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Abstract—Spatial query execution is an essential function-
ality of a sensor network, where a query gathers sensor data
within a specific geographic region. Redundancy within a
sensor network can be exploited to reduce the communi-
cation cost incurred in execution of such queries. Any re-
duction in communication cost would result in an efficient
use of the battery energy, which is very limited in sensors.
One approach to reduce the communication cost of a query
is to self-organize the network, in response to a query, into
a topology that involves only a small subset of the sensors
sufficient to process the query. The query is then executed
using only the sensors in the constructed topology. The self-
organization technique is beneficial for queries that run suf-
ficiently long to amortize the communication cost incurred
in self-organization.

In this article, we design and analyze algorithms for such
self-organization of a sensor network to reduce energy con-
sumption. In particular, we develop the notion of a con-
nected sensor cover and design a centralized approximation al-
gorithm that constructs a topology involving a near-optimal
connected sensor cover. We prove that the size of the con-
structed topology is within an O(log n) factor of the opti-
mal size, where n is the network size. We develop a dis-
tributed self-organization version of the approximation al-
gorithm, and propose several optimizations to reduce the
communication overhead of the algorithm. We also design
another distributed algorithm based on node priorities that
has a further lower communication overhead, but does not
provide any guarantee on the size of the connected sensor
cover constructed. Finally, we evaluate the distributed al-
gorithms using simulations and show that our approaches
results in significant communication cost reductions.

Keywords— Sensor networks, sensor coverage, sensor con-
nectivity, query optimization, connected sensor cover

1 Introduction

Recent advances in miniaturization of computing devices
with advent of efficient short-range radios have given rise
to strong interest in sensor networks [1, 2]. A sensor net-
work consists of sensor nodes with short range radios and
on-board processing capability. Each sensor can also sense
certain physical phenomena like light, temperature, vibra-
tions, or magnetic field around its location. The purpose
of a sensor network is to process some high-level sensing
tasks in a collaborative fashion, and is periodically queried
by an external source to report a summary of the sensed
data/tasks. For example, a large number of sensors can be
scattered in a battlefield for surveillance purposes to detect
certain objects of interest, say tanks. A typical query could
be: Report the number of tank sightings at 10 minute in-
tervals for the next 24 hours in a specific region within the

1Preliminary version appeared in ACM Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), 2003. Author Samir Das’s work
has been partially supported by NSF grant ANI-0308631.

battlefield.
Several new design themes have emerged for sensor net-

works. On one hand, the network must be self-configuring
and highly fault-tolerant as the sensors may be deployed
in an “ad hoc” fashion. On the other hand, as each sen-
sor has only limited battery energy, the network as a whole
must minimize total energy usage in order to enable unteth-
ered and unattended operation for an extended time. One
technique to optimize energy usage during query execution
would be for the network to self-organize, in response to a
query, into a logical topology involving a minimum num-
ber of sensor nodes that is sufficient to process the query.
Only the sensors in the logical topology would participate
(communicate with each other) during the query execution.
This is a very effective strategy for energy conservation, es-
pecially when there are many more sensors in the network
than are necessary to process a given query. For example,
two sensors in close enough proximity may generate the
same or similar sensory data and it may be sufficient to
involve only one of the sensors for query processing. The
technique of self-organization exploits such redundancy ef-
fectively to conserve energy.

In order for the above technique to be of value, the num-
ber of control messages used in the self-organization process
must be small, so that the overhead of the technique does
not offset the expected benefit completely. Note that the
overhead is paid only once for a given query, but the benefit
is reaped during each execution of the query. Thus, a high
overhead for such a technique could still be tolerated for
highly redundant networks and/or long running queries.

In this paper, we design and analyze competitive algo-
rithms for the above problem of self-organization of a sen-
sor network into an optimal logical topology in response
to a query. In particular, we design an approximation al-
gorithm that constructs such a topology in response to a
query and show that the size of the topology returned by
the algorithm is within an O(log n) factor of the size of an
optimal topology, where n is the number of sensors in the
network. We design a distributed version of the same algo-
rithm that is run by the sensors in the network and results
in a self-organization of the network into a topology involv-
ing a near-optimal number of sensors. We also design an-
other energy-efficient distributed algorithm based on node
priorities that incurs a lower communication overhead, but
does not provide any guarantee on the solution size con-
structed. Through further analysis and experiments, we
show that the communication overhead of our distributed
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algorithms is reasonably low which makes them very effec-
tive over a wide range of query and network parameters.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide a formulation of the problem with ex-
amples and discuss motivations. In Sections 3 and 4, we
present the design and analysis of our proposed centralized
approximation and the distributed self-organization algo-
rithms. In Section 5, we present the simulation results
depicting the performance of our proposed algorithms. We
end with discussions on related work and concluding re-
marks in Sections 6 and 7 respectively.

2 Problem Formulation and Moti-

vation

In this section, we describe the problem addressed in the
article through an example, present motivation, and give a
formal definition of the problem. We start with a descrip-
tion of a sensor network model.

A sensor network consists of a large number of sensors
distributed randomly in a geographical region. Each sensor
has a unique identifier (ID) I and is capable of sensing a
well-defined convex region S around itself called the sensing
region. More will be said later about sensing regions. Each
sensor also has an a radio interface and can communicate
directly with some of the sensors around it. A query in
a sensor network asks for a summarization of some sensed
data/events over some time window and a geographical
region, which is a subset of the overall region covered by
the sensing regions of all the sensors in the network. A
query is typically run multiple times, possibly, for different
time windows.

Our article addresses the following optimization prob-
lem (formally defined later) that arises in sensor networks.
Given a query over a sensor network, select a minimum set
of sensors, called connected sensor cover, such that a) the
sensing regions of the selected set of sensors cover the entire
geographical region of the query, and b) the selected set
of sensors form a connected communication graph where
there is an edge between any two sensors that can directly
communication with each other. The following example
illustrates the problem.

2.1 Motivation

The following two characteristics of sensor networks lend
importance to the connected sensor coverage problem.

1. Spatial Queries: Due to the geographical distribu-
tion of sensors in a sensor network, each piece of data
generated in the sensor network has a geographic loca-
tion associated with it in addition to a timestamp [3,
4]. Hence, to specify the data of interest over which
a query should be answered, each query in a sensor
network has a time-window and a geographical region
associated with it [3]. By default, the geographical
region associated with such spatial queries is the full

region covered by sensing regions of all the sensors in
the sensor network.

2. Limited Battery Power: Sensors are miniscule com-
puting devices with a limited battery power. Also, as
evidenced in some recent studies [5], the energy budget
for communication is many times more than compu-
tation with the available technology. Therefore, min-
imizing communication cost incurred in answering a
query in a sensor network will result in longer lasting
sensor networks. Hence, communication-efficient exe-
cution of queries in a sensor network is of significant
interest.

