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Abstract

In this paper, we consider multi-hop wireless mesh networksere each router node is equipped
with multiple radio interfaces and multiple channels araikable for communication. We address the
problem of assigning channels to communication links innvork with the objective of minimizing
overall network interference. Since the number of radiosaoy node can be less than the number
of available channels, the channel assignment must obegadhstraint that the number of different
channels assigned to the links incident on any node is attheshumber of radio interfaces on that
node. The above optimization problem is known to be NP-hard.

We design centralized and distributed algorithms for thevabchannel assignment problem. To
evaluate the quality of the solutions obtained by our athars, we develop a semidefinite program and
a linear program formulation of our optimization problemadbtain lower bounds on overall network
interference. Empirical evaluations on randomly generatetwork graphs show that our algorithms
perform close to the above established lower bounds, withdifference diminishing rapidly with
increase in number of radios. Also, detailed-2 simulation studies demonstrate the performance

potential of our channel assignment algorithms in 802.44eld multi-radio mesh networks.

Index Terms

Multi-Radio Wireless Mesh Networks, Channel Assignmemnagh Coloring, Interference, Mathe-

matical Programming.

|. Introduction

Wireless mesh networks [1] are multihop networks of wirglesuters. There is an increasing
interest in using wireless mesh networks as broadband baekbetworks to provide ubiquitous
network connectivity in enterprises, campuses, and in opetitan areas. An important design
goal for wireless mesh networks espacity It is well-known that wireless interference severely
limits network capacity in multi-hop settings [2Dne common technique used to improve
overall network capacity is use of multiple channels [3]sé&i#tially, wireless interference can be
minimized by using orthogonal (non-interfering) chanrfelsneighboring wireless transmissions.
The current IEEE 802.11 standard for WLANSs (also used formmstworks) indeed provides
several orthogonal channels to facilitate the above. Roesef multiple channels requires us to
address the problem of which channel to use for a particudersmission; the overall objective

of such an assignment strategy is to minimize the overalvos interference.
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Dynamic Channel Assignmer®ne of the channel assignment approaches is to frequerahgeh

the channel on the interface; for instance, for each pac&asmission based on the current state
of the mediumSuchdynamic channel assignmesgpproaches [4—7] require channel switching at
a very fast time scale (per packet or a handful of packets).fast-channel switching requirement
makes these approaches unsuitable for use with commoditiyvhee, where channel switching
delays itself can be in the order of milliseconds [8] whiclarsorder of magnitude higher than
typical packet transmission times (in microseconds). Softhe dynamic channel assignment
approaches also require specialized MAC protocols or extes of 802.11 MAC layer, making
them further unsuitable for use with commodity 802.11 haadhw

Static or Quasi-static Channel AssignmeDtue to the difficulty of use of above dynamic ap-

proach with commodity hardware, there is need to developrigcies that assign channels
statically [9-13]. Such static assignments can be chandieth@wver there are significant changes
to traffic load or network topology; however, such changesiairequent enough that the channel-
switching delay and traffic measurement (see Section Illyhmags are inconsequential. We
refer to the above aquasi-static channel assignment&there is only one radio interface per
router, then the above channel assignment schemes will ttaessign thesamechannel to
all radios/links in the network to preserve network conngtyt Thus, such assignment schemes
require use of multiple radio interfaces at each node. Dum#od crosstalk or radio leakage [12,
14], commodity radios on a node may actually interfere eviethéy are tuned to different
channels. However, this phenomena can be addressed bydimgpdome amount of shielding

or antenna separation [14, 15], or increased channel depafas is the case in 802.11a) [10].

Problem Addressed.In our article, we address the problem of quasi-static assent of
channels to links in the context of networks with multi-radiodes. The objective of the channel
assignment is to minimize the overall network interferer@eannel assignment is done as some
variation of a graph coloring problem; but it has an intaresttwist in the context of mesh
networks. The assignment of channels to links must obeinteeface constrainthat the number

of different channels assigned to the links incident on aeniscat most the number of interfaces
on that node. Different variations of this problem have bgeown to be NP-hard [9, 11] before.
Thus, efficient algorithms that run reasonably fast and iplegood quality solutions are of

interest. Since computing the optimal is intractable andraxmation algorithms are still an
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open question, we take the approach of computitgpand on the optimalising mathematical
programming approaches, and develop heuristics thatppenery close to the obtained bounds

on the optimal.

Our Contributions. For the above described channel assignment problem, wéopexeentral-
ized and a distributed algorithm. The centralized algoniis based on a popular heuristic search
technique called Tabu search [16] that has been used in gtenpgraph coloring problems. The
distributed approach is motivated by the greedy approxonalgorithm for Max/K -cut problem
in graphs [17]. To evaluate their performances, we develop mathematical programming
formulations, using semidefinite programming (SDP) anckget linear programming (ILP).
We obtainboundson the optimal solution by relaxing the ILP and SDP formwas to run
in polynomial time. Finally, detailed ns-2 simulation siesl demonstrate the full performance
potential of the channel assignment algorithms in 802.1sktanulti-radio mesh networks.

The salient features of our workhat set us apart from the existing channel assignment

approaches on multi-radio platforms are as follows.

« Our approach is “topology preserving,” i.e., all links thedn exist in a single channel
network also exist in the multichannel network after charassignment. Thus, our channel
assignment does not have any impact on routing.

« Our approach is suitable for use with commodity 802.11-8amtworks without any specific
systems support. We do not require fast channel switchingngrform of MAC layer or
scheduling support. While our algorithms indeed use ieterice and traffic models as
input, such models can be gathered using experimental m&tho

« Our work generalizes to non-orthogonal channels [18],uditlg channels that are suppos-
edly orthogonal but interfere because of crosstalk or Igakd4].

« Ours is the first work that establishes good lower bounds enofttimal network interfer-
ence, and demonstrates good performance of the developedties by comparing them

with the lower bounds.

Paper Organization. The rest of the paper is organized as follows. We start wittdeing the
network model and the formulation of our problem in Sectibnahd discuss related work in
Section Ill. We present our algorithms in Section IV and #ecW respectively. In Section VI,

we obtain lower bounds on the optimal network interferenstng semidefinite and linear
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programming. Section VII presents generalizations of eahhiques. We present our simulation

results in Section VIII.

[I. Problem Formulation

In this section, we first present our network model and foateilof our channel assignment

problem.

Network Model. We consider a wireless mesh network with stationary wiekegiters where
each router is equipped with a certain (not necessarily yammber of radio interfaces. We
model thecommunication graplof the network as a general undirected graph over the set
of network nodes (routers). An edge,j) in the communication graph is referred to as a
communication linkor link, and signifies that the nodesand j can communicate with each
other as long as both the nodes have a radio interface eabhavibmmon channel. There are
a certain number of channels available in the network. Faritgl of presentation, we assume
for now that the channels are orthogonal (non-interferirmg)d extend our techniques for non-

orthogonal channels in Section VII.

