Network Boundary Detection

Rik Sarkar
April 2, 2009
Boundary of a Network

- Boundaries of “holes” in the network
- Outer Boundary
- Inside Vs Outside the network
- Useful in routing, localization, finding the shape of the network...
Boundary of a Network

What is the Definition?
Definition

For a set of points S

- **Interior**: p is in the interior if a small disk around p is inside.
- **Exterior**: p is in the exterior if a small disk around p is outside.
- **Boundary**: p is on the boundary if in any disk around p, some points are inside, some are outside.
Definition: the difficulty

- Relies on an ambient space: the ‘outside’
- There are no sensors ‘outside’ the network!
- So, who is at the boundary?
Today:

Distance contours break at boundaries

Measure distances from a beacon
Distance contours break at boundaries

Discrete network
Boundary nodes

- Each iso-contour can have several connected components
- Find the end points of each component – boundary nodes
- One beacon is insufficient
Beacon selection

- Pick 1st beacon randomly
- Pick 2nd beacon farthest from first
- Pick 3rd next beacon with max distance to nearer of 1 and 2
- Iterate to pick k beacons

- Number of beacons needed depends on geometry
Application: Landmark Selection in Glider

- Without Boundary knowledge: tiles may contain holes
Landmark on Boundaries
Push Landmarks Away
More Pictures

Low density

UDGs and non UDGs
Boundary Detection with *flowers*

- Try to determine which nodes are *definitely in the interior*

- Nodes that are surrounded on all sides and by sufficiently large number of nodes
Independent Sets and Packing

• Independent nodes: set of nodes, no two of which are adjacent (have a connecting edge)

• If there are m independent nodes in a region, there must be m non-overlapping disks of diameter $= 1$.
Packing

• Take a cycle of length k
• Say m disks of diameter 1 fits inside
• m depends on k
• The cycle disconnects inside from outside
 if a connected set has more than m disks, it must be outside
Geometry-Based Reasoning for a Large Sensor Network

Sándor P. Fekete Alexander Kröller

SwarmNet
Boundary Detection by Topological Methods

- Select a point
- Find the shortest paths to all other points
- Some points have 2 different shortest paths:
 - *Cut locus*
Step 1: Build shortest path tree
Step 2: Find the ‘cut’

- The flow forks near a hole
- Lowest common ancestor – the nearest common point on the path to the root is far
Cut branch

- Set of connected cut nodes
Step 3: Removing cuts

- \#cut branches = \#holes
- Remove cut branches except one: all holes connected together and to exterior – only 1 hole left inside the network
Step 4: Coarse hole boundary

• Find the loop enclosing the hole
 – 2 different path to the cut from the Lowest common ancestor
Step 5: Extremal Nodes

- Distance from the coarse boundary locally maximal
Step 6: Extremal Nodes Must be on Boundary

- Force inner and outer boundaries to go through extremal nodes
Step 7: Restore Cut Nodes
Guarantee

- Provably correct in continuous case
- Approximate by polygons?
Simulations

• Random Distribution of nodes
 – Very good results with avg degree ≥ 10
 – For very low degrees, take 2-hop/3-hop neighborhoods as ‘fake’ neighbors

• Grid distribution with random perturbation
 – Good results on avg degree ≥ 6
Random Distributions

Avg deg = 7
1-hop

Avg deg = 7
2-hop (9)

Avg deg = 7
3-hop (12)

Avg deg = 10

Avg deg = 13

Avg deg = 16
Grid with perturbation

Low Density, Sparse Deployment

Avg deg = 6
Avg deg = 8
Avg deg = 12

2628 nodes
Avg deg = 25

1742 nodes
Avg deg = 16

842 nodes
Avg deg = 7
Summary

• Discrete case not formally provable
 – Can we contract a cycle in a network?
• Fast, efficient
• Has been used in network segmentation, localization, many other cases.
• 2-D network: #holes = Topology