The motivation for the connected sensor coverage prob-
lem addressed in this article comes from the presence of
spatial queries in a sensor network and the importance of
executing such queries with minimal energy consumption.
Given a query in a sensor network, we wish to select a small
number of sensors that are sufficient to answer the query
accurately. Also, the selected set of sensors should form
a connected communication graph, so that they can form
a logical routing topology for data gathering and trans-
mission to the query source. Hence, we wish to select an
optimal set of sensors that satisfy the conditions of cov-
erage as well as connectivity, i.e., an optimal connected
sensor cover as defined before. Constructing an optimal
connected sensor cover for a query enables execution of the
query in a very energy-efficient manner, as we need to in-
volve only the sensors in the computed connected sensor
cover for processing the query without compromising on
its accuracy. Note here that we wish to combine coverage
and connectivity in a single algorithm instead of using an
alternative approach of treating them as two separate sub-
problems, as the optimal solution for the combined problem
will be always equal or better than the solution obtained
by solving for optimal coverage first and then for optimal
connectivity. The reason for this is obvious – the sensors
selected for mere connectivity in this alternative approach
also contribute to coverage. Also, the alternative approach
requires two phases and thus incurs possibly higher over-
heads. Further discussion on the alternative approach ap-
pears in Section 3, where a Steiner Tree based approach
has been discussed.

The following discussion illustrates the savings in com-
munication achieved by computing a connected sensor cover
prior to the execution of a query.

Comparison with the Naive Approach. Given a query
over a sensor network, a naive way to run the query will
be to simply flood the network with the query. Each sen-
sor node in the network broadcasts the query message ex-
actly once and also remembers the ID of the sensor node
it receives the query from. If there are n sensors whose
sensing regions intersect with the query’s region, then us-
ing about n message transmissions, a communication tree
spanning the n sensors could be built within the network
in a breadth-first manner. Each node in the query region
now responds to the query, and the responses propagate
upwards in the tree towards the root of the tree (the query
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source). The responses also incurs a cost of n message
transmissions, assuming that responses are aggregated at
each tree node. Thus, to answer q queries asked at different
times to gather various snapshots of the query region, the
above process of flooding and responding needs to be re-
peated, and hence, the total communication cost incurred
is 2qn using the above naive approach.

Now, consider a connected sensor cover of size m sensors.
As the connected sensor cover set induces a connected com-
munication subgraph, the total cost incurred in executing
q queries over the same region will be D + 2qm, where
D is the communication cost incurred in computing the
connected sensor cover. If m is substantially less than n,
as would be the case of reasonably dense sensor networks,
constructing a connected sensor cover could result in large
savings in communication cost even with an overhead D
cost.

2.2 Formal Definition of the Problem

We now formally define the connected sensor cover problem
addressed in this article. We start with a few definitions.

Definition 1 (Communication Graph; Communication Dis-
tance) Given a sensor network consisting of a set of sensors
I, the communication graph for the sensor network is the
undirected2 graph CG with I as the set of vertices and
an edge between any two sensors if they can communicate
directly with each other. The communication subgraph in-
duced by a set of sensors M is the subgraph of CG involving
only the vertices/sensors in M.

An edge in the communication graph is referred to as a
communication edge between the two given sensors. A path
of sensors between I1 and I2 in the communication graph
is called a communication path between the sensors I1 and
I2. The communication distance between two sensors I1

and I2 is the length of the shortest path between I1 and
I2 in the communication graph (which is the number of
sensors on the shortest path, including I1 and I2).

Definition 2 (Connected Sensor Cover; Sensor Cover)
Consider a sensor network consisting of n sensors I1, I2, . . . , In.
Let Si be the sensing region associated with the sensor Ii.
Given a query Q over a region RQ in the network, a set
of sensors M = Ii1 , Ii2 , . . . , Iim

is said to be a connected
sensor cover for Q if the following two conditions hold:

1. RQ ⊂ (Si1 ∪ Si2 ∪ . . .Sim
)

2. the subgraph induced by M in CG is connected, where
CG is the communication graph of the sensor network.
In other words, any sensor Iij

in the connected sensor
cover can communicate with any other sensor Iik

in the
cover, possibly through other sensors in the selected
set M.

A set of sensors that satisfies only the first condition is
called a sensor cover for Q in the network.

2The algorithms and results in this article also apply to directed com-
munication graphs, but we make the assumption for simplicity.

Connected Sensor Coverage Problem: Given a sensor
network and a query over the network, the connected sensor
coverage problem is to find the smallest connected sensor
cover.

The connected sensor coverage problem is NP-hard as the
less general problem of covering points using line segments
is known to be NP-hard [6]. Constructing a minimum con-
nected sensor cover for a query in a sensor network enables
the query to be computed by involving a minimum num-
ber of sensors without compromising on the accuracy of
the query result.

2.3 A Note on Sensing Regions

The sensing region associated with a sensor signifies an
area for which the sensor can take the full responsibility
for sensing a given physical phenomenon within a desired
confidence. The real semantics of a sensing region is appli-
cation specific. For example, for target detection/tracking
applications, the sensing region is a region around the sen-
sor within which the sensor can detect a target with a pre-
determined minimum confidence. In such applications, the
sensing region for a sensor could be modeled as a circular
region of radius d around itself, where d is the distance
beyond which a target cannot be detected within a given
confidence. In some other applications, sensing regions are
defined in terms of the resolution of the application queries
or the correlation of the sensed data. For example, consider
an application that gathers temperature samples in a geo-
graphical region monitored by a sensor network. Now, due
to the spatial nature of temperature, temperature values
at any two points that are less than d distance apart may
be highly correlated. In such a case, we can again define
sensing regions of circular radius d around each sensor.

As discussed above, typically, we can determine the sens-
ing region for each sensor either as a static approximation
of the sensor’s location and capabilities, or as a function
of query’s resolution, or application’s confidence require-
ments. The concept of sensing region similar to ours has
been used in recent research, for example, by Slijepcevic
and Potkonjak in [7], which addresses a closely related
problem, and more recently, by Shakkottai et al. in [8].

If the sensing region is not known a priori, we can solve
the connected sensor coverage problem iteratively for in-
creasing sensing regions and pick the minimum solution
whose gathered data is sufficiently accurate in compari-
son with the collective data of all the sensors. Otherwise,
without the assumption of sensing regions, the connected
sensor coverage problem could be formulated as a problem
of selecting a minimum connected set of sensors such that
every point in the query region gets a minimum amount of
“exposure” from the selected set of sensors. Such a con-
cept of exposure has been defined in [9] albeit in a different
context.

In our treatment, the sensing regions can take any con-
vex shape. The convexity assumption is needed to make
Observation 1 (defined later). The convexity assumption
will be true in practice, unless there are impregnable ob-
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Figure 1: Subelements and Valid Subelements.

stacles in the sensor network region. For ease of presenta-
tion, we have shown circular sensing regions in the figures
throughout this article. In the absence of the convexity as-
sumption, the techniques presented in this article are still
applicable, but the designed centralized approximation al-
gorithm may no longer run in polynomial time.