Interference Model. Due to the broadcast nature of the wireless links, transarisalong a
communication link (between a pair of wireless nodes) magrfare with transmissions along
other communication links in the network. Two interferinigkls cannot engage in successful
transmission at the same time if they transmit on the samenghar heinterference modedefines
the set of links that can interfere with any given link in thetwork. There have been various
interference models proposed in the literature, for exaiple physical and protocol interference
models [2, 19, 20]. The discussion in this paper is independkthe specific interference model
used as long as the interference model is defined on pairsrofmemication links.

For clarity of presentation, we assumebaary interference moddbr now (i.e., two links
either interfere or do not interfere), and generalize owhieques to fractional interference
in Section VII. Moreover, in our approach of quasi-staticachel assignment, the level of
interference between two links actually depends on théidrah the links. However, for clarity
of presentation, we assume uniform traffic on all links foimp@nd generalize our techniques

to non-uniform traffic in Section VII.

Conflict Graph.Given an interference model, the set of pairs of commurocatinks that

interfere with each other (assuming them to be on the samaneljacan be represented using a
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(@) Communication graph (b) Conflict graph

Fig. 1. Communication graph and corresponding conflict graph.

conflict graph[19]. To define a conflict graph, we first create a set of vestigecorresponding

to the communication links in the network. In particular,
Ve ={l;j | (i,7) is a communication link}.

Now, the conflict graphG.(V,, E.) is defined over the sét,. as vertices, and aonflict edge
(l;j, L) In the conflict graph is used to signify that the communiaatioks (i, j) and (a, b)
interfere with each other if they are on the same channel.alfuwe concept of a conflict graph
can be used to represent any interference model. As defiregeathe conflict graph does not
change with the assignment of channels to vertices in théicograph.

We illustrate the concept of conflict graph in Figure 1. Theeliss network represented in
Figure 1 has five network nodes, B, ..., E and four communication links as shown in the
communication graph (see Figure 1(a)). The conflict grage (Sigure 1(b)) has four nodes
each representing a communication link in the network. lis flyure, we assume an 802.11
like interference model where the transmission range atelfarence range are equal. When
RTS/CTS control messages are used links within two hopsferee Thus, the communication
link (A, B) interferes with the communication links3, C') and (C, D), and not with(D, E).

Notations. Here, we introduce some notations that we use throughositpidper.
« N, the set of nodes in the network.
« R;, the number of radio interfaces on node N.
« K=1{1,2,..., K}, the set ofK channels.
o Vo={l;; | (i,7) is a communication link}.
. G.(V., E.), the conflict graph of the network.
« Fori e N, E(i) = {l;; € V.}, i.e,, E(i) is set of vertices inV, that represent the

communication links incident on node
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In addition, throughout this paper, we use variables to refer to vertices inl/,, variables
1, j,a, b to refer to nodes inV, and the variablé: to refer to a channel. Since assigning channel
can be thought of as coloring vertices, we use the terms @hamd colors interchangeably

throughout our paper.

Channel Assignment Problem.The problem of channel assignment in a multi-radio wireless
mesh network can be informally described as follows. Givemesh network of router nodes
with multiple radio interfaces, we wish to assign a uniquarofel to each communication lihk

in the network such that the number of different channelggass to the links incident on any
node is atmost the number of radios on that node. Since wenasaaiform traffic on all links
for now, we assign channels to all links, and definettital network interferencas the number

of pairs of communication links that are interfering (i.aete assigned the same channel and are
connected by an edge in the conflict graph). The objectiveunfppoblem is to minimize the
above defined total network interfereness, it results in improving overall network capacity [2].

More formally, consider a wireless mesh network over a/éaif network nodes. Thehannel

assignment problens to compute a functiory : V., — K to minimize theoverall network

interferencel(f) defined below while satisfying the belowterface constraint

Interface Constraint.

Vie N, |{k| f(e) =k for some e € E(i)}| < R;.

Network Interferencel (f).

I(f) = H(u,v) € Ec | f(u) = f(v)}]. (1)

If we look at assignment of channels to vertices as colorihgestices, then the network
interference is just the number of monochromatic edgesearnvértex-colored conflict graph. The

channel assignment problem is NP-hard since it reduces to Maut (as discussed below).

Input Parameters — Measuring Interference and Traffic. Note that, under the simplying
assumption of uniform traffic, the only input to our channssignment problem is the network

conflict graph. The conflict graph (along with the edge wesdiorr fractional interference; see

"Note that merely assigning channels to radios is not suffidie measure network interference/capacity, since a liitikcain

use one of many channels for transmission.
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Section VII) can be computed using methods similar to rdgeneiported measurement-based
techniques in [21, 22]. These techniques are localizedtaltiee localized nature of interference,
and hence, can be easily run in a distributed manner. Alsoost cases (for static network
topologies), the above measurements need to be done onlynoeeor the case of non-uniform
traffic, we need to measure average (over the time scale oihehassignment) traffic (i.e., the
function ¢(.) of Section VII) on each link. Such traffic measurements caredmly done using

existing software tools (e.g., COMO [23]).

Relationship with Max K-cut. Given a graph, the Max K -cut problem [17] is to partition the
vertices ofG into K partitions in order to maximize the number of edges whoseeimds lie in
differentpartitions. In our channel assignment problem, if we viewtiges of the conflict graph
assigned to a particular channel as belonging to one pertithen the network interference is
actually the number of edges in the conflict graph that hawpeints insamepatrtition. Thus,
our channel assignment problem is basically the Mé&xut problem with the added interface
constraint. Since Max{-cut is known to be NP-hard, our channel assignment probteaiso
NP-hard.

[ll. Related Work

The use of multiple channels to increase capacity in a maptinetwork has been addressed
extensively. Generally, there have been two types of agbes viz., (i) Fast switching of
channels (possibly, on a per-packet basis) on a single,radi@i) Assigning channels to radios

for an extended period of time in a multi-radio setting.

Fast Switching of Channels.In MMAC protocol [5], the authors augment the 802.11 MAC
protocol such that the nodes meet at a common channel pealtydio negotiate the channels
to use for transmission in the next phase. In SSCH [6], thbaastpropose dynamic switching
of channels using pseudo-random sequences. The idea isdomdy switch channels such that
the neighboring nodes meet periodically at a common chaomngmmunicate. In DCA [4], the

authors use two radios - one for the control packets (RTS/@d&kets) and another for data
packets. The channel to send the data packet is negotiategithe control packets and the data
packets are sent in the negotiated channels. In AMCP [7]athkors uses similar notion of a

control channel, but a single radio and focus on starvatigigation. In [24] the authors use a
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channel assignment approach using a routing protocol aenl tise these channels to transmit
data. For coordination, control channels are used. In [@b]radio and single radio multichannel
protocols are proposed, but separate control channelsatreeeded.

