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ABSTRACT

This work investigates the effective acquisition of lexical knowledge from the Web to perform

semantic interpretation. The Web provides an unprecedented amount of natural language from

which to gain knowledge useful for semantic interpretation. The knowledge acquired is described

as common sense knowledge, information one uses in his or her daily life to understand language

and perception. Novel approaches are presented for both the acquisition of this knowledge and use

of the knowledge in semantic interpretation algorithms. The goal is to increase accuracy over other

automatic semantic interpretation systems, and in turn enable stronger real world applications such

as machine translation, advanced Web search, sentiment analysis, and question answering.

The major contributions of this dissertation consist of two methods of acquiring lexical knowl-

edge from the Web, namely a database of common sense knowledge and Web selectors. The

first method is a framework for acquiring a database of concept relationships. To acquire this

knowledge, relationships between nouns are found on the Web and analyzed over WordNet using

information-theory, producing information about concepts rather than ambiguous words. For the

second contribution, words called Web selectors are retrieved which take the place of an instance

of a target word in its local context. The selectors serve for the system to learn the types of con-

cepts that the sense of a target word should be similar. Web selectors are acquired dynamically

as part of a semantic interpretation algorithm, while the relationships in the database are useful to
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stand-alone programs. A final contribution of this dissertation concerns a novel semantic similarity

measure and an evaluation of similarity and relatedness measures on tasks of concept similarity.

Such tasks are useful when applying acquired knowledge to semantic interpretation.

Applications to word sense disambiguation, an aspect of semantic interpretation, are used to

evaluate the contributions. Disambiguation systems which utilize semantically annotated training

data are considered supervised. The algorithms of this dissertation are considered minimally-

supervised; they do not require training data created by humans, though they may use human-

created data sources. In the case of evaluating a database of common sense knowledge, inte-

grating the knowledge into an existing minimally-supervised disambiguation system significantly

improved results – a 20.5% error reduction. Similarly, the Web selectors disambiguation system,

which acquires knowledge directly as part of the algorithm, achieved results comparable with top

minimally-supervised systems, an F-score of 80.2% on a standard noun disambiguation task.

This work enables the study of many subsequent related tasks for improving semantic inter-

pretation and its application to real-world technologies. Other aspects of semantic interpretation,

such as semantic role labeling could utilize the same methods presented here for word sense dis-

ambiguation. As the Web continues to grow, the capabilities of the systems in this dissertation

are expected to increase. Although the Web selectors system achieves great results, a study in this

dissertation shows likely improvements from acquiring more data. Furthermore, the methods for

acquiring a database of common sense knowledge could be applied in a more exhaustive fashion

for other types of common sense knowledge. Finally, perhaps the greatest benefits from this work

will come from the enabling of real world technologies that utilize semantic interpretation.
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1 INTRODUCTION

In computational linguistics, the study of meaning is referred to as semantics, and semantic in-

terpretation is the process of determining meaning for an entire sentence (Allen, 1994). Al-

gorithms that solve problems in semantic interpretation are considered enabling technologies

(Resnik, 2006). They are not solutions to real world problems themselves, but they can enable

stronger solutions for technologies such as machine translation, information retrieval, dialog /

spoken-language understanding, and question answering (Ide & Véronis, 1998), as well as twenty-

first century applications such as sentiment/opinion analysis, accurate Web search, and social net-

work mining.

Semantics in general has been one of the major areas of study for the field of computational

linguistics since its inception. Another major area, syntax, is concerned with studying formal

relationships between words (Jurafsky & Martin, 2000). While algorithms performing tasks under

the study of syntax, such as part of speech tagging or syntactic parsing, have reached accuracy

levels like that of humans, algorithms for semantic interpretation have yet to do so on a broad scale.

Tasks under semantic interpretation include word sense disambiguation, semantic role labeling,

and anaphora resolution among others. It is widely believed that solutions to these problems lack

accuracy due to a data acquisition bottleneck, in which systems are limited to correctly annotating

sentences similar to those in which the system has been trained to interpret (Mihalcea, 2002; Diab,
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2004; McCarthy et al., 2004; Swier & Stevenson, 2004; Gonzalo & Verdejo, 2006). The creation

of training data takes many human hours and thus forms a bottleneck for what would otherwise be

automatic algorithms.

As a solution to the bottleneck and achieving higher levels of semantic interpretation accuracy,

this dissertation discusses the automatic acquisition of Common Sense Knowledge (CSK). This

knowledge includes information we (as humans) use in our everyday life without necessarily being

aware of it. Panton et al. (2006), of the Cyc project, define common sense as, “the knowledge

that every person assumes his neighbors also possess.” Essentially, it is a guideline for the type

of knowledge needed to understand the meaning of common natural language. For example, in

sentences (1), (2), and (3) the word ‘key’ has three different meanings. Those meanings could

be summarized, respectively, by definitions from WordNet (Miller et al., 1993): “1. metal device

shaped in such a way that when it is inserted into the appropriate lock the lock’s mechanism can be

rotated”, “2. something crucial for explaining”, and “3. any of 24 major or minor diatonic scales

that provide the tonal framework for a piece of music”.

(1) The key was in her pocket.

(2) The key was in her mind.

(3) The key was in E flat.

CSK tells us that the type of key corresponding to the first meaning (sense 1), is something that is

often kept in one’s pocket, and thus the meaning of ‘key’ in (1) can be understood. For (2), one

may utilize CSK that the second meaning of ‘key’ (sense 2) is an idea and that ideas are kept in

the mind. Finally, in (3) the meaning of ‘key’ corresponds with the third meaning of key (sense
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3); One may know that this sense of ‘key’ is represented by a letter often followed by ’sharp’ or

’flat’ even if one does not know exactly what that means for music. In general, CSK helps one

understand the possible meanings or semantics of a sentence.

The primary advantage to using automatically acquired CSK is that human hours are not re-

quired for creating training data specific to the application. Many current semantic interpretation

systems require training samples, example sentences annotated with meanings (semantic annota-

tions) (Gildea & Jurafsky, 2002; Dang & Palmer, 2005; Chan et al., 2007). For example, a system

attempting to determine the meaning of ‘key’ in examples (1) - (3) would need many examples

of each sense of ‘key’ (and there are more than three senses of ‘key’). A secondary advantage of

this automatic approach is that a single type of CSK may be used for multiple aspects of seman-

tic annotation, where as methods involving training require annotations for each aspect. These

advantages summarize the differences between supervised algorithms which require examples as

training data, and minimally-supervised algorithms which do not use annotated examples, but may

utilize other sources of information.

Until recently, an approach like that discussed in this dissertation would not be possible. It is

the massive growth of the Web combined with an existing knowledge base, the WordNet ontology

(Miller et al., 1993), that has enabled the automatic acquisition of CSK presented in this work.

WordNet provides a mapping of word senses to concepts which are organized into an ontology.

For example, WordNet is organized such that the concept corresponding to sense 1 of ‘key’ is

a type of artifact (defined as “a man-made object taken as a whole”). Due to the massive size

of the Web, an algorithm can find many results for something specific, such as the phrase “in a
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pocket”. Thus, it may be discovered through a Web search that other artifacts commonly appear

“in a pocket”, such as ‘wallet’, ‘cell phone’, and ‘pencil’. This can provide a strong indication that

a ‘key’ in a pocket corresponds to the sense that is an artifact.

When one determines the meaning of a word in a sentence, such as ‘key’, he or she is disam-

biguating among the senses of the word. When computers attempt this algorithmically, the problem

is known as word sense disambiguation (WSD). Among the many aspects of semantic interpreta-

tion, WSD is focused on most heavily in this work. As will be discussed later in the dissertation,

many of the other aspects of semantic interpretation are related to or can even be reduced to a spe-

cific type of WSD. Additionally, results for current top performing WSD systems are significantly

below a human baseline and only slightly above a baseline of simply picking the most frequently

occurring sense (Edmonds & Cotton, 2001; Snyder & Palmer, 2004; Navigli et al., 2007; Agirre

et al., 2010). These ideas make WSD a worthwhile problem for evaluating the usefulness of the

acquired CSK.

The dissertation is organized into 6 chapters, discussing both related works and the contribu-

tions of this dissertation. The first chapter, Related Knowledge Acquisition and Semantic Interpre-

tation, presents background information and research works that are most related to the research

of this dissertation. Common sense knowledge is discussed further and other sources of knowledge

are presented in Section 2.1. Section 2.2 describes the aspects of semantic interpretation that this

work is concerned with as well as a review of research studying the use of lexical knowledge for

semantic interpretation. Section 2.3 discusses semantic similarity and relatedness measures that
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are used to compare concepts. These measures are essential for the algorithm applying CSK to

semantic interpretation.

The major contributions of the research from this dissertation are described in Chapters 3 to 5.

Chapter 3, A Database of Applicable Common Sense Knowledge, describes a type of CSK acquired

as explicit relationships. The key novelties within this work include the use generic search phrases

with automatically filled constituents to query the Web, and the incorporation a statistical parser to

verify that the syntactic structure of results from the Web match an intended structure. After search-

ing the web, the approach also includes an automatic analysis word relationships over WordNet in

order to generalize information about concepts or areas of the ontology. Chapter 4, Web Selectors

as a Means to Dynamically Acquire Knowledge, presents a second type of knowledge which is

acquired specifically for a given sentence sentence (sections 4.1 and 4.3: Web Selectors). This

approach to word sense disambiguation, which is also valid for other types of semantic interpreta-

tion, introduces the novel idea of acquiring selectors from the Web as well as the use of selectors in

context. Selectors are words which take the place of a given target word within its local context. Fi-

nally, Chapter 5 introduces a novel semantic similarity metric as well as evaluates WordNet based

semantic similarity and relatedness metrics on tasks of concept similarity, addressing the fact that

an extensive evaluation of similarity and relatedness measures for the task of concept similarity

had previously never been carried out.

Though the contributions are presented in separate chapters, they share ideas motivating their

algorithms. During acquisition both approaches use context in a search for knowledge. Consider

that one is trying to acquire knowledge about ‘pockets’. Searching just for the word ‘pocket’,
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results in millions of sample sentences from the Web. However, if the search included context,

such as “the * was in her pocket”, the results would be greatly restricted and words returned in

place of * may indicate things commonly in a pocket. Both types of CSK are validated through the

semantic interpretation problem of WSD. Additionally, the similarity measure introduced is used

within the Web selectors algorithm. The last chapter, numbered 6, brings all conclusions under the

context of the ultimate goal to more effectively use knowledge acquired from the Web in problems

of semantic interpretation.

1.1 Preliminaries

A few basic definitions and assumptions are necessary to fully understand this dissertation. A

distinction is made between words and concepts, such that any word has a set of concepts which

it could be referring to. In turn, a word sense maps to a concept, and a concept may have multiple

word senses which map to it. For example, consider the noun ‘beam’ (words also have parts

of speech), which has the seven senses listed below according to WordNet (Miller et al., 1993).

Each sense of ‘beam’ refers to a concept described by the proceeding gloss. Additionally, many

of the concepts have multiple word senses, such as that of beam-3, which also includes ray-4 and

electron beam-1. To see this more clearly, examine Figure 1.1. Note that compound nouns are also

considered single words when referring to one concept. Words which contain multiple senses, such

as ‘beam’, are termed polysemous, while words with only have one sense are termed monosemous.
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“(nautical) breadth amidships”

“the broad side of a ship”

“a column of light (as from a beacon)”

'beam'

beam­1

beam­7

beam­6

beam­5

beam­4

beam­3

beam­2

'ray'

ray­1

ray­7

ray­6

ray­5

ray­4

ray­3

ray­2

'electron beam'

electron_beam­1

“a signal transmitted along a narrow path; guides 
airplane pilots in darkness or bad weather”

“a group of nearly parallel lines of electromagnetic 
radiation”

“long thick piece of wood or metal or concrete, etc., 
used in construction”

Figure 1.1: Mapping noun senses of ‘beam’ to concepts, and other noun senses which map to the
same concept as beam-3.

beam-1 (gloss: “a signal transmitted along a narrow path; guides airplane pilots in

darkness or bad weather”)

beam-2 (gloss: “long thick piece of wood or metal or concrete, etc., used in construction”)

beam-3 (gloss: “a group of nearly parallel lines of electromagnetic radiation”)

beam-4 (gloss: “a column of light (as from a beacon)”)

beam-5 (gloss: “(nautical) breadth amid ships)

beam-6 (gloss: “the broad side of a ship”)

beam-7 (gloss: “a gymnastic apparatus used by women gymnasts”)

As was done above, single quotes will surround words: ‘beam’, and word senses (concepts) will

appear in the italic form of a word followed by a dash and the sense number: beam-3. Many times

a word sense will be given, with the intention of representing the concept for which it belongs.
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Alternatively, a sense number is not always necessary for describing a concept, so one may also

encounter a pattern exemplified here: bat (gloss: “a club used for hitting a ball in various games”);

In this case it is the concept corresponding with bat-5 that is being referred to, but it is more

important that one understands the concept being referenced rather than the sense number. The

glosses are quoted from WordNet (Miller et al., 1993) unless otherwise indicated.

Within this dissertation, the term semantic interpretation specifically refers to solving a set of

problems in which lexical knowledge can play a part in the annotation of meaning. These problems

include word sense disambiguation (WSD), semantic role labeling (SRL), prepositional phrase

attachment (PP attachment), anaphora resolution (AR), and named entity recognition (NER) .

Chapter 2.2 describes these problems and past work in more detail.

As final piece of preliminary information includes definitions for various levels human super-

vision within semantic interpretation algorithms. These include supervised, minimally-supervised,

and unsupervised. Supervised specifically refers to algorithms that use a manually created train-

ing set of data in which the algorithm learns patterns for annotation (Màrquez et al., 2006). Su-

pervised algorithms include standard machine learning classification algorithms such as support

vector machines or maximum entropy learners. Algorithms which use manually created sources of

information, but do not require hand-crafted examples as training data, are referred to as minimally-

supervised. WordNet is a common source of information for minimally supervised algorithms, and

one should note the key advantage of these algorithms over supervised algorithms is that there is

no need for creating hand-tagged examples for each possible annotation. The term unsupervised

is reserved for algorithms which do not use any sources of information created by humans other
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than the corpus with which the algorithm is being run. Unsupervised algorithms typically perform

clustering rather than classification as they do not have a source identifying possible annotations

(Pederson, 2006). Lastly, this dissertation also uses the term knowledge-based when describing

algorithms that employ a knowledge source (Mihalcea, 2006). Knowledge-based systems may fall

under any category of supervision, but they are typically considered minimally-supervised.
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2 RELATED KNOWLEDGE ACQUISITION AND SEMANTIC

INTERPRETATION

The acquisition of knowledge and its application to semantic interpretation has a long history. This

chapter surveys that history broken down into three sections related to the contributions of this

dissertation. The first section discusses work in acquiring or creating lexical knowledge sources

in many different forms. Next, a discussion of approaches to semantic interpretation which utilize

lexical knowledge is presented. Finally, related work in semantic similarity and relatedness metrics

is also presented, as an aspect of this dissertation utilizes such metrics in the context of knowledge

acquisition.

2.1 Lexical Knowledge Sources

Lexical knowledge is available in many different forms. This work is particularly interested in the

subset that can be referred to as common sense knowledge (CSK). Panton et al. (2006) define com-

mon sense as, “the knowledge that every person assumes his neighbors also possess.” Essentially,

CSK is the knowledge we use in our every day life without necessarily being aware of it. It is CSK

that tells us keys are kept in one’s pocket and keys are used to open a door, but CSK does not hold

that keys are kept in a kitchen sink or that keys are used to turn on a microwave, although all of
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these ideas are possible. Although the term common sense may be understood as a process such

as reasoning, this dissertation is concerned only with the knowledge.

To show the usefulness of CSK for problems in computational linguistics, consider the follow-

ing sentences.

(4) He put the batter in the refrigerator.

(5) She ate the apple in the refrigerator.

Example (4), deals with lexical ambiguity. There is little doubt for one to determine just what the

“batter” is (food/substance used in baking). However, a computer must determine that it is not

someone who swings a bat in baseball that is being put into a refrigerator, although it is entirely

possible to do (depending on the size of the refrigerator). This demonstrates how CSK can be

useful in solving word sense disambiguation. It is common for food to be found in a refrigerator

and ‘batter’ is easily resolved as a food/substance rather than a person.

CSK can also help to solve syntactic ambiguity. The problem of prepositional phrase attach-

ment occurs in sentences similar to example (5). In this case, it is difficult for a computer to

determine if ‘she’ is in the refrigerator eating an apple or if the ‘apple’ which she ate was in the

refrigerator. Like the previous example, the knowledge that food is commonly found in a refriger-

ator and people are not, leads one to understand that “in the refrigerator” should be attached to the

noun phrase “the apple” and not as a modifier of the verb phrase “ate”.
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2.1.1 Standard Dictionaries

As one of the most prevalent sources of lexical knowledge, dictionary definitions (or glosses) may

be regarded as CSK. These phrases may describe general knowledge that is important in under-

standing a language. Additionally, definitions are attached to word senses rather than word forms.

In particular, noun glosses often have the form of a superordinate followed by distinguishers.

Superordinate is a more general type of entity which the noun sense belongs and distinguishers

describe unique characteristics of the concept (Miller et al., 1993). For example, consider (6), a

gloss from the Longman Dictionary.

(6) trombone: a metal musical instrument that you play by blowing into it and moving a long

sliding tube. (Summer & Gadsby, 2002)

One can easily determine that there is a relationship between ‘trombone’ (the subordinate) and

‘metal musical instrument’ (the superordinate). This relationship will be described in more detail

below (see hypernymy). Additionally, the gloss is completed by mentioning distinguishers, ‘play

by blowing into it and moving a long sliding tube’. These distinguishing characteristics may also

be CSK.

Standard dictionaries have several significant drawbacks when it comes to common sense.

First, the scope of definitions certainly do not provide all necessary information (such as keys

are commonly kept in one’s pocket), and some definitions may be considered expert knowledge

rather than CSK. Expert knowledge, such as “an amygdala is an almond shaped nuclei located

in the cerebral cortex of the brain”, is certainly not necessary to understand every day language.
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Additionally, the type of knowledge or relationship being described is not made explicit. Consider

(6); Although one can use the common pattern of glosses to determine the superordinate of ‘trom-

bone’, ‘metal musical instrument’ does not appear in the dictionary itself and ‘instrument’ has 3

different senses according to Summer & Gadsby (2002); The noun tube has five different senses.

Therefore, word senses or concepts involved in the relationship are not given. Additionally, the

relationship described between ‘trombone’ and ‘tube’ is not clearly understood without the ability

to understand language in the first place. In short, dictionaries require users (or computers) to be

able to accurately process and understand language in order to retrieve all of the implicit knowl-

edge. Still, these glosses have been used to determine general relatedness between concepts (Lesk,

1986), where relatedness strengths are given between a pair of words or concepts, for which no

specific relationship is realized. Such work is described in section 2.3.4.

2.1.2 WordNet

Originally designed as a dictionary that could be searched conceptually, WordNet (Miller et al.,

1993) has a unique feature of providing explicit relationships among concepts in what is consid-

ered an ontology. Concepts are represented as synsets, a list of word forms which are synonymous

with each other, and thus have the same meaning. For example, {batter, hitter, slugger, batsman}

is a synset with the gloss “(baseball) a ballplayer who is batting”. Below are two important rela-

tionships WordNet provides between noun concepts (synsets).
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• hyponymy/hypernymy: An x is a (kind of) y. (“ISA” relationship, x corresponds to the

hyponym)

• meronymy/holonymy: x is a part of y. (“HASA” relationship, x corresponds to the meronym)

Note that since these relationships are between concepts, x and y are words which belong to the

synsets for which the relationships are defined over. For example, because one accepts “a batter

is a baseball player”, then {batter, hitter, slugger, batsman} is a hyponym of {ballplayer, baseball

player}. In addition to relationships among concepts (synsets), WordNet also provides antonymy

and morphological relations between word forms.

The WordNet noun ontology is designed such that distinguishing features of superordinates are

inherited by their subordinates (Miller et al., 1993). Two of these features, has attribute (with an

adjective) and has function (with a verb), are not explicitly given in WordNet, and they were only

considered during the accurate creation of the ontology. Meronymy represents a third and final

feature considered. This idea of inheritance is important, as it allows the inference of generalized

knowledge. For example, if one finds many of the hyponyms of seed-1 (gloss: “a small hard fruit”)

are commonly found in a jar, then one may be able to conclude that commonly found in a jar is a

CSK feature for seed-1. See Figure 2.1 for the hyponyms of seed-1.

The importance of the WordNet noun ontology has already extended deep into the field of com-

putational linguistics. Many evaluations of semantic interpretation problems, such as Senseval-2

(Edmonds & Cotton, 2001), Senseval-3 (Snyder & Palmer, 2004), and SemEval-2007 (Navigli

et al., 2007), use WordNet as a sense inventory. All of the semantic similarity and relatedness mea-

sures that are discussed in Chapter 2.3 use WordNet to some degree, many relying solely on the
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Figure 2.1: A depiction of the WordNet ontology surrounding the concept seed-1. Arrows point
from hyponym to hypernym. Select hypernyms and direct hyponyms of seed-1 are connected by
darker lines. Each concept is represented by a word from its synset. Sense numbers are excluded
for readability.
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graph of the ontology. Additionally, many other sources of lexical knowledge, such as VerbOcean

(Chklovski & Pantel, 2004) or the works of Mihalcea & Moldovan (1999), Agirre et al. (2001),

Ruiz-Casado et al. (2007), and many others utilize the concepts and relationships of WordNet when

creating knowledge.

2.1.3 Large Manually Constructed Knowledge-Bases

A project in progress for over twenty years, Cyc has been acquiring common sense knowledge

about everyday objects and actions stored in axioms (Lenat, 1995; Panton et al., 2006). The axioms,

handcrafted by workers at CYCcorp and now totaling over 3.5 million, represent knowledge rooted

in propositions about 328,000 concepts (Curtis et al., 2006). There are three layers of information:

the first two, access and physical, contain meta data, while the third, logical layer, stores high level

implicit meanings. This representation is much more sophisticated than the relations acquired in

this dissertation.

Although Cyc has many uses across the field of Artificial Intelligence, one particularly relevant

study focused on its application to word sense disambiguation (Curtis et al., 2006). Documents are

turned into contextualized information structures, which record information at the word, sentence,

and paragraph level. Based on these structures and Cyc’s knowledge-base, a concept in Cyc is

then chosen as a representative of the sense. Overall, their method performs at 56.7% accuracy on

a selection of ambiguous words from Wikipedia sentences. This is higher than a 33.5% random
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baseline, but other points of comparison are not supplied, and the polysemy of words in Cyc versus

standard sense inventories is not provided.

ConceptNet was created based on the OpenMind Commonsense project which utilized an in-

terface on the Web in order to acquire knowledge (Liu & Singh, 2004). Users played games and

answered questions about words in order to determine a wide range of relations. In the end, Con-

ceptNet only provides relationships between word forms, an interesting fact considering WordNet

actually provides relations between concepts.