3 Centralized Approximation Algo-

rithm

In this section, we present a centralized approximation al-
gorithm for the connected sensor coverage problem. The
algorithm runs in polynomial time and guarantees a solu-
tion whose size is within O(r logn) of the optimal, where r
is the link radius of the sensor network and is defined later.
One of the important features of our algorithm is that it
can be easily transformed into a distributed version that
has low communication overhead.

Definition 3 (Subelement; Valid Subelements) Consider
a geographic region with a number of sensing regions. A
subelement is a set of points. Two points belong to same
subelement iff they are covered by the same set of sensing
regions. In other words, a subelement is a minimal region
that is formed by an intersection of a number of sensing
regions. Given a query region RQ, a subelement is valid if
its region intersects with RQ.

In Figure 1, where RQ is the given query region, there
are fourteen subelements numbered 1 to 14, of which only
1 to 11 are valid subelements.

Algorithm Description: We designed a greedy algo-
rithm to select a connected sensor cover of near-optimal
size. In short, the greedy algorithm works by selecting, at
each stage, a path (communication path) of sensors that
connects an already selected sensor to a partially covered
sensor. The selected path is then added to the already
selected sensors at that stage. The algorithm terminates
when the selected set of sensors completely cover the given
query region.

A more formal and complete description of the designed
greedy algorithm is as follows. Let us assume that M is
the set of sensors already selected for inclusion in the con-
nected sensor cover by the greedy algorithm at any stage.
Initially, M is an empty set. The algorithm starts with
including in M an arbitrary sensor that lies within the

query’s region. At each stage, the greedy algorithm selects
a sensor Ĉ (based on a criteria described later) along with

a path/sequence of sensors P̂ that forms a communication
path between Ĉ and some sensor in M . The selected path
of sensors P̂ , which includes Ĉ, is then added to M . Thus,
at any stage of the algorithm, the communication subgraph
induced by M is connected. Also, if at each stage, the se-
lected path of sensors P̂ covers some yet uncovered (by M )
area of the query’s region, then the algorithm will eventu-
ally terminate with M as the connected sensor cover.

We now describe the criteria used in selection of Ĉ and
P̂ at any given stage of the algorithm. Any sensor Ci /∈ M
whose sensing region contains a valid subelement, that has
been covered by a sensor in M , becomes a candidate sensor,
i.e., a potential candidate for selection as Ĉ. For each such
candidate sensor Ci, we construct a candidate path Pi of
sensors that forms a communication path connecting Ci

to some sensor in M . The candidate path Pi that covers
the maximum number of uncovered valid subelements per
sensor (defined as benefit of Pi) is added to M at that
stage of the algorithm. We will illustrate the working of
the algorithm through an example (Example 1). First, we
define some terms introduced in the above description.

Definition 4 (Candidate Sensor; Candidate Path) Let M
be the set of sensors already selected by the algorithm. A
sensor C is called as a candidate sensor if C /∈ M and the
sensing region of C intersects with the sensing region of
some sensor in M . A candidate path is a sequence/path
of sensors that form a communication path connecting a
candidate sensor C with some sensor in M . We use |P | to
denote the length of a candidate path P .

Definition 5 (Uncovered Valid Subelements; Benefit of a
Candidate Path) An uncovered valid subelement is a valid
subelement that is not covered by any sensing region of a
sensor in M , the set of sensors already selected for inclu-
sion in the connected sensor cover by the algorithm. In
Figure 1, if M contains the sensors corresponding to the
two left-most sensing disks S and S′, then the uncovered
valid subelements are 8, 9, 10, and 11.

The benefit of a candidate path P is the total number
of uncovered valid subelements covered by the sensors in
P divided by the number of sensors that are in P but not
in M . The most beneficial candidate path is the candi-
date path that has the most benefit among the given set of
candidate paths.

EXAMPLE 1 Figure 2 shows a set sensors M (solid cir-
cular dots), the region covered by M , query region RQ, and
sensing disks corresponding to some of the sensors not in
M (hollow circular dots). Figure 2(a) and (b) depict two
consecutive stages of the algorithm.

Let us consider the stage of the centralized approxi-
mation algorithm shown in Figure 2(a). At this stage,
there are at least four candidate sensors viz. C1, C2, C3, C4,
as shown in the figure. The candidate paths associated
with the candidate sensors are respectively P1, P2, P3, P4

as shown. For sake of clarity, we have not shown the set of
sensors involved in the candidate paths P3 and P4, but the
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Figure 2: Working of the Centralized Approximation Algorithm. (a) Candidate sensors: C1, C2, C3, C4; Associated
candidate paths: P1, P2, P3, P4; P1 = <C1, I1>, P2 = <C2, I2, C1, I1>. (b) Candidate sensors: C3, C4, I5; Associated
candidate paths: P3, P4, P5; P3 = <C3, C2>.

figure shows the actual communication edges and sensors
involved in the candidate paths P1 and P2. Let us assume
that the most beneficial candidate path at this stage is P2.
The algorithm then chooses P2 as P̂ and adds the sensors
C1, I2, and C2 to the set M .

The addition of sensors C1, I2, C2 to M yields the next
stage of the algorithm shown in Figure 2(b). At this stage,
the sensor I5 becomes a candidate sensor, while C1 no
longer remains a candidate sensor. Also, the figure shows
the recalculated and new candidate paths connecting each
of the candidate sensors C3, C4, I5 to some sensor in M .
Here, we have assumed that the candidate path P4 doesn’t
change from the previous stage, while the candidate path
P3 changes to the communication edge (C3, C2). Now, at
this stage, if P3 is the most beneficial path at this stage,
the algorithm would add the sensor C3 to M , which yields
the next stage (now shown in the figure). Finally, if the
algorithm adds to M a candidate path P4 connecting C4

to some sensor in M , the set of sensors M would now cover
the entire query region and the algorithm returns the new
M (obtained by adding C3, C4, and other sensors in P4 to
the M shown in Figure 2(b)) as the connected set cover
solution.

Observation 1 The maximum number of subelements in
a 2-dimensional plane with n disks is n(n − 1) + 1. If
we have n convex objects, each having l sides, then the
maximum number of subelements is n2l.

From the observation, it is easy to see that the central-
ized approximation algorithm can be implemented in O(n3)
time, where n is the total number of sensors in the network,
by building shortest communication paths for all pairs of
sensors in O(n3) time at the beginning.

Definition 6 (Link Radius) The link radius of a sensor
network is defined as the maximum communication dis-
tance between any two sensors whose sensing regions in-
tersect.