All the above protocols require a small channel switchinégpglgof the order of hundred
microseconds or less), since channels are switched at tirfessscale (possibly, on a per-packet
basis). But, the commodity 802.11 wireless cards incur azawcél switching delay of the order
of milliseconds (based on our observations), as channetising requires a firmware reset and
execution of an associated procedBemilar experiences were reported in [8], and in particular
it has been shown in [6, 26] that packet-based channel amsigihmay not be feasible in a
practical setting [27]In addition, the above approaches require changes to the Ner.

Thus, the above approaches are not suitable with currendlifable commodity hardware.

Static/Quasi-Static Channel Assignment in Multiradio Netvorks. There have been many
works that circumvent fast channel switching by assigningnmels at a much larger time scale
in a multiradio setting. This solution is deemed more pradtias there is neither a need to
modify the 802.11 protocol or need for interfaces with veswlchannel switching latency.

In particular, [10] assume a tree-based communicatioepatb ease coordination for optimiz-
ing channel assignment. Similar tree-based communica@éterns have been used in [28]. The
above schemes do not quantify the performance of theirisoliwith respect to the optimal. In
addition, [13] considers minimum-interference channsigrements that preserveconnectivity.
None of the above schemes preserve the original networkidgpoand hence, may lead to

inefficient assignments and routing in a more general pe@etr communication.

Topology Preserving SchemeéR facilitate independent routing protocols, our work feses on

developing quasi-static channel assignment strategipthserve the original network topology.
Prior works on topology preserving channel assignmentesjias are as follows. Adya et al. [12]
propose a strategy wherein they assume a hard-coded assigoichannels to interfaces, and
then determine which channel/interface to use for comnatimn via a measurement-based
approach. They do not discuss how the channels are assignetttfaces. In [9], Raniwala et
al. propose a centralized load-aware channel assignmeatitaim; however, they require that
source-destination pairs with associated traffic demamdsrauting paths be known a priori.

In [29], Das et al. present a couple of optimization modelstf@ static channel assignment
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problem in a multi-radio mesh network. However, they do netspnt any practical (polynomial
time) algorithm.In [30], the authors propose a linear optimization modelncte allocation
and interface assignment model. Their model differs fromsdn the sense that they assign
channels to interfaces, and then, assign interfaces tdibeig so that neighors having interfaces
with common channels can communicate. In contrast, in outahave assign channels to links
directly. In addition, [29] assumes binary interferencel @anuniform traffic model.

In [31], a purely measurement-based approach is taken fanre assignment to radios
(instead of links). Here, one radio at each node is tuned t@ran@mn channel to preserve
the original topology; however, this can be wasteful whety anfew interfaces are available.
Moreover, assignment of channels to radios still leavespifdlem of which channel to use
for a transmission/linkln [32], the authors propose a simple greedy algorithm foanctel
assignment in multi-radio networks. They assume a binasgrfierence model and do not show
any performance bounds.

In the most closely related work to ours, Marina and Das in| [Address the channel as-
signment to communication links in a network with multipkdios per node. They propose a
centralized heuristic for minimizing the network intedace. We compare the performance of

our proposed algorithm with this heuristic, and show a digaint improvement.

Other Related Works. In other related works, [33] proposes a hybrid channel assent
strategy: some interfaces on a node have a fixed assignnmehtha rest can switch channels
as needed. To put things in perspective, our work presegtyitims for making these fixed
assignmentsAuthors in [19, 20, 34—36] address joint channel assignmmenting, and scheduling
problems. These papers makes an assumption of synchrotizeeslotted channel model as
scheduling is integrated in their methods. This makes tlgg®oaches somewhat impractical
with commodity radios. In addition, [19]'s approach regsirenumeration of all maximal sets of
non-interfering links (independent sets), and [34] coesschetworks with bounded “interference
degrees.”In remaining related works, [3] derives upper bounds on cipaf wireless multihop
networks with multiple channeland [27] investigate granularity of channel assignmenisi@as
by assigning channels at the level of components (linkd)gair general graph component) in
single radio networks.

On the theoretical front, the related Max-cut problem has been studied extensively. In

DRAFT



11

particular, [17] gives a constant approximation algorithemg semidefinite algorithm for general
graphs, while [37] consider uniformly rando, , graphs and give an approximation scheme. As
a hardness result, [38] proves that unless P=NP, the Maut problem cannot be approximated

- . 1
within a factor of1 — ST

IV. Centralized Tabu-based Algorithm

In this section, we describe one of our algorithms for thencleh assignment problem, based
on the Tabu search [16] technique for coloring vertices iaphs.Our Tabu-based algorithm
is centralized. Centralized algorithms are quite prattina‘'managed” mesh networks where
there is already a central entity. Moreover, they are amlenaba higher degree of optimization,
easier to upgrade, and use of “thin” clients. Centralizepraaches have indeed been proposed
in various recent works [9, 11, 13], and have also becomeajeat in the industry (e.g., WLAN
and mesh products from Meru Networks [39], Tropos [40],)S8ystems [41], Firetide [42]).

Algorithm Overview. Recall that our channel assignment problem is to color thigces V. of
the conflict graph. using K colors while maintaining the interface constraint and mizing
the number of monochromatic edges in the conflict graph.hemtords, the channel assignment
problem is to find a solution/functiofi : V., — K with minimum network interferencé( f) such
that f satisfies the interference constraint. Our Tabu-baseditigo consists of two phases. In
the first phase, we use Tabu search based technique [16] taafigaod solutionf without
worrying about the interface constraint. In the second phage remove interface constraint

violations to get a feasible channel assignment funcfion

First Phase.In the first phase, we start with a random initial soluti@nwherein each vertex
in V. is assigned to a random color i6. Starting from such a random solutigfy, we create
a sequence of solution®, f1, f2,..., fj,..., in an attempt to reach a solution with minimum
network interference. In thg¢’" iteration (j > 0) of this phase, we create the next solutin;

in the sequence (fronf;) as follows.

The ;" Iteration. Given a solutionf;, we createf,., as follows. First, we generate a certain

number (sayr) of random neighboring solutions ¢f. A random neighboring solution of; is
generated by picking a random vertexand reassigning it to a random color (it — { f;(u)}).

Thus, a neighboring solution of; differs from f; in the color assignment of only one vertex.
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Among the set of such randomly generated neighboring swistof f;, we pick the neighboring
solution with the lowest network interference as the nexutsan f;.,. Note that we do not

requireI(f;11) to be less thard (f;), so as to allow escaping from local minima.