As with any handcrafted dataset, many hours must be put into the curation of data. The auto-

matic approach to acquiring common sense presented in this dissertation avoids this curation time.

Additionally, only a portion of Cyc is available to the public and its concepts do not map to an

existing word sense inventory, so it is difficult to evaluate the knowledge-base in comparison to

other sources for problems of lexical semantics.

2.1.4 Web-based knowledge acquisition

The size of the Web is unprecedented when compared to other corpora. It has enabled the success

of many systems designed for acquiring knowledge from large sets of text. Hearst (1998) noted that

many potentially useful lexical relations, which were missing from WordNet, could be acquired

automatically. Earlier, she introduced the idea of using manually built search patterns to find

knowledge in large corpora (Hearst, 1992). Search patterns are a big part of the work described in

this dissertation as well as a part of nearly all work using the Web as a source for lexical knowledge.
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An example pattern for acquiring a hypernymic relationship: concept1 is-a concept2 is given as

example (7).

(7) concept2 such as concept1

In the work presented in this dissertation, manually constructed search phrases, or abstract pat-

terns, are used to automatically generate more specific web queries by filling constituents based

on lists of words. Lexical knowledge is then found through matching web queries to text on the

web. This process is discussed extensively in Chapter 3. Below, we discuss and compare methods

which utilize the Web or other massive corpora for knowledge acquisition.

A recent trend has been the use of seed data or relationships in order for contextual patterns to

be extracted, which indicate a relationship (Riloff & Shepherd, 1997; Ravichandran & Hovy, 2002;

Thelen & Riloff, 2002; Girju et al., 2003; Pantel & Pennacchiotti, 2006; Pasca et al., 2006). Large

corpora are then searched for other instances of the extracted patterns, expanding the set of rela-

tionships beyond the initial seeds. Figure 2.2 shows the process along with an example for finding

hypernymic relationships with ‘trombone’ and ’brass instrument’ as the example seed relationship.

In turn, one would find “The trombone (a brass instrument) played ..”, or “Brass instruments, such

as trombones, are commonly found ...”. From these phrases, patterns describing hypernymic re-

lationships can be extracted: “concept1 (a concept2)” and “concept2, such as concept1”, where

concept1 and concept2 are wildcards matching members of the relationship. Finally, more knowl-

edge is found by searching with these patterns, and the process repeats by then searching for more

patterns with the acquired knowledge. Because of this repetitive process, the idea is commonly

referred to as bootstrapping knowledge, a reference to pulling oneself up by one’s own bootstraps.
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Figure 2.2: The generic process of using seed knowledge to find patterns for acquiring knowledge.

Early work in bootstrapping knowledge automatically generated semantic lexicons, lists of

words associated with a concept, when given a few example lemmas for a concept (Riloff &

Shepherd, 1997; Thelen & Riloff, 2002). Similarly, Ravichandran & Hovy (2002) used the seed

approach to generate patterns describing birth years, inventors, discoverers, definitions, why some-

one was famous, and locations. They applied it successfully in question answering. Ruiz-Casado

et al. (2007) presented an automatic approach where seeds were taken from relationships in Word-

Net, and patterns describing their relationship were discovered over Wikipedia. They were limited

to patterns of hypernymy, hyponymy, holonymy, and meronymy, since those were the only ones

covered in WordNet. This approach has also been used to show that CSK is often explicitly stated

in texts Yu & Chen (2010). The advantage of these bootstrapping approaches (in the basic sense)

is that only a minimal amount of supervision is needed, that of providing seed relationships. The

drawback is that the relationships are less reliable.

To address this reliability drawback, several approaches have been taken to improve automat-

ically acquired patterns. Pasca et al. (2006) developed an algorithm to score and rank both the

generated patterns and knowledge acquired in order to produce a precision of 90% on facts about
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birth years. The Espresso system (Pantel & Pennacchiotti, 2006) took a different approach to im-

proving reliability. It works with noisy broad coverage patterns (referred to as generic patterns)

by validating them with more precise reliable patterns. These reliable patterns are typically longer

and known to produce accurate results. Girju et al. (2003) used semantic constraints based on

WordNet concepts to remove incorrect instances. These constraints were discovered through a de-

cision tree algorithm on an annotated corpus, such that members of a relationship were expected

to belong to certain regions of the WordNet ontology. Most recently, the bootstrapping approach

has benefited from coupled-learning, in which multiple constraints are learned at the same time

(Carlson et al., 2010). The idea is that one is able to reduce error by learning jointly with other

independent functions and outputs rather than a single independent function.

In this work, reliability is important when focused on acquiring knowledge for its application

to semantic interpretation. Although much has been done to improve accuracy of approaches

based on seed knowledge, they still introduce more complexity and issues such as semantic drift

(Komachi et al., 2008). Systems which rely more heavily on manual patterns can focus more on

reliability since there is less room for errors to be introduced (there is no step to acquire patterns).

These approaches vary quite a bit, but mostly reduce to the idea of using manual patterns presented

in (Hearst, 1992).

Agirre et al. (2001) used the web to acquire topic signatures. These signatures were lists of

words associated with a concept much like those generated in (Riloff & Shepherd, 1997), but

they also include edge weights for the associations. The topic signatures were built by collecting

documents related to a concept in WordNet from the WWW using the method of Mihalcea &
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Moldovan (1999), which was originally used to create sense tagged corpora (this is discussed

more in section 2.2.2). Although Agirre et al. state that topic signatures are not focused on a single

application, they were able validate the knowledge through successful application to word sense

disambiguation. Later, they used a similar approach to automatically acquire example usages for

all noun senses in WordNet, and were able to successfully apply the examples to supervised word

sense disambiguation (Martinez et al., 2008)

The work on VerbOcean used patterns of phrases in order to search the Web for semantic rela-

tions among verbs (Chklovski & Pantel, 2004). The relationships, similarity, strength, antonymy,

enablement, and happens-before included weights (strength of relationship). This knowledge falls

into the category of CSK, but the specific relationships they acquired were among verb word forms

and senses are not resolved. It has been noted that word senses or concepts enable applications

more readily than ambiguous words (Pantel & Lin, 2002); Knowledge about noun senses or con-

cepts is a key attribute of our work.

Wikipedia is an attractive source for knowledge acquisition because it is more structured than

the Web itself (Ponzetto & Strube, 2007). Gabrilovich & Markovitch (2009) present Explicit Se-

mantic Analysis which interprets unannotated corpora through meaning found in Wikipedia con-

cepts rather than direct definitions. Their method improved over the state of the art in text cate-

gorization and fragment semantic relatedness. Other works using Wikipedia focused more strictly

on semantic relatedness, such as Ponzetto & Strube (2007), who found results in line with human

judgments and successfully used their relatedness information for coreference resolution. Addi-

tionally, Navigli & Ponzetto (2010) map Wikipedia articles to WordNet concepts and use hyper-
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links in Wikipedia to determine relatedness. Szumlanski & Gomez (2010) also use Wikipedia to

determine relatedness between WordNet concepts, but they do not rely on the hyperlinks provided

in Wikipedia. It is important to note the distinction between works that used structure in Wikipedia,

such as that of Ponzetto & Strube; Gabrilovich & Markovitch; Navigli & Ponzetto, and those who

only treat Wikipedia as a reliable corpus such as Szumlanski & Gomez. Similar to our work, all

of these methods lend themselves to gathering knowledge for concepts rather than words (either a

coarse Wikipedia article as a concept or WordNet concepts). On the other hand, the type of knowl-

edge in Wikipedia articles does not always include CSK, a thought Gabrilovich and Markovitch

acknowledge. For example, the current Wikipedia article on ‘keys’ mentions nothing about them

often being found in one’s pocket. Additionally, while Wikipedia is a degree of magnitude larger

than a standard dictionary (Gabrilovich & Markovitch, 2009), the Web as a whole is at least a

degree of magnitude larger than Wikipedia.

Several SemEval tasks present a good overview of work in noun-noun relationships: SemEval-

2007 Task 4: Classification of Semantic Relations between Nominals (Girju et al., 2007) and

SemEval-2010 Task 8: Multi-Way Classification of Semantic Relations between Pairs of Nomi-

nals (Hendrickx et al., 2010). Our work is related in that the relationships we acquire are between

nominals, though we use an analysis to turn nominal word relationship information into concept re-

lationship information. Additionally, in order to build their corpus Girju et al. queried the web with

patterns like that of Hearst’s work Hearst (1992). The tasks followed (Girju et al., 2003, 2006) in

which a system was trained on positive and negative examples of meronymic (part-whole) relation-

ships in order to classify additional examples of the relationships. These works are concerned with
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classifying relationships rather than the acquisition or application of relationships. Similar work

has characterized relationships in a minimally-supervised fashion in which the Web is searched for

verbs, prepositions or coordinating conjunctions connecting noun pairs (Nakov & Hearst, 2008).

Note that the relationship classes within these works are not always within the the scope of common

sense knowledge.

A few other works explore the acquisition of relations from varying points of view. Turney

(2008) introduces Latent Relation Mapping Engine (LRME). Combining Structure Mapping The-

ory and Latent Relation Analysis, LRME builds mappings between words based on analogy under-

stood through relational similarity and predicate logic. Lapata & Lascarides (2006) use markers

such as “after” or “while” to infer temporal relations. Similar to our approach, these works look to

leverage vast amounts of unannotated corpora to avoid hand-coding representations. Another ap-

proach acquires knowledge represented in propositional form directly from sentence parses (Schu-

bert, 2002). The idea was introduced by Schubert, using gold-standard parses from the Treebank

corpora to derive the propositions (Schubert & Tong, 2003). Later Clark and Harrison used an

automatic parser to scale the approach to larger amounts of text (Clark & Harrison, 2009). The

propositional knowledge is stored in tuples created directly from parses of sentences by matching a

fixed set of structures. For example, the system might pull out the noun-verb-noun in the sentence

“The men ate the apples” to derive the proposition (NVN ”men” ”eat” ”apples”), interpreted as

“men can eat apples”. Comparably, Yates & Etzioni (2009) extract assertions in the form of tu-

ples and used for synonym resolution. Motivated through information extraction, their method

creates knowledge of the form (relation, arg1, arg2) where arg1 and arg2 are typically named en-
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tities. Much like other work, these methods gather information regarding ambiguous words rather

than concepts, though Yates & Etzioni mention the possibility of improvement through handling

polysemous named entities.

2.2 Semantic Interpretation Utilizing the Web

This chapter presents related research in using the Web to aid in various problems of semantic

interpretation. While Common Sense Knowledge (CSK) is a general guideline for the type of

knowledge being acquired, the successful application of the knowledge to semantic interpretation

is the ultimate goal of this work. In general, ‘semantic’ refers to meaning, such as defining what a

word means in a sentence. When one tries to determine the meaning of an entire sentence (without

considering the context of surrounding sentences), this is referred to as semantic interpretation

(Allen, 1994). For this dissertation, the term semantic interpretation specifically refers to solving

a set of problems, listed in Table 2.1, in which CSK can play a part in the annotation of meaning.

Table 2.1: Abbreviations for problems considered semantic interpretation in this work.

WSD word sense disambiguation
SRL semantic role labeling

PP attachment prepositional phrase attachment
AR anaphora resolution

NER named entity recognition

WSD, in particular, is focused on most heavily in this paper. The goal of this problem is to

choose the correct sense of a word when given a context (typically a sentence) in which the word
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is used; That is, the meaning of a word is determined by its context. Consider the word ‘port’ in

the sentences (8) and (9).

(8) They make port from grapes in Portugal .

(9) They bought the grapes at the port in Portugal.

In (8) ‘port’ is referring to a port-2 (gloss: “sweet dark-red dessert wine originally from Portugal”)

while in (9) ‘port’ is port-1 (gloss: “a place (seaport or airport) where people and merchandise

can enter or leave a country”). One can determine these meanings based on how ‘port’ is being

used (its context). In these examples, the difference in context is subtle as both sentences contain

many of the same words (the exact same nouns). Additionally, both senses of ‘port’ could be

associated with the verbs ‘make’ and ‘bought’. This demonstrates an important point, that solving

WSD requires more that just considering which words occur in the sentence.

Semantic roles, also known as thematic roles (Allen, 1994), characterize the arguments of verbs

(Jurafsky & Martin, 2000). They were first introduced as deep roles by Fillmore (1968). Looking

back at the WSD examples, when labeling arguments of ‘make’ in (8), one could say ‘they’ is

characterized as the agent (cause of action), ‘port’ is the theme (directly experiences the action),

and ’from grapes’ could be labeled of-stuff (the thing something is made of (Gomez, 2001)). The

prepositional phrase, ‘in Portugal’, would not receive a role as it is an adjunct, and not necessarily

an argument of the verb. Generally, agent and theme occur with most verbs while other roles,

such as of-stuff are only used to characterize specific verb senses. Many times SRL is associating

with determining verbal predicates (the meaning of a verb dependent on its roles). However, this

dissertation uses the notion that a verbal predicate includes a verb sense (Grimshaw, 1990; Gomez,
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2004a). Thus, verbal predicate labeling is not included as a separate task, since it is covered by

verb WSD.

For PP attachment, one is concerned with deciding which word or phrase is being modified

by a prepositional phrase. Although this may be seen as a syntactic problem, it is included under

the domain of semantic interpretation as there is a requirement for semantic knowledge in many

instances. Consider sentences (10) and (11).

(10) She ate the grapes in the refrigerator.

(11) She ate the grapes at home.

In (10) the PP ‘in the refrigerator’ is attached to ‘the grapes’ (The grapes, which she ate, were in

the refrigerator). However, in (11) the PP ‘at home’ is attached to ’ate’, implying she was at home

while eating the grapes.

Anaphora occurs when a word references an entity that was previously introduced in the sen-

tence or corpus (Jurafsky & Martin, 2000). AR is the process of determining what entity (also

called the antecedent) is being referenced. Many times pronouns are doing the referencing, such

as in sentences (12) and (13).

(12) After Hank hit the ball with the bat, it traveled far.

(13) After Hank hit the ball, he ran to first base.

The pronoun ‘it’ in (12) is referencing ‘the ball’ (the antecedent), while in (13) ‘Hank’ is the

antecedent of ‘he’.
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Like AR, NER is concerned with resolving entities represented by a word. However, in this

case, proper names are being labeled with classes rather than a previously identified entity. These

named entity classes include person, location, organization, and a class indicating named entities

which are not a part of the other three classes: miscellaneous (Tjong Kim Sang & De Meulder,

2003). In (8) and (9) ‘Portugal’ is a named entity which could be labeled as location while in (12)

and (13) ‘Hank’ would be labeled as person.

All of these problems are highly related. It is suggested that accurate semantic role labels follow

from accurate verb sense disambiguation (Schwartz et al., 2008). From the another direction, Dang

& Palmer (2005) found semantic roles helped to disambiguate verbs. PP attachment can be used to

determine whether something should receive a semantic role. AR inherently relies on the meaning

of other words in the sentence, and NER can be generalized as WSD, where the possible senses are

always one of the 4 classes.

This chapter discusses many related works in using the Web for various semantic interpreta-

tion problems. Although this work proposes utilizing the Web for other problems in Semantic

Interpretation, WSD motivates the algorithms, and thus most of the related works presented in

this chapter perform WSD. The Web is referred to only because it is the largest set of text widely

available. Many of the methods discussed are flexible enough to work with any large unannotated

corpus, and they are considered unsupervised or minimally supervised since they do not require

hand-tagged training data. Before discussing these methods which use the Web, some traditional

knowledge-based semantic interpretation methods are presented (section 2.2.1). The chapter then

proceeds by describing semantic interpretation methods which employ the use of the Web for
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acquiring training samples (section 2.2.2), and then by focusing on systems which use the Web

directly in an algorithm (section 2.2.3).

2.2.1 Knowledge-Based Semantic Interpretation

Many algorithms for semantic interpretation have incorporated knowledge-bases as a main source

for annotation. Although knowledge-based methods are often considered unsupervised (Yarowsky,

1995), “minimally-supervised” may be a more appropriate term since human created data sources

are used. In fact, truely unsupervised methods are distinguished from those in this section in

that they do not even rely on human supervision in choosing classes for annotating meaning (they

typically perform clustering instead of annotation (Pederson, 2006)). On the other hand, supervised

approaches are also distinguished in their use of an annotated corpus in a supervised machine

learning algorithm (Màrquez et al., 2006). The term knowledge-based is used, following Mihalcea

(2006), since all of the methods in this section require some source of knowledge.

Some of the most effective knowledge-based WSD methods use simple heuristics based on

frequency statistics. They employ variations on an early idea that there is one sense of a word

that dominates the others (Mihalcea, 2006, “Zipfian distribution”). Both Gale et al. (1992) and

Yarowsky (1995) use this idea as part of a one sense per discourse algorithm to disambiguate

among words with two possible senses. This idea is that a word (with only two senses) will

have same sense for multiple instances within a single text (Gale et al., 1992). Yarowsky (1995)

also used one sense per collocation, assuming a word maintains meaning when occurring around
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the same words, and a bootstrapping technique discussed in the next section. They were able to

achieve 96.5% noun WSD accuracy. However, Among more polysemous words (with more than 2

senses), Krovetz (1998) found the one sense per discourse did not hold up as 33% of the discourses

in Semcor and the DSO have words with multiple senses. Additionally, the frequency information

used by these methods requires sense tagged data, which may not be available for a given language

or discourse.

McCarthy et al. (2004) addressed the requirement for sense tagged data by creating a method

to estimate most frequent sense information without tagged senses. The estimated most frequent

sense was called the ‘predominant sense’. This method used WordNet similarity measures (dis-

cussed in Chapter 2.3) between senses of nouns and dependency neighbors data acquired through

the method of Lin (1998a). Essentially the sense of a word most similar to all of the neighbors was

considered the predominant sense.

Ultimately, methods which rely only on frequency information within a discourse are held back

by the idea that infrequent senses do in fact occur from time to time in the same discourses or even

with the same word collocations as frequent senses; See example (14) in which two senses of ‘port’

appear within the same discourse and collocation (a single sentence).

(14) She bought the port at the port.

McCarthy et al. (2004) notes “we do not assume that the predominant sense is a method of WSD

in itself”. However, predictions of the most frequent sense (MFS) over a language commonly

serve as a baseline for WSD performance evaluations. The MFS baseline is not often overcome;
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(Clause CL68
(SUBJ : ((NOUN SURFACE) (NOUN TENSION)

PHYSICAL PHENOMENON1 SURFACE TENSION1 [INANIMATE-CAUSE] )
(VERB : DRAW ((AUX (WILL)) (MAIN-VERB DRAW DRAW)) <DRAW-FLUID:DRAW8> )
(OBJ : ((NOUN LIQUID)) LIQUID LIQUID1 [THEME] )
(PREP : INTO (PREP-NP: ((UDT A) (NOUN CAPILLARY)) TUBE1 CAPILLARY1 [GOAL] ) ) )

Figure 2.3: Output of Gomez’s Semantic interpreter for the sentence: Surface tension will draw
liquid into a capillary.

Consider that only 5 of 13 systems that participated in the SemEval-2007 Coarse-Grained English

All-Words Task (Navigli et al., 2007) surpassed the baseline.

Gomez’s work in semantic interpretation (Gomez, 2001), took a much different approach.

Rather than using statistical information, it is based on hand-crafted verbal predicates which con-

tain selectional restrictions for semantic roles of the verb (Gomez, 2004a). An example output of

the system is given in Figure 2.3. Among the aspects of semantic interpretation we have discussed,

this algorithm includes semantic role labeling (maked as ‘[role]’), verb sense disambiguation along

with labeled predicates (marked as ‘<predicate:sense>’), and noun sense disambiguation (marked

with ‘senses’) for the roles of a verb argument. Selectional restrictions are concepts in an enhanced

WordNet (Gomez, 2004b), with which arguments of the verb must belong. In Figure 2.3, a selec-

tional restriction for the predicate ‘<DRAW-FLUID:DRAW8>’ may be that the object is a fluid

(gloss: “continuous amorphous matter that tends to flow and to conform to the outline of its con-

tainer: a liquid or a gas”). Liquid-1 is a hyponym of fluid, and thus fits the selectional restriction

for the predicate corresponding to the verb sense draw-8.

Selectional preferences, like selectional restrictions, restrict the semantic class with which a

word can belong. However, selection preferences usually refer to a more general constraint on the

meaning of a word in a given context (Mihalcea, 2006). Agirre & Martı́nez (2001) evaluated a
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variety of types of selectional preferences in a word sense disambiguation task. The different types

can be summarized as word-word, word-class, and class-class, describing to the item in context

restricting the meaning of a focused item. For example, word-class refers to the idea that a word in

context restricts the class to which a focus word belongs. The results showed class-class methods

perform best overall, while word-class methods still achieve a high precision at the expense of

recall. However, when Resnik (1997) introduced word-class preferences, a major motivation was

the lack of class-annotated data required, where as Agirre & Martı́nez (2001) required semantically

annotated text for their class-class preferences. The word-word preferences perform considerably

worse, which is expected since the knowledge contains a lot of ambiguity.

One of the earliest approaches to knowledge based WSD was the Lesk algorithm (Lesk, 1986).

The algorithm examines a dictionary in order to perform disambiguation by maximizing the num-

ber of words in common between definitions. The sense which has the definition with the most

words in common with the definitions of other words in the sentences is selected. The original

algorithm attempted to find the maximum combination of senses, so if a sentence had one verb and

three nouns, it would decide on all the senses at once. A simplified version was found to perform

just as strong by considering only one word at a time (Vasilescu et al., 2004). Consider the disam-

biguation of the word ‘steamer’ in example (15) and the subsequent definitions of ‘steamer’ (16)

and ‘port’ (17).
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(15) He walked along the port of the steamer.

(16) steamer-1 (gloss: “a clam that is usually steamed in the shell”)

steamer-2 (gloss: “a cooking utensil that can be used to cook food by steaming it”)

steamer-3 (gloss: “a ship powered by one or more steam engines”)

steamer-4 (gloss: “an edible clam with thin oval-shaped shell found in coastal regions of

the United States and Europe”)

(17) port-1 (gloss: “a place (seaport or airport) where people and merchandise can enter or

leave a country”)

port-2 (gloss: “sweet dark-red dessert wine originally from Portugal”)

port-3 (gloss: “an opening (in a wall or ship or armored vehicle) for firing through”)

port-4 (gloss: “the left side of a ship or aircraft to someone who is aboard and facing the

bow or nose”)

port-5 (gloss: “(computer science) computer circuit consisting of the hardware and asso-

ciated circuitry that links one device with another (especially a computer and a hard disk

drive or other peripherals”)

Steamer-2 contains the word ‘ship’, which also occurs in a couple definitions of ‘port’. Since this

sense of ‘steamer’ has the most words in common among the definitions, it is selected (assuming

definitions of ‘walk’ do not have any words in common). A relatedness measure derived from this

algorithm is discussed in section 2.3.4.