Theorem 1 The centralized approximation algorithm re-
turns a connected sensor cover of size at most (r − 1)(1 +

logd)|OPT |, where |OPT | is the size of the optimal sen-
sor cover (not necessarily connected), d is the maximum
number of subelements in a sensing region, and r is the
link radius of the sensor network. From Observation 1, the
connected sensor cover size is within O(r logn) factor of
the optimal.

Steiner Tree Based Approach: One way to solve the
connected sensor cover problem in a centralized manner
would be to construct a sensor cover and then build a
Steiner tree [11] to connect the sensors in the sensor cover.
To construct the sensor cover, we can use the greedy algo-
rithm, which will deliver a solution within a O(logn) factor
of the optimal sensor cover.3 To construct a Steiner tree
connecting the constructed sensor cover, we can use the
simple 2-approximation algorithm [11] for the Steiner tree
problem. This Steiner tree based approach is conceptually
simpler, but yields the same theoretical bound (O(r log n))
on the size of the solution returned. In our simulations
(discussed in Section 5), we observed that the size of the
connected sensor cover delivered by the Steiner tree based
approach is larger than that returned by the centralized
approximation algorithm. Moreover, the above approach
does not yield an efficient distributed implementation due
to the global nature of the greedy sensor cover construc-
tion.

3.1 Weighted Version

The centralized approximation algorithm can be general-
ized to handle the weighted version of the connected sensor
coverage problem. In the weighted setting, each sensor has
a weight associated and we wish to select a connected sen-
sor cover with the minimum total weight. In practice, we
would assign higher weights to sensors that have a lower
battery life and/or are critical to the viability of the sensor
network so that they have a lesser chance of being selected.

3There are even better approximation algorithms [6, 12, 13] for the ge-
ometric versions of set cover that could apply to our sensor cover problem
if we assume the sensing regions to be circular disks.
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The benefit of a candidate path in the weighted case is
defined as the total number of uncovered valid subelements
covered by P divided by the total weight of the sensors
that are in P , but not M . Thus, to handle the weighted
case, the value of Benefit in the algorithm is computed as
follows:

Benefit = (Number of valid subelements covered by the

region ((Si0 ∪ Si1 ∪ . . .Sil ∩ RQ) − RM ))/(
∑l−1

j=0 wij),
where wij is the weight of the sensor Iij .

Definition 7 (Weighted Communication Distance;
Weighted Lint Radius) The weighted communication dis-
tance between two sensors is the weight of the minimum
weighted communication path between them.

The weighted link radius of a sensor network is defined as
the maximum weighted communication distance between
any two sensors whose sensing regions intersect.

Theorem 2 For the weighted connected sensor coverage
problem, the generalization of the centralized approxima-
tion algorithm returns a connected sensor cover of total
weight at most r(1 + log d)|OPT |, where |OPT | is the to-
tal weight of an optimal sensor cover, d is the maximum
number of subelements in a sensing region, and r is the
weighted link radius of the sensor network.

Alternative Cost Models. In our cost model we have
tacitly assumed that the only energy cost incurred in the
sensor network is for communication. If sensing and asso-
ciated signal processing costs are also considered, then the
sensors that are involved in both sensing and communica-
tion will incur a higher cost than those that are involved
solely in communication. The centralized approximation
algorithm can be easily generalized for such a cost model.
A similar O(log n) bound on the weight of the solution de-
livered can also be proved because of the observation that
each sensor can be looked upon as a logical combination
of two sensors: one having a zero transmission range (i.e.,
having no communication edges) and the original sensing
radius, and the other having a zero sensing radius and the
original communication edges.

In addition, the centralized approximation algorithm can
also be generalized to the “link cost model,” wherein the
total cost of a connected sensor cover is defined as the
sum of the weighted edge costs in a spanning tree of the
connected sensor cover. The generalization is achieved by
defining the weight of a candidate path as the sum of the
weighted edge costs. More generally, our recent work [14]
extends the centralized approximation algorithm for the
variable radii sensor network model wherein each sensor
node can adjust its sensing and transmission radii.

4 Distributed Self-Organization

Algorithms

In this section, we present two self-organizing distributed
algorithms viz. distributed approximation and distributed

Priority algorithms. The distributed approximation algo-
rithm is a distributed version of the centralized approxima-
tion algorithm of previous section. The distributed Priority
algorithm is based on node priorities and has a lower com-
munication overhead, but does not provide any guarantee
on the size of the connected sensor cover constructed.

4.1 Distributed Approximation Algorithm

In this section, we describe the self-organizing distributed
version of the centralized approximation algorithm. As
stated before, one of the key features of our centralized
approximation algorithm is that it lends to a very natural
distributed algorithm.

Like the centralized approximation algorithm, the dis-
tributed approximation algorithm goes through a sequence
of stages to build a connected sensor cover within the sen-
sor network for a given query. Throughout the course of
the algorithm, the sensor network maintains the following
values:

• M , a set of sensors that have already been selected for
inclusion in the connected sensor cover by the algo-
rithm. Like the centralized algorithm described in the
previous section, the distributed algorithm also incre-
ments M by adding a candidate path of sensors to M
at each stage.

• SP , a set of candidate paths. Recall that, a candidate
path is a sequence of sensors that form a communica-
tion path connecting a candidate sensor to some sen-
sor in M , where a candidate sensor is a sensor whose
sensing region intersects with some sensing region of
a sensor in M . Each candidate sensor has exactly one
candidate path associated with it.

• P̂ , the most recently added candidate path, and Ĉ,
the candidate sensor associated with P̂ .

We assume that each of the above values keep the sensing
region of the contained sensor nodes. Each sensor in the
network is aware of its membership in M , or P̂ , or in a
candidate path in SP . Also, the most recently added can-
didate sensor Ĉ stores the values M, SP, and P̂ . Each
stage of the distributed algorithm consists of the following
sequence of transmission phases.

1. Candidate Path Search: The most recently added
candidate sensor Ĉ broadcasts a Candidate Path Search
(CPS) message to all sensors within 2r communication
hops, to select new candidate paths and candidate sen-
sors. Here, r is the link radius of the sensor network.
We choose 2r (instead of r) so that the CPS message
from Ĉ reaches even those candidate sensors whose
sensing disks intersect with that of other sensors in
P̂ , the most recently added candidate path associated
with Ĉ. The CPS message carries the most recently
added candidate path.

2. Candidate Path Response: Any sensor I that re-
ceives a CPS message checks to see if it is a new can-
didate sensor, i.e., if I’s sensing region intersects with
the sensing region of some sensor in the most recently
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added candidate path P̂ . If I is a candidate sensor, it
unicasts a Candidate Path Response (CPR) message
to the originating sensor Ĉ of the CPS message. The
CPR message contains as candidate path P the se-
quence of sensors (including I) that the received CPS
message passed through since its origination.

