), the external utilities they
get from their opponents’ level-1 utilities (i.e., their level-2
utilities), etc. However, player i cares less and less about
the others’ level-k utilities as k increases, which is reflected
by the non-increasing sequence (α1

ij , α
2
ij , . . . ) for each j 6= i.

We say the players have persistent externality if for each
player i and j 6= i, there exists αij ∈ (0, 1] such that αkij =
αij for all k ≥ 1. With persistent externality, it is easy to
see that

ui(ω) =
∑
k≥0

uki (ω) = u0
i (ω)−

∑
k≥1

∑
j 6=i

αiju
k−1
j (ω)

= u0
i (ω)−

∑
j 6=i

αij
∑
k≥0

ukj (ω)

= u0
i (ω)−

∑
j 6=i

αijuj(ω),

which coincides with the recursive interdependent utility
studied in [3], except that in [3] the players are altruistic
instead of spiteful.

Let A be the n × n matrix where Aii = 0 for each i and
Aij = −αij for each i and j 6= i, u0(ω) = (u0

1(ω), . . . , u0
n(ω))T ,

and u(ω) = (u1(ω), . . . , un(ω))T . We have u(ω) = u0(ω) +
Au(ω). If the matrix I − A is strictly diagonally dominant,
namely,

∑
j 6=i αij < 1 for each player i, then it is invertible

and each ui(ω) has a unique closed-form solution which is a
linear combination of the players’ classical utilities: that is,
u(w) = (I − A)−1u0(w). However, different from [3] where
(I − A)−1 has all entries non-negative and thus the closed-
form utility functions are still altruistic among all players, in
our model, (I − A)−1 may have both positive and negative

entries off the diagonal, showing that recursive spitefulness
may actually lead to altruism among some players.7 Notice
that this will never happen when n = 2.

We leave it as an open problem to characterize the condi-
tions under which recursive spitefulness leads to spitefulness
among all players. All of our results continue to hold in
these circumstances.
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APPENDIX
Proofs of Theorem 1 and Lemmas 1, 2, and 3
Theorem 1. (restated) For any n ≥ 2 and P > 0, in
mechanism MP , it is strictly dominant for each player to
announce 1; and the revenue of MP under the strategy profile
(1, 1, . . . , 1) is at least P .

Proof. For any player i 6∈ {1, 2} and strategy subprofile
b−i, notice that the only difference between the outcomes of
strategy profiles (1, b−i) and (0, b−i) is that, in the former
player i gets a payment equal to 1, while in the latter he
gets 0. Indeed, for each player j 6∈ {1, 2, i}, j’s price only
depends on bj ; and the prices of players 1 and 2 only depend
on b1 and b2. Accordingly, cui(1, b−i)− cui(0, b−i) = 1 and,
for each j 6= i, cuj(1, b−i) = cuj(0, b−i). Thus

ui(1, b−i)− ui(0, b−i)

=

cui(1, b−i)−∑
j 6=i

αijcuj(1, b−i)


−

cui(0, b−i)−∑
j 6=i

αijcuj(0, b−i)


= cui(1, b−i)− cui(0, b−i) = 1 > 0,

and it is strictly dominant for player i to announce 1.
For player 1 and any strategy subprofile b−1, if b2 = 0

then, similar as above, we have cu1(1, b−1) = 1, cu1(0, b−1) =
0, and for each i 6= 1, cui(1, b−1) = cui(0, b−1) = bi. Thus

u1(1, b−1)− u1(0, b−1)

= cu1(1, b−1)− cu1(0, b−1) = 1 > 0. (1)

If b2 = 1, then by announcing 0 player 1 enables player 2 to
get a payment equal to P+n

`
, while he himself gets 0. Thus

u1(0, b−1) = cu1(0, b−1)−
∑
i6=1

α1icui(0, b−1)

= 0− α12 ·
P + n

`
−
∑
i6=1,2

α1ibi

≤ −P − n−
∑
i6=1,2

α1ibi. (2)