Another class of knowledge-based algorithms employs the use of semantic relationships among

concepts, conceptualized as a graph. The idea behind graph-based approaches is to use graph anal-
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ysis metrics in order to identify the concept (or sense of a word) most connected to other words in

context. The graph analysis techniques may vary quite a bit. Navigli & Velardi (2005) presented

structural semantic interconnects (SSI), graphs of relationships based on WordNet, domain labels,

annotated corpora, and collocation dictionaries. The resulting graph contains all the relationships

in WordNet as well as a domain relationship among synsets, co-occurrence (among word senses)

relationships extracted from annotated corpora, and collocation (among words) from the dictio-

naries. After first noting monosemous words, SSI is explored for links between the disambiguated

words and ambiguous concepts, disambiguating the ambiguous word with the most connectivity

and then repeating.

Other graph based measures create weighted graphs based on a single sentence or set of context

words (Sinha & Mihalcea, 2007; Agirre & Soroa, 2009). The weights in the graph may come from

aggregating the number of links or from similarity and relatedness measures (discussed in Section

2.3) over WordNet. Sinha & Mihalcea (2007) use a PageRank metric as well as three other metrics

that rely on counting links directly (indegree, closeness, and betweeness). The PageRank method is

appealing since it considers the importance of all vertices (concepts) that are involved in the graph.

Those vertices with more connection receive more importance and thus have more influence on the

final sense prediction. Agirre & Soroa (2009) use a personalized PageRank which helps to avoid

a bias for certain vertices. They find the personalized PageRank metric to outperform the standard

PageRank metric. However, both Sinha & Mihalcea (2007) and Agirre & Soroa (2009) were able

to achieve the highest, though comparable to each other, results for any unsupervised system on the

senseval-2 (Edmonds & Cotton, 2001) and senseval-3 (Snyder & Palmer, 2004) all-words datasets.
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Although these methods have found knowledge to be helpful for problems of semantic inter-

pretation, there are some drawbacks. Those with manually constructed data require many human

hours to create the annotated data or knowledge bases (the data acquisition bottleneck mentioned

in the Introduction). The heuristic approaches, such as one sense per discourse or the standard

MFS baseline, are guaranteed to be incorrect when one word appears with multiple senses in the

same discourse or sentence. The vast size of the Web presents a great source in order to acquire a

large knowledge base or training set automatically. The following sections look into how this has

already been done.

In fact, truely unsupervised methods are distinguished from those in this section in that they do

not even rely on human supervision in choosing classes for annotating meaning (they typically per-

form clustering instead of annotation (Pederson, 2006)). On the other hand, supervised approaches

are also distinguished in their use of an annotated corpus in a supervised machine learning al-

gorithm (Màrquez et al., 2006). A final term knowledge-based, could be used to describe both

systems with any level of supervision which require a knowledge source (Mihalcea, 2006). An-

notated training data is not considered a knowledge source, so system may be supervised by not

knowledge-based.

2.2.2 Acquiring Training Samples from the Web

One reason the data acquisition bottleneck exists is because of the human hours needed to pro-

duce semantically annotated text. Mihalcea & Moldovan (1999) addressed this by automatically
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Find all synonyms for a given word sense.
synset(batter-1) = {‘batter’, ‘hitter’, ‘slugger’, ‘batsman’}

Find monosemous synonyms.
monosemous(synset(batter-1)) = {‘batsman’}

Search the Web for instances of monosemous synonyms.
webexamples = websearch(monosemous(synset(batter − 1))) = {

“The batsman approached the plate.”,
“The Yankees need to recruit another batsman if they want to beat the White Sox.”,
“Some say Babe Ruth was the best batsman to grace the field.”,
...}

Turn the examples from the Web into training example for the given word sense.
annotate(batter-1, webexamples) = {

“The batter-1 approached the plate.”,
“The Yankees need to recruit another batter-1 if they want to beat the White Sox.”,
“Some say Babe Ruth was the best batter-1 to grace the field.”,
...}

Figure 2.4: An example of using a monosemous synonym of batter-1 to extract training examples.

generating sense tagged corpora from the Web. They used WordNet synsets and glosses in order

to find lexical phrases unique to the sense of a word. For example, the algorithm would search the

Web for instances of a word, w, with a context matching a pre-chosen lexical phrase for a sense, i,

of w. The results would in turn become annotated instances of sense i for word w. Additionally,

the algorithm may search for a monosemous (containing only one sense) synonym for sense i in

order to get training examples. An example of this later idea is given in Figure 2.4. The idea is re-

ferred to more generally as using monosemous relatives, following the work of Agirre & Martı́nez

(2004), which extended the idea to other monosemous beyond synonyms such as hypernyms and

hyponyms.

Another approach to using the Web to help alleviate the data acquisition bottleneck is through

bootstrapping a small set of annotated examples into a larger set. This idea was pioneered as part

of the work by Yarowsky (1995), in which one begins with a seed set of annotated data, which is
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Given: examples (X), initial seed set of labels for examples (L0) (note L0
x denotes the label for example x)

for t = 0 to∞
train a classifier (Ct) on the labeled examples (Λt), where Λt = {x ∈ X|Lt

x 6=⊥}
let pt

x(j) be the probability which Ct predicts label j for example x
foreach example x ∈ X:

set top label = arg maxj [pt
x(j)]

set Lt+1
x =


L0

x if x ∈ Λ0

top label if pt
x(top label) > ζ

⊥ otherwise (⊥ is an undefined value )


if Lt+1 = Lt, stop

Figure 2.5: The original Yarowsky bootstrapping algorithm (Abney, 2004, “Y-0”).

grown by an iterative process given in Figure 2.5. A classifier trained on the seed set tries to label

unannotated examples when there is a high probability that the label is correct (pt
x(top label) > ζ).

Then, the process repeats with the newly labeled examples in addition to the seed set. As mentioned

in the previous section, the Yarowsky method was only evaluated on words with two senses.

Mihalcea (2002) created a bootstrapping method that included the earlier idea of searching the

web for lexical patterns based on WordNet information. In this case, the seed set was used for

acquiring examples in addition to being used as the initial labels for the iterative bootstrapping

process. Her automatically generated corpora was able to improve WSD results on the Senseval-2

all-words task (Edmonds & Cotton, 2001) over that of using a hand-annotated training set by itself.

A similar approach has been used to identify extrapositional cases of ‘it’ within sentences Li et al.

(2009).

Within SRL, bootstrapping has been applied successfully as well. Swier & Stevenson (2004)

took the seed set of semantic roles to be those which have no other options according to a verb

lexicon. For example, if a verb only has one possible role for the object, then an example with that

verb and role is included in the initial labeled data. With a test corpus of British National Corpus
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sentences and semantic roles (Clear, 1993), Swier & Stevenson achieved an 87% accuracy, well

above a 64% baseline of labeling with the most frequent role for a given slot.

Nakov & Hearst (2005) view the web itself as a training set in an algorithm performing PP

attachment. They count frequencies of co-occurrences between prepositions and various parts of

the phrase: the object of the preposition, a possible noun attachment, or a possible verb attachment.

Additionally, if a phrase appears in an alternative form where the attachment is not ambiguous, it

is taken into account. Their approach did not use a knowledge base other than the Web, and it was

able to achieve results in line with that of other unsupervised approaches to PP attachment.

A final use of the Web in creating semantically annotated data is the use of Wikipedia as a

sense inventory. Mihalcea (2007) did this by considering article topics in Wikipedia as a concepts.

When the text of one article contains a hyperlink to another, that link serves a sense annotation

for the word(s) which the hyperlink belongs. By manually producing a mapping of Wikipedia

articles to WordNet senses, they were able to evaluate the use of Wikipedia as an annotated corpus

on the Senseval-2 (Edmonds & Cotton, 2001) and Senseval-3 (Snyder & Palmer, 2004) lexical

sample tasks. Their system, a Naive Bayes classifier with features like that of most supervised

WSD systems, performed at 85% accuracy compared to a 73% MFS baseline. As discussed

previously, many systems do not overcome the MFS baseline, so this validated Wikipedia as a

sense annotated corpus.
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2.2.3 Direct Use of the Web

Rather than acquiring and storing explicit knowledge, some approaches to semantic interpretation

use the Web in a more direct fashion. These systems may still be considered knowledge-based, but

the information acquired is usually specific for an instance or a corpus being annotated. Essentially,

the Web itself becomes the knowledge source, as data is dynamically acquired during runtime of a

semantic interpretation algorithm.

A common approach to using the Web directly is through the use of monosemous relatives.

Monosemous relatives are words which are similar to a sense of the target word, but which only

have one sense. This idea was proposed by Leacock et al. (1998). As mentioned in the previous

section, relatives have been used to build sense tagged corpora (Mihalcea & Moldovan, 1999;

Mihalcea, 2002; Agirre & Martı́nez, 2004). These methods queried large corpora with relatives

rather than with the context to create annotated training data. In this sense, the data is acquired for

word senses, rather than directly for a test instance. In order to acquire knowledge directly for an

instance, context must be taken into account.

Martı́nez et al. (2006) present the relatives in context method. A key aspect of this method is

the use of context in the Web queries. They produce queries with relatives in place of the target

word in a context with a window size of up to 6. This greatly reduces the amount of results returned

over that of just searching for instances of a word . Similarly, Yuret (2007) first chooses substitutes

and determines a sense by looking at the probability of a substitute taking the place of the target

word within the Web1T corpus. The number of hits each query has on the web is then used to pick

the correct sense. Both Martı́nez et al. (2006) and Yuret (2007) incorporate a knowledge-base to
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Given: sentence (s) and target word (w)
For each sense, c of w:

Find a set of relatives (Rc) of c from a knowledge-base (WordNet).
Set hitsc = 0
For each r ∈ Rc

Create WebQueries with r in place of w in s (using a various window sizes).
Search the Web with WebQueries and add the number of hits to hitsc

The chosen sense is the sense of w with the most hits (arg maxc[hitsc]).

Figure 2.6: A generalization of the Martı́nez et al. (2006) and Yuret (2007) algorithms of using
relatives in context.

construct queries with pre-chosen relatives. Issues of bootstrapping corpora, such as metaphorical

usage, proper nouns in place of regular nouns, and noisy examples (badly formed), are avoided by

using relatives in this direct fashion (Martı́nez et al., 2006). A generalization of the algorithm used

by both is presented in Figure 2.6.

A drawback of these approaches is the limitation of selecting relatives before search. It is

possible that many instances of the sentence with another word in place of the relative could have

been found. These unrestricted words could still give a good indication of the correct sense. The

work of this dissertation presented in section 4.3 searches the Web with context, but does not

restrict results to pre-chosen relatives. The idea is similar to that of Lin (1997), in which context

was searched through a database of dependency relationships. A dependency database was created

ahead of time, and this knowledge-based method did not actually do any dynamic knowledge

acquisition. However, because it is highly related to the dynamic approach, it is presented here.

When one searches with context, but without any pre-chosen relatives, they acquire selectors.

A selector is a word which can take the place of another given word within the same local context

(Lin, 1997). When being applied to WSD, one compares the selectors with the senses of the original

word. Essentially, the target word is disambiguated by usages of other words, rather than usages
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Given: sentence (s), target word (t), and a dependency parse database (dpDB):
s = He addressed the strikers at the rally., t = ‘striker’

senses(t) =


1 (gloss: “a forward on a soccer team”)
2 (gloss: “someone receiving intensive training for a naval technical rating”)
3 (gloss: “an employee on strike against an employer”)
4 (gloss: “someone who hits”)
5 (gloss: “the part of a mechanical device that strikes something”)


Find local context triple (lct) as a triple, from the dependency parse (dp) of s:

dp(s) = {address : {subj ⇐ ‘he′, comp1⇐ ‘strikers′, prep⇐ ‘rally′}}
lct(t, dp(s)) = (comp1, address, head)

Search dpDB for other words with the same lct:
sels(t, s) = search(dpDB, lct(t, dp(s)))

= {‘audience′,′ letter′,′ students′,′ crowd′, ‘question′ ‘Palestine′}
(note that we omit mentioning of local context likelihood values in choosing selectors)
Predict the correct sense of t by maximizing similarity (sim) between each selector
and the senses of of the target word (senses(t)):

predictsense(t, s) = arg max
ti∈senses(t)

∑
sel∈sels(t,s)

sim(sel, ti) = striker-3

Figure 2.7: An example of the Lin (1997) selector algorithm to disambiguate the word ‘strikers’.

of itself. It does not matter how often a word itself appears in a corpus. Figure 2.7 walks through

an example of disambiguating ‘strikers’ in the sentence (18) based on Lin’s algorithm. The local

context was defined specifically as a triple containing the type of dependency of the target word,

the word in which it is dependent upon, and the position (head or mod). In the end, the similarity

measure (discussed in Section 2.3) finds that many of the selectors have senses similar to striker-3.

(18) He addressed the strikers at the rally.

Like selectors, Dligach & Palmer (2008) used dynamic dependency neighbors(DDN), which

are verbs occurring in the same dependency relationship (object) with nouns as a given target verb.

The DDNs are actually considered neighbors of a noun, since they are essentially other verbs that

take the noun as an object. Still, one may view a DDN as a specific type of selector, where the

local context is defined as an object with the same noun. In (Dligach & Palmer, 2008), DDNs were
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successfully used as a feature in a supervised verb sense disambiguation system. They found the

DDN feature to outperform other semantic features on select verbs from the OntoNotes project

(Hovy et al., 2006) by a small, but significant, margin.

Although Lin (1997) and Dligach & Palmer (2008) were both essentially capturing selectors,

their approaches require the parsing of text which is not yet feasible on the Web. Additionally, in

both cases, the local context does not take into consideration other words beyond the one in which

the target is related. Consider the selectors ‘letter’ and ‘question’ returned for the example of Lin’s

method (Figure 2.7). These nouns may also be the head of the subject of a difference sense of

‘address’. This can lead to wrong predictions. If more local context was taken into consideration,

such as the prepositional phrase “at the rally”, the selectors may have been less ambiguous. A

similar problem could occur with DDNs, if they were based on a highly ambiguous object, which

may have a wide variety of DDNs. Within this dissertation, a method is presented of applying

selectors to the Web (section 4.3), and a goal of the method is to try to capture as much local

context as possible, not just that of one dependency relationship.

2.3 Semantic Similarity and Relatedness Measures

Similarity and relatedness measures have seen wide use for problems of semantic interpretation

(Lin, 1997; Leacock & Chodorow, 1998; Stetina et al., 1998; Resnik, 1999; Banerjee & Pedersen,

2002; Patwardhan et al., 2003; Budanitsky & Hirst, 2006; Sinha & Mihalcea, 2007; Schwartz &

Gomez, 2008, 2009b; Agirre & Soroa, 2009). These algorithms are used to rate the strength of
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semantic similarity or relatedness between two concepts. In turn, they can compare concepts of

a word in a sentence in order to resolve ambiguities and perform semantic annotations. While

other works have applied similarity over different terms, such as comparing two pairs of words

when measuring analogy (Turney, 2008), this section is focused on metric comparing two single

concepts.

Measures of similarity and relatedness are often broken down in to three categories: path

based, information content, and gloss based (Pedersen et al., 2004). Path based approaches rely

entirely on graphs of relationships, using the idea that concepts closer to each other, according

to the length of path between the two, are more similar. The other types of measures may take

advantage of graphs, but they are distinguished in that they also take into consideration a concept’s

information content or gloss. Information content places a value on the amount of information a

concept subsumes, while a gloss (discussed in section 2.1.1) is a description of a concept that can

give clues to other related concepts.

A key notion is that similarity is a specific type of relatedness (Rada et al., 1989; Resnik, 1999;

Patwardhan et al., 2003; Agirre & Soroa, 2009). In particular, similarity is characterized by the

relationships: synonymy, antonymy, and hyponymy, while relatedness indicates a general non-

explicit relationship. Consider the concepts ballplayer (gloss: “an athlete who plays baseball”)

and bat (gloss: “a club used for hitting a ball in various games”). One would easily concede that

the concepts are related, but a ballplayer and bat are not similar. On the other hand, bat and stick

(gloss: “an implement consisting of a length of wood”) would be considered related and similar.
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Note that concepts are not the same as words (as discussed in section 1.1), and other senses of ‘bat’

may not be similar to stick.

While all methods presented in this section measure relatedness, most path based and informa-

tion content measures are distinguished as more specifically measuring similarity. These similarity

measures take advantage of the is-a (hypernym see section 2.1.1) relationship within the WordNet

ontology. In fact, the ‘path’ in path based refers to the path through the WordNet ontology, which

in the case of similarity, includes only is-a links between concepts. Furthermore, relatedness mea-

sures should be able to compare concepts of words from different parts of speech.

All types of similarity and relatedness measures return a value, strength, representing the

strength of the relation between the two concepts. The strength usually can be normalized to range

between 0 and 1 (0 indicating no relatedness and 1 indicating synonymy). For two concepts, c1 and

c2 (nodes in WordNet), a similarity(Smeas) or relatedness measure (Rmeas) will follow this form:

Smeas(c1, c2) = strength OR Rmeas(c1, c2) = strength

The lowest common subsumer (lcs) is central to many similarity measures (Mihalcea, 2006).

Given a pair of a concepts, c1 and c2, the lcs(c1, c2) is the deepest (or lowest) concept which is

a hypernym (directly or by transitive closure) of both concepts. In other words, it is a concept in

which both c1 and c2 are said to be a type of. Since there are often multiple of such subsumers, it

is the one closest to c1 and c2. Figure 2.8 gives a graphical depiction of the lcs between various

concepts. Note that the lcs may be c1 or c2, if one subsumes the other.
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Figure 2.8: Paths to the lowest common subsumer among pairs of concepts: lcs(bat-5, broom-5)
is implement-1, lcs(bat-5, stick-1) is stick-1, lcs(bat-5, ballplayer-1) is whole-2.

2.3.1 Path based similarity

Many similarity measures have been created which rely entirely on paths (or edges) in the WordNet

ontology. In the simplest form, these measures compute the length of the shortest path between

two concepts over the hypernym/hyponym relationship (Rada et al., 1989). A short path represents

a strong similarity while a longer path indicates weak similarity. Since these methods rely on

counting edges within a graph or ontology, they are also known as edge based (Jiang & Conrath,

1997).

A well known problem with early path-based measures is the assumption that the edges be-

tween concepts are all uniform (Resnik, 1999). This, uniformity problem, presents itself clearly in

WordNet as concepts under organism (gloss: “a living thing that has (or can develop) the ability

to act or function independently”) appear with great depth, while concepts in other areas, such as

psychological feature (gloss: “a feature of the mental life of a living organism”) are much more

44



shallow. For example, hydrangea (gloss: “any of various deciduous or evergreen shrubs of the

genus Hydrangea”) has a depth of ten, while fractal (gloss: “(mathematics) a geometric pattern

that is repeated at every scale and so cannot be represented by classical geometry”) has a depth of

six from the root of the ontology, entity. In this case, it could be argued that the links leading to

hydrangea represent more subtle differences than the links to fractal. Essentially, if one assumes

the edges are uniform, then one would be saying a fractal is 6 units different than the root (entity),

while a hydrangea is 10 units different. These differences in density also occur within subgraphs

of the ontology (i.e. the subconcepts of whole-2 extend much deeper than those of location-1, but

both concepts are hyponyms of object-1).

Path based approaches to handling the uniformity problem rely on a scaling of some sort. Wu

& Palmer (1994) did this by considering the depth of the LCS between two concepts:

SWuPalmer(c1, c2) =
2 ∗ depth(lcs(c1, c2))
depth(c1) + depth(c2)

(2.1)

where depth is the length of a path from entity to a concept. Essentially, the path length between

concepts is scaled by the lcs. This is more clear if the function is rewritten equivalently as:

SWuPalmer(c1, c2) =
2 ∗ depth(lcs(c1, c2))

2 ∗ depth(lcs(c1, c2)) + dist(c1, c2)
(2.2)

where dist is the number of edges on a path between two concepts. Thus, dist(c1, c2) is equivalent

to dist(c1, lcs(c1, c2))+dist(c2, lcs(c1, c2)) since lcs(c1, c2) is a point in the shortest path between

c1 and c2.
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One aspect that Wu & Palmer (1994) did not consider was the depth of the entire ontology.

This can be important as nodes which are closer to the root, relative to the rest of taxonomy, are

more general than those near leaf nodes. Leacock et al. (1998) scale the distance between concepts

by a term,maxD = max
c∈WN

[depth(c)], representing the maximum depth of all concepts in WordNet:

SLeacockChodorow(c1, c2) = −log
(dist(c1, c2)

2 ∗maxD
)

(2.3)

Note that maxD depends only on whether the concepts are nouns or verbs (nouns and verbs have

separate ontologies), and dist(c1, c2) is at most 2 ∗maxD.

As a final observation on path-based similarity, some methods of WSD presented in section

2.2.1 inherently contain similarity or relatedness measures over a graph (Navigli & Velardi, 2005;

Sinha & Mihalcea, 2007; Agirre & Soroa, 2009). Although a similarity between two concepts

is not explicitly given by these approaches, they rely on an ontology like WordNet in order to

compute distances between many (usually more than two) concepts. The idea is to choose the set

of word senses with maximum similarity to each other as a whole, rather simply between any two

words.

2.3.2 Path based relatedness

Path-based approaches have also been implemented which are more appropriately categorized

as measuring relatedness. One such measure was adopted from computing semantic distance

over a thesaurus (Hirst & St Onge, 1998). The algorithm relies on antonymy in addition to
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hypernymy/hyponymy (is-a) relationships, and they assume that more turns in the path between

two concepts indicates less relatedness. A turn occurs when one relationship is followed by a

different type of relationship, such as following a hypernym path to a concept and then changing

to a hyponym. Although it was originally constructed in more abstract terms, for two concepts

Mihalcea (2006) describes it as follows:

RHirstOnge(c1, c2) = C − dist(c1, c2)− k ∗ turns(c1, c2) (2.4)

where C is constant upper bound for relatedness and k is a constant used to weight the penalty of

turns. These constants are often set as C = 8 and k = 1 (Budanitsky & Hirst, 2006). Due to the

inclusion of other relationships in addition to is-a, this measure is distinguished as a more general

relatedness measure.