3. Selection of Best Candidate Path/Sensor: The
sensor Ĉ, which was the originator of the CPS mes-
sages in the current stage, collects all the CPR mes-
sages sent to it by the candidate sensors. The candi-
date path P contained in each received CPR message
is added by Ĉ, after appropriate truncation, to SP ,
the set of candidate paths being maintained by the
sensor network. After having received all the CPR
messages sent to Ĉ during this stage, the sensor Ĉ se-
lects the most beneficial candidate path P̂new among
all the candidate paths in SP . Let, Ĉnew be the candi-
date sensor associated with the picked candidate path
P̂new, and let Inew be the set of sensors in the candi-
date path Pnew. The sensor Ĉ unicasts a NewC mes-
sage “reliably”4 to Ĉnew with the following updated
information: M = M ∪ Inew; P̂ = P̂new; SP =
SP − P̂ new. Note that SP has also been augmented
with all the candidate paths received in the CPR mes-
sages.

4. Repeat: The sensor Ĉnew receives the NewC message
sent to it by Ĉ. After receiving the message, Ĉnew up-
dates the value Ĉ to itself (i.e., Ĉ = Ĉnew). That com-
pletes the current stage of the algorithm. The above
process repeats till the selected set of sensors M cover
the entire query region in the sensor network.

The above distributed approximation algorithm guaran-
tees a self-organization of the sensor network into a log-
ical topology that represents a connected sensor cover for
the given query. To reduce the size of the CPS and NewC

messages, we represent the set M by only the boundary
sensors, i.e., the sensors that are on the boundary of the
region M covers. On an average, the number of boundary
sensors should be the square root of the number of sensors
in M .

4.2 Optimizations to Reduce Number of

Messages

The following optimization techniques have been used by
the distributed approximation algorithm to reduce the num-
ber of messages incurred during the self-organization.

1. To reduce the number of messages for coordination,
we reuse the candidate paths computed for candidate
sensors at later stages of the algorithm. In contrast,
the centralized algorithm recomputes the (best) candi-
date paths for each candidate sensor at each stage and
picks the most beneficial candidate path. However, the
distributed algorithm does optimize already computed

4Only NewC message needs to be delivered reliably in the algorithm.
Loss of some CPS or CPR messages will only affect the performance (so-
lution size), not the correctness, of the algorithm.

candidate paths by truncating them if some sensor in
the candidate path has been newly added to M . Also,
the distributed algorithm does recalculate the benefit
of each candidate path in SP at each stage.

2. To reduce the number of broadcast CPS messages, we
stipulate that if a sensor is in (M − Inew), i.e., it has
already been selected in previous stages, then it does
not broadcast a CPS message received from another
sensor. Also, a sensor broadcasts a CPS broadcast
message only once during any one stage of the algo-
rithm.

In addition, to minimize computation load on the sen-
sor nodes, the distributed algorithm computes the area of
the uncovered query region covered by the candidate path
instead of the number of uncovered valid subelements, to
compute the benefit of a candidate path.

We observe through extensive experiments (as shown
later in Figure 4(a)) that the above optimizations do not
increase the size of the connected sensor cover constructed.
However, they do result in substantial savings in commu-
nication cost.

Number of Messages: If the NewC messages are trans-
mitted through an optimal path within M , it is not diffi-
cult to show that the total number of messages transmitted
during the entire course of the distributed approximation
algorithm is O(k(log m + b)) for uniformly distributed sen-
sors, where k is the number of stages the algorithm goes
through before terminating, m is the size of connected sen-
sor cover constructed, b is the maximum number of sensors
within 2r communication hops of any sensor. Here, as in
the simulation experiments in the next section, we assume
piggybacking of CPR messages at each stage, i.e., during
the CPR phase each sensor waits sufficiently long to col-
lect all CPR messages intended to pass through it, and
then unicasts all the collected CPR messages to the Ĉ in
one message.

4.3 Distributed Priority Algorithm

While the distributed approximation algorithm provides a
guarantee on the connected sensor cover size, it needs to
carry around a central state (the intermediate solution M )
via messages. This could potentially make message sizes
large. In this section, we present an alternate distributed
approach that uses small and constant size messages. We
refer to the alternate approach as the distributed Priority
algorithm, as it uses a notion of node priorities. In the
distributed Priority algorithm, each sensor uses only local
neighborhood information keeping the number and size of
messages small. However, there is no guarantee on the size
of the connected sensor cover delivered by the distributed
Priority algorithm, since the selection of connected sensor
cover is based solely on each node’s local neighborhood
information.

Basic Idea. The distributed Priority algorithm is based
on the following idea. A node s is not needed for con-
nectivity if all pairs of neighbors of I have an alternate
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communication path not involving I. And, a node is not
needed for coverage if its sensing region is fully covered by
other sensors’ sensing regions. Thus, if a node I satisfies
both the above conditions, its deletion would preserve con-
nectivity and coverage of the sensor network. Hence, such
a node I is marked deleted. Node priorities are used to
prevent cyclicity of conditions. In particular, only lower
priority nodes are used for satisfying conditions of a given
node. To determine alternate paths between pairs of neigh-
bors without incurring unreasonable communication cost,
we limit ourselves to k-hop neighborhood information, i.e.,
information about communication neighbors of all nodes
that are within a communication distance of k − 1. We
chose k = 3 for our simulations.

Algorithm Description. The distributed Priority algo-
rithm works as follows. First, each sensor node assigns a
random number as a priority to itself.5 The sensor nodes
whose sensing region do not overlap with the query region
are inactivated, and do not participate in the rest of the
algorithm. Now, each active node gathers l = max(k, r)-
hop information (including node priorities), where k is the
constant as described above and r is the link radius of the
sensor network. Let P (I) be the priority of a node I. Each
active node I periodically tests for the following a set of
conditions and marks itself deleted if they are satisfied.

C1: In the communication subgraph induced over the set
of active nodes, every pair of non-deleted active neigh-
bors of I are connected by communication path that
lies entirely within the k-hop neighborhood of I and
uses intermediate nodes having a priority less than
P (I). This condition ensures that deletion of I will
preserve the connectivity of the communication sub-
graph induced by the set of active nodes not marked
deleted.6

C2: There is a set of sensor nodes H such that such that
every node in the set H has a priority less than P (I),
and intersection of the query region and the sensing
region of I is fully covered by the union of the sensing
regions of nodes in H. Note that H may contain a
node that is marked deleted.

The deleted marking of a node is permanent and in
the end, some of the nodes may be left unmarked. We
show in Theorem 3 that if the initial set of active nodes
form a connected sensor cover, then the set of active nodes
that have not been marked deleted at any stage forms a
connected sensor cover.

Message Communications. Initially, each active node
needs to gather l = max(k, r)-hop neighborhood informa-
tion, where k is the constant in condition C1 and r is the
link radius of the sensor network. If n is the total number
of active sensor nodes, then l-hop neighborhood informa-
tion can be gathered using (l − 1)n messages using (l − 1)
phases as follows. In the first phase, each node transmits

5Considering more complicated priority functions based on node degree
and/or overlapping area did not result in any performance improvement.