If player 1 announces 1 instead, then he pays P +n− 1 and
player 2 gets 1

2
. Thus

u1(1, b−1) = cu1(1, b−1)−
∑
i6=1

α1icui(1, b−1)

= −P − n+ 1− α12

2
−
∑
i6=1,2

α1ibi. (3)

By Equations 2 and 3, when b2 = 1,

u1(1, b−1)− u1(0, b−1) ≥ 1− α12

2
≥ 1

2
> 0. (4)

By Equations 1 and 4, it is strictly dominant for player 1 to
announce 1.

Next, for player 2 and any strategy subprofile b−2, if player
2 announces 0, then his utility is

u2(0, b−2) = cu2(0, b−2)−
∑
i6=2

α2icui(0, b−2) = −
∑
i6=2

α2ibi.

If player 2 announces 1 while b1 = 0, then player 2 gets P+n
`

and player 1 gets 0 = b1, thus

u2(1, b−2) = cu2(1, b−2)−
∑
i6=2

α2icui(1, b−2)

=
P + n

`
−
∑
i6=2

α2ibi

> −
∑
i6=2

α2ibi = u2(0, b−2). (5)

If player 2 announces 1 while b1 = 1, then player 1 pays
P + n− 1 and player 2 gets 1

2
, thus

u2(1, b−2) = cu2(1, b−2)−
∑
i6=2

α2icui(1, b−2)

=
1

2
+ α21 · (P + n− 1)−

∑
i6=1,2

α2ibi

> −
∑
i6=1,2

α2ibi ≥ −
∑
i6=2

α2ibi

= u2(0, b−2), (6)

where the inequalities are because α21 ≥ 0. By Equations 5
and 6, it is strictly dominant for player 2 to announce 1.

In sum, the strategy profile s = (1, 1, . . . , 1) is strictly
dominant. It is easy to see that the revenue of MP at s is

(P + n− 1)− 1

2
−
∑
i6=1,2

bi = P + n− 3

2
− (n− 2) > P,

and Theorem 1 holds.

Lemma 1. (restated) For each player i, a strategy bi is
undominated if and only if bi ≥ v′i.

Proof. We first show that

if bi < v′i then bi is weakly dominated by v′i.

To do so, arbitrarily fix a strategy subprofile b−i. If player
i gets the good under both (bi, b−i) and (v′i, b−i), then under
both strategy profiles his price is maxj 6=i bj and all other
players’ prices are 0. Thus cui(bi, b−i) = cui(v

′
i, b−i) = vi −

maxj 6=i bj and cuj(bi, b−i) = cuj(v
′
i, b−i) = 0 for any j 6= i.

Accordingly,

ui(v
′
i, b−i) = cui(v

′
i, b−i)− αi

∑
j 6=i

cuj(v
′
i, b−i)

= cui(bi, b−i)− αi
∑
j 6=i

cuj(bi, b−i)

= ui(bi, b−i). (7)

If player i gets the good in neither (bi, b−i) nor (v′i, b−i),
then the winner w is the same under both strategy profiles.
Furthermore, if

v′i ≤ max
j 6=w,i

bj ,

then under both strategy profiles the winner’s price is
maxj 6=w,i bj and all other players’ prices are 0. Thus
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cuw(bi, b−i) = cuw(v′i, b−i) = vw −maxj 6=w,i bj and
cuj(bi, b−i) = cuj(v

′
i, b−i) = 0 for all j 6= w. Accordingly,

we again have

ui(v
′
i, b−i) = ui(bi, b−i). (8)

If player i gets the good in neither (bi, b−i) nor (v′i, b−i),
but

v′i > max
j 6=w,i

bj ,

then w’s price is v′i under (v′i, b−i) and maxj 6=w bj under
(bi, b−i). Since v′i > bi by assumption, we have
v′i > max{bi,maxj 6=w,i bj} = maxj 6=w bj . Thus

cuw(v′i, b−i) = vw − v′i < vw −max
j 6=w

bj = cuw(bi, b−i).