More recently, Yang & Powers (2005) introduced a measure taking meronymy/holonymy into

account in addition to synonymy/antonymy and hypernymy/hyponymy. All of these relationships

are recorded in WordNet. holonymy is a part-of or member-of relationship (where meronymy ex-

presses the opposite relationship: has-part or has-member). For example car-1(gloss: “a motor

vehicle with four wheels; usually propelled by an internal combustion engine”) has a meronym

bumper-2 (gloss: “a mechanical device consisting of bars at either end of a vehicle to absorb shock

and prevent serious damage”) among others. They also consider the a relationship through the

gloss, where all senses of words contained in the gloss are considered linked through the gloss

relationship. Like Hirst & St Onge (1998), Yang & Powers also weight the edge by the type of

relationship it represents, and include a threshold over the path distance, γ. First only devising
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their method for nouns, they later extend it to handle verbs, which meant including relationships

that applied to verbs as well (Yang & Powers, 2006). Essentially, this new version uses any type

of relationship it can in the WordNet ontology, and is described as follows:

RY angPowers(c1, c2) =


αstmαt

dist(c1,c2)∏
i=0

βti , if dist(c1, c2) < γ

0 , if dist(c1, c2) ≥ γ

(2.5)

where αstm is a factor based on stemming, alphat is a factor based on the relationship types (t)

used in the path, and βti a depth factor based on the relationship type. To clarify further, αstm

is 1 when there is not stemming needed, and a value between 0 and 1 when stemming is used

(they find a value of 0.4 after some initial testing). Yang & Powers (2006) also tune the values for

alphat, betat, and gamma based on a sample set. The values they discovered for alpha factors

were {αsame = 1, αsynonym = 0.9, αantonym = 0.9, αholonym =, 0.85αentails = 0.85, αcause =

0.85, αalso = 0.85, αsimilarity = 0.85, αpertanym = 0.85, αderived = 0.8αidentity = 0.7, αgloss =

0.5}. For the β factors they found βnoun = 0.7 and βverb = 0.2. Finally, they also found a

threshold of γ = 2 to be best, indicating that the shortest path between two concepts must be 1.

This essentially reduced the approach to simply being based on single-links rather than a path.

Another drawback of this approach is that all of these parameters may be tuned to overfit, and will

not generalize to other domains. We will apply the RY angPowers measure to other domains in out

approach.
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2.3.3 Information content based similarity

As an alternative response to the previously mentioned uniformity problem, the approaches pre-

sented below reduce the reliance on paths in WordNet by calculating an information content (ic)

value for a node (or concept). These measures still use the is-a relationship in WordNet, but they

do not rely directly on edges to determine the strength of a relationship between concepts. Resnik

(1995) introduced ic as:

ic(c) = −log(pcncpt(c)) (2.6)

where pcncpt(c) is the probability that a concept or one of its descendants appears in a corpus. It

is computed over instances of all words in a corpus. Assuming one has the probability of a word

occurring in a corpus, pw, to arrive at a probability for concept occurrence, first pw is spread among

its senses (Richardson & Smeaton, 1995):

pws(ws) =
pw(lemma(ws)

senses(lemma(ws))
(2.7)

where senses returns the number of senses of the word (lemma) within the word-sense ws. One

can then extend the probability to apply to a synset by summing pws over all word senses which

belong to the synset, syns:

psyn(syns) =
∑

ns∈syns

pws(ns) (2.8)

Although a synset is essentially a concept, these functions have yet to consider the descendents of

a synset. Below is a recursive function to arrive at pcncpt based on the idea that a concept subsumes
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all concepts below it (hyponyms, hypos) in the WordNet ontology:

pcncpt(c) = psyn(syns(c)) +
∑

h∈hypos(c)

pc(h) (2.9)

To step from ic to similarity measure, one simply uses the information content of the lowest

common subsumer. By using ic rather than distances in the ontology, edge weights are not directly

considered and the uniformity problem is avoided. Thus, the similarity of two concepts is defined

as the amount of information they have in common, given by their lcs (Resnik, 1999):

SResnik(c1, c2) = ic(lcs(c1, c2)) (2.10)

However, simply observing the ic of two concepts’ common ancestor (lcs) does not consider

the difference in information between the lcs and each concept. With this in mind, Jiang & Conrath

(1997) augmented Resnik’s function such that the combined ic of the concepts is subtracted from

the lcs. Because (2 ∗ ic(lcs(c1, c2))) ≤ (ic(c1) + ic(c2)) ≤ 1 in the definition of ic, this function

ranges from -1 to 0 (0 being maximum similarity):

SJiangConrath(c1, c2) = 2 ∗ ic(lcs(c1, c2))− (ic(c1) + ic(c2)) (2.11)

Lin (1998b) defined similarity according to information theory. Although his work focused on

more than just concept similarity in a taxonomy, it also resulted in a measure of concept similarity.

It is based on scaling the information of both concepts by the information of the lcs. The function
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follows like that of SWuPalmer or SSchwartzGomez, where ic is used in place of depth or nd. A

variant of it was used in (Lin, 1997) for noun sense disambiguation:

SLin(c1, c2) =
2 ∗ ic(lcs(c1, c2))
ic(c1) + ic(c2)

(2.12)

An alternative definition of information content may be applied to any of these measures. Am-

biguity of words leads to error in computation of pcncpt when the assumption is made that all senses

of a word should equally receive pw. To compensate for this a corpus annotated with word senses,

such as SemCor, could be used instead (Pedersen et al., 2004). In this case, rather than compute pws

from pw, pws is a given, based on frequency information. Although it is important to understand

the more complex computation from pw, this modified realization of information content from pws

is used more often in practice.

2.3.4 Gloss based relatedness

Inspiration for gloss based relatedness can be traced to a WSD algorithm by Lesk (1986). The

algorithm finds the number of words in common between dictionary definitions (or glosses) of

multiple word senses (or concepts). These words in common are termed overlaps. See section

2.2.1 for a description of how the idea is used for disambiguation. As a standalone relatedness

measure of two concepts over WordNet, the Lesk algorithm simply returns the overlap from glosses

of concepts:

RLesk(c1, c2) = |words(gloss(c1)) ∩ words(gloss(c2))| (2.13)
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where words(gloss(c)) returns the set of words in the gloss for concept c.

Banerjee & Pedersen (2002) extends the standard Lesk measure of relatedness to utilize rela-

tionships in WordNet. In addition to a concept’s gloss, the glosses of related concepts are included

as well. These related concepts are obtained through these relationships: hypernym, hyponym,

meronym, holonym, troponym, and attribute. Another extension Banerjee & Pedersen present is

consideration for the length of overlap between concepts in addition to the number of overlaps. In

turn, matching sequences of words is considered a single overlap, and its weight is equal to the

number of words in the sequence (|words(overlap)|) squared:

RBanerjeePederson(c1, c2) =
∑

rg1∈rgls(c1)

∑
rg2∈rgls(c2)

∑
o∈seq(rg1,rg2)

(|words(o)|)2 (2.14)

where rgls returns the set of related glosses for a concept (including its own gloss) and seq returns

all of the sequences two phrases have in common (overlaps). Overlaps that do not contain any

nouns, verbs, adjectives, or adverbs are thrown out. This measure is also referred to as adapted

Lesk.

Other measures of relatedness use co-occurrence information in combination with words of

glosses. Patwardhan & Pedersen (2006) create gloss vectors from co-occurrences and WordNet

glosses, and based relatedness on the cosine between any two concepts vectors:

RPatwardhanPederson(c1, c2) = cos(angle(~v1, ~v2)) (2.15)
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The gloss vectors, ~v1 and ~v2, contain frequencies of occurrences of all words which appear in a

gloss for c1 and c2 respectively. The idea extends from a word sense discrimination approach,

much like the Lesk algorithm, where context vectors were defined for all words within the context

of a target word (Schütze, 1998).

2.3.5 Evaluating Measures through Application

Several works have formulated experiments to determine how similarity and relatedness measures

stack up to each other in a variety of situations. Some evaluations (Resnik, 1999; Yang & Pow-

ers, 2005; Agirre & Soroa, 2009) were based on manually crafted similarity data for words rather

than concepts (Miller & Charles, 1991; Rubenstein & Goodenough, 1965). Although the stud-

ies based on hand crafted data often found information-content measures outperform path-based

measures (Resnik, 1999; Agirre & Soroa, 2009), this section focuses on studies applying concept

similarity and relatedness in NLP algorithms. Table 2.2 lists the measures categorized as measur-

ing similarity or relatedness and the type of approach as described previously. The SWuPalmer and

RY angPowers are not shown in this review of previous evaluation because they were only evaluated

through manually-crafted data. Chapter 5 will present an evaluation including all the measures in

Table 2.2 plus another that is a contribution of this work.

One of the first comprehensive evaluations of WordNet semantic relatedness measures involved

an application to a spell correction algorithm (Budanitsky & Hirst, 2001, 2006). For a potential

misspelling or malapropism (an incorrect spelling of a word that results in the correct spelling of
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Table 2.2: Categorization of similarity and relatedness measures.

Similarity - Path Based
SWuPalmer Wu & Palmer (1994)

SLeacockChodorow Leacock et al. (1998)
Similarity - Information Content

SResnik Resnik (1999)
SJiangConrath Jiang & Conrath (1997)

SLin Lin (1998b)
Relatedness - Path Based

RHirstStOnge Hirst & St Onge (1998)
RY angPowers Yang & Powers (2006)

Relatedness - Gloss Based
RBanerjeePedersen Banerjee & Pedersen (2002)

RPartwardhanPedersen Patwardhan & Pedersen (2006)

another word), the algorithm determined if any of the senses are related to other words in context

(this step is referred to as suspicion). When a word does not have any senses related to nearby

words, the system determines if any senses of similarly spelled words are related to the other

words in context (referred to as detection). Budanitsky & Hirst (2006) write, “For example, if no

nearby word in a text is related to diary but one or more are related to dairy, we suggest to the

user that it is the latter that was intended.” Their evaluation was run on 107,233 candidate mis-

spellings (1,408 being actual misspellings), for which two evaluations were run with these mea-

sures SLeacockChodorow, RHirstOnge, SResnik, SLin, and SJiangConrath. For the first step, suspicion,

SJiangConrath performed best but not significantly better than SLeacockChodorow or SLin. However,

after the second step, detection, SJiangConrath did show significant improvement over the other

measures (Budanitsky & Hirst, 2006).

Patwardhan et al. (2003) developed a Lesk style WSD algorithm for nouns in which senses

of the target word are compared to senses of the first three nouns on the left and right of the
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target word. It was previously shown that RBanerjeePederson performed twice as good as RLesk

on Senseval-2 noun data (Banerjee & Pedersen, 2002). In (Patwardhan et al., 2003), the authors

focused on the following measures: SLeacockChodorow, RHirstOnge, SResnik, SLin, SJiangConrath, and

RBanerjeePederson. The RBanerjeePederson performed best on the Senseval–2 set of 29 nouns (total-

ing 1723 instances), followed closely by SJiangConrath. Additionally, with the exception of SResnik,

information content measures outperformed the two path-based measures. In a smaller subsequent

experiment, Patwardhan et al. (2003) also found that alternative computations of information con-

tent did not lead to significant changes in performance.

As part of the introduction to gloss vectors, Patwardhan & Pedersen (2006) presented an eval-

uation in conjunction with five other relatedness measures used in (Patwardhan et al., 2003) (omit-

ting RHirstOnge). The rest of the experiment followed like that of (Patwardhan et al., 2003), and

found that the RPatwardhanPederson performed just below that of RBanerjeePederson, both outscored

by SJiangConrath. The results are presented in Table 2.3, along with other experiments. Note that

the table is meant to show the differences in performance between measures on a single evalua-

tion. The authors do not clearly explain why the accuracies were slightly different between the two

relatedness sense disambiguation experiments, but parameters can vary widely even when the task

between evaluations are the same.

The evaluations mentioned thus far used metrics for comparing a target word (or senses of a

target word) to other words in context. The assumption is that concepts in context are related,

but as previously mentioned, relatedness does not imply similarity. Thus, the measures which are

more appropriately categorized as measuring similarity (those which do not consider relationships
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Table 2.3: Results of various application-oriented similarity and relatedness evaluations.

SCsus SCdet NSDrel1 NSDrel2

SLeacockChodorow 0.115 0.184 0.31 0.30
RHirstOnge 0.091 0.145 0.32 -
SResnik 0.075 0.150 0.30 0.30
SLin 0.110 0.201 0.33 0.36
SJiangConrath 0.141 0.254 0.38 0.45
RBanerjeePederson - - 0.39 0.44
RPatwardhanPederson - - - 0.41
units F1 F1 accuracy accuracy

SCsus: (Budanitsky & Hirst, 2006, suspicion), SCdet: (Budanitsky & Hirst, 2006, detection),
NSDrel1: (Patwardhan et al., 2003), NSDrel2: (Patwardhan & Pedersen, 2006),

beyond hyponymy, antonymy, and synonymy) may be at a disadvantage. The evaluation we present

in Chapter 5 uses a WSD algorithm, where noun senses were compared with senses of words that

are found to replace that noun in its context (a task calling for similarity comparisons). Past studies

have either focused entirely on relatedness or only evaluated judgments over words rather than

concepts.
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3 A DATABASE OF APPLICABLE COMMON SENSE

KNOWLEDGE

This chapter begins discussion of the research contributed to the field as part of this dissertation. In

particular an approach for acquiring common sense knowledge (CSK) from the Web is presented.

Common sense knowledge refers to knowledge about the world which people use for understand-

ing and perception in their everyday lives. All of the acquisition methods in this dissertation rely

on the idea of searching the Web with context.

The key contributions within this Chapter include novel approaches for both the acquisition

and the applicable analysis of knowledge. During acquisition, generic search phrases are used

with automatically filled constituents to query the Web, and a statistical parser is incorporated to

verify that the syntactic structure of results from the Web match an intended structure. In order to

create more applicable knowledge about concepts rather than ambiguous words, we automatically

analyze word relationships acquired from the Web over WordNet in order to generalize information

about concepts or areas of the ontology. This novel analysis could be applied to data containing

word relationships of any kind. Finally, as a secondary contribution, the common sense knowledge

base (CSKB) created by this process will be made available for others to use as a resource (Schwartz

& Gomez, 2009a).
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The work presented in this chapter can be broken into two major steps. To summarize, the first

step searches of the Web to acquire relationships between ambiguous nouns, while the second ma-

jor step analyzes word senses or concepts over WordNet to induce knowledge about concepts from

ambiguous nouns. Section 3.1 describes a method for acquiring knowledge for the common sense

knowledge database. The method begins with the automatic construction of Web queries, which

retrieve samples of sentences and phrases from the Web. A statistical parser is incorporated to

verify that the samples obtained from the Web match the syntactic structure of the query. Through

a novel concept analysis over WordNet (Section 3.2), relationship information is induced between

a concept and a word rather than between two, often ambiguous, words. Section 3.3 evaluates

the usefulness of the acquired knowledge by applying it to the task of word sense disambigua-

tion. Results show that the knowledge can be used to improve the accuracy of a state of the art

minimally-supervised disambiguation system.

3.1 Method for Acquiring Common Sense Knowledge

The term common sense knowledge is used to refer to the type of knowledge which is used in every

day life without necessarily being aware of it, such as that which tells us ‘keys’ are often found in

one’s pocket. Although common sense may refer to a process, such as reasoning, it is important

to note that we are referring only to a type of knowledge. Panton et al. (2006) of the Cyc project

define common sense as “the knowledge that every person assumes his neighbors also possess”.

The benefits of CSK cross into many fields. For example, in computer vision researchers have
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found that, for object recognition, it is useful to have knowledge describing the context in which

an ordinary object may appear (Strat & Fischler, 1991; Rabinovich et al., 2007; Torralba et al.,

2010); Hu et al. (2009) found world knowledge to be helpful in clustering text for aggregated

search. In this work, CSK is used with respect to understanding meaning in natural language.

3.1.1 Common Sense Knowledge Based on Prepositions

The implementation of the system is focused on a type of CSK describing what is often found in

or on something. For example, one would expect to find coins, a cell phone, or keys in a pocket;

food, waiters or a jukebox in a restaurant; thoughts, fear, or pictures in a mind; and books, food, or

elbows on a table. This knowledge, expressed as a relationship between entities, could be described

as follows.

A relationship e1Re2, exists between entities e1 and e2

if one finds “e1 is R e2,” where R ∈ {‘in’, ‘on’}.

To clarify the relationship, a brief linguistic background of prepositions and relationships should

be considered. Quirk tells us that prepositions state a relationship between two entities, where

one of the entities is typically a constituent of the sentence and the other is the complement to the

preposition (Quirk et al., 1985). For example, consider the relationship between ‘key’ and ‘pocket’

in the variations of the sentence below.
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Table 3.1: Abstract dimensions (dims) and corresponding prepositions.

dims description prepositions
1 or 2 on surface or line on, onto, atop, upon,

on top of, down on
2 or 3 in area or volume in, into, inside,

within, inside of

The key is...

...at the pocket.

...on the pocket.

...in the pocket.

‘The key’ is the subject of the sentence, while ‘the pocket’ is a prepositional complement. The

preposition ‘in’ indicates a relationship between ‘key’ and the prepositional complement ‘pocket’.

Notice that the meaning is different for each sentence depending on the actual preposition (‘at’,

‘on’, or ‘in’), and thus key relates to pocket in three different ways. Although each relationship

between key and pocket is possible, only one would likely be considered CSK: keyinpocket.

We use prepositions which indicate a positive relationship given by Quirk et al. (Quirk et al.,

1985). There are three types of such relationships: “at a point”, “on a line or surface”, and “in

an area or volume”. In particular, we concentrate on the 1 to 3 dimensional relationships given in

Table 3.1, denoted on and in throughout the paper. At, the 0 dimensional relationship, occurred far

less frequently. The sentences below exemplify the various dimensions.

60



(19) on surface or line The keyboard is on the table. The motion is on the table.

The beach is on US 1. A thought is on his mind.

(20) in area or volume The bank is in New York. The request is in the queue.

The vegetables are in the bowl. New York is in the playoffs.

While dimensions are used to clarify the types of prepositions used, the description of the CSK

(given at the top of this section) is based on language rather than geometry. It would be inappro-

priate to categorize this knowledge as either spatial relationships or part-whole relationships. One

would say it is common to find knowledge in one’s head though the relationship knowledgeinhead

is not physical. Additionally, one finds a waiter in a restaurant very often though the waiter is

not attached as a part of the restaurant. One may still argue that these relationships, even when

abstract, are ‘spatial relationships’, but this debate is outside the scope of this work. In the end,

this work acquires the general CSK of (physical or abstract) entities that are in or on other (physi-

cal or abstract) entities, and we show this knowledge is useful for semantically processing natural

language.

3.1.2 Acquisition Framework

This section describes the acquisition of nouns (as words) from the Web which are in a relationship

with other nouns. A Web search is performed in order to retrieve samples of text matching a web

query created from a search phrase for the relationship. Each sample is syntactically parsed to
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Noun Acquisition

web search

parse and match

Word
probabilities:

noun1
[in|on]
noun2

a chosen
noun2

create 
web queries

search
phrases
for CSK

Figure 3.1: The common sense knowledge acquisition framework under the assumption one is
looking for noun1s in a relationship with a given noun2.

verify a match with the corresponding web query, and the noun(s) filling a missing constituent of

the parse are recorded.

The framework, given in Figure 3.1, is very flexible, and it can handle the acquisition of words

from other parts of speech. However, to be clear, the explanation focuses on the use of the frame-

work to acquire specific types of relationships between nouns. The process is broken up into three

procedures: “Web query creation”, “Web search”, and “parse and match”.

Web Query Creation

Web queries are created semi-automatically by defining these parameters of a search phrase:

noun1 the first noun phrase

noun2 the second noun phrase

prep preposition, if any, used in the phrase

verb verb, if any, used in the phrase.

The verb is statically defined as part of the search phrase. Refer to Table 3.2 for a list of all of the

search phrases used, one of which appears as an example throughout this section:
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Table 3.2: Search phrases and relationships used for acquisition of a CSKB.

relation search phrase voice
noun1 is located prep noun2

on, in noun1 is found prep noun2 passive
noun1 is situated prep noun2
noun1 is prep noun2
put noun1 prep noun2
place noun1 prep noun2

on, in lay noun1 prep noun2 active
set noun1 prep noun2
locate noun1 prep noun2
position noun1 prep noun2
hang noun1 prep noun2

on mount noun1 prep noun2 active
attach noun1 prep noun2

place noun1 prep noun2

Prepositions are chosen to describe the type of relationship that is sought-after, as described in

Section 3.1.1. Those for the on and in relationships are used to fill the prep parameter of a search

phrase.

prep(on)= (on, onto, atop, upon, on top of, down on)

prep(in) = (in, into, inside, within, inside of )

Determiners and possessive pronouns, selected from the list below, are included by the system

when noun parameters are provided. This allows greater accuracy in our search results. The system

uses all of these determiners, and those which are not appropriate will return few, if any, results.

For example, pocket typically was preceded by ‘my’ or ‘your’, and infrequently preceded by ‘that’.

det = (the, a/an, this, that, my, your, his, her)
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for each search phrase
for each prep(R)

for each det
web query = create query(search phrase, prep, det, noun2);
samples = websearch(web query);

Figure 3.2: Pseudocode for process of creating web queries from search phrases and retrieving
samples from the web.

Finally, the undefined parameters are replaced with the wildcard indicator, ‘*’. These are the

words being acquired from the Web. Below is a web query created from our example search phrase

where noun2 is ‘refrigerator’, prep is ‘in’, det is ‘the’, and noun1 is undefined.

place * in the refrigerator

Contextual Web Search

The system uses all combinations of search phrases, preps, and dets to generate web queries which

are used for retrieving phrases from the Web. The assumption is made that combinations which

are not common will return few or no results. Given a noun2 and a relation, R = on|in, the search

algorithm can be summarized through the pseudocode given in Figure 3.2.

The searches were carried out through the Google Search API1, or the Yahoo! Search Web

Services2. Each web query resulting from a search phrase, listed in Table 3.2, was run until a

maximum of 1000 results were returned or no further results were found. The phrases returned

from a search using a web query are referred to as samples. As part of this process, duplicate

samples were removed to reduce the effects of websites replicating the text of one another. Note

1no longer supported by Google
2http://developer.yahoo.com/search/
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that samples usually contain much more text than just the portion that matches the web query.

Therefore, the chance of an entire sample being a duplicate is small, unless one web page was a

copy of another. The remaining samples are stored so that they can be parsed in order to determine

the words taking the place of a missing constituent in the search phrase (the missing constituent

is always noun1 in this work). Below are some random samples returned with our example web

query “place * in the refrigerator”:

(21) Place the pan in the refrigerator. In a large mixing bowl, ...

(22) Place the butter in the refrigerator until it hardens. To use, peel the plastic ...

(23) Store in a cool, dark place; do not store in the refrigerator. Will keep up to ...

(24) ... while fillets are frozen, then place them in the refrigerator to thaw. ...

(25) ... completely cooled cake and place cake in the refrigerator until ready to serve. ...

Within samples (21), (22), (24), and (25) it is being communicated to place ‘pan’, ‘butter’, ‘them’,

and ‘cake’ in the refrigerator. In the case ‘them’, the system does not resolve pronouns because

the it may introduce bias and errors, plus it is not necessary with the size of the Web. Furthermore,

sample (23) matches the web query, but it is not communicating to place something in the refrig-

erator. The next step of the process addresses these issues and more while automatically matching

constituents in the search phrase with the help of a syntactic parser and WordNet.
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parsed web query:
(VP (VB place)

(NP (NN something))
(PP (IN in) (NP (DT the) (NN refrigerator))))

parsed web sample:
(S1 (S (NP (PRP He))

(VP (AUX was) (VP (VBN told) (S (VP (TO to)
(VP (VB place)

(NP (DT the) (JJ mixed) (NN batter))
(PP (IN in) (NP (DT the) (NN refrigerator))))))))

Figure 3.3: An example of a parsed web query and the parse of the sample from the Web which
matches the query.