6Wu et al. in [15] use a similar condition for computing a connected
dominating set.

its neighborhood information to its neighbors. In each of
the remaining (l−2) phases, each node collects information
transmitted by all its immediate neighbors, and transmits
the collected information to its immediate neighbors. At
the end of (l − 1) phases and (l − 1)n total messages, each
node would have l-hop neighborhood information. Note
that the above process can be implemented in an asyn-
chronous communication paradigm.

After the initial accumulation of l-hop neighborhood in-
formation, whenever a node is marked deleted, it informs
its communication neighbors of its deleted status, so that
they could retest their C1 condition. This can be done us-
ing one message transmission for each node that is marked
deleted. Note that an unsatisfied C1 condition of a node
can become true only by deleted marking of one of its
communication neighbors.

Theorem 3 If the set of active sensor nodes, i.e., the
set of sensor nodes whose sensing regions intersects the
query region, form a connected sensor cover, then the set
of non-deleted active sensor nodes forms a connected sen-
sor cover at any stage of the distributed Priority algorithm.

Proof: (sketch) Consider an active node s that is marked
deleted. Let F (s) be the set of lower-priority active nodes
that satisfy the condition C2 for node s. If there is a
node r ∈ F (s) that is marked deleted, we update F (s)
as F (s) = F (s) − {r} ∪F (r). Note that s /∈ F (r), and up-
dated F (s) consists of nodes which have a priority less than
that of s and whose sensing regions fully cover the sensing
region of s. Repeating the above update process for every
deleted node in F (s), we get a set F (s) that consists of
only non-deleted lower-priority nodes. Thus, removal of
the node s leaves the query region covered by non-deleted
nodes. Similarly, it can be shown (as in [15]) that once
the C1 condition is satisfied for a node I, the deletion of
I will always preserve connectivity in the communication
subgraph induced by the non-deleted active nodes, even
if other nodes get marked as deleted. It is easy to see
that the above proof of correctness does not rely on reli-
able message transmissions, as long as each active sensor
node has accurate information about its immediate (1-hop)
neighborhood.

Multiple Concurrent Queries. The above described
distributed Priority algorithm can be easily generalized
to handle multiple concurrent queries having overlapping
query regions. In particular, we need to change the condi-
tion C1 by checking for every pair of non-deleted active as
well as inactive neighbors of I. Then, to handle a new query
Q, any previously inactivated sensor node that belongs to
the query region of Q is reactivated, and the distributed
Priority algorithm executed for the reactivated nodes. The
above ensures that the entire set of non-deleted active
nodes will form a connected sensor cover for the union of
the query regions for all the queries in the network. Simi-
larly, the distributed approximation algorithm can also be
generalized to handle multiple concurrent queries by inac-
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tivating and reactivating sensor nodes appropriately.

5 Performance Evaluation

We have constructed a simulator to evaluate the perfor-
mance of the distributed approximation algorithm (see Sec-
tion 4), and compare its communication overhead and/or
solution size with other approaches viz. the naive flooding-
based approach (see Section 2.1), centralized approxima-
tion algorithm (see Section 3), Steiner-tree based approach
(end of Section 3), and the distributed Priority algorithm
(Section 4.3).

Simulator. The simulator uses randomly placed sensor
nodes in a rectangular region. All sensor nodes have a
circular sensing region of radius s associated with them.
A communication edge exists between two sensor nodes
if they are within a certain distance, called transmission
radius, from each other. The size of the rectangular re-
gion, number of nodes (n), sensing radius (s), and trans-
mission radius (t) are input parameters of the simulator.
The link radius (r) is computed in terms of the above pa-
rameters and will be described later. The simulator only
models message transmissions. It does not model any link
layer protocol or wireless channel characteristics. Thus, all
the messages in the simulator are transmitted in an error-
free manner. Also, the passage of time is modeled in a
time-stepped fashion, wherein during each step, each node
receives messages, performs appropriate computations in
response to these messages, and then sends out messages
as a result of these computations. While such a simulator
models an idealized communication subsystem, it is suffi-
cient for our purpose, as we are only interested in counting
message transmissions.

Simulation Parameters. In the simulation results that
follow, we have used a 100×100 area. The query region is
the circular region of radius 50 within the rectangle. Sen-
sors have a sensing radius s = 4. We vary the number of
sensors (n) and transmission radius (t); t is varied from
2 to 9, and n from 800 to 6000.7 This range of parame-
ters allows us to study performance for very sparse to very
dense networks. Our experiments with still lower values
of t and n showed that the network was too sparse that a
connected sensor cover did not exist. Also, for t > 8, the
sensors with intersecting sensor disks are reachable within
one hop (i.e., r = 2). Thus, one set of experiments for
t > 8 is sufficient. Note also that only the spatial density
of the sensors and the ratio of the sensing and transmission
radii affect the performance of the algorithm. Thus, there
is no need to vary the size of the area and the sensing ra-
dius. The simulator computes D, the number of messages
transmitted during the algorithm (a measure of the com-
munication overhead of the algorithm), and m, the size of
the connected sensor cover constructed, for a given set of
input parameters.

7For one experiment, we consider much smaller values of n, and larger
values of s and t.

5.1 Performance of Distributed Approxi-

mation Algorithm

Now, we are ready to describe the performance results
of the distributed approximation algorithm and compare
them with other approaches. However, before we describe
the performance plots for the distributed approximation
algorithm, we add a note below on computation of the link
radius r. While an exact computation is neither necessary
nor practical, it is important to have fair idea of the value
of r for the given parameters of the network. Too large
a value will increase the communication cost. Too small
a value will decrease cost, but may result in sub-optimal
solutions (i.e., large m) or may even fail to reach a solution.

Calculation of the link radius (r). As discussed in
the preliminary version [10] of this article, we estimate
the link radius r to be (2s/t + 1) for dense networks; and
(2s/t + 1) ∗ ((200/t)2/n) for non dense networks. Here, we
characterize a network as dense if there exist enough (2s/t)
number of sensors evenly spread in between (along the link
connecting) any two sensors with intersecting sensing disks.
In our experiments, we simply consider a network dense if
it has at least (200/t)2 sensors.

Communication Costs and Solution Size. Let D be
the number of messages needed to compute the connected
sensor cover and m be the size of the computed connected
sensor cover. Query source is a randomly selected sensor.
Figure 3 plots D and m for the distributed approximation
algorithm for various values of n, the size of the network,
and the transmission radius t. Note that m is very small
relative to the network size n, except for low n and t when
the communication graph is very sparse and there is low
redundancy in the network. As a random network for some
low values of t and n may not have a connected commu-
nication graph with high probability, some data points are
missing in the graph plots of this section.