Tabu List. To achieve fast convergence, we avoid reassigning the satoeto a vertex more
than once by maintaining &bu list 7 of limited size. In particular, iff;; was created from
f; by assigning a new color to a vertex then we addu, f;(v)) to the tabu list~. Now, when
generating random neighboring solutions, we ignore neaghly solutions that assign the color
k to u if (u,k) isin 7.

Termination.We keep track of the best (i.e., with lowest interferencdutsaon f,..; seen so
far by the algorithm. The first phase terminates when maxinmumber (sayj,,...) of allowed
iterations have passed without any improvement/ {ff,.;). In our simulations, we set,,,,

to |V.|. Since network interferencé(f) takes integral values and is at mdst.|)?, the value
I(frest) is guaranteed to decrease by at least 1,jn. = |V.| iterations (or else, the first phase
terminates). Thus, the time complexity of the first phaseadsrded byO(rd|V,|*), since each
iteration can be completed i(rd) time wherer is the number of random neighboring functions
generated and is the maximum degree of a vertex in the conflict graph. Notd tietwork
interference of a neighboring solution can be computed{d) time. A formal description of

the first phase is shown in Algorithm 1.

Second PhaseNote that the solutiorf returned by the first phase may violate interface con-
straints. Thus, in the second phase, we eliminate the agerfonstraints by repeated application
of the following “merge” procedure. Given a channel/col@signment solutiory, we pick a
network node for the merge operation as follows. Among a# tietwork nodes wherein the
interface constraint is violated, i.e, whose number of gads less than the number of distinct
colors assigned to the incident communication links, wek piee node wherein the difference
between the above two terms is the maximum. 4.Bé the node picked as above for the merge
operation. We reduce the number of colors incidentidoy picking (as described later) two
colors k; and k, incident ons, and changing the color of akt;-colored links tok,. In order

to ensure that such a change does not create interface aiohstiolations at other nodes, we
iteratively “propagate” such a change to &ll — colored links that are “connected” to the links

whose color has been just changed frémto %,. Here, two links are said to be connected if
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Algorithm 1: First Phase of Tabu-based Algorithm.
Input : Conflict GraphG.(V,, E.); Set of channeldC.
Output: Channel Assignment Functiofa..; : V. — K.

Start with a random assignment functigi
Joest = fo; Iyest = I(fo); 7=null; j=0; i=0;
while I(f;) > 0 andi < i,,,, dO

Generater random neighbors of;;
Each neighbor is generated by randomly picking
auinV,andk € K s.t.k # f;(u) and (u, k) ¢ 7,
and changingf;(u) to k
Let f;41 be the neighbor with lowest interference.
Add (u, f;(u)) to 7.
If 7 is full, delete its oldest entry;
if (I(fj+1) < Tpest)
then Iyeq = I(fj41); foest = fij+1; 1 =0;
elsei =i+ 1;
endif;
j=7+1
end while
RETURN fpest;

they are incident on a common node. Essentially the aboveagadion of color-change ensures
that for any nodej, eitherall or none of the k;-colored links incident onj are changed to
color k,. See Figure 2. Completion of the above described colorghgmopagation marks the
completion ofonemerge procedure. The above described merge procedureeréiticumber of
distinct colors incident on by one, and does not increase the number of distinct colardent
on any other node (due to the all or none property). Thus,ategeapplication of such a merge
operation is guaranteed to resolve all interface congsaldote that a merge operation probably
will result in increase in network interference. Thus, fogigen nodei, we pick those two color
k, and k, for the merge operation that cause the least increase indtweork interference due

to the complete merge operation.
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Fig. 2. Merge operation of second phase. The two figures a&edmmunication graphs of the network before and after the
merge operation. Labels on the links denote the color/atlartttere, the merge operation is started at nodyy changing all

its 1-colored links to color 2.

V. Distributed Greedy Algorithm (DGA)

In this section, we describe our Distributed Greedy Aldorit(DGA) for the channel assign-

ment problem. Our choice of greedy approach is motivatechbyf¢llowing two observations.

Max K-cut Problem in Random Graph#&s described before, the Mak'-cut problem on a

given graphG is to partition the vertices oy into K disjoint subsets such that the sum of
number of edges with endpoints in different partitions isximmazed. In [37], the authors consider
G, graphs which are defined as random graph overertices where each edge exists with a
uniform probability ofp. The authors design an algorithm with an approximatiororat- %
(wherex > 1) for the Max K-cut problem in suclt7, , graphs. In particular, they obtain a lower
bound on the size of the Mak -cut in G,, , graphs problem using a simple greedy heuristic, and
obtain an upper bound using a relaxed semidefinite prograendiy [17]. They show that the
lower and upper bounds are close with very high probabilityeffect, the authors show that the
greedy heuristic delivers a— % factor approximation solution with very high probabilifijhe
greedy heuristic proposed in [37] for Mak-cut works by deciding the partition of one vertex
at a time in a greedy manner (i.e., place the vertex in thatjertthat results in maximizing

the number of edges with endpoints in different partitions)

Conflict Graph isG,, ,. It can be shown that a network formed by randomly placed nades

a fixed region generates a random conflict gr@phwhich is alsoG,, ,. Here, we assume an
interference model wherein two communication linksv) and (r, s) interfere with each other

depending on the locations of the nodes, r, ands (as is the case with protocol interference
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model [2]). Now, the vertices, ,,l., € V. representing the communication links,v) and
(r, s) are connected id/, if and only if the communication linkéu, v) and(r, s) interfere with
each other. Thus, the probability of an edge between twacesriof V. depending only on the
locations of the involved network nodes, and since the nétwodes are randomly placed, the
probability of an edge between two verticeslinis uniform.

The above observations motivate use of a greedy approaciuf@hannel assignment problem.

Centralized Greedy Algorithm. We start with presenting the centralized version, whichdge
a natural distributed implementation. In the initializatiphase of our greedy approach, each
vertex of V. is colored with the colorl. Then, in each iteration of the algorithm, we try to
change the color of some vertex in a greedy manner withodatiy the interface constraint.
This strategy is different from the Tabu-based algorithrheve we resolve interface constraint
violations in the second phase while not worrying aboutodtrcing them in the first phase.
In each iteration of the greedy approach, we try to changectih@ of some vertex: € V, to

a color k. We look at all possible pairs ai and k, considering only those that do not result
in the violation of any interface constraint, and pick therpa, k) that results in the largest
decrease in network interference. The algorithm iteratesr the above process, until there is
no pair ofu andk that decreases the network interference any further. Natea vertex inV/,
may be picked multiple times in different iterations. Howgwve are guaranteed to terminate
because each iteration monotonically decreases the reintrference. In particular, as noted
in previous section, since the network interference takésgral values and is at mogt/.|)?,
the number of iterations of the greedy algorithm is boundgd(|.|)?. Since each iteration
can be completed i (dK|V.|), where K is the total number of colors andlis the maximum
degree of a vertex in the conflict graph, the total time comipfeof the greedy algorithm is
O(dK|V,|]?). The pseudocode for the centralized verison of the greeggrishm is shown in
Algorithm 2.