Moreover, cuj(bi, b−i) = cuj(v
′
i, b−i) = 0 for all j 6= w.

Accordingly,

ui(v
′
i, b−i) = −αicuw(v′i, b−i)

> −αicuw(bi, b−i) = ui(bi, b−i). (9)

The last case we need to consider is when player i does
not get the good under (bi, b−i) but gets it under (v′i, b−i).
Let w be the winner under (bi, b−i) and pw his price. We
have

bi ≤ max
j 6=w

bj = pw ≤ bw = max
j 6=i

bj ≤ v′i,

where the first inequality is because w 6= i and the last one
is because i is the highest bidder in (v′i, b−i). Thus

ui(bi, b−i) = −αicuw(bi, b−i) = −αi(vw − pw)

≤ −αi(vmi − v
′
i)

= −αi
[
vmi −

vi + αivmi

1 + αi

]
=

αi(vi − vmi)

1 + αi
, (10)

where the first equality is because cuj(bi, b−i) = 0 for any
j 6= w, and the inequality is because vw ≥ minj 6=i vj = vmi

and pw ≤ v′i. Moreover,

ui(v
′
i, b−i) = cui(v

′
i, b−i) = vi − bw ≥ vi − v′i

= vi −
vi + αivmi

1 + αi
=
αi(vi − vmi)

1 + αi
, (11)

where the first equality is because cuj(v
′
i, b−i) = 0 for any

j 6= i, the second equality is because the price of i under
(v′i, b−i) is maxj 6=i bj = bw, and the inequality is because
bw ≤ v′i. By Equations 10 and 11, we have

ui(v
′
i, b−i) ≥ ui(bi, b−i) (12)

in this case.
Combining Equations 7, 8, 9 and 12, we have that bi is

weakly dominated by v′i, as we wanted to show. It remains
to prove that,

for any strategy bi ≥ v′i, bi is not weakly dominated by any
other strategy b′i.

To see why this is true, arbitrarily fix a strategy b′i. If
b′i < bi, then let b−i be a strategy subprofile such that (1)
bw > bi where w = argmaxj 6=i bj , and (2) maxj 6=i,w bj ≤ b′i.
That is, the highest bid of all the other players is larger than
bi, but the second highest is at most b′i. Accordingly, player

w gets the good under both (bi, b−i) and (b′i, b−i), with price
bi in the former and b′i in the latter. All other players always
have price 0 and classical utility 0. Thus

ui(bi, b−i) = −αicuw(bi, b−i) = −αi(vw − bi)
> −αi(vw − b′i)
= −αicuw(b′i, b−i) = ui(b

′
i, b−i), (13)

and bi is not weakly dominated by b′i.
If b′i > bi, then let b−i be such that maxj 6=i,mi bj ≤ bi <

bmi < b′i. By construction, player mi gets the good at price
bi under (bi, b−i), and player i gets the good at price bmi

under (b′i, b−i). Again, all players who do not get the good
have classical utility 0. Thus

ui(bi, b−i) = −αicumi(bi, b−i) = −αi(vmi − bi)

≥ −αi(vmi − v
′
i) = −αi

[
vmi −

vi + αivmi

1 + αi

]
=

αi(vi − vmi)

1 + αi

and

ui(b
′
i, b−i) = cui(b

′
i, b−i) = vi − bmi

< vi − v′i = vi −
vi + αivmi

1 + αi

=
αi(vi − vmi)

1 + αi
,

where the inequalities are because v′i ≤ bi < bmi . Combining
these two inequalities, we again have

ui(bi, b−i) > ui(b
′
i, b−i), (14)

and bi is not weakly dominated by b′i.
By Equations 13 and 14, bi is not weakly dominated by

any other strategy b′i, as we wanted to show. In sum, bi is
undominated if and only if bi ≥ v′i, and Lemma 1 holds.