The explanation for the “L” shape of the D vs. t plot
in Figure 3 is as follows. From the above discussion on
calculation of r, there is a threshold value of t, above which
the network becomes dense for a constant n. This threshold
is tθ = 200/

√
n. Given a network of size n, for t < tθ (non-

dense networks), the number of neighbors b within 2r hops
of a sensor is very high, as b ∝ (rt)2 ∝ 1/t4 based
on our computation of r for non-dense networks. Hence,
we see a high number of messages for very low t, which
makes sense as the communication graph is sparse for low
t. Now, for t > tθ, the network is dense and r = 2s/t +
1. Thus, b, which is proportional to rt, remains almost
constant for t > tθ. With b and m (as seen in Figure 3(a))
being relatively constant, the number of messages remain
relatively constant for t > tθ.

Communication Cost Comparison with the Naive
Approach. Let us assume that the given spatial query
runs q times. We evaluate the threshold value qθ, such
that for q > qθ the overall message cost for the query using
our distributed approximation algorithm is lower than the
message cost using the naive approach. The number qθ is
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Figure 3: The communication cost (D), size (m) of the connected sensor cover, and threshold value (qθ of the distributed
approximation algorithm, shown for various transmission radii (t) and network size (n).
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Figure 4: Ratios (m/mc), (m/ms) and (m/mdp), where m, mc, ms, and mdp are the connected sensor cover sizes
returned by distributed approximation, centralized approximation, Steiner-tree based approach, and distributed priority
algorithm respectively.

obtained by equating D + 2qm to 2qn and then solving for
q, which gives

qθ =
D

2(n − m)
.

Figure 3(c) plots qθ vs. n for different values of t. This
plot is somewhat similar to the plot of D, because of the
strong dependency of qθ on D. Notice that the value of qθ

is fairly small – almost always less than 8 except when the
communication graph is very sparse (low n together with
low t). This shows that except for very sparse networks,
our distributed approximation algorithm will always save
energy relative to the naive flooding approach, whenever
the query runs for more than about 8 times – longer runs
giving more energy saving benefits. Figure 7(a) plots qθ vs.
n for much smaller values of n. Here, to ensure existence
of a connected sensor cover, we choose the sensing radius
s to be 12 and vary the transmission radius (t) from 5 to
25. We again observe that the value of qθ is fairly small.

Solution Size Comparison with the Centralized Ap-
proximation Algorithm. Figure 4(a) plots the ratio
m/mc for various values of n and transmission radius t,
where m and mc are the sizes of the connected sensor cov-
ers computed by the distributed approximation algorithm
and the centralized approximation algorithm respectively.

Figure 4(a) depicts excellent performance of the distributed
approximation algorithm relative to the centralized ver-
sion. The ratio m/mc always remains close to the ideal
value of 1. Note here that the distributed approximation
algorithm includes optimizations mentioned in Section 4.2.
Thus, the optimizations introduced in the distributed ap-
proximation algorithm to reduce communication cost do
not impact the m/mc ratio, which remains close to the
ideal. Also, the above observation validates our method
for computation of r. In fact, lower values of r could be
possibly used without impacting the m/mc ratio signifi-
cantly, but reducing the communication cost D. Thus, the
performance our algorithm could be further improved.

Comparison with Steiner Tree Based Approach. For
a given set of network parameters, let ms be the size of the
connected sensor cover returned by the centralized Steiner
tree based approach that computes a sensor cover followed
by a Steiner tree algorithm to connect the computed sensor
cover. Figure 4(b) plots the ratio m/ms for a wide range
of sensor network parameters. Since the ratio is almost
always less than 1, we can say that the connected sensor
cover returned by the distributed approximation algorithm
is almost always smaller than that returned by the Steiner
tree based approach. As mentioned before, since the dis-
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Figure 5: Comparison of distributed approximation and distributed Priority algorithms.

tributed implementation of the Steiner tree based approach
will also incur much more communication overhead than
the distributed approximation algorithm, the Steiner tree
based approach does not offer any advantage over our ap-
proximation algorithm.

Comparison with Distributed Priority Algorithm.
We now compare the performance of the distributed ap-
proximation and the distributed Priority algorithms. As
before, let D be the number of messages incurred and m
be the size of the connected sensor cover returned by the
distributed approximation algorithm, and let Ddp be the
number of messages incurred and mdp be the size of the
connected sensor cover returned by the distributed Prior-
ity algorithm. As expected, we observe in Figure 4(c) that
mdp > m, for most values of the network parameters. Fig-

ure 5(a) plots the threshold value qdp
θ , where

qdp
θ =

D − Ddp

2(mdp − m)
.

If the given spatial query is run q times, then the threshold
value qdp

θ is such that for q > qdp
θ the overall message cost

for the query using the distributed approximation algo-
rithm is lower than the message cost using the distributed
Priority algorithm. From the Figure 5(a), we observe that

qdp
θ is almost always below 10, except for very sparse net-

works.

Total Number of Bytes Transmitted. In our discus-
sion till now, we have modeled the total communication
cost as the number of messages transmitted. In previous
experiments, we model the total communication cost as
total number of bytes transmitted, and compare the per-
formance of our designed algorithms. Consider a commu-
nication tree T of sensor nodes rooted at r. Let us define
f(T ) as f(T ) =

∑
i∈T d(i, r), where d(i, r) is the distance

of node i from the root r in T . If each sensor node in T
generates B bytes of data, then it is easy to see B × f(T )
is the total number of bytes transmitted in gathering data
(without any aggregation) from all the sensor nodes to the
root r in T . Let Tn, Tda, and Tdp be the spanning trees con-
structed by the naive, distributed approximation, and dis-
tributed Priority algorithms for their respective connected

sensor covers. Also, let D′ and D′

dp be the total number
of bytes transmitted in the execution of the distributed
approximation and distributed Priority algorithms respec-
tively. Figure 5(b) plots the threshold value

Bθ =
D′

f(Tda) − f(Tn)
.

If the given spatial query gathers total B bytes for each
sensor node over multiple snapshots, then the threshold
value Bθ is such that for B > Bdp

θ the total communication
cost using the distributed approximation algorithm is lower
than that using the naive approach. We observe that the
Bθ value is almost always less than 2.5 KBytes, except for
very sparse network graphs. We also plot the threshold
value

Bdp
θ =

D′ − D′

dp

f(Tdp) − f(Tda)

in Figure 5(c). The threshold value Bdp
θ is such that for

B > Bdp
θ the overall communication cost using the dis-

tributed approximation algorithm is lower than that using
the distributed Priority algorithm. We observe that the
value of Bdp

θ is almost always below 10 KBytes.