Distributed Greedy Algorithm (DGA). The above described greedy approach can also be easily
distributed by using a localized greedy strategy. The ithsted implementation differs from the
centralized implementation in the following aspects. thirsn the distributed setting, multiple
link-color pairs may be picked simultaneously across thevaek by different nodes. Secondly,

the decision of which pair is picked is based on the local rinftion. Lastly, to guarantee
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Algorithm 2: Centralized Greedy Algorithm.
Input : Conflict GraphG.(V,, E.); Set of channeldC.
Output: Channel Assignment Functiof: V., — K.
Initialization:

fluw)=1,Yu eV,
Repeat
(1) Choose the paifu, k) € (V. x K), such that whery (u) is assigned td, the

interference constraint is not violated and the total nekwnterference ((f))
decreases the most
(2) Setf(u) =k

Until I(f) cannot be decreased any further.

termination in a distributed setting, we impose additiorestriction that each paifu, k) is
picked at most once (i.e., each vertexc V, is assigned a particular coldr at most once) in
the entire duration of the algorithm.

In the distributed implementation, each vertex= [;; € V. corresponding to the linki, j)
is ownedby ¢ or j, whichever has the higher node ID. This is done to ensureistemsy of
color information across the network. Initially, each eatrtin V, is assumed to colored 1. Let
m > 1 be the parameter defining the local neighborhood of a nodsedBan the information
available about the colors of links in the-hop neighborhood of, each network nodeé selects
(after waiting for a certain random delay)(a, k) combination such that (i} = /;; is owned by
1, (ii) changing the color of; to & does not violate the interface constraint at nodw j, (iii)
the pair(u, k) has not been selected before hyand (iv) the pair(u, k) results in the largest
decrease in the “local” network interference. Then, theenosends &ol or Request message
to nodej. The node;j responds with th&Col or Repl y message, if and only if changing the
color of u to k still does not violate the interface constraint at ngdé®n responding with the
Col or Repl y message, the nodg assumesthat the color ofu has been changed ta On

receiving theCol or Repl y message foyj, the nodei sends aCol or Updat e(u, k) message

2Such an assumption may need to be later corrected througmunioation with: if the Col or Updat e(u, k) message is

not received from within a certain amount of time.
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to all its m-hop neighbors. If &ol or Repl y message is not received within a certain time
period, the node abandons the choice 6f, k) for now, and starts a fresh iteration. Since each
pair (u, k) is picked at most once, then the total number of iterationer(@ll nodes) in the
above algorithm is at mos?(|V.|K). The pseudocode for the distributed greedy algorithm that
runs in every nodeé € V' is shown in Algorithm 3.

The above Distributed Greedy algorithm is localized, and ba made to work in dynamic
topologies. Our simulation results showed that the abosgiduted algorithm performs almost
same as the centralized version, due to the localized nafubee network interference objective
function. The input network parameters of traffic and irgezhce are measured as discussed in

Section II.

Algorithm 3: Distributed Greedy Algorithm for each nodec V/
Input : “Local” network and conflict graph; set of channé(s

Output: Channel Assignment (i.ef;(u)) for all links u € V. incident on node.
Repeat

Among all pairs(u, k) whereu € V. is owned by: andk € K
that is not already chosen and does not violate interfacstaint at:
choose the one which produces largest decrease in locaeirgece.
SendCol or Request (u, k) to nodej whereu = (i, 7).
Wait for Col or Repl y(u, k) message from nodg
If Col or Repl y(u, k) message is not received within a certain time
Abandon the choicéu, k).
Until Local interference cannot be decreased any further, afualt) combinations
have already been chosen.
When Col or Request (u, k) message is received from nogewhereu = (i, j):
If assigning channet to link « does not cause interface constraint violation
SendCol or Repl y(u, k) message to nodg
When Col or Repl y(u, k) message is received from nogle
Set f(u) = k and sendCol or Updat e( u, k) message to “local” neighborhood
When Col or Updat e(u, k) message is received:

Update locally maintained channel assignment of links & ltical network graph.
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V1. Bounds on Optimal Network Interference

In this section, we derive lower bounds on the minimum nekwoterference using semidef-
inite and linear programming approaches. These lower beumd aid in understanding the

quality of the solutions obtained from the algorithms preed in previous two sections.

A. Semidefinite Programming Formulation

In this section, we model our channel assignment problererimg of a semidefinite program
(SDP).

Semidefinite Programs.A semidefinite prograri#3] is a technique to optimize a linear function
of a symmetric positive-semidefinite matftigsubject to linear equality constraints. Semidefinite
programming is a special case of convex programming [4#Lesi set of positive semidefinite
matrices constitutes a convex cone. Semidefinite prograansbe solved in polynomial time
using various techniques [45]. The reader is referred t948Bfor further details on semidefinite
programming and its application to combinatorial optintiza. The standard form of semidefinite

program is as follows.

Minimize C.X

such that AL X =0, 1<i<m, and

X =0
whereC, A; (Vi), and X are all symmetria: x n matrices, and; is a scalar vector. The constraint
X > 0 implies that the variable (to be computed) matkixmust lie in the closed, convex cone
of a positive semidefinite matrix. Also, thgdot) operation refers to the standard inner product
of two symmetric matrices.
As mentioned in Section Il, our channel assignment problemsisentially the Max{-cut

problem in the conflict graph with the additional interfacenstraint. Below, we start with

presenting the SDP for the Mak-cut problem from [17]. We then extend it to our channel

assignment problem by adding the interface constraint.

SDP for Max K-cut. Let y, be a variable that represent the color of a vertex V.. Instead

of allowing y, to take 1 toK integer values, we defing, to be a vector in{ay,as, ..., ax},

3A matrix is said to bepositive semidefinité all its eigen values are nonnegative.
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where theq; vectors are defined as follows [17]. We take an equilateraplx Y in RE!

(itbat. 09 pe the centroid ob, and leta; = b; — cx

with verticesby, by, ..., bg. Let cx =
for 1 <i < K. Also, assumdq;| = 1 for 1 < i < K. Now, the MaxK'-cut problem can be
formulated as an integer quadratic program as follows [17].