Validation through Parsing and Matching

This step attempts to accurately match the constituents of a Web sample describing the relationship:

noun1 is [on | in] noun2

i.e. “the batter is in the refrigerator”

The system parses both the web query and the samples returned from the web with Charniak’s

parser Charniak (2000) in order to ensure accuracy. The word ‘something’ is inserted in place of

the missing search phrase parameter ‘*’. One is then able to determine which part of the parse

should match the word(s) retrieved from the Web. Consider Figure 3.3, parses for the web query:

“place * in the refrigerator”, and a sample returned from the Web: “he was told to place the mixed

batter in the refrigerator”.

Notice ‘something’ appears in place of the ‘*’ in the parsed web query. In the parsed sample,

the head noun(s) which replace ‘(NN something)’ are taken to fill the missing parameter of the

search phrase. In this case, ‘batter’ is resolved as noun1 in the relationship batterinrefrigerator.

This is because ‘batter’ is determined to be the head noun of the matching phrase ‘(DT the) (JJ
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parsed web query:
(VP (VB place)

(NP (NN something))
(PP (IN in) (NP (DT the) (NN refrigerator))))

parsed web sample:
... (VP (VB place)

(PP (IN for) (NP (JJ several) (NNS hours)))
(PP (IN in) (NP (DT the) (NN refrigerator)))))))

parsed web sample:
... (NP (DT a) (JJ cool) (, ,) (JJ dark) (NN place;))))
(VP (AUX do) (RB not) (VP (VB store)

(PP (IN in) (NP (DT the) (NN refrigerator))))) (. .)))

Figure 3.4: Examples of results which are eliminated because they do not match a parsed web
query.

mixed) (NN batter)’. Words are only recorded if they are present as a noun in WordNet. If the

noun phrase contains a compound noun found in WordNet, then the compound noun is recorded

(i.e. if ‘mixed batter’ was in WordNet, it would have been stored instead of simply ‘batter’).

In addition to verifying a match of appropriate words in a sample, the parse can also eliminate

bad results. Consider the examples in Figure 3.4.

In the first case, the verb phrase does not match the parse of the web query due to an extra PP,

and therefore the system does not pull out ‘for several hours’ as noun1. In the second case, the

parse of the previously mentioned sample (23), the structure is drastically different. In fact, ‘place’

is not even being used withe same POS. In practice, one can actually eliminate this result before

employing the parser by checking that the punctuation matches the web query. In the previously

mentioned sample (24), besides ‘them’ not matching the correct part of speech within the parse, it

would also be eliminated because ‘them’ is not in WordNet as a noun.
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At the end of the noun acquisition phase, we are left with frequency counts of nouns being

retrieved from a context matching the syntactic structure of a web query. The frequency is rep-

resented as f(noun1,R, noun2) in function (3.1), pR(n1, n2), which is the probability of a noun

n1 being retrieved with noun n2 based on a query for the relationship, R. Additionally, we de-

fine pR(n2) in function (3.2), the probability of any n1 being retrieved with noun n2 based on a

query for the relationship, R. These values along with the results of the other steps are stored in a

MySQL relational database3. One could trace a relationship probability between nouns back to the

Web samples which were matched to a web query, and even determine the abstract search phrase

which produced the web query.

pR(n1, n2) =
f(n1,R, n2)

f(R)
(3.1)

pR(n2) =
f(∗,R, n2)

f(R)
(3.2)

3.1.3 Knowledge Analysis and Discussion

This section presents samples of noun-noun relationships acquired by the system. Relationships

were acquired for the nouns listed in Table 3.3. These nouns represent all possible words to fill

the noun2 parameter of a search phrase. Tables 3.4, 3.5, 3.6, and 3.7 show the top noun1s for

the noun2s ‘table’, ‘computer’, ‘pocket’, and ‘life’ respectively. The results for these nouns were

3http://www.mysql.com
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Table 3.3: Nouns for which relations were acquired (noun2 parameters of a search phrase).

basket bike boat bookcase bottle
bowl building cabin cabinet canoe
car case ceiling child city
company computer country day desk
drawer dresser eye floor government
group hall hand hospital house
jar kitchen life man mind
part person place pocket port
refrigerator restaurant road room shelf
ship sink sofa story table
thing time tree truck van
wall woman work world year

chosen to cover a broad range of concepts from physical entities to abstractions. Refer to functions

(3.1) and (3.2) to understand the values in each table.

First, one should observe the pR(n2) values seen at the bottom of each table. These represent

how likely anything was found on or in the noun2. To interpret the results in Table 3.4, one can

see that it is a bit more common to find something on a table, than in a table. On the other hand,

Table 3.6 shows that finding something in a pocket is much more common than finding something

on a pocket. This information (the pR(n2) values) plays a role in using information theory to

analyze concepts over WordNet in the concept analysis phase of the framework (explained in the

next section).

Looking into the top noun1s themselves provides further insight. Many of the results, such as

cardsontable, informationincomputer, moneyinpocket, and limitonlife are expected. It is perhaps

more telling to examine result one might not immediately think of. Some unexpected results

were due to oversaturation of a particular topic on the Web. Though duplicates of the exact same

samples were eliminated, many sentences conveying the same information are phrased differently.
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Table 3.4: The top 15 noun1s acquired for on or in a ‘table’.

noun1 pon(n1, ‘table′) noun1 pin(n1, ‘table′)
food 0.006509 data 0.001689
cards 0.002913 cursor 0.001626
book 0.001914 information 0.000756
key 0.001013 image 0.000662
head 0.000922 text 0.000658
bread 0.000760 result 0.000542
face 0.000705 code 0.000542
box 0.000667 record 0.000491
glass 0.000639 row 0.000482
tray 0.000596 point 0.000471
hands 0.000576 entry 0.000460
money 0.000560 key 0.000446
phone 0.000499 value 0.000417
foot 0.000473 table 0.000411
cup 0.000439 content 0.000410
plate 0.000418 page 0.000381
meal 0.000412 values 0.000365
pon(‘table′) = 0.0622 pin(‘table′) = 0.0259

Table 3.5: The top 15 noun1s acquired for on or in a ‘computer’.

noun1 pon(n1, ‘computer′) noun1 pin(n1, ‘computer′)
file 0.004156 card 0.001432
cookie 0.003637 disk 0.000855
software 0.001348 information 0.000824
picture 0.001330 disc 0.000791
spyware 0.001083 dvd 0.000745
virus 0.001071 drive 0.000680
program 0.000982 file 0.000619
image 0.000738 problem 0.000510
information 0.000730 data 0.000447
video 0.000693 hard drive 0.000438
photo 0.000687 virus 0.000353
folder 0.000675 cdrom 0.000331
password 0.000653 ram 0.000315
music 0.000574 hardware 0.000266
hands 0.000528 stick 0.000258
server 0.000524 cookie 0.000254
life 0.000463 diskette 0.000222

pon(‘computer′) = 0.0447 pin(‘computer′) = 0.0213
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Table 3.6: The top 15 noun1s acquired for on or in a ‘pocket’.

noun1 pon(n1, ‘pocket′) noun1 pin(n1, ‘pocket′)
hand 0.000366 money 0.003146
pressure 0.000319 hand 0.003040
burden 0.000245 phone 0.002371
money 0.000180 cash 0.000729
strain 0.000178 device 0.000641
logo 0.000107 ball 0.000484
dent 0.000095 key 0.000447
hands 0.000087 card 0.000444
phone 0.000081 heart 0.000361
name 0.000051 sheet 0.000340
hole 0.000051 hands 0.000307
key 0.000038 player 0.000298
creed 0.000038 dollar 0.000295
patch 0.000038 ipod 0.000282
stress 0.000036 pedometer 0.000252
design 0.000036 camera 0.000243
hospital 0.000036 coin 0.000233
pon(‘pocket′) = 0.0036 pin(‘pocket′) = 0.0327

Table 3.7: The top 15 noun1s acquired for on or in ‘life’.

noun1 pon(n1, ‘life′) noun1 pin(n1, ‘life′)
value 0.003295 goal 0.000907
price 0.001712 god 0.000781
hand 0.001168 people 0.000743
focus 0.000776 there 0.000633
limit 0.000758 love 0.000610
price tag 0.000619 someone 0.000554
years 0.000517 genius 0.000466
spin 0.000424 christ 0.000386
emphasis 0.000418 priority 0.000375
calling 0.000402 order 0.000324
damper 0.000374 much 0.000304
strain 0.000342 purpose 0.000302
call 0.000271 balance 0.000279
contract 0.000271 excitement 0.000250
perspective 0.000253 joy 0.000243
impact 0.000228 soul 0.000230
monetary value 0.000202 person 0.000216

pon(‘life′) = 0.0207 pin(‘life′) = 0.0228
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For example, hospitalonpocket was frequent due to many mentions for the show House, in which

”Princeton Plainsboro Hospital” appears on a clothing pocket. Of course, not many things are

found on a ‘pocket’, as shown by pon(‘pocket′), so pon(‘hospital′, ‘pocket′) is also low compared

to that of more common relationships like pon(‘money′, ‘pocket′). Additional unexpected results

from oversaturation on the Web included pageintable, which was due to text describing how to

design a web page by placing the whole page in a table (a table in html), as well as handonlife

which was due to mentions of God’s hand being on someone’s life. Biblical references in general

were common; babyinbasket was also strong.

Other results one might question may be related to implementation choices. The decision was

made to keep all forms of words found in WordNet. Most plural words are converted to their

singular form, but words such as ‘hand’ and ‘hands’ appear in separate forms in WordNet and

were thus treated separately during noun acquisition. Examples of this from the tables include

hands/handonpocket and disk/discincomputer. For the next step of our processing, which utilizes

WordNet concepts, senses of all forms of a word will be considered. Overall, the most frequent

relationships found (those that contained the highest pR value) over all possible noun2s were

headondesk and eggsinbasket.

A key issue with the system up to this point is the ambiguity among noun-noun relationships.

Although our minds have no trouble disambiguating most of the noun1s seen here, a computer

algorithm may have more trouble. In fact, only four of the thirty noun1s listed for being on or

in a ‘table’ (shown in Table 3.4) are monosemous according to WordNet: ‘cards’, ‘tray’, ‘data’,

and ‘cursor’. It would be a helpful for the system to be able to determine the senses of the nouns,
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or more broadly, to induce the types of concepts that are often in these relationships. This idea

may be seen by observing features of Table 3.4; most nouns listed with the on relationship can be

conceptualized as physical objects, while those for the in relationship are mostly abstractions.

3.2 Method of Analysis over WordNet

This section describes our method of inducing information about concepts from information about

nouns. There are two key motivations for the concept analysis. The first is to handle noise created

from biased or inaccurate results of the web. The second motivation is an assumption that CSK

is about concepts rather than ambiguous words. Using the knowledge that keys are kept in one’s

pocket, we know we are talking about the concept associated with [key-1]:“metal device shaped in

such a way that when it is inserted into the appropriate lock the lock’s mechanism can be rotated”

rather than concepts associated with other senses of ‘key’ such as [key-2]:“something crucial for

explaining”. Ultimately, we take knowledge of the form: noun1 is [on | in] noun2 and induce

knowledge of the form below.

concept1 is [on | in] noun2

Figure 3.5 shows the general process through the framework of acquiring noun-noun relations from

the Web to the analysis inducing concept-noun relations described in this section. Overall, we aim

to induce the types of concepts that are often found on or in a given noun.
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Common Sense Knowledge Base
Acquisition from the Web

Concept Analysis

Web Query Creation

Web Search

Parse and Match

noun­noun relations

concept­noun relations

Probabilities over WordNet Concepts

Measure Relationship Strength

Figure 3.5: The steps taken within the framework for acquiring common sense knowledge.

3.2.1 WordNet Concepts

To begin the concept analysis, probabilities are derived over WordNet concepts from the existing

probabilities over nouns. One should recall from Section 1.1 that synsets are the representatives

of concepts in WordNet. A synset is a group of word-senses that have the same meaning (Miller

et al., 1993). For example, [batter-1, hitter-1, slugger-1, batsman-1] is a synset with the meaning

“(baseball) a ballplayer who is batting”. Recall function (3.1), pR(n1, n2), the joint probability

that n1 is returned to a query for the relationship, R, with n2. Below, P syn
R (c1, n2) distributes pR

to WordNet synsets, where lemma represents the word of a noun sense, n1s, senses returns the

number of senses of a word, and c1 is a concept / synset in WordNet.
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P syn
R (c1, n2) =

∑
n1s∈c1

pR(lemma(n1s), n2)

senses(lemma(n1s))

P sub
R (c1, n2) = P syn

R (c1, n2) +
∑

c∈descs(c1)

P syn
R (c, n2) (3.3)

P sub
R (c1) =

∑
n2

P sub
R (c1, n2) (3.4)

Function (3.3), P sub
R (c1, n2) implements the idea that a concept subsumes all concepts below

it (hyponyms) in the WordNet Ontology. In this function, desc returns the set of descendants (all

direct or indirect hyponyms) within the WordNet ontology. For example, [money-3] is a [currency-

1], so P sub
R ([currency-1], n2) receives P syn

R ([money-3], n2) among others. Also defined for a

single concept parameter in function in (3.4) P sub
R is the probability that c1 is in relationship R

with any noun2.

A couple properties of P sub
R are listed in Figure 3.6. First, the root concept in WordNet, [entity-

1], subsumes the probability of all possible c1, and therefore it is always in a relationship a noun2.

Similarly, it could also be said that P sub
R ([entity-1], n2) = pR(n2) for all n2. Another important

property is that a concept’s P sub
R is always greater than or equal to that of its descendants. This

property means that P sub
R is always biased toward the more general concepts. Although this bias

is correct based on the idea that a concept should subsume its hyponyms’ probability, P sub
R should

not be used directly to measure relationship strength. The next section describes how it is used

more appropriately.
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P sub
R ([entity-1]) = 1 =

∑
n2

pR(n2) =
f(∗,R, ∗)
f(R)

P sub
R (c1, n2) ≥ P sub

R (c, n2),∀ c ∈ descs(c1)

Figure 3.6: Properties of P sub
R .

3.2.2 Measuring Relationship Strength

From equation 3.3, one now has a probability, P sub
R (c1, n2), for the relationship concept1 is [in |

on] noun2. However, this probability by itself is not an accurate measure of relationship strength as

it favors more general concepts and contains noise from considering multiple senses of ambiguous

nouns equally. This can be a problem when a general sense of a word is preferred over a specific

sense. Consider two concepts of ‘change’ in Figure 3.7; [change-8]: “coins of small denomination

regarded collectively” is clearly the better choice for being in a pocket, but [change-3]: “the action

of changing something” has a much higher P sub
R simply because it subsumes more concepts. The

approach turns to information theory to develop a metric for measuring the relationship strength.

Pointwise mutual information (PMI) is commonly used to measure the strength of associa-

tions (Church & Hanks, 1989). It computes a ratio between the joint probability of observing two

elements and the probability of observing both elements with independence. PMI results in pos-

itive values when elements occur together more than expected from chance, zero when they occur

together according to chance, and a negative value when the elements occur less frequently than

expected. Below, pointwise mutual information is adapted to measure the specific information
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. . .

Figure 3.7: A portion of the WordNet hierarchy with various figures for the relationship: entities
in a ‘pocket’. A connection between concepts may not indicate direct hypernymy (i.e. not all
concepts in the path from concept to entity are shown).

between a WordNet concept, c1 and a noun2, n2.

PMIR(c1, n2) = log
P sub

R (c1, n2)

P sub
R (c1)pR(n2)

(3.5)

Conceptually, PMIR compensates for the bias towards general concepts because concepts which

occur with one or only a few noun2s are more informative. Since general concepts subsume many

others, they are more likely to occur with many noun2s.

Finally, while one might expect PMI to be best in application, for the sake of examination,

it is also useful to know the informative general concepts that are involved in the relationship;

i.e. induce that [foodstuff-1, food produce-1] is commonly found in a ‘refrigerator’ if many of its

subconcepts are are also found in a ‘refrigerator’. Therefore, joint probability-weighted PMI is
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also defined below as JPMIR. In this case, relationship strength is measured as the probability

of a concept (and concepts subsumed by the concept) being in the relationship and the amount

mutual information. This balances the metric to neither favor the most specific concepts nor the

most general.

JPMIR(c1, n2) = P sub
R (c1, n2) ∗ PMIR(c1, n2) (3.6)

Both PMIR([entity-1], n2) and JPMIR([entity-1], n2) are equal to zero for all n2. This

property respects intuition since [entity-1], the most general concept, should be in relationships

exactly according to chance; Knowledge of its existence in a relationship is neither informative

nor complementary. This becomes an important property when applying the CSKB, as one can

simply observe concepts with PMI greater than [entity-1].

These measures are similar to Resnik’s information-theoretic approach to compute selectional

preferences (Resnik, 1996). He used occurrences of nouns to find classes in WordNet which should

subsume the nominal arguments of a verb. However, his method was based on relative entropy,

rather than mutual information, which is asymmetric. Asymmetric functions were found to be less

appropriate as a measure of relationship strength (i.e. using relative entropy, [entity-1] would not

end up with a value of zero).

Finally, the idea of inheritance is incorporated. If [foodstuff-1, food produce-1] has a strong

value for being in a ‘refrigerator’, then [egg-2, eggs-1] should also have a strong value. Thus,

in practice we say the strength of a relationship between a concept c1 and a noun n2 is given by
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maximum value from all ancestors, ancs, of the concept c1:

RSmeasR
(c1, n2) = max

c1′∈ancs(c1)
measR(c1′, n2) (3.7)

where measR is either PMIR or JPMIR.

3.2.3 Sample Concept-Noun Relationships

This section presents various sample outputs from the concept analysis. WordNet version 3.0 was

used in order to take advantage of the latest updates and corrections to the noun ontology. The

possible nouns for the noun2 parameter were those given in Table 3.3, while the tables of exam-

ples follow the same four nouns we sampled for the noun-noun relationships: ‘table’, ‘computer’,

‘pocket’, and ‘life’.

Tables 3.8, 3.9, 3.10, and 3.11 show the JPMI , PMI , and P sub
R values of concepts for the

nouns we chose as in our samples. The results are sorted by JPMI , showing concepts with the

greatest values, and the concept with the least value. In Table 3.8 we also show the value for

[entity-1], which is always zero (for other noun2s as well), indicating that it is neither informative

nor uninformative. Notice the P sub
R (c1, n2) value is equal to the probability that anything is found

on or in a ‘table’ (pon(′table′) or pin(′table′) from Table 3.4). Similarly, P sub
R (n2) is always 1 for

[entity-1], which subsumes all other concepts in WordNet.

Several ideas are worth noting when examining these tables. Consider concepts found on a

‘table’ (Table 3.8). As expected, we see many concepts of [physical entity-1] while [abstraction-
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Table 3.8: The top concept1s, according to JPMIR found on or in a ‘table’.

concept1 JPMIR(c1, n2) PMIR(c1, n2) Psub
R (c1, n2) Psub

R (c1)

R = on
matter-3 0.018172 1.928070 0.0094 0.0398

food-1, nutrient-1 0.012559 2.733966 0.0046 0.0111
substance-7 0.011516 2.384117 0.0048 0.0149

physical entity-1 0.010097 0.270794 0.0373 0.4970
solid-1 0.009516 2.600902 0.0037 0.0097

food-2, solid food-1 0.009487 2.700154 0.0035 0.0087
food-3, food for thought-1, intellectu... 0.008303 3.826861 0.0022 0.0025
instrumentality-3, instrumentation-1 0.004925 0.444350 0.0111 0.1310

container-1 0.004264 1.332153 0.0032 0.0204
artifact-1, artefact-1 0.002802 0.154696 0.0181 0.2617

... ... ... ... ...
entity-1 0.000000 0.000000 0.0622 1.0000

... ... ... ... ...
abstraction-6, abstract entity-1 -0.007279 -0.267157 0.0272 0.5273

R = in
cursor-1, pointer-3 0.008082 4.925300 0.0016 0.0021
communication-2 0.007726 1.532921 0.0050 0.0673

abstraction-6, abstract entity-1 0.007718 0.444117 0.0174 0.4933
indicator-3 0.007320 4.413976 0.0017 0.0030

data-1, information-4 0.004468 4.411651 0.0010 0.0018
collection-1, aggregation-1, accumulatio... 0.003684 2.481254 0.0015 0.0103
written communication-1, written language 0.003568 2.051087 0.0017 0.0162

datum-1, data point-1 0.003487 4.004151 0.0009 0.0021
information-2 0.003029 2.636957 0.0011 0.0071

message-2, content-2, subject matter-1... 0.002880 1.570537 0.0018 0.0238
... ... ... ... ...

entity-1 0.000000 0.000000 0.0259 1.0000
... ... ... ... ...

physical entity-1 -0.005770 -0.639648 0.0090 0.5427

80



Table 3.9: The top concept1s, according to JPMIR found on or in a ‘computer’.

concept1 JPMIR(c1, n2) PMIR(c1, n2) Psub
R (c1, n2) Psub

R (c1)

R = on
communication-2 0.015640 1.261513 0.0124 0.1156

software-1, software program-1, computer.. 0.015326 4.126031 0.0037 0.0048
coding system-1 0.015202 3.954812 0.0038 0.0055

code-3, computer code-1 0.015190 3.999468 0.0038 0.0053
written communication-1, written language 0.013653 2.315626 0.0059 0.0265

writing-4 0.012324 3.114665 0.0040 0.0102
evidence-2 0.006457 2.942864 0.0022 0.0064

indication-1, indicant-1 0.006111 2.759995 0.0022 0.0073
... ... ... ... ...

physical entity-1 -0.003105 -0.155517 0.0200 0.4970
R = in

memory device-1, storage device-1 0.013926 4.941875 0.0028 0.0043
device-1 0.008196 1.768113 0.0046 0.0640

instrumentality-3, instrumentation-1 0.007254 1.189294 0.0061 0.1258
optical disk-1, optical disc-1 0.006438 5.232749 0.0012 0.0015

communication-2 0.005884 1.477582 0.0040 0.0673
magnetic disk-1, magnetic disc-1, disk... 0.004933 5.288089 0.0009 0.0011

recording-3 0.004665 4.890266 0.0010 0.0015
artifact-1, artefact-1 0.004513 0.613446 0.0074 0.2262

... ... ... ... ...
physical entity-1 -0.001351 -0.128009 0.0106 0.5427

6, abstract entity-1] has the lowest JPMI . The opposite is true for the relationship in with

abstractions being more toward the top [physical entity-1] at the bottom. It is not always the

case that things split so clearly between the physical and abstract concepts. Take, for example,

concepts found in a ‘pocket’ (Table 3.10). Many of those at the top are abstractions, such as

[medium of exchange-1, monetary system-1] , while there are also physical entities such as [ elec-

tronic equipment-1 ]. In the end, it was very uncommon to find a psychological feature in a pocket