Lemma 2. (restated) For each player i, a strategy bi is
level-2 undominated if and only if bi ≥ v′i∗ .

Proof. For each player i, let S′i be his set of strate-
gies surviving the first-step elimination of weakly dominated
strategies. By Lemma 1, we have S′i = {bi | bi ≥ v′i}.

First, for any player i 6= i∗ and any strategy bi ∈ [v′i, v
′
i∗),

we show that

bi is weakly dominated in the game with strategy space
S′ = S′1 × S′2 × · · · × S′n.

To do so, let b′i be a strategy such that

b′i ∈ (max
j 6=i∗

v′j , v
′
i∗) ∩ (bi, v

′
i∗).

Notice that, since i∗ is unique, we have maxj 6=i∗ v
′
j < v′i∗

and such a b′i exists. Arbitrarily fix a strategy subprofile
b−i ∈ S′−i. Since bi∗ ∈ S′i∗ , we have bi∗ ≥ v′i∗ > b′i > bi,
and player i gets the good in neither (bi, b−i) nor (b′i, b−i).
Thus the winner of the good under both strategy profiles
is the same, denoted by player w (who may or may not be
player i∗). Below, we compare ui(bi, b−i) and ui(b

′
i, b−i) by

distinguishing two cases for b−i.
When b−i = v′−i, we have that: (1) w = i∗; (2) the price

of w under (bi, b−i) is

pw = max
j 6=w

bj = max{bi, max
j 6=i∗,i

v′j} = max{bi,max
j 6=i∗

v′j},

210



where the third equality is because v′i ≤ bi; and (3) the price
of w under (b′i, b−i) is

p′w = b′i,

since b′i > maxj 6=i∗ v
′
j ≥ maxj 6=i∗,i v

′
j = maxj 6=i∗,i bj . Be-

cause b′i > bi and b′i > maxj 6=i∗ v
′
j by definition, we have

pw < p′w, and thus

cui∗(bi, b−i) = vi∗ − pw > vi∗ − p′w = cui∗(b
′
i, b−i).

Accordingly,

ui(bi, b−i) = −αicui∗(bi, b−i)
< −αicui∗(b′i, b−i) = ui(b

′
i, b−i). (15)

For any other b−i ∈ S′−i, we have pw ≤ p′w, since b′i >
bi and all of the other players’ bids remain the same un-
der the two strategy profiles. Accordingly, cuw(bi, b−i) ≥
cuw(b′i, b−i) and

ui(bi, b−i) = −αicuw(bi, b−i)

≤ −αicuw(b′i, b−i) = ui(b
′
i, b−i). (16)

By Equations 15 and 16, we have that bi is weakly domi-
nated by b′i in the game with strategy space S′, as we wanted
to show.

Next, for any player i 6= i∗ and any strategy bi ≥ v′i∗ , we
show that

bi is not weakly dominated in the game
with strategy space S′.

We distinguish two cases.
On the one hand, for any strategy b′i ∈ [v′i, bi), consider

the strategy subprofile b−i such that bi∗ > bi and bj = v′j
for any j 6∈ {i, i∗}. Clearly, b−i ∈ S′−i. Because

bi∗ > bi ≥ v′i∗ > max
j 6=i∗,i

v′j = max
j 6=i∗,i

bj ,

player i∗ gets the good under both strategy profile (bi, b−i)
and (b′i, b−i). Moreover, his price under the former is

pi∗ = max{bi, max
j 6=i∗,i

bj} = bi,

and that under the latter is

p′i∗ = max{b′i, max
j 6=i∗,i

bj} = max{b′i, max
j 6=i∗,i

v′j} < bi = pi∗ .