IPyax—k:

K—-1
Maximize — Z (1 — yu-yo)

K
(u,v)EE.

such that Yy € {a1,a9,....,ax}

Note that sincey;.a; = = for i # j, we have:

0, if yu =y,

%, it yu 7 Yo

1- Yu-Yo =

Interface Constraint. We now add the interface constraint to the above formulatomnMax
K-cut. For each € N, let
. |E®)| .
o, = ot 1)~ (7)) - ot R0 - ),
whereo(E(i), R;) is as defined as follows:

Bala+1) + (K — fa(a—1)
5 ;

(5, K) = (2)

wherea = U—f{'j and = |S| mod K. It can be shown [47] that the number of monochromatic
edges in the clique of siz&'| when colored byK colors is at least (S, K). Now, we add the
following constraint to represent the interface constrain

> yuye >0 VieN €)

uweE(i)

Recall that vertices inf’(i) form a clique in the conflict graph, and cannot be partitioimed
more thanR; partitions to satisfy our interface constraint. NewFE (i), R;)) gives a lower bound
on the number of monochromatic edges in this cligiié)) [47], and thus(/Z) —o(E(i), R:))
is an upper bound on the number of nhon-monochromatic edgese 8/e know thaty,.y, = 1
for any monochromatic edge:, v) andy,.y, = K‘—_ll for any non-monochromatic edge, we have

constraint in the above Equation 3.
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Note that even though Equation 3 is a valid constraint, itsdnet necessarily restrict the
number of colors assigned to vertices Bf:) to R;. Thus, thel Py, x augmented by the

above Equation 3 only gives an upper bound on the number ofnmmmochromatic edges.

Relaxed SDP for Channel AssignmentSince we cannot solve the integer quadratic program
I Py, ¢ fOr problems of reasonable size, we relax it by allowing tlaeiablesy, to take any
unit vector inR!"<l. Sincey,,.y, can now take any value betweérand —1, we add an additional
constraint to restricy,.y, to be greater tha@(‘%l. The relaxed SDP for the channel assignment

is as follows.

- K -1
Maximize a Z (1 = yu-y)

(u,v)€E,

such that

Yo € RVl and |y,| =1

Yu-Yo > K—— 1 Yu §£ v, and
S sz, VieN.
u,vE€E ()

Standard SDP Formulation. Now, we convert the above relaxed version into the stand&xid S
formulation. LetiV be the|V.| x |V.| symmetric matrix representing the adjacency matrix of the
graphG,, and lete be the|V,| x 1 vector containing all 1's. Now, lef = d(W.e) — W denote
the Laplacian of thdV matrix, whered(W.e) is the|V.| x |V,| matrix with W.e as the main

diagonal. Finally, let
L(K—-1)
2K

X be the semidefinitd/,| x |V..| matrix representing,.y, for all u,v € V.. Now, the semidefinite

C=—

program for the channel assignment problem in the standBi® 8rm (Matrix Notation) [37]
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can be represented as follows.

Minimize C.X
such that

diagonal(X) = e

X’LLU> Y
T T K -1

AZ'.X 2 2@2', Vi € N, and

Yu#v eV,

X =0,

where each4;(i € V) is a|V.| x |V.| matrix representing®(¢). In particular, theA;[u,v] = 1
if (u,v) € E;, and 0 otherwise. Also, the inequalities in the above cairgs can be converted
into equalities by subtracing linear positive variablesnirthe left hand side.

The solution to the above semidefinite program gives an uppends on the number of non-
monochromatic edges, and the lower bound on the optimalorktinterference can be obtained
by subtracting it from|E,|. This semidefinite program can solved using standard SD®eisol
such as DSDP 5.0 [48].

B. Linear Programming Formulation

In our simulations, we observed that solving the semide&fipiogram formulation presented
in the previous section can take a long time (12 hours on a 4 [@atel Xeon machine with
2GB RAM for a 50 node network) and memory, and hence, may ndeasble for very large
network sizes. Thus, in this section, we formulate our cledassignment problem as an integer
linear program (ILP), and use the relaxed linear prograni\additional constraints to estimate
the lower bound on the optimal network interference. The bRnulation can be solved in a
much less time (less than an hour vs. 12 hours) than the SDhiufation, but yields a slightly
looser lower bound than SDP on the optimal network interfeee Note that the SDP and
LP formulations are used only to demonstrate the performarfcour Tabu-based and Greedy

algorithms.

Integer Linear Programming. Recall that/V is the set of network node%; is the number of

radio interfaces for a nodg K is the set of available channels, a6d(V,, E.) is the conflict
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graph. Also,E(i) represents the set of vertices ) that represent the communication links
incident on node € N.
We use the following set of binary integer (taking values Qlpwariables and constraints in
our ILP formulation.
« VariablesY,,, for eachu € V. and k € K. The variableY,; is 1 if and only if the
vertexu € V, is assigned the channgl Essentially, the variables,;, define the channel
assignment function. Since, each vertexlinis given exactly one channel, we have the

following constraints.

Yue = {0,1}, YueV, Yke Kk (4)
Z Yo = 1, Yu € V., (5)
kelC

. VariablesX,,, for each edgéu, v) € E.. The variableX,, is 0 only if the vertices:, v € V,
are assigned different channélShe following equation defines the value &f,, in terms

of Y variables.
Xuww = {0,1}, V(u,v) € E, (6)
Xuv Z Yuk + Y;)k - 17 V(U, U) S Emv}{: € K: (7)
The variablesX,,, are used to define the network interference (the objectinetian defined
later).
« VariablesZ,;,, for each network nodeé € N and channek € K. The variableZ;;, is 1

if and only if someu € E(i) has been assigned a chantelnote that,u represents a

communication link incident on € N.

Zy = {0,1}, Vie N, Vk e K (8)

Zie = Yuk7 Yu € E(Z), Vi € N, Vk e K (9)

Zg < > Yu, VieN Vkek (10)
u€E(i)

“4If verticesu and v in V. are assigned same channel, th&g, can be 0 or 1. HoweverX,, will be chosen to be 0 to
minimize the objective function (see below), as there ar@dditional constraints involving(,.,. The additional constraints in

Equation 12 and 13 can be looked upon as derivations of Exquati
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The last equation above is used to enforce fiatis 0 if there is indeed no vertex € E(i)
that has been assigned a chankellhe below equation enforces the interface constraint

using Z variables.

k
Y Zy<R VieN (11)

Objective Function. Our objective function for the above ILP is to

Minimize Z Xouw-
(uv)€E.
Linear Programming. Due to NP-hardness of integer linear programming, solvimg @above
ILP is intractable for reasonably sized problem instantésis, we relax the above ILP to a linear
program (LP) by relaxing the integrality constraints. Inrtgaular, we replace the Equations 6,

4, and 8 by the following equation.
0 S;}(uv7yak722k S; 1.

The solution to the relaxed linear program gives only a loweund on the optimal solution
to the ILP. Through simulations, we have observed that theitdound obtained by the above
LP formulation is very loose. Thus, in order to obtain a teghtower bound, we add additional

constraints as follows.

Clique ConstraintFor each vertex, € V,, let S, be the set of vertices in a maximal clique

containingu. As discussed in Section VI-A, we can lower bound the numbb@na@nochromatic
edges in a complere graph of size,| when colored byK colors aso (S, K') using Equation 2.
The above observation yields the following additional ¢oaiat.