(which is also a subordinate of abstraction) so we have types of abstractions at the both the top and

the bottom.
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Table 3.10: The top concept1s, according to JPMIR found on or in a ‘pocket’.

concept1 JPMIR(c1, n2) PMIR(c1, n2) Psub
R (c1, n2) Psub

R (c1)

R = on
abstraction-6, abstract entity-1 0.000489 0.220977 0.0022 0.5273

logo-1, logotype-1 0.000476 4.415179 0.0001 0.0014
trademark-2 0.000475 4.401528 0.0001 0.0014

cognition-1, knowledge-1, noesis-1 0.000331 0.748193 0.0004 0.0733
medium of exchange-1, monetary system-1 0.000311 2.245012 0.0001 0.0081

standard-1, criterion-1, measure-5, to... 0.000307 2.214618 0.0001 0.0083
marker-2, marking-1, mark-2 0.000295 2.384777 0.0001 0.0066

system of measurement-1, metric-3 0.000292 2.082897 0.0001 0.0092
... ... ... ... ...

object-1, physical object-1 -0.000428 -0.378613 0.0011 0.4085
R = in

medium of exchange-1, monetary system-1 0.006548 2.141022 0.0031 0.0212
standard-1, criterion-1, measure-5, to... 0.006493 2.121870 0.0031 0.0215

system of measurement-1, metric-3 0.006374 2.079083 0.0031 0.0222
measure-2, quantity-1, amount-3 0.004686 1.119645 0.0042 0.0589

currency-1 0.004668 2.346209 0.0020 0.0120
instrumentality-3, instrumentation-1 0.004498 0.681613 0.0066 0.1258

telephone-1, phone-1, telephone set-1 0.004096 3.982789 0.0010 0.0020
electronic equipment-1 0.004072 2.709799 0.0015 0.0070

... ... ... ... ...
psychological feature-1 -0.00229 -0.70585 0.0032 0.162

One might also consider examining the differences between JPMI , PMI , and P sub
R . Keep

in mind that we introduced JPMI to negate the fact that PMI highly favors specific concepts

(as we may want in application). Furthermore, P sub
R is biased toward general concepts. JPMI

provides a logical choice for sorting when examining the results, so one gets an idea of the types

of concepts in the relationship. From Table 3.9, we see a somewhat general concept at the very

top: [communication-2]. However, when looking at the PMI values, we see that [software-1,

software program-1, computer..] carried much more information. Additionally, recalling Figure

3.7, both PMI and JPMI found [change-8]:“coins of small denomination...” stronger for being

in a ‘pocket’ when compared with [change-3]: “the action...”. P sub
R favors [change-3]. One can see
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Table 3.11: The top concept1s, according to JPMIR found on or in ‘life’.

concept1 JPMIR(c1, n2) PMIR(c1, n2) Psub
R (c1, n2) Psub

R (c1)

R = on
abstraction-6, abstract entity-1 0.010393 0.618902 0.0168 0.5273

worth-2 0.005842 3.527883 0.0017 0.0069
quality-1 0.005178 2.232304 0.0023 0.0238

attribute-2 0.005115 1.126399 0.0045 0.1003
value-2 0.004885 3.480612 0.0014 0.0061

time period-1, period of time-1, period 0.003410 2.672110 0.0013 0.0097
psychological feature-1 0.003368 0.620400 0.0054 0.1703

fundamental quantity-1, fundamental measur... 0.003360 2.616400 0.0013 0.0101
... ... ... ... ...

physical entity-1 -0.005450 -1.323202 0.0041 0.4970
R = in

abstraction-6, abstract entity-1 0.007236 0.465676 0.0155 0.4933
attribute-2 0.005301 1.103654 0.0048 0.0980

psychological feature-1 0.004907 0.776551 0.0063 0.1617
cognition-1, knowledge-1, noesis-1 0.003654 1.048979 0.0035 0.0738

state-2 0.002846 1.236812 0.0023 0.0428
content-5, cognitive content-1, mental... 0.002825 1.178329 0.0024 0.0465

person-1, individual-1, someone-1, som... 0.002258 0.616498 0.0037 0.1047
spiritual being-1, supernatural being-1 0.002153 2.361831 0.0009 0.0078

... ... ... ... ...
physical entity-1 -0.005101 -0.643804 0.0079 0.5427

that PMI tends to favor more specific concepts such as [coinage-1]. Furthermore, one can also

see from Figure 3.7 how inheritance would work, where, in the case of JPMI [change-8] would

inherit from [medium of exchange-1] since it has the maximum JPMI over all its ancestors.

While it is clear that P sub
R is biased too heavily toward the general concepts, we leave it up to the

application to make a judgment on whether PMI or JPMI is best as a measure of relationship

strength.
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3.3 Evaluation

The evaluation focuses on the applicability of the acquired CSKB. It was chosen to apply the

knowledge to the task of word sense disambiguation (WSD), annotating the correct sense of an

ambiguous word within a sentence. WSD is a fundamental task of semantics in the field of natural

language processing. A description of the WSD system and experimental corpus follows.

3.3.1 Disambiguation System

The CSKB is not intended to be used by itself for disambiguation. It would be far from accurate

to assume the sense of a noun can be disambiguated simply by observing its relationship with one

other noun in the sentence. For example, one of the test sentences incorporated the relationship

noteinpocket. Multiple senses of note are likely to be found in a pocket (i.e. the senses referring to

“a brief written record”, “a short personal letter”, or “a piece of paper money”). In other cases, a

relationship may not be found for any sense of a target word. Therefore, the knowledge is intended

to be used as a reference, consulted by a disambiguation system.

The knowledge is integrated into a state of the art “all-words” word sense disambiguation

algorithm. These algorithms are considered minimally supervised, because they do not require

specific training data that is designed for instances of words in the testing data. In other words,

these systems are designed to handle any word they come across. The CSKB can supplement

such a system, because the data can be acquired automatically for an unlimited number of nouns,

assuming limitless web query restrictions.
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The basis of the disambiguation system is the publicly available GWSD system (Sinha & Mi-

halcea, 2007). Sinha and Mihalcea report higher results on the Senseval-2 (Edmonds & Cotton,

2001) and Senseval-3 (Snyder & Palmer, 2004) datasets than any of the participating minimally-

supervised systems. Additionally, GWSD is compatible with WordNet 3.0 and its output made it

easy to integrate the knowledge. Sense predictions from four different graph metrics are produced,

and knowledge is incorporated as another prediction within a voting scheme.

GWSD is supplemented by included suggestions from the CSKB for relationships found in a

sentence. First, potential relationships are discovered by matching the phrase “in|on det noun2”

within the sentence, anywhere after the target noun (taken as noun1). Recall RSmeasR
(c1, n2) is

the relationship strength given by a metric mentioned previously (functions (3.5) and (3.6); PMIR

and JPMIR). As exemplified previously from the relationship noteinpocket, in some cases one

would like suggestions of multiple senses and in others none. With this in mind, our suggestions

are based on two criteria:

RSmeasR
(c1, n2) > RSmeasR

((entity-1), n2)

RSmeasR
(c1, n2) > max

c∈senses(c1)
RSmeasR

(c, n2) ∗mp

These criteria, respectively, insure that each suggestion is informative and that it is not notably

weaker than the top suggestion. If no senses match this criteria than no senses are suggested.

The variable mp represents a minimum percentage of the maximum strength over all senses if c1,

senses(c1). In our experiments, mp is set to 0.75.
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Table 3.12: List of nouns in our testing corpus which fill the noun2 constituent in a search phrase.
basket boat bookcase bottle bowl
cabin cabinet canoe car ceiling
city desk drawer dresser floor
house jar kitchen pocket refrigerator
road room shelf ship sink
sofa table truck van wall

Considering the role of the CSKB as a reference, in some cases one would like suggestions of

multiple senses and in others none. The Pc(cncptA,R, nounB) value is found for each sense of

a target noun instance in the corpus, (cncptA is the WordNet concept that corresponds to a sense

of the target noun). The nounB is chosen by matching the phrase “in|on det nounB” within the

sentence. The system suggests all senses with a Pc value greater than 0.75 of the maximum Pc

value over all senses. If no senses have a Pc value then no senses are suggested.

During voting, tallies of predictions (from GWSD) and suggestions (from the CSKB) are taken

for each sense of a noun. Ties are broken by choosing the lowest sense number among all those

involved in the tie. Note that this is different than choosing the most frequent sense (i.e. the lowest

sense number from all senses), in that only the top predicted senses are considered. This same type

of voting is used with and without the CSKB suggestions.

3.3.2 Experimental Corpus

A goal of this dissertation is to acquire data which can be applied to semantic interpretation prob-

lems. This experiment focused particularly on the difficult problem of word sense disambiguation.

Due to the lack of sense tagged data, there was no existing annotated corpus with instances of all
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the nouns in Table 3.12 as prepositional complements. This was not surprising considering one of

the reasons that minimally supervised approaches have become more popular is that they do not

require hand-tagged training data (Mihalcea, 2002; Diab, 2004; McCarthy et al., 2004).

A corpus of sentences from Wikipedia was created which contained the phrase “in|on det

lemma”, where det is a determiner or possessive pronoun, lemma is a noun from Table 3.12, and

in|on is a preposition for either relationship as described in Section 3.1. Sentence (26) is an

example from the corpus where the knowledge from ‘pocket’ can be applied to disambiguate ‘key’.

(26) Now Tony’s key to the flat is in the pocket of his raincoat, so on returning to his flat some

time later he realizes that he cannot get inside.

The corpus4 contained a total of 342 sentences, with one target noun annotated per sentence.

The target nouns were selected in order to fill the noun1 constituent in the relationship noun1Rnoun2,

and they were assigned all appropriate WordNet 3.0 senses. Considering the fine-grained nature of

WordNet (Ide & Wilks, 2006), 26.3% of the instances were annotated with multiple senses. The

corpus was also restricted to only include polysemous nouns, or nouns which had an additional

sense beyond the senses assigned to it.

Inter-annotator agreement was used to validate the corpus itself. Because the corpus was built

by an author of the work, a non-author to re-annotate the corpus without knowledge of the original

annotations. This second annotator was told to choose all appropriate senses just as did the original

4available at: http://eecs.ucf.edu/˜hschwartz/CSK/
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Table 3.13: Experimental corpus data for each relationship (on, in).

on in both
insts 131 211 342
agree 0.799 0.808 0.805

Fh 0.847 0.919 0.892
Frnd 0.282 0.272 0.276

FMFS 0.710 0.678 0.690
insts: number of annotated instances; agree: inter-annotator agreement; F values: h: human
annotation, rnd: random baseline, MFS: most frequent sense baseline.

annotator. Agreement was calculated as:

agree =

(∑
i∈C

|S1i ∩ S2i|
|S1i ∪ S2i|

)
÷ 342

where S1 and S2 are the two sets of sense annotations, and i is an instance of the corpus, C.

The agreement and other data concerning corpus annotation can be found in Table 3.13. As

a point of comparison, the Senseval 3 all-words task had a 75% agreement on nouns Snyder &

Palmer (2004). A second evaluation of agreement was also done. The non-author annotations

were treated as if they came from a disambiguation system, and the original annotations were used

as a key. This gives a human upper-bound of performance, and it is shown as Fh in Table 3.13. Just

as the automatic system handled tie votes, when the second annotator chose multiple senses for one

word, the lowest sense number among those chosen was used. F scores here and within the results

were calculated as F = 2 ∗ precision∗recall
precision+recall

. As is standard for word sense disambiguationSnyder &

Palmer (2004); Edmonds & Cotton (2001), precision was calculated as the number correct out of

the number attempted, while recall was the number correct out of all instances. In our experiments,

precision was equal to recall (indicating all instances were attempted) unless otherwise indicated.
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Table 3.14: F-scores on our experimental corpus without(w/o) and with(w/) the CSKB.

meas on in both ties
w/o CSKB - 0.626 0.687 0.664 37
w/ CSKB PMI 0.634 0.744 0.702 106

JPMI 0.626 0.744 0.699 60

ties: number of instances where tie votes occurred.

3.3.3 Results

The primary purpose of the evaluation was to validate that the CSK is applicable to the semantics of

natural language processing. Therefore, the results are presented from running the disambiguation

system on the experimental corpus with and without suggestions from the CSKB.

Table 3.14 shows the F scores when running the disambiguation system with and without the

suggestions from the CSKB. The incorporation of the CSKB significantly improved results when

using either the PMI and JPMI measures of relationship strength. For the top F score, there was

an error reduction of 11.3%. While running GWSD, it was discovered that the indegree metric by

itself actually performed stronger on our corpus than the combination of all four graph metrics.

This was not surprising considering Sinha and Mihalcea Sinha & Mihalcea (2007) found the in-

degree metric by itself to perform only slightly below a combination of metrics on Senseval data.

Therefore, results using the indegree metric by itself are also presented in Table 3.15, with and

without the CSKB. In this case using the CSKB measured with PMI resulted in our best results

with an F-score of 0.744 and a 20.5% error reduction over the GWSD with the indegree metric

alone. Additionally, the results with the CSKB exceed the FMFS baseline of 0.690, a point which

GWSD alone did not pass.
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Table 3.15: F-scores when applying GWSD with only the indegree graph metric.

meas on in both ties
w/o CSKB - 0.634 0.697 0.673 0
w/ CSKB PMI 0.687 0.773 0.740 168

JPMI 0.649 0.768 0.722 84

A couple additional experiments were run with regards to how the system handled ties. Note

that for the results above, the chosen sense was taken from the predictions and suggestions during

ties. When the most frequent sense is chosen for instances that had ties, the top F score dropped to

0.731 using the indegree graph metric with the CSKB. Additionally, a test with no predictions made

for tie votes found a precision of 0.770 on the 134 instances that did not have a tie for top votes

(also using the indegree metric with the CSKB). Thus, the system was more likely to miss instances

with ties, indicating those instances were more difficult but that the CSKB was still helpful. All

results supported our goal of acquiring CSK that was applicable to natural language processing.

3.4 Discussion

Experiments found the acquired CSKB to be useful when incorporated into a word sense disam-

biguation system. The experiments focused on a type of CSK which is applicable to natural lan-

guage processing and describes what is often found on or in something. The approach searched the

Web with queries constructed automatically by filling parameters of predetermined search phrases.

Through a unique aspect of the approach, results from the Web were matched with constituents

of search phrases by incorporating a statistical parser, which eliminated Web phrases that did not

contain the intended syntactic structure.
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Under the assumption that CSK describes information about concepts rather than information

about ambiguous words, the system also performs a novel concept analysis over WordNet. The

analysis, based on applying information-theory over the WordNet ontology, sought to automati-

cally induce the types of concepts that are often found in or on something. Thus, an attempt was

made to take CSK about ambiguous words and turn it into knowledge about concepts. Although

samples of the results of the concept analysis seemed to follow intuition, our goal was to acquire

applicable common sense knowledge. Therefore, the resulting knowledge was evaluated through

its application in a state of the art word sense disambiguation system.

The evaluation found that integrating our acquired CSK into an existing disambiguation system

significantly improved results, with a 20.5% error reduction for the top results. While this paper

focused broadly on examining and validating our approach to acquire common sense knowledge as

a whole, further research may investigate specific aspects of the approach. Examples of such work

may include quantifying the helpfulness of the parser, searching for other types of CSK, or using

the concept analysis that was introduced to analyze data describing other lexical relationships. One

should keep in mind, that noun2 is not disambiguated, so these concepts may be for any sense of

‘pocket’. Still, a few concepts appear which may not belong in any of the senses of ‘pocket’.

Person-1, for example, is very common to appear with a high Pc, because many nouns for objects,

have senses that are also a description for a type of person, such as computer-2 (gloss: “an expert

at calculation (or at operating calculating machines)”). Finally, a vast amount of future work lies in

the application of common sense knowledge to additional problems in language and other domains.
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4 WEB SELECTORS AS A MEANS TO DYNAMICALLY

ACQUIRE KNOWLEDGE

A goal of the methods to acquired knowledge within this dissertation is that the knowledge can be

successfully applied to semantic interpretation problems. In this chapter the focus is on acquiring

knowledge dynamically from the Web for a given target word and sentence as part of a word sense

disambiguation approach. Section 2.2.3 introduced the term selectors when discussing the work

of Lin (1997). Selectors are words which take the place of an instance of a target word within its

local context. They serve for the system to essentially learn the areas or concepts of WordNet that

the sense of a target word should be within (Schwartz & Gomez, 2008).

4.1 Method for Acquiring Web Selectors

As a general definition, selectors are words which take the place of an instance of a target word

within its local context. In (Lin, 1997), dependency relationships over a small corpus were used

for matching local context to find selectors. However, the task of producing a dependency parse

database of the Web is not currently practical. In turn, one must search for text as local context.

For example, in sentence (27) the local context for ‘strikers’ would be composed of “he addressed

the” and “at the rally.”.
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(27) He addressed the strikers at the rally.

This dissertation introduces the idea of using selectors of other words in a sentence in addition

to selectors of the target, the word being disambiguated (Schwartz & Gomez, 2008). Words taking

the place of a target word are referred to as target selectors and words which take the place of

other words in a sentence are referred to as context selectors. Context selectors are classified

further based on their part of speech:

noun context selectors nouns which are found to replace other nouns of the sentence.

verb context selectors verbs which are found to replace other verbs in the sentence.

adjective context selectors adjectives which replace other adjectives in the sentence.

pro context selectors nouns which replace pronouns and proper nouns.

In (27), if ‘striker’ was the target word, the verb context selectors would be verbs replacing ‘ad-

dressed’, the noun context selectors would be nouns replacing ‘rally’, and the pro context selectors

would be nouns replacing ‘he’.

In practice, selectors are acquired for all appropriate parts of speech. Whether the selectors are

used as target selectors or context selectors depends on the target word with which they are being

applied. Thus, one process can be used to acquire all noun, verb, adjective, and adverb selectors.

Additionally, noun selectors can be acquired for pronouns and proper nouns (referred to as “pro”

selectors). These are nouns found to replace a pronoun or proper noun within their local context,

and are only used as context selectors since a pronoun is never a target.

93



i Shorten to a size of 10 words.
ii Remove end punctuation, if not preceded by *.
iii Remove front punctuation, if not proceeded by *.
iv Remove determiners (the, a, an, this, that) preceding *.
v Remove a single word.

Figure 4.1: The steps taken in order to truncate a query for Web selectors.

The first step in acquisition is to construct a query with a wildcard in place of the target. In

the running example, with ‘address’ as the target, the query is “he * the strikers at the rally.”

Yahoo! Web Services1 provides the functionality for searching the web for phrases with wildcards.

Selectors are extracted from web search results by matching the words which take the place of

the wildcard. All words not found in WordNet under the same part of speech as the target are

thrown out as well as phrases longer than 4 words or those containing punctuation. WordNet is

also used to determine if the phrase is a compound and the base morphological form of the head

word. Results containing head words not found in WordNet are filtered out. Finally, the list of

selectors is adjusted so no single word takes up more than 30% of the list.

The Web is massive, but unfortunately it is often not large enough to find results when querying

with a whole sentence as context. Therefore, the query is truncated and the search is repeated until

a stop condition is met. The steps in Figure 4.1 are followed where the final step is repeated until

a goal for the number of selectors was reached or the query becomes too short.

When removing a single word, the algorithm attempts to keep the * in the center. Figure 4.2

demonstrates the loop that occurs until a stop condition is met: enough selectors are found or the

query has reached a minimum size. Since a shorter query should return the same results as a longer

query, the selectors from longer query results are filtered out of the shorter results. It is important

1http://developer.yahoo.com/search/
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Figure 4.2: The iterative process of acquiring selectors and truncating Web search queries.

that the criteria to continue searching is based on the number of selectors and not on the number of

samples, because many samples fail to produce a selector. The truncation follows the idea of using

a decreasing window size as context (Martı́nez et al., 2006; Yuret, 2007).

4.2 Knowledge Analysis and Discussion

Figure 4.3 lists selectors retrieved for sentence (27). In the first couple sets of selectors, the context

is larger, and therefore less selectors are retrieved. However, those selectors do seem to be similar

to the correct sense of ‘striker’, striker-3 (gloss: “an employee on strike against an employer”). As

the the query gets shorter, the number of selectors increases, but the similarity between the selector

and the target word becomes less strong, such as with ‘member’ and ‘council’. In some cases, the

similarity is not clear, such as with ‘Saturday’.

Results can vary quite a bit from sentence to sentence, so an examination of actual selectors

is a bit limited. Therefore, statistics are provided on the occurrences of selectors acquired for all

sentences in the SemEval 2007 coarse-grained all-words task (Navigli et al., 2007). Listed as the
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He addressed the * at the rally
crowd:1

He addressed * at the rally
student:1, supporter:2

He addressed * at the
Council:1, Muslim:1, Saturday:1, Ugandan:1, analyst:2, attendee:20, audience:3, class:2, consumer:1,
council:1, delegate:64, diplomat:2, employee:2, engineer:1, fan:1, farmer:1, globalization:1,
graduate:5, guest:2, hundred:3, investor:1, issue:1, journalist:9, lawmaker:11, legislator:1,
member:6, midshipman:1, mourner:1, official:2, parliamentarian:1, participant:17, patient:1,
physician:18, reporter:8, sailor:1, secretary:1, soldier:3, staff:3, student:20, supporter:8, thousand:3,
today:2, trader:1, troops:2, visitor:1, worker:1

He * the strikers at the
treat:2

He * the strikers at
get:1, keep:1, price:1, treat:1

Figure 4.3: Lists of selectors for the target words ‘striker’ and ‘address’ returned by corresponding
web queries.

column headings of Table 4.1, selectors are acquired for five parts of speech (pro is actually a

combination of two parts of speech: pronoun and proper noun). The data in Table 4.1 is based

on results from acquiring selectors for our experimental corpus. The information presented is

described in the bottom portion of the table.

The selector acquisition data provides useful insights. In general, % w/ sels was low from being

unable to find text on the Web matching local context (even with truncated queries). The lowest

% w/ sels, found for pro, was expected considering only nouns which replace the original words

are used (pronouns acquired were thrown out since they are not compatible with the relatedness

measures). There was quite a variation in the sels/inst depending on the type, and all of these

numbers are well below the upper-bound of 200 selectors acquired before the algorithm stops

searching. It turned out that only 15.9% of the instances hit this mark. This means that most

instances stopped acquiring selectors because they hit the minimum query length (5 words). In
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Table 4.1: Various statistics on the acquired selectors for the SemEval07 Task 7 broken down by
part of speech.

noun verb adj. adverb pro
insts 1108 591 362 208 370
% w/ sels 54.5 65.8 61.0 57.2 27.0
sels/inst 36.5 51.2 29.5 17.7 15.9
unique/inst 11.6 13.1 8.4 4.1 5.6
insts/sent 4.5 2.4 1.5 0.8 1.5

insts instances which the algorithm attempts to acquire selectors
% w/ sels percentage of instances for which selectors were acquired
sels/inst average number of selectors for an instance (over all insts)
unique/inst average number of unique selectors for an instance (over all insts)
insts/sent average instances in a sentence

fact, the average web query to acquire at least one selector had a length of 6.7 words, and the

bulk of selectors came from shorter queries (with less context from shorter queries, the selectors

returned are not as strong). The combination of quantity and quality issues presented above is

referred to as the quality selector sparsity problem.