Accordingly, cui∗(bi, b−i) = vi∗−pi∗ < vi∗−p′i∗ = cui∗(b
′
i, b−i),

and

ui(bi, b−i) = −αicui∗(bi, b−i)
> −αicui∗(b′i, b−i) = ui(b

′
i, b−i). (17)

Thus, for any strategy b′i ∈ [v′i, bi), b
′
i does not weakly dom-

inate bi in the game with strategy space S′.
On the other hand, for any strategy b′i > bi, consider the

strategy subprofile b−i such that bmi ∈ (bi, b
′
i) and bj = v′j

for any j 6∈ {i,mi}. Again we have b−i ∈ S′−i. Because

bmi > bi ≥ v′i∗ = max
j
v′j ≥ max

j 6=mi,i
v′j = max

j 6=mi,i
bj ,

player mi gets the good under strategy profile (bi, b−i) with
price bi. Accordingly,

ui(bi, b−i) = −αicumi(bi, b−i) = −αi(vmi − bi)

> −αi(vmi − v
′
i) = −αi

[
vmi −

vi + αivmi

1 + αi

]
=

αi(vi − vmi)

1 + αi
,

where the inequality is because bi ≥ v′i∗ > v′i. Furthermore,
since b′i > bmi , player i gets the good under strategy profile
(b′i, b−i) with price bmi . Thus

ui(b
′
i, b−i) = cui(b

′
i, b−i) = vi − bmi < vi − bi

< vi − v′i = vi −
vi + αivmi

1 + αi

=
αi(vi − vmi)

1 + αi
< ui(bi, b−i), (18)

and such a b′i does not weakly dominate bi in the game with
strategy space S′.

By Equations 17 and 18, bi is not weakly dominated in
the game with strategy space S′, as we wanted to show.
Accordingly, for any player i 6= i∗, a strategy bi is level-2
undominated if and only if bi ≥ v′i∗ .

Finally, it remains to show that for player i∗ and any
strategy bi∗ ≥ v′i∗ ,

bi∗ is not weakly dominated by any strategy b′i∗ in the game
with strategy space S′.

For any strategy b′i∗ ∈ [v′i∗ , bi∗), the analysis is very similar
to the deduction of Inequality 17 (under the case where i 6=
i∗, bi ≥ v′i∗ , and b′i ∈ [v′i, bi)). For any strategy b′i∗ > bi∗ ,
the analysis is very similar to the deduction of Inequality 18
(under the case where i 6= i∗, bi ≥ v′i∗ , and b′i > bi). Thus
the detailed analysis for this part is omitted.

In sum, Lemma 2 holds.

Lemma 3. (restated) For any player i, a Bayesian strategy
bi is Bayesian undominated if and only if bi(vi) ≥ gi(vi) for
each vi ∈ Ti.

Proof. It suffices to prove that for any vi ∈ Ti, a strategy
bi is Bayesian undominated under vi if and only if bi ≥
gi(vi). To see why this is true, notice that for any strategy bi
and strategy subprofile b−i, the mechanism’s outcome under
(bi, b−i) does not depend on the true values. Let w be the
winner under this strategy profile and pw his price. We have
that for any value subprofile v−i, ui(bi, b−i; vi, v−i) = vi−pw
if w = i, and ui(bi, b−i; vi, v−i) = −αicuw(bi, b−i; vi, v−i) =
−αi(vw − pw) otherwise. Accordingly,

E
v−i

ui(bi, b−i; vi, v−i) = vi − pw

if w = i, and

E
v−i

ui(bi, b−i; vi, v−i) = −αi E
vw

(vw − pw) = −αi(E vw − pw)

otherwise. That is, player i’s expected utility under strategy
profile (bi, b−i) in the Bayesian auction is exactly his utility
under the same strategy profile in the auction of complete
information where his true value is vi and, for any j 6= i,
player j’s true value is E vj . Therefore bi is weakly Bayesian
dominated under vi in the Bayesian auction if and only if it
is weakly dominated in the auction of complete information
with true value profile (vi, (E vj)j 6=i). By Lemma 1, we im-
mediately have that bi is Bayesian undominated under vi if
and only if bi ≥ gi(vi), and Lemma 3 holds.
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