> Xpw20(8u, K) Vuel, (12)

vwESy
Since the set of verticeB(i) in V. forms a clique inG,. and uses at mos®; colors (due to the
interface constraint on nodg, we also have the following constraint.
> Xw>o0(E(i),R) VieN (13)
(u,0)EE(i)
The above two additional constraints pose a lower bound enirterference on clique like
subgraphs. This helps to reduce the gap between the actegemoptimum and the relaxed

linear solution.
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Number of Variables and ConstrainfBhe number of variables in the above LP formulation is

|E.| + K(]V.]+ N), and the total number of equations/constraints2a{&,| + |N|) + K (2|V,| +

2|N|+|E.|) including the integrality constraints. We solve the linpasgram using GLPK [49],

a public-domain MIP/LP solver.

VIl. Generalizations

In the previous sections, for sake of clarity, we made vaiassumptions, viz., uniform
traffic on all communication links, a binary interference ae and orthogonal channels. In this
section, we generalize our techniques to relax these aggmapThese generalizations are quite
useful in practical deployments. For example, the linkhimhetwork communication graph may
carry different amounts of traffic. Thus, the average irtiemhce must be weighted by traffic as
interfering traffic is not the same for all interfering linkaps. Also, channels — even when
they are orthogonal in theory — do interfere due to deviceerfgctions (e.g., radio leakage,
improper shielding, etc.) [14]. Thus, modeling of non-agonal (i.e., interfering) channels is
a good idea. In addition, this also allows us to explicitljlizeé non-orthogonal channels [18].
Finally, regardless of traffic and use of different channelsth loss effects can influence the
degree of interference between two links — and thus, resauftactional interference between

two links.

Non-uniform Traffic and Fractional Interference. Let v andv be two vertices in the conflict
graph,r(u,v) (a real number between 0 and 1) be the level of interferentedas two links
corresponding to the verticesandv, andt(u) andt¢(v) denote the normalized traffic on the links
corresponding to the vertex and v respectively. Note that in our network model, we assume
that the traffic is known a priori. Measurements of these ipatars was discussed in Section II.
Based on the above notations, the overall network interferdor a given channel assignment
function f : V, — K can be defined as follows. L&t/ = {(u,v)|u,v € V. and f(u) = f(v)}.
Then,

I(f)= Y twt)r(uv).

(u,v)eM
For the generalized interference and traffic model, the Fzmed and Greedy algorithms use
the above definition of network interference; no additiact@nges are required. Similarly, the LP

and SDP formulations of the channel assignment problem eageberalized by appropriately
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extending the objective function; no other changes areiredgun the list of variables and

constraint equations.

Non-orthogonal Channels.Let ¢(ky, k2), a value between 0 and 1, denote the level of interfer-
ence between two channdls andk,. For non-orthogonal channels, the overall network network
can be further generalized as follows for a given channagassent functionf : V. — K.
I(f)= ) twi()r(u,v)e(f(u), f(v)).
(u,v)eM
As before, Tabu-based and Greedy algorithms can use thes atedinition of network inter-
ference without any additional changes. However, in the drihtilation, we need to replace the

Equations 7 by the following.
Xuw 2> Yur, + Yor, — 24 (b, k), V(u,v) € E.,Vk1, ks € K

Unfortunately, the SDP formulation cannot be generalizasilg for non-orthogonal channels.
The problem arises from the difficulty in choosing approfgriaectorsa; such thata;.a; is
proportional toc(i, j) for all channelsi,j € K. The valuesc(i, j) are characteristics of the

channel spectrum, and can be measured independently.

VIIl. Performance Evaluation

In this section, we study the performance of our designedrdlgns for the channel as-
signment problem through extensive simulations. We pitesean performance results for two
different settings. First, we evaluate a graph-theoreddggmance metric, and then, evaluate
throughput improvement using ns2 simulations. We starh wdiscussing various algorithms

used for comparison.

Algorithms. In addition to our designed algorithms (Tabu-based andribiged Greedy) and
the lower bounds obtained from the linear and semidefinitgy@mming techniques, we also
present results for two other algorithms for comparisonpérticular, we simulate a modified
version of the centralized CLICA heuristic presented in][idr a slightly different version of

the channel assignment problénwe refer to the modified algorithm of [11] as CLICA-SCE.

°In CLICA [11], a communication link may multiplex between hiple channels, but in our network model each

communication link uses exactly one channel for transmissiVe modify CLICA to use our network model.
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Fig. 3. Fractional network interference of solutions deliveredvayious algorithms compared with the lower bounds

We also simulate aandomalgorithm which uses only a limited number of channels (é¢qoia
the number of radio interfaces), assigns a different chlatmeach radio interface, and then,

selects a random interface (and hence, channel) for tratsgna packet. See Section Il for a

We note here the network interference metric is actuallycaliaed metric since a communi-

Greedy algorithm.

cation link interferes with only “neighboring” communidan links. Thus, we observed that the

centralized version of the greedy algorithm performed at®xactly the same as the Distributed
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A. Graph-Theoretic Performance Metric

In this set of experiments, we generate random networks hgamaly placing a number
of nodes in a fixed region, and evaluate various algorithnsetan a certain graph-theoretic
performance metric. To solve linear programs, we used GL#¥ jvhich is a public-domain
MIP/LP solver, while to solve semidefinite programs, we uB&DP 5.0 [48] [50] which uses

an efficient interior-point technique.

Graph Parameters. We consider two sets of random network, viz., dense and spaetvorks,
generated by randomly placing 50 nodes5ii) x 500 and 800 x 800 square meters of area
respectively. In dense networks, the average node degree is around 1@ inlsparse networks
the average node degree is around 5. Each node has the sarbermfmadio interfaces, and
has a uniform transmission and interference range of 15@nmsetwo nodes are connected by a
communication link if they lie within each otherfeansmission rangeAlso, two communication
links (i,7) and (g, h) interfere with each other if and only if either or i lies within the
interference rangeof 7 or j; this is based on the protocol interference model [2]. Wauiass

orthogonal channels and uniform traffic on all links.

Performance Metric. We evaluate the performance of our algorithms in random ordsvusing
the metric “fractional network interference.” Given a chahassignment functiohcomputed by
an algorithm, thdractional network interferences defined as the ratio of network interference
(I(f)) and the total number of edges in the conflict graph. This ssms the number of
conflicts that remain even after channel assignment relatvthe number of conflicts in the
single-channel network. The fractional network interfere for the random algorithm is given
by %, whereR is the number of radios on each node. Note that the aboverpafice metric is

purely graph-theoretic and hence, we do not use any networllator for these experiments.