Although quality and quantity were not ideal, when one considers data from the sentence level,

things are more optimistic. The average sentence had 10.7 instances (of any part of speech listed),

so when certain selector types were missing, others were present. As explained previously, the tar-

get selector and context selector distinction is made after the acquisition of selectors. Thus, each

instance is used as both (exception: pro instances were never used as target selectors since they

were not disambiguated) . Employing this fact, more information can be discovered. For exam-

ple, the average noun was disambiguated with 36.5 target selectors, 122.9 verb context selectors

(51.2 sels/inst * 2.4 insts/sent), 44.3 adjective context selectors, 14.2 adverb context selectors, and

23.9 pro context selectors. Still, with the bulk of those selectors coming from short queries, the

reliability of the selectors was not strong.
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Note two differences between selectors as CSK and the database of knowledge presented in

section 3.1, CSKB. The first difference is that the relationship between a selector and its local

context is not explicitly recorded, while the search phrases for the CSKB were constructed to find

specific relationships. Second, Web selectors are dynamic. As language evolves and changes on

the Web selectors will change as well. This is a benefit, but also a drawback in that it takes time

to acquire selectors during runtime. With the CSKB, the acquisition is done ahead of time, and

applications simply lookup the knowledge within the database rather than perform a Web search.

4.3 Method to Utilize Web Selectors in Disambiguation

This section examines a semantic interpretation method using selectors acquired from the Web.

As explained first in section 2.2.3, selectors describe words which may take the place of another

given word within its local context. These words are used in an algorithm to perform noun, verb,

adjective, and adverb word sense disambiguation. The overall process of acquiring selectors and

applying them to WSD is shown in Figure 4.4. Results over SemEval2007 (Navigli et al., 2007) find

noun sense disambiguation accuracy above a most frequent sense baseline. Verb, adjective, and

adverb disambiguation accuracies were slightly below the most frequent sense baseline, while well

above a random baseline and the average system participating in SemEval. Further experiments

found that, for noun and verb sense disambiguation tasks, each type of context selector can assist

target selectors in disambiguation. Finally, these experiments also help to draw insights about the

future direction of similar research.
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Figure 4.4: The overall process undertaken to disambiguate a word using Web selectors.

Section 4.1 described the difference between target and context selectors. Similarity is used to

measure the relationship between a target word and its target selectors, while relatedness measures

the relationship between a target word and context selectors from other parts of the sentence. Thus,

the use of selectors in disambiguating words relies on a couple assumptions:

1. Concepts which appear in matching syntactic constructions are similar.

2. Concepts which appear in the context of a given target word are related to the correct sense

of the target word.

This idea of distinguishing similarity and relatedness has an extensive history Rada et al. (1989);

Resnik (1999); Patwardhan et al. (2003); Budanitsky & Hirst (2006), but most algorithms only find

a use for one or the other. Essential the implementation of this assumption for context selectors

follows this path: the target word is related to the context word, which is similar to its context

selector. Through transitive closure and since relatedness encompasses similarity, the target word

sense is then related to the context selector.
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The correct sense of a target word is chosen based on a combination of the strength given from

similarity and relatedness measures over WordNet and the probability of a selector occurring within

the local context. A similarity measure was used with target selectors while a relatedness measure

was used with context selectors. The process of combining values can be seen in Figure 4.5.

After acquiring selectors as described in section 2.2.3, the occurrences of selectors can be

converted to a probability of a selector, ws appearing in a web query, q, represented as function 4.1.

psel(ws, q) (4.1)

Function 4.2, based on Resnik’s word similarity (Resnik, 1999), is used to find the max similarity

or relatedness between a concept and a word (specifically between a sense of the target word, ct

and a selector, ws):

maxsr(ct, ws) = max
cs∈ws

[meas(ct, cs)] (4.2)

where cs is a sense of the selector and meas is a similarity or relatedness measure.

The senses of the target word are compared with each selector. For a given sense of the tar-

get word, ct, the similarity or relatedness from a selector and query is computed as defined in

function 4.3.

SR(ct, ws, q) =
psel(ws, q) ∗maxsr(ct, ws)

senses(ws)
(4.3)

where senses(ws) is the number of senses of the selector.

As the queries get shorter, the accuracy of the selectors becomes weaker. For example, one

of the sentences from the test corpus is truncated to the following web query “PHP and Python *
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Figure 4.5: General flow in applying selectors to word sense disambiguation. Note that the target
selectors may be any part of speech.

the”, which produces selector occurrences for ‘protect’: (‘be’: 6, ‘code’: 7, ‘help’: 1, ‘import’:

2, ‘store’: 2, ‘use’: 2). The most frequent of these is ‘code’, which as a verb is not similar to the

correct sense of ‘protect’. In turn, the SR value from selectors is scaled by a ratio of the web query

length, wql, to the original sentence length, sl. This scaling is applied when the SR values for one

target word sense are summed in function 4.4:

sum(ct, T ) =
∑

q∈qs(T )

∑
ws∈sels(q)

SR(ct, ws, q) ∗
wql

sl
(4.4)

where qs(T ) represents the set of queries for a selector type, T , and ws ranges over all selectors

found with q, denoted sels(q).

The general approach of disambiguation is to find the sense of a target word which is most

similar to all target selectors and most related to all context selectors. This follows the assumptions

initially given about selectors. Thus, similarity and relatedness values from different selector types,
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represented as Types, must be combined. By aggregating the normalized sums from all types of

selectors, one achieves a combined similarity/relatedness for a given target word senses as defined

in function 4.5:

CSR(ct) =
∑

T∈Types

scale(T ) ∗ sum(ct, T )

max
ci∈wt

[sum(ci, T )]
(4.5)

where wt represents the set of all senses belonging to the target word, Types spans over the set:

(target, noun context, verb context, adjective context, adverb context, pro context), and scale(T ) is

a coefficient used to weight each type of selector. This term is important in this work, because an

experiment explores the impact of various selector types.

The top sense is then chosen by looking at the CSR of all senses. For some situations, specifi-

cally when other senses have a score within 5% of the top CSR, the difference between concepts

is very small. In these cases, the concept with the lowest sense number in WordNet is chosen from

among the top scoring senses.

4.4 Evaluation

Four experiments were performed in order to validate the Web selectors method of WSD. The first

explores various similarity and relatedness measures for noun WSD. The second experiment is

focused on finding results for disambiguating all parts of speech. The third experiment tests the

validity of the Web selectors algorithm on a domain WSD task. Finally, experiments are done in

order to study the impact of each type of selector in the accuracy of the disambiguation results.
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Three of the four experiments (1, 2, and 4) utilized the corpus from the SemEval 2007 Task 7:

coarse-grained English all-words. The sense inventory was created by mapping senses in WordNet

2.1 to the Oxford Dictionary of English (Navigli et al., 2007). The corpus was composed of five

documents with differing domains resulting in 2269 annotated word instances. The Web selector

algorithm runs on fine-grained WordNet senses, but evaluation is done by checking if the predicted

fine-grained sense maps to the correct coarse-grained sense. Many issues associated with fine-

grained annotation, such as those brought up in (Ide & Wilks, 2006) are avoided through the use

of this corpus. The third experiment utilized the SemEval 2010 Task 17: All-Words Word Sense

Disambiguation on a Specific Domain, which used sense inventories from OntoNotes (Agirre et al.,

2010). In this case, Web selectors was a participating system of SemEval 2010 (Schwartz &

Gomez, 2010). Results for all experiments are presented as precision (P), recall (R), and F1 value

(defined based on precision and recall as F1 = 2 ∗ P∗R
P+R

).

The similarity and relatedness measures spanned the following set, defined in Section 2.3:

SWuPalmer (Wu & Palmer, 1994), SLeacockChodorow (Leacock et al., 1998), RHirstOnge (Hirst &

St Onge, 1998), SResnik (Resnik, 1999), SLin (Lin, 1997), SJiangConrath (Jiang & Conrath, 1997),

RBanerjeePederson (Banerjee & Pedersen, 2002), and RPatwardhanPederson (Patwardhan & Pedersen,

2006). Since the relatedness measures used for context selectors require comparison across mul-

tiple parts of speech, only RBanerjeePederson and RPatwardhanPederson were used for relatedness as

these were the only two measures which supported this. All of the measures were used at some

point for target selectors. Additionally, SSchwartzGomez (Schwartz & Gomez, 2008) is used which is

presented in Chapter 5 as a contribution of this dissertation. The WordNet::Similarity package pro-
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vides a flexible implementation of the other measures (Pedersen et al., 2004). WordNet::Similarity

was configured for for WordNet version 2.1, the same version used to annotate the chosen experi-

mental corpus.

4.4.1 Experiment 1: Noun Sense Disambiguation

Out of 2269 noun, verb, adjective, or adverb instances in the SemEval 2007 Task 7, this experiment

was concerned with disambiguating the 1108 noun instances from the 245 sentences in the corpus

. These noun instances represent 593 different words. Information about the acquired selectors

was given in section 4.2. For this section, the bottom of Table 4.2 shows the random baseline as

well as a baseline using the most frequent sense (MFS) heuristic. As previously mentioned, many

supervised systems only perform marginally better than the MFS. For the SemEval task, only 6 of

15 participating systems performed better than this baseline on the nouns (Navigli et al., 2007), all

of which used MFS as a back off strategy and an external sense tagged data set.

The tests in this section use a scale(T ) value of 1 for target selectors, a value of 0.5 for noun

and verb context selectors, and a value of 0.1 for adjective and pro context selectors (see function

4.5). This weights the scores that come from target selectors equal to that of noun and verb context

selectors, while the adjective and pro selectors only play a small part. These choices were based

on early tests with a small portion of the corpus, and intended to get the best results for noun WSD.

Additionally, adverb context selectors were not used. Note that experiment 4 presents an extensive
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Table 4.2: Performance of using Web Selectors for noun sense disambiguation with various simi-
larity and relatedness measures.

RBanerjeePederson RPatwardhanPederson

SSchwartzGomez 80.2 78.6
SWuPalmer 78.7 78.6
SResnik 78.6 79.3
SLin 78.5 79.2
SJiangConrath 78.0 78.1
RBanerjeePederson 78.4 80.0
RPatwardhanPederson 78.6 78.9
BLMFS 77.4 (baseline)
BLrand 59.1 (baseline)

Results are F1 values (precision = recall). Similarity measures for target selectors are row headings
while relatedness measures for context selectors are column headings. Baselines: BLMFS = most
frequent sense, BLrand = random choice of sense.

set of tests with various scale(T ) values for all types of context selectors (including adverb) over

the disambiguation of all parts of speech.

Table 4.2 shows the results when using various similarity measures for the target selectors. For

the context selectors, gloss-based measures were selected due to the need for handling multiple

parts of speech. The web selectors method performs better than the MFS baseline. The path-

based measure, SSchwartzGomez, is defined in Chapter 5. This similarity measure along with the

gloss based RBanerjeePederson relatedness measure gave the best results. Note that the path-based

and information content measures, in general, performed equally. The table also shows the gloss-

based RBanerjeePederson and RPatwardhanPederson relatedness measures used in place of similarity

measures. The idea was that one measure could be used for both target selectors and context

selectors. The bottom of Table 4.2 shows the measures performed nearly equally. The experimental

runtime of the path-based and information content measures was roughly one-fourth that of the

gloss-based measures, so they are usually preferred.
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Table 4.3: Results for the Web Selectors method with restrictions on a minimum number of target
selectors and context selectors.

tMin cMin A P R F1
0 0 1108 80.2 80.2 80.2
4 0 658 84.4 50.1 62.9

16 0 561 85.2 43.1 57.2
0 10 982 81.1 71.9 76.2
0 40 908 81.3 66.6 73.3
4 10 603 85.4 46.4 60.1
8 20 554 85.3 42.6 56.9

12 30 516 86.4 40.2 54.9
16 40 497 86.5 38.8 53.5

A: Number attempted, P: Precision, R: Recall, F1 values; tMin: minimum number of target selec-
tors, cMin: context selectors.

Table 4.3 presents results from tests where annotations were only to instances with over a

minimum number of target selectors (tMin) and context selectors (cMin). Steps of four were used

for tMin and steps of ten were used for cMin, reflecting a ratio of roughly 2 target selectors for

every 5 context selectors. It was more common for an instance to not have any target selectors than

to not have context selectors, so results are presented with only a tMin or cMin as well. The main

goal of these tests was simply to determine if the algorithm performed better on instances from

which more selectors were acquired. This was the case as the precision improved at the expense

of recall from avoiding the noun instances that did not have many selectors.

Table 4.4 shows the results when modifying the method in a few ways. All these results use

the path-based SSchwartzGomez similarity measure and the gloss-basedRBanerjeePederson relatedness

measure. The results of Table 4.2 included the first sense heuristic used as a back-off strategy for

close calls, when multiple senses have a score within 0.05 of each other. Therefore, an results

without this heuristic are presented as noMFS, and indicate the method still performs strongly.
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Table 4.4: Results of tests noun WSD tests with modifications to the algorithm.

WS noMFS 1SPD
80.2 79.6 79.8

All tests used SSchwartzGomez and RBanerjeePederson. WS: Web Selectors baseline, noMFS: WS
with no use of most frequent sense, 1SPD: WS with use of one sense per discourse.

Table 4.5: Comparison of noun F1 values with various participants on the SemEval2007 coarse-
grained all-words task.

WS MED UPV-WSD NUS-PT SSI
80.2 71.1 79.33 82.31 84.12

WS: Web Selectors, MED: median of all participating systems, UPV-WSD: (Buscaldi & Rosso,
2007), NUS-PT: (Chan et al., 2007), SSI: (Navigli & Velardi, 2005)

Another test implemented one sense per discourse (Gale et al., 1992), reported as 1SPD. The

experimental corpus had five documents, and for each document the most commonly predicted

sense was calculated and used for all occurrences of the word within the document. This strategy

did not seem to improve the results.

A results comparison of the Web selectors method (WS) to other systems participating in the

SemEval task is given in in Table 4.5. These results include the median of all participating systems

(MED), the top system not using training data (Buscaldi & Rosso, 2007, UPV-WSD), and the

top system using training data (Chan et al., 2007, NUS-PT). The best performance reported on

the nouns for the SemEval coarse-grained task, was actually from a system that was used to help

annotate the data in the first place by the authors of the task (Navigli & Velardi, 2005, SSI). All

systems performing better than the BLMFS used the MFS heuristic as a backoff strategy when

unable to output a sense (Navigli et al., 2007). Also, the systems performing better than WS

(including SSI) used more sources of sense annotated data.
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Table 4.6: Results as F1 Values over all parts of speech for WSD.

BLRand MED WS BLMFS

53.43 70.21 76.02 78.89

WS: the Web Selectors system , BLRand: random baseline, BLMFS: MFS baseline, MED: median
system performance at SemEval07 task 7 (Navigli et al., 2007)

4.4.2 Experiment 2: Disambiguation of all Parts of Speech

This experiment applies the Web selectors algorithm in a straight-forward manner over all parts

of speech in order to validate the algorithm’s scalability to large sets of words and all parts of

speech. Tests were done with RBanerjeePederson as the relatedness measure for context selectors.

An important characteristic of this measure is that it can handle multiple parts of speech. For target

selectors we sought to use measures over the WordNet ontology in order to most closely measure

similarity. An information-content (IC) measure, SResnik, was used for target selectors of nouns

and verbs. However, because IC and path-based measures do not work with all parts of speech, we

used the adapted Lesk algorithm as an approximation of similarity for adjectives and adverbs. Note

that finding the best relatedness or similarity measure was outside the scope of this experiment.

The results are compared with baselines and other disambiguation algorithms. Unless stated

otherwise, all results are presented as F1 values. For SemEval2007, all systems performed better

than the random baseline of 53.43%, but only 4 of 13 systems achieved an F1 score higher than

the MFS baseline of 78.89% over all parts of speech (Navigli et al., 2007).

Table 4.6 lists the results of applying the Web selector algorithm described in this work in a

straight-forward manner, such that all scale(T ) are set to 1. The Web selectors system performs

better than the median system in the SemEval07 task, but it is a little below the MFS baseline.
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Table 4.7: Results as F1 Values of top performing systems for the SemEval07 Task07.

UPV-WSD NUS-PT SSI
78.63 82.50 83.21

UPV: (Buscaldi & Rosso, 2007), NUS-PT: (Chan et al., 2007), SSI: a task organizer’s system
(Navigli & Velardi, 2005)

Table 4.8: Results as F1 values of the Web Selectors system by parts of speech.

N V A R
MED 70.76 62.10 71.55 74.04
WS 78.52 68.36 81.21 75.48
BLMFS 77.44 75.30 84.25 87.50
insts 1108 591 362 208

N: noun, V: verb, A: adjective, R: adverb). insts: disambiguation instances of each part of speech.
For other keys see Table 4.6.

A comparison with top systems is seen in Table 4.7. Overall results were just below that of the

top system not utilizing training data (Buscaldi & Rosso, 2007, UPV-WSD), and a little over 6

percentage points below the top supervised system (Chan et al., 2007, NUS-PT).

The results are broken down by part of speech in Table 4.8. Adjective disambiguation was

the furthest above the median point of reference, and noun disambiguation results were above the

MFS baseline. On the other hand, the adverb disambiguation results appear weakest compared to

the baselines. Note that the previous experiment reported a noun sense disambiguation F1 value

of 80.20% on the same corpus (Schwartz & Gomez, 2008). Current results differ because the

previous experiment used different scale(T ) values as well as a custom noun similarity measure.
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4.4.3 Experiment 3: Domain Word Sense Disambiguation

This section studies the application of the Web Selectors word sense disambiguation system on a

specific domain. The system was primarily applied without any domain tuning, but the incorpora-

tion of domain predominant sense information was explored. In the previous experiments, the Web

Selectors system was applied to text of a general domain. However, the system was not directly

tuned for the general domain. The system may perform just as strong for domain WSD since the

selectors, which are the core of disambiguation, can come from any domain present on the Web.

Therefore, this experiment explores the application of the Web Selectors WSD algorithm to an

all-words task on a specific domain, the SemEval 2010: Task 17 (Agirre et al., 2010).

This study utilized the implementation of the Web Selectors system from the previous experi-

ment that was also presented in (Schwartz & Gomez, 2009b). The incorporation of a part of speech

tagger was a necessary addition to the existing system. Previous evaluations of Web Selectors re-

lied on the testing corpus to provide part of speech (POS) tags for content words. In the case of

SemEval-2010 Task 17, words were only marked as targets, but their POS was not included. The

system used the POS tags from the Stanford Parser (Klein & Manning, 2003). The Stanford Parser

was chosen since the dependency relationship output was also useful for our domain adaptation. A

modification was made to the POS tags given the knowledge that the testing corpus only included

nouns and verbs as targets. Any target that was not initially tagged as a noun or verb was reas-

signed as a noun, if the word existed as a noun in WordNet (Miller et al., 1993), or as a verb if

not.
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Overall, the Web Selectors system is not explicitly tuned to the general domain. Selectors

themselves can be from any domain; They are completely dependent upon the local context which

is found anywhere on the Web (assumed to contain the same domain being tested on). However,

sense tagged data may be used indirectly within the system. First, the similarity and relatedness

measures used in the system may rely on SemCor data (Miller et al., 1994). Also, the system

breaks ties by choosing the most frequent sense according to WordNet frequency data (based on

SemCor). These two aspects of the system can be seen as tuned to the general domain, and thus,

they are likely aspects of the system for adaptation to a specific domain.

This experiment focused on domain-adapting the tie breaker aspect of the Web Selectors sys-

tem. The system defines a tie occurring when multiple sense choices are scored within 5% of the

top sense choice. In order to break the tie, the system normally chooses the most frequent sense

among the tied senses. However, it would be ideal to break the tie by choosing the most prevalent

sense over the testing domain. Because sense tagged domain data is not typically available, Koel-

ing et al. (2005) presented the idea of estimating the most frequent sense of a domain by calculating

sense prevalence scores from unannotated domain text.

Several steps are taken to calculate the prevalence scores. First, a dependency database is

created, listing the frequencies that each dependency relationship appears. In this case, the Stanford

Parser (Klein & Manning, 2003) was used on the background data provided by the task organizers.

From the dependency database, a thesaurus is created based on the method of (Lin, 1998a). In

this approach, the following relationships from the dependency database were considered (typed

dependency names listed in parenthesis):
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subject (agent, csubj, subjpass, nsubj, nsubjpass, xsubj)

direct object (dobj)

indirect object (iobj)

adjective modifier (amod)

noun modifier (nn)

prepositional modifier (any preposition, excluding prep of and prep for)

Finally, a prevalence score is calculated for each sense of a noun or verb by finding the similarity

between it and the top 50 most similar words according to the automatically created thesaurus.

Based on Koeling et al., the similarity measure of SJiangConrath was used.

The main results of the experiment are given in Table 4.9. The first set of results (WS) was

a standard run of the system without any domain adaptation, while the second set (WSdom) was

from a run including the domain prevalence scores in order to break ties. The results show that the

domain adaptation technique did not lead to improved results. Overall, WS results came in ranked

thirteenth among twenty-nine participating system results.

This study found that using the prevalence scores alone to pick a sense (i.e. the ‘predominant

sense’) resulted in an F score of 0.514 (PS in Table 4.9). Koeling et al. (2005) found the predom-

inant sense to perform significantly better than the first sense baseline (1sense: equivalent to most

frequent sense for the English WordNet) on specific domains (32% error reduction on a finance

domain, and 62% error reduction on a sports domain). Interestingly, there was no significant error

reduction over the 1sense for this task, implying either that the domain was more difficult to adapt

to or that our implementation of the predominant sense algorithm was not as strong as that used
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Table 4.9: (P)recision, (R)ecall, and (F)-score of various runs of the system on the Task 17 data.

P R F Pn Pv

rand 0.23 0.23 0.23
1sense 0.505 0.505 0.505
WS 0.447 0.441 0.444 .446 .449
WSdom 0.440 0.434 0.437 .441 .438
PS 0.514 0.514 0.514 .53 .44

Pn and Pv correspond to precision results broken down by nouns and verbs.

by Koeling et al.. In any case, this lack of significant error reduction over the 1sense may explain

why our WSdom results were not stronger than the WS results. In WSdom, prevalence scores were

used instead of 1sense to break ties.

A few figures were computed to gain more insights on the system’s handling of domain data.

Noun precision was 0.446 while verb precision was 0.449. It was unexpected for verb disambigua-

tion results to be as strong as nouns because the previous experiment using Web Selectors found

noun sense disambiguation clearly stronger than verb sense disambiguation on a coarse-grained

corpus. Ideally, WS results for noun disambiguation would have been stronger than the the 1sense

and PS results. In order to determine the effect of the POS tagger (parser in this case) on the error,

we determined 1.6% of the error was due to the wrong POS tag at (0.9% of all instances). Lastly,

Table 4.10 shows the precision scores for each of the three documents from which the English

testing corpus was created. Without understanding the differences between the testing documents

it is difficult to explain why the precision varies, but the figures may be useful for comparisons by

others.

