Location-based Routing in Ad hoc Networks

3/3/06
Routing protocols in communication networks obtain route information between pairs of nodes wishing to communicate.

- **Proactive protocols**: the protocol maintains routing tables at each node that is updated as changes in the network topology are detected.
- **Reactive protocols**: routes are constructed on demand. No global routing table is maintained.
 - Ad hoc on demand distance vector routing (AODV)
 - Dynamic source routing (DSR)
- However, both depend on flooding for route discovery.
Geographical routing

- Geographical routing uses a node’s location to discover path to that route.
- Assumptions:
 - Nodes know their geographical location
 - Nodes know their 1-hop neighbors
 - Routing destinations are specified geographically (a location, or a geographical region)
 - Each packet can hold a small amount (O(1)) of routing information.
 - The connectivity graph is modeled as a unit disk graph.
Geographical routing

- The information that the source node has
 - The location of the destination node;
 - The location of itself and its 1-hop neighbors.

- **Geographical forwarding**: send the packet to the 1-hop neighbor that makes **most progress** towards the destination.
 - No flooding is involved.

- Many ways to measure “progress”.
 - The one closest to the destination in Euclidean distance.
 - The one with **smallest angle** towards the destination: “compass routing”.
 - Etc.
Greedy progress
Geographical routing may get stuck

- Geographical routing may stuck at a node whose neighbors are all further away from the destination than itself.

Send packets to the neighbor closest to the destination
Compass routing may get in loops

- Compass routing may get in a loop.

Send packets to the neighbor with smallest angle towards the destination.
How to get around local minima?

• Use a planar subgraph: a straight line graph with no crossing edges. It subdivides the plane into connected regions called faces.
Face Routing

- Keep left hand on the wall, walk until hit the straight line connecting source to destination.
- Then switch to the next face.
Face Routing
Face Routing Properties

• All necessary information is stored in the message
 – Source and destination positions
 – The node when it enters the perimeter mode.
 – The first edge on the current face.

• Completely local:
 – Knowledge about direct neighbors’ positions is sufficient
 – Faces are implicit. Only local neighbor ordering around each node is needed

“Right Hand Rule”
What if the destination is disconnected?

- The perimeter routing will get back to where it enters the perimeter mode.
- Failed – no way to the destination.
- Guaranteed delivery of a message if there is a path.
Planar Graph Subtraction

Compute a planar subgraph of the unit disk graph.

– Preserves connectivity.
– Distributed computation.
A little detour on Delaunay triangulation
Delaunay triangulation

- First proposed by B. Delaunay in 1934.
- Numerous applications since then.
Voronoi diagram

- Partition the plane into cells such that all the points inside a cell have the same closest point.
Delaunay triangulation

• Dual of Voronoi diagram: Connect an edge if their Voronoi cells are adjacent.
• Triangulation of the convex hull.
Delaunay triangulation

- "Empty-circle property": the circumcircle of a Delaunay triangle is empty of other points.
- The converse is also true: if all the triangles in a triangulation are locally Delaunay, then the triangulation is a Delaunay triangulation.
Greedy routing on Delaunay triangulation

• Claim: Greedy routing on DT never gets stuck.
Delaunay triangulation

- For an arbitrary point set, the Delaunay triangulation may contain long edges.
- Centralized construction.
- Next: 2 planar subgraphs that can be constructed in a distributed way: relative neighborhood graph and the Gabriel graph.
Relative Neighborhood Graph and Gabriel Graph

- **Relative Neighborhood Graph (RNG)** contains an edge uv if the lune is empty of other points.
- **Gabriel Graph (GG)** contains an edge uv if the disk with uv as diameter is empty of other points.
- Both can be constructed in a distributed way.
Relative Neighborhood Graph and Gabriel Graph

- Claim: MST \subseteq RNG \subseteq GG \subseteq Delaunay

- Thus, RNG and GG are planar (Delaunay is planar) and keep the connectivity (MST has the same connectivity of UDG).
MST \subseteq RNG \subseteq GG \subseteq Delaunay

1. RNG \subseteq GG: if the lune is empty, then the disk with uv as diameter is also empty.
2. GG \subseteq Delaunay: the disk with uv as diameter is empty, then uv is a Delaunay edge.
MST \subseteq RNG \subseteq GG \subseteq Delaunay

3. MST \subseteq RNG:
 - Assume uv in MST is not in RNG, there is a point w inside the lune. $|uv|>|uw|$, $|uv|>|vw|$.
 - Now we delete uv and partition the MST into two subtrees.
 - Say w is in the same component with u, then we can replace uv by wv and get a lighter tree. \Rightarrow contradiction.

RNG and GG are planar (Delaunay is planar) and keep the connectivity (MST has the same connectivity of UDG).
An example of UDG

200 nodes randomly deployed in a 2000×2000 meters region. Radio range = 250 meters
An example of GG and RNG
Two problems remain

A subgraph G' of G is a α-spanner if the shortest path in G' is bounded by a constant α times the shortest path length in G.

Both RNG and GG are not spanners \Rightarrow a short path may not exist!

Even if the planar subgraph contains a short path, can greedy routing and face routing find a short one?
Other problems

- **Localization:**
 - Nodes need to know their geographical locations.

- **Location service:**
 - How does a source know the location of destination?
 - What if the nodes move around?

- **Planar graph construction:**
 - Requires a unit disk graph assumption, which is not always the case in practice.
 - What if the nodes are in 3d?
Summary

- Location-based routing
- Greedy forwarding
- Planar graph routing
- How to construct a planar graph?