Results. In Figure 3, we plot the fractional network interference f@rying number of radio
interfaces/node, in dense and sparse networks using 3 arahdrihels. In general, both our
algorithms perform extremely well compared to the CLICAES@nd random algorithms. The

Tabu-based algorithm almost always performs better ttat the Distributed Greedy algorithm,

SWe evaluated networks of size up to 750 nodes and varyingitiEs)swith similar performance results for all algorithms

However, the LP and SDP formulations for networks of sizgdarthan 50 nodes took unreasonably long computation time.
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except when the number of radios is very small. When the nummbeadios is very small, the
second phase of Tabu-based algorithm is forced to performynreefficient merge operations
which leads to performance degradation.

The performance of our algorithms compared to the lower deurbtained from the LP and
SDP formulations shows that our algorithms deliver very dysolutions, particularly for larger
number of radios. Note that the vertical axis of the plots liespnted in log-scale for ease
of viewing. The performance difference between the Talsedaalgorithm and the SDP lower
bound is about 1% to 4% when the number of radios is large. Weatso see that the SDP
formulation delivers a much better lower bound than the Lifnidation, for all parameter values.
However, as we noted before, running SDP is significantlyaremmputationally expensive (in
terms of time and memory) than LP.

The comparison of plots for dense and sparse networks brirngnteresting features. The
fractional interference reduces with increase in numberadios per node; however, this trend
saturates beyond a certain number of radios. This satarptiont is reached with smaller number
of radios for sparse networks than for dense networks, fersdime number of channels. This
is because the denser networks can potentially support owreurrent transmissions than the

sparse networks. Similar trends were observed in [11].

B. ns2 Simulations

In this set of experiments, we study the impact of channaegjasgent in improving throughput
in an 802.11-based mesh network. We compare the performahe@rious algorithms by
measuring thesaturation throughputising ns2 simulations over randomly generated networks.
We consider networks of 50 nodes randomly placed 0@ x 1000 square meters area. The
transmit power, receive and carrier sense thresholds irdéfault setting of ns2 are such that
the transmission range is 250 meters and the interferemgeria 550 meters. We used the same
default radio parameters as in ns2 [51], except that we sethlannel data rate to 24Mbps. All
transmissions are unicast transmissions following the BORMAC protocol with RTS/CTS, and

the packet size is fixed to 1000 bytes.

Performance for Various Traffic Models. We use three different traffic models.

« Single-hop traffic modelThis model consists of identical poisson traffic for eacimow-

nication link. The single-hop traffic model is useful to exate the performance in the case
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Fig. 4. Saturation throughput in ns2 simulations for 12 cteds and various traffic models, viz., (a) Single hop, (b) tiiubp
Peer-to-Peer, (c) Multi-hop Gateway.

when all links in the network carry the same load.

« Multi-hop peer-to-peer traffic moddi this model, 25 randomly selected source-destination

pairs communicate using multihop routes. The routes arepobaal statically using the
shortest number of hops as the metric, and do not changeddifétime of the simulation.

« Multi-hop gateway traffic modelln this model, 4 random nodes are selected as gateways,

and 25 source nodes send traffic to their nearest (in termop$)hgateway. Routes are
determined as in the previous traffic model. Such a traffic ehedll be common when the
mesh network is used for Internet gateway connectivity.
Note that in the last two traffic models the traffic on the linksnon-uniform. The traffic
information is used in the channel assignment algorithmsuggested in Section VII.

Figure 4 plotssaturation throughpuagainst number of radio interfaces per node for the three
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traffic models and 12 channels (as we are experimenting wi02.11a like system). We obtain
the saturation throughputs as follows. For a particular benof radios and channels, we run a
series of simulations, increasing the offered load eacle tistarting from a low value. We stop
when the throughput does not increase any further with asadn the offered load.

We note that in all the three traffic models, our algorithmsfqren very well. We also see
that the observations we made from the earlier graph-ttieaealuations translate well into the
ns2 results. The saturation throughput remain same aftertaic number of radios, as inferred
in the graph-theoretic simulations. Also, the relativefpenance of the algorithms in the ns2
simulations is the same as observed in the graph-theorstidations. This indirectly establishes
the merit of the chosen interference model, optimizatiojective, and use of graph-theoretic

measures as a method of performance evaluation.

Modeling Non-Orthogonal Channels.So far, we have used only perfectly orthogonal channels.
This however is a limitation in systems such as 802.11b wfesveorthogonal channels are avail-
able. Since our techniques are general enough to handlemioogonal channels (Section Vi),
we now model a non-orthogonal channel situation.

We assume an 802.11b like system where there are 11 chamiigsynly 3 of them being
mutually orthogonal. For modeling the interference between-orthogonal channels, we follow
the technique outlined in Section VII. We use the data fro] {6 model the “weighted” nature
of conflicts. This data is obtained based on a simple analysithe amount of overlapped
spectrum between every pair of channels in 802.11b. We atsalickect measurements on an
802.11b testbed to estimate interference between nowogwtial channels and the values we
obtained are similar to those quoted in [52]. Since such oreasents can be very much hardware
and environment specific, we stick to the data in [52].

In the ns2 simulator, we model inter-channel interferensdadlows. Physical layer frames
transmitted on channél, arriving at a radio interface tuned to chanelare reduced in power
depending on the degree of non-interference. For exanffe;;frame arrives at &;-interface,
the frame does not undergo any power reduction. On the otted,hf ak;-frame arrives at a
ko-interface, wheré:; andk, are perfectly orthogonal, then tiig-frame is completely silenced.
Power reduction between 0% and 100% occur for other intelmedases. In the simulator, the

interference (e.g., carrier-sense or collisions) is daked only after such power reduction.
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Fig. 5. Saturation throughput in ns2 simulations when using ndhegonal channels with 802.11b-like multi-

channel model (11 channels with varying degrees of interfee; 3 channels are mutually orthogonal).

We use the peer-to-peer multihop traffic model (as definedrbgto show the performance of
our algorithms with non-orthogonal channels. See FiguM/& observe that both our algorithms
perform better when using all available 11 channels thanmwhging only the 3 mutually
orthogonal channels. The factor of improvement is less enThabu-based algorithm compared
to the Distributed Greedy algorithm due to the inefficiendytltee merge operations. Overall,
use of non-orthogonal channels is a better choice thaniatsty channel assignments to only

orthogonal channels.

IX. CONCLUSION

In this paper, we have formulated and addressed the chassighanent problem in multichan-
nel wireless mesh networks where each node may be equippgbhdmiltiple radios. We have
presented centralized and distributed algorithms thagasshannels to communication links in
the network with the objective of minimizing network interénce. Using linear programming
and semidefinite programming formulations of our optimimatproblem, we obtain tight lower
bounds on the optimal network interference, and empigcdémonstrate the goodness of the
quality of solutions delivered by our algorithms. Using siations onns2 we observe the
effectiveness of our approaches in improving the networughput. One of the future directions

is to consider assignment of multiple channels to each link.
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