Weighted Version Results. We now present perfor-
mance results of our distributed approximation and dis-
tributed Priority algorithms for the weighted connected
sensor cover problem. In particular, through simulations
we demonstrate that our application of our designed dis-
tributed algorithms can result in significant extension of a
sensor network’s lifetime. For the performance of the dis-
tributed algorithms for the weighted version of the prob-
lem, we start with sensor node batteries capable of trans-
mitting 1000 messages each. Whenever needed, we run
our weighted-version distributed algorithm to compute a
connected sensor cover. Once a connected sensor cover is
available, we use the given connected sensor cover to exe-
cute the given spatial query as many times as possible till
one of the sensors in the sensor cover gets fully depleted of
its battery power. Then, we recompute a connected sen-
sor cover using the distributed algorithm. We repeat the
process until it is not possible to form a connected sensor
cover using even all the sensor nodes still alive. Note that
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Figure 6: Lifetime of the sensor network in terms of number of queries, using distributed approximation or distributed
Priority algorithm for computing weighted connected sensor covers.

the execution of the distributed algorithm also results in
battery power usage of the sensor nodes. Figures 6(a) and
(b) plot the total number of times a spatial query cover-
ing the entire sensor network region could be run over the
sensor network for the given set of network parameters,
using the distributed approximation and distributed pri-
ority algorithms respectively. Also, if we were to use the
naive flooding approach to execute the spatial query, we
could run the query only 500 times, as each query execu-
tion would require each sensor node to transmit two mes-
sages. Thus, Figure 6 shows that our proposed distributed
approaches of computing a connected sensor cover results
in extending the sensor network life by a factor of upto 15.
Also, we see that the distributed approximation algorithm
gives better performance than the distributed Priority al-
gorithm.

Irregular Sensing Regions and Message Losses. We
also simulated the performance of the distributed approxi-
mation algorithm for sensor networks with irregular sensing
regions. For each sensor node I, we generated an irregu-
lar sensing region by randoming choosing six points at a
distance of more than 6, but less than 10. The chosen six
points are then sorted around the node I, and connected
to create a polygonal sensing region. Figure 7(b) plots qθ

vs. n for different values of t for the sensor networks with
irregular sensing regions. We observe that the value of qθ

is almost always less than 8. In addition, we also ran sim-
ulations to compare the performance of our designed tech-
niques in the presence of unreliable communication links.
In Figure 7(c), we plot qθ against “message success prob-
ability” for various values of n and t. We notice that the
message losses do not deteriorate the performance of the
algorithms. In fact, message losses even lead to improve-
ment in the performance implying the redundancy of the
CPS and CPR messages.

6 Related Work

In one of the earliest work related to sensor network cover-
age [7], the authors introduce a centralized heuristic that

selects mutually exclusive sets of sensors, the members of
each of those sets together completely cover a geograhical
area. As only one set of sensors need to be active at any
time, their technique results in energy savings while pre-
serving coverage. However, they only present a centralized
algorithm which does not extend easily to a distributed al-
gorithm. Recent work in [16] considers a similar problem
of partitioning the sensor network into k “covers” to max-
imize the sum of the coverage. None of the above works
require the sensor covers to form a connected communica-
tion graph. We should note that a repeated execution of
our algorithm gives a good heuristic for the problem ad-
dressed in above works.

In [8], the authors take a probabilistic approach. They
consider an unreliable sensor network and derive necessary
and sufficient conditions for the coverage of the region and
connectivity of the network with high probability in terms
of the transmission radius, sensing radius, and failure rate
of the sensors. The PEAS protocol [17] considers a prob-
ing technique to maintain only a necessary set of sensors
in working mode and putting the rest to sleep. Their tech-
nique ensures that only one node is active at any time inside
any circular disk of probing radius. However, the active
nodes form a connected graph with high probability only
under certain conditions of network density and relation-
ship between the probing and transmission radius. In [18],
the authors investigate linear programming techniques to
optimally place a set of sensors on a sensor field (three di-
mensional grid) for a complete coverage of the field. The
k-coverage problem, wherein each point in the query region
is required to be covered by at least k sensors, has been re-
cently addressed in [19, 20]. In [21], the authors consider
a different definition of coverage. They formulate coverage
problems to address the quality of service (surveillance)
provided by a sensor network. In particular, they address
the problem of finding maximal paths of lowest and highest
observabilities in a sensor network.

There has been a significant amount of literature outside
the sensor network domain that has relationships with the
problems we are addressing in this paper. Most relevant is
the problem of efficiently broadcast a message in a wireless
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Figure 7: The threshold value qθ shown for small network sizes, irregular sensing regions, and unreliable communication
links

ad hoc network. The idea here is to suppress redundant
broadcasts by using only a small number of nodes to prop-
agate broadcast but ensuring that all the nodes in the net-
work receive the broadcast message. The above described
problem can be reduced to the minimum dominating con-
nected set (MCDS) problem [22] of selecting a minimum
number of nodes such that each node in the network is ei-
ther selected or a neighbor of a selected node. The work in
wireless network research community [23, 24, 25, 26, 27, 15]
has primarily focussed on developing energy-efficient dis-
tributed algorithms to construct a near-optimal dominat-
ing connected set. In a similar vien, distributed algorithms
have been developed to identify nodes that are similar in
routing perspectives so that other nodes can be turned off
to conserve energy. Protcols such as GAF [28], SPAN [29],
and ASCENT [30] bear this goal. Also, construction of
multiple connected dominating sets for different transmis-
sion radii is addressed in [31].

Other related problems based on various other notions of
coverage are as follows. The Art Gallery Problem [32, 33]
considers placement of observers in a room such that each
point in the room is “seen” by at least one observer. The
Art Gallery Problem was solved optimally in 2D and shown
to be NP-hard in 3D case. The essential difference of the
Art Gallery and the related problems with our connected
sensor coverage problem is that the Art Gallery and re-
lated problems require an optimal placement of observers,
while our problem deals with an optimal selection of al-
ready placed sensors. From that perspective, the geomet-
ric variations [6, 12, 13] of the classic set cover problem are
more related to our problem. However, none of the geo-
metric set cover variations addressed in the literature deal
with the notion of connectivity. For the disk-cover prob-
lem [13], there is a polynomial algorithm that delivers a
constant-factor approximation. However, the approxima-
tion algorithm for the disk-cover problem does not gener-
alize to other geometric regions (not even rectangles) and
a straightforward distributed implementation would incur
a very large number of messages, due to the involved com-
putations required.

7 Conclusions

We have designed techniques to exploit the redundancy in
the sensor network by selecting a small subset of sensors
(called connected sensor cover) that is sufficient to process
a given query. In particular, we have designed a centralized
approximation algorithm which provably delivers a near-
optimal solution. In addition, our designed distributed al-
gorithms (distributed approximation and distributed Pri-
ority) are also empirically shown to deliver a near-optimal
solution. Through extensive simulations, we have shown
that our designed techniques result in substantial energy
savings in a sensor network. Our technique can also be
used to compute multiple disjoint connected sensor covers
in a distributed manner. Multiple connected sensor covers
can be useful for very long running queries; different covers
can be used at different times to balance the battery drain
over different sensors.
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