Several aspects of the test data were unexpected for the system. Some proper nouns were

considered as target words. Our system was not originally intended to annotate proper nouns, but
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Table 4.10: Precision scores based on the three documents of the English testing corpora (‘en1’,
‘en2’, and ‘en3’).

Pen1 Pen2 Pen3

WS 0.377 0.420 0.558
WSdom 0.384 0.415 0.531

it was adjusted to treat proper nouns simply as nouns. To be sure this treatment was appropriate,

a test determined resulted in a precision of 0.437 and recall of 0.392 when proper nouns were

excluded. One would expect the precision to increase at the expense of recall if the proper nouns

were more problematic for the system than other instances. Unfortunately, another unexpected

aspect of the data was not handled correctly by the system. The system only considered senses

from one form of the target word according to WordNet, while the key included multiple forms

of a word. For example, the key indicated low tide-1 was the answer to an instance where our

system had only considered senses of ‘tide’. In a similar example when the system ran across the

proper noun ’Banks’, it only considered senses of ’Banks’ (which has just one sense) instead of

’bank’ which has 10 senses. It was determined that for 10.2% of the instances that were incorrect

in the WS results, the correct sense was not even considered as a possible prediction due to using

an inventory from only one form of the word. Since this issue mostly applied to nouns, it may

explain the observation that the noun disambiguation performance was not better than the verb

disambiguation performance as was expected.
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4.4.4 Experiment 4: Impact Analysis

This section explores the influence of each context selector on the disambiguation algorithm. This

is done by changing the value of scale(T ) in CSR (function 4.5). Examining Table 4.11 reveals

precision results when disambiguating instances with target selectors, based only on the target

word’s similarity with target selectors. This serves as a bearing for interpreting results of context

selector variation.

The tests are concerned with determining how well each type of context selector complements

the target selectors. Accordingly, scale(target) was set to 1, and scale(T ) for all other context

types were set to 0. In order to limit external influences, words with only one sense in WordNet or

instances where the CSR was zero (indicating no selectors) were not disambiguated. Additionally,

examples were only tested if they had at least one target selector and at least one selector of the

specific type being examined. This restriction ensures avoidance of some of the quality selector

sparsity problem described in section 4.2. Nevertheless, results are expected to be a little lower

than experiments 1 and 2 as other types of selectors are ignored and monosemous words according

Table 4.11: Precision when disambiguating with target selectors only.

wsd prec. % insts.
N 64.08 348
V 52.86 227
A 77.36 106
R 58.39 56

All instances contain target selectors and multiple senses in WordNet. insts.: number of instances
disambiguated.
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Table 4.12: Instance occurrences used for disambiguation when experimenting with all types of
context selectors.

wsd noun verb adj. adverb pro
N 272 186 120 84 108
V 211 167 110 80 103
A 97 78 50 40 34
R 47 44 30 17 26

The types of context selectors are listed as columns. The rows represent the four parts of speech
disambiguated.

to WordNet are not included. Table 4.12 lists the instance occurrences for each of the four parts of

speech that were disambiguated, based on these restrictions.

Figures 4.6 and 4.7 show graphs of the precision score while increasing the influence of each

context selector type. Each graph corresponds to the disambiguation of a different part of speech,

and each line in a graph represents one of the five types of context selectors:

1. noun context

2. verb context

3. adjective context

4. adverb context

5. pro context

The lines are formed with a Bezier curve algorithm2 on the precision data. The horizontal line

represents the precision of only using the target selectors to disambiguate instances with target

selectors (see Table 4.11). Precision either decreases or remains the same if any graph line was

extended past the right-most boundary.

2http://www.gnuplot.info/docs/node124.html
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Figure 4.6: The noun (left) and verb (right) WSD precision when varying the scale(T ) value for
each type of context selector. scale(target) is always 1.

When examining the figures, one should note when the precision increases as the scale value

increases. This indicates that increases in influence of the particular type of context selector im-

proved the results. If the precision decreases as the scale becomes greater, this indicates that the

context selector’s influence dominated the target selector’s. The x-axis increases exponentially,

since the graphs present a ratio of scale(T ) to scale(target). At scale(T ) = 1 the context selector

has the same influence as the target selector.

4.5 Discussion

Experiment 1 results showed strength in the use of selectors from the Web for noun WSD. The

system was out-performed only by systems using training data or substantially more annotated
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Figure 4.7: The adjective (left) and adverb (right) WSD precision when varying the scale(T )
value for each type of context selector. scale(target) is always 1.

data. Additionally, better precision was achieved when requiring a minimum number of selectors,

giving promise to improved results with more work in acquiring selectors. Finally, different types

of similarity and relatedness measures are appropriate for different roles in the disambiguation al-

gorithm. A path-based measure was best with target selectors while a slower gloss-based method

was appropriate for context selectors in order to handle multiple POS. For many tasks, information

content based measures perform better than path-based measures (Budanitsky & Hirst, 2006; Pat-

wardhan et al., 2003). However, this experiment found a path-based measure to be just as strong if

not stronger for the selectors approach.

While the first experiment helped to validate the Web selectors approach as a top performing

WSD algorithm, the experiment was limited to noun WSD and adverb context selectors were not

used. Experiment 2 found the use of Web selectors to be a worthwhile approach to the disambigua-
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tion of other parts of speech in addition to nouns. However, results for verb, adjective, and adverb

disambiguation were slightly below the most frequent sense baseline, a point which noun sense

disambiguation overcomes. One reason suspected for this is that work in similarity and related-

ness has a longer history over nouns than over other parts of speech Budanitsky & Hirst (2006).

Additionally, the hypernym (is-a) relationship of the noun ontology in WordNet captures the no-

tion of similarity more clearly than the primary relationships of other parts of speech in WordNet.

Accordingly, future work should look into specific measures of similarity for each part of speech.

In all the tests of this experiment, all scale(T ) values were the same and consistent, weighting all

selector types equally.

Results from experiment 3 indicated that the system performs relatively the same with domain

predominant sense information as without, scoring well above a random baseline, but still 5 per-

centage points below results of using the first sense. A primary goal was to apply the pre-existing

system with minimal changes. To do this an automatic part of speech tagger was incorporated,

which was found to only have a small impact on the error (incorrectly tagged 0.9% of all tar-

get instances). Overall, the results showed the system to perform below the 1sense baseline for

both nouns and verbs. This is a lower relative performance than past studies which found the

disambiguation performance above the 1sense for nouns. One reason for the lower noun perfor-

mance is that, for 10.2 % of our errors, the system did not consider the correct sense choice as

a possibility. Future versions of the system will need to expand the sense inventory to include

other forms of a word (example: ‘low tide’ when disambiguating ‘tide’). Toward domain adapta-

tion, an experiment was run in which one aspect of our system was tuned to the domain by using

119



domain prevalence scores (or ‘predominant senses’). No improvement was found from using this

adaptation technique, but it was also discovered that results entirely based on predictions of the do-

main predominant senses were only minimally superior to 1sense (F-score of 0.514 versus 0.505

for 1sense). There is certainly room for future studies to examine better implementations of the

predominant sense algorithm, as well as explore other complimentary techniques for domain adap-

tation: customizing similarity measures for the domain, or restricting areas of WordNet as sense

choices based on the domain.

Experiment 4 used various scale(T ) values and found that all types of context selectors im-

prove the results for noun and verb sense disambiguation. Thus, inclusion of all context selectors

was worthwhile for nouns and verbs. It is difficult to draw a similar conclusion from the adverb

and adjective disambiguation graphs (Figure 4.7), although the noun context selectors are helpful

for both and the pro context selectors are helpful for the adjective task. Most context selector types

achieve highest precision above a scale(T ) value of 1, indicating that the context selector should

have more influence than the target selectors. This is probably due to the existence of more selec-

tors from context than those from the target word. The results of adverb disambiguation should be

taken lightly, because there were not many disambiguation instances that fit the restrictions (see

Table 4.12).

Overall, the evaluation found that Web selectors are a valid approach to WSD. The selectors

were used in a method utilizing similarity measures over WordNet, and achieved results compara-

ble with top minimally-supervised approaches to the problem. Finally, these experiments also help

to draw insights about the future direction of research.
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5 CONCEPT SIMILARITY IN THE CONTEXT OF

KNOWLEDGE ACQUISITION

As exemplified by the Web Selector algorithm, similarity measures are useful for analyzing and

applying acquired knowledge. In particular, measures that function on concepts rather than words

are beneficial under the assumption that CSK is about concepts rather than simply words. This

Chapter describes three related but distinct contributions of this dissertation. First, a novel se-

mantic similarity measure is presented that was created during development of the Web selectors

algorithm. Next, two sections describe evaluations of WordNet-based semantic similarity and re-

latedness measures in tasks focused on concept similarity. Assuming similarity as distinct from

relatedness, the goal is to fill a gap within the current body of work in the evaluation of similarity

and relatedness measures. Past studies have either focused entirely on relatedness or only evaluated

judgments over words rather than concepts. In the first evaluation, concept similarity measures are

evaluated over human judgments by using existing sets of word similarity pairs that were annotated

with word senses. Lastly, an application-oriented study is presented by integrating similarity and

relatedness measures into an algorithm which relies on concept similarity.

Two distinctions are important within this chapter: that between words and concepts, and that

between between relatedness and similarity. Although many measures are designed for com-

parison of concepts (word senses), past comparisons of similarity and relatedness measures with
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human judgments have looked into similarity between words themselves, leaving some ambiguity.

For example, while one would likely agree that ‘bat’ as in “a club used for hitting a ball” is sim-

ilar to ‘stick’, one would be hard-pressed to agree that ‘bat’ as in “nocturnal mouselike mammal

with forelimbs modified to form membranous wings” is also similar to ‘stick’ (definitions from

WordNet Miller et al. (1993)). On the other hand, while application-oriented studies have applied

measures to concepts the field has yet to see an evaluation utilizing an application calling for sim-

ilarity judgments. This paper views similarity as a specific type of relatedness characterized by

the relationships: synonymy, antonymy, and hyponymy. As an example, one would say a ‘wooden

stick’ is similar and related to a ‘baseball bat’, while a ‘baseball player’ is only related to a ‘base-

ball bat’. Although this similarity distinction has been noted previously Resnik (1999); Patwardhan

et al. (2003); Agirre & Soroa (2009), this section presents the first evaluation of measures for tasks

of concept similarity.

5.1 Similarity based on Normalized Depth

As noted from Section 2.3, path based similarity measures have the benefits of not requiring any

data beyond WordNet relationships, as well as a fairly quick run-time. As part of the work de-

veloping the Web Selectors algorithm (Schwartz & Gomez, 2008), a novel path-based similarity

measure was created.

One may recall a problem with early path-based measures is the assumption that the edges

between concepts are all uniform (Resnik, 1999). Although other path-based measures, such as
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Leacock et al. (1998) took taxonomic depth into account, previous measures did not consider the

various sub-graphs of the ontology suffering from the uniformity problem. For example, both

fractal and hydrangea would be scaled by the same depth. The normalized depth measure works

by scaling the depth of a concept by the depth of the specific portion of the ontology it belonged. It

requires computing average leaf depth (ald), a value indicating the average depth of all descendants

(hyponyms) that do not have hyponyms themselves:

ald(c) =

∑
L∈lnodes(c) depth(l)

|lnodes(c)|
(5.1)

where lnodes returns a list of leaf nodes attached to c, those nodes without hyponyms that are

themselves a type of (a hyponym of) c. An alternative approach may use depths of all descendants,

but a true normalization is based on a maximum so ald is an average of maximum depths rather

than an average of all depths. From ald a normalized depth (nd) of c follows:

nd(c) =
depth(c)

ald(c)
(5.2)

Finally, the metric can consider the lcs, the deepest (or lowest) concept which is a hypernym

(directly or by transitive closure) of both concepts. Following Wu & Palmer (1994), function (5.3)

adds consideration for the depth of the lcs compared with depth of the specific concepts. The final

metric is below.

SSchwartzGomez(c1, c2) =
2 ∗ nd(lcs(c1, c2))
nd(c1) + nd(c2)

(5.3)
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Table 5.1: Categorization of similarity and relatedness measures.

Similarity - Path Based
SWuPalmer Wu & Palmer (1994)

SLeacockChodorow Leacock et al. (1998)
SSchwartzGomez Schwartz & Gomez (2008)

Similarity - Information Content
SResnik Resnik (1999)

SJiangConrath Jiang & Conrath (1997)
SLin Lin (1998b)

Relatedness - Path Based
RHirstStOnge Hirst & St Onge (1998)
RY angPowers Yang & Powers (2006)

Relatedness - Gloss Based
RBanerjeePedersen Banerjee & Pedersen (2002)

RPartwardhanPedersen Patwardhan & Pedersen (2006)

A concept compared to itself will have a score of 1, while the most dissimilar concepts will have a

score of 0.

5.2 Evaluation based on Human Judgments

Semantic similarity and relatedness has a substantial history in computational linguistics signi-

fying its importance to the field. However, an extensive evaluation of similarity and relatedness

measures for the task of concept similarity has yet to be carried out. Such an evaluation could

benefit applications of measures such as word sense disambiguation or query expansion for infor-

mation retrieval. This section and the next seek to address this gap in the current body of work

by providing results on the performance of various WordNet-based measures for tasks utilizing

similarity judgments among concepts (word senses) (Schwartz & Gomez, 2011).
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Figure 5.1: Depiction of the experimental setup, showing the similarity and relatedness measures
as distinct from the task, which is solely focused on similarity.

Table 5.1 lists all of the metrics used in the evaluation. All implementations were either down-

loaded from the respective authors or provided by the WordNet::Similarity package (Pedersen

et al., 2004). Note that the notion of similarity in this work is applied over two single concepts;

Other works have applied similarity over different terms, such as comparing two pairs of words

when measuring analogy (Turney, 2006). Two types of experiments were implemented over se-

mantic similarity measures. The first is based on adding sense annotations to existing gold-standard

judgments of similarity. The second evaluation is based on an application of the measures to WSD.

Note that although the task is focused on similarity, measures are also included that are more cor-

rectly categorized as measuring relatedness. Because relatedness subsumes similarity, these mea-

sures should not be excluded from the study. Figure 5.1 shows this distinction between the task

focus and the type of measure.

Three datasets of human judgments of similarity were used; namely RG (Rubenstein & Good-

enough, 1965), MC (Miller & Charles, 1991), and WS-Sim (Agirre et al., 2009). RG and MC were

created specifically for similarity (MC’s 28 pairs, listed in Resnik (1999), are a subset of RG with
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Table 5.2: The inter-annotator agreement and complete pair agreement.

ITA CPA pairs drops
MC 0.89 0.79 28 0
RG 0.93 0.86 65 0

WS-Sim 0.86 0.73 97 3
ITA: interannotator agreement, CPA: complete pair agreement, pairs: number of pairs, drops:
number of instances not annotated due to lack of WordNet sense.

independent judgments). WS-Sim is a subset of the WordSim dataset (Finkelstein et al., 2001),

which had subjects rate pairs on relatedness in general. Agirre et al., (2009) created the similarity

subset by including pairs of words with relationships: identical, synonymy, antonymy, hyponymy,

and unrelated.

As part of this dissertation, two annotators marked the RG, MC, and WS-Sim datasets with the

most similar pair of senses among each pair of words. The original scores of similarity between

words were kept for the sense/concept annotated pairs. This approach is motivated by past works

which have found the greatest correlation with human judgments by using the maximum similarity

over all pairs of senses (Resnik, 1999; Yang & Powers, 2006). WordNet 3.0 served as the sense

inventory (Miller et al., 1993). Annotators were able to indicate if a most similar sense was not

present in WordNet, in which case the instance was dropped. For example ‘jaguar’ and ‘car’ were

dropped because the automobile sense of ‘jaguar’ is not present in WordNet. This WS-Sim dataset

does not include the pairs which Agirre et al. marked as unrelated, because there was no basis for

annotating senses of words considered unrelated.

Statistics of the datasets can be seen in Table 5.2. Inter-annotator agreement (ITA) was cal-

culated as the mean percentage of senses agreed upon within a pair (1, 0.5, or 0 for completely

agreed, agreed on one word, or completely disagreed respectively). The complete agreement fig-
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ure (CPA) is the percentage of pairs with which both words were annotated identically. To finalize

each dataset the two annotators were asked to come to an agreement on all instances which were

not in complete agreements. There are two types of tests run over the final datasets 1:

wrd correlation of similarity values based on the word

pairs (measures choose the max similarity over all

pairs of senses).

cpt correlation of similarity values based on sense

annotated (concept) pairs.

Table 5.3 presents the results based on human judgments over all three datasets. Correlations

are reported as Spearman rank correlations, avoiding issues arising from non-linear measure out-

puts as Agirre et al (2009) noted. Normal approximations of confidence intervals at 95% are also

presented.

There was no single measure that performed best across all the datasets. When examining

the results of the MC and RG datasets, we see that RPartwardhanPedersen had consistently high

correlations. Keep in mind that the MC dataset contains a subset of the pairs in the RG dataset,

with a different set of human judgments. For the WS-Sim dataset, which was a distinct set of words

and concepts, it was RY angPowers with the highest correlations. In each case, a best performing

metric was categorized under relatedness, but there is never a significant difference over the top

performing metric categorized under similarity.

1Datasets available for others to use in research.
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Table 5.3: Correlation between similarity measure judgments and human judgments for each
dataset.

MC RG WS-Sim
wrd cpt wrd cpt wrd cpt
0.76 0.76 0.76 0.79 0.62 0.57

SWuPalmer [.54, .88] [.54, .88] [.66, .86] [.67, .87] [.48, .73] [.42, .69]
0.75 0.75 0.78 0.80 0.62 0.58

SLeacockChodorow [.52, .88] [.52, .88] [.67, .86] [.69, .87] [.48, .73] [.44, .70]
0.77 0.81 0.82 0.77 0.61 0.54

SSchwartzGomez [.60, .90] [.62, .91] [.71, .88] [.65, .85] [.47, .72] [.38, .66]
0.76 0.76 0.74 0.76 0.62 0.59

SResnik [.55, .88] [.53, .88] [.61, .83] [.63, .84] [.47, .73] [.45, .71]
0.82 0.85 0.78 0.80 0.60 0.51

SJiangConrath [.65, .92] [.70, .93] [.66, .86] [.69, .87] [.45, .71] [.34, .64]
0.77 0.80 0.77 0.78 0.64 0.58

SLin [.56, .89] [.61, .91] [.64, .85] [.66, .86] [.50, .74] [.43, .70]
0.77 0.72 0.78 0.76 0.49 0.53

RHirstStOnge [.56, .89] [.47, .86] [.66, .86] [.63, .85] [.32, .63] [.37, .66]
0.88 0.76 0.82 0.78 0.64 0.63

RY angPowers [.75, .94] [.55, .88] [.72, .89] [.66, .86] [.51, .75] [.49, .74]
0.81 0.76 0.72 0.69 0.49 0.46

RBanerjeePedersen [.62, .91] [.54, .88] [.58, .82] [.54, .80] [.32, .63] [.29, .60]
0.92 0.88 0.81 0.81 0.57 0.55

RPartwardhanPedersen [.83, .96] [.75, .94] [.71, .88] [.71, .88] [.41, .69] [.39, .67]
Confidence intervals are normal approximations at 95%.

When examining the differences between the ‘wrd’ and ‘cpt’ tests, on average, similarity mea-

sures had higher correlations on the ‘cpt’ tests within the MC and RG datasets, while the relat-

edness measures had higher correlations on the ‘wrd’ tests. This suggests the similarity measures

benefit from dealing specifically with concepts rather than ambiguous words, though the differ-

ences are small enough that a concrete conclusion can not be drawn. On the other hand, for the

WS-Sim dataset, the similarity measures performed better at the ‘wrd’ test relative to the ‘cpt’ test.

This difference between the WS-Sim dataset and the MC/RG dataset may have been due to WS-Sim

containing more pairs of dissimilar words.
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5.3 Evaluation based on Application in Web Selectors Algorithm

The evaluations mentioned for previous application oriented studies used metrics for comparing

a target word (or senses of a target word) to other words in context. The assumption is that con-

cepts in context are related, but as was previously mentioned relatedness does not imply similarity.

Thus, the measures which are more appropriately categorized as measuring similarity (those which

do not consider relationships beyond hyponymy, antonymy, and synonymy) may be at a disadvan-

tage. The SSchwartzGomez measure was used in a noun WSD algorithm, where noun senses were

compared with senses of words that are found to replace that noun in its context (a task calling for

similarity comparisons) (Schwartz & Gomez, 2008). They experimented over a few similarity and

relatedness measures and found path-based measures to perform in line with information content

based and gloss-based measures. However, unlike the previously mentioned WSD evaluations, this

algorithm was focused on achieving top results for a WSD task rather than evaluating metrics, and

the results were influenced by more than similarity comparisons. This evaluation uses the Web

selectors algorithm with restrictions to limit influences beyond similarity comparisons. and also

tests on a wider variety of measures.

In order to focus on the impact that a similarity measure has on the accuracy, restrictions are

placed on the algorithm. First, senses are chosen by only considering target selectors, words which

replace the target word that is being disambiguated. Target selectors are intended to be similar to

the target sense, while other types of selectors within the algorithm are only intended to be related.

The system is also setup to only attempt annotations of instances in which it acquires five or more

selectors from queries of seven words or more in length. This restriction insures that there is both
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enough selectors and that the selectors are reliable. Finally, the use of a first sense heuristic as a

backoff strategy is turned off to eliminate unnecessary bias.

The testing corpus consisted of the training set from the SemEval-2007 Task 17: Lexical Sam-

ple (Pradhan et al., 2007). The lexical sample contained many instances of nouns and verbs,

leaving the sample size quite large after the restrictions are placed on the algorithm. Note that

the all-words portion of Task 17 contained fewer instances of nouns. The corpus, annotated with

WordNet 2.1 senses, was also restricted to eliminate instances of monosemous words according

to WordNet. This restriction in addition to those placed on the algorithm are likely to decrease

disambiguation accuracy of the algorithm, in order to get a stronger comparison focused on each

similarity measure.

Table 5.4 presents the results of the word sense disambiguation experiment. After the restric-

tions were placed on the corpus, we ended up with 795 instances (431 nouns and 364 verbs). The

F1 values shown are calculated based on precision(P ) and recall(R) as F1 = 2 ∗ P∗R
P+R

.

Unlike the human judged experiment, this evaluation found one measure performs significantly

better than any other measure in this experiment. The information-content similarity measure of

Jiang and Conrath (SJiangConrath) gives us the top results for both the noun and verb portions of

the corpus. All of the relatedness measures (RBanerjeePedersen, RPartwardhanPedersen, RY angPowers)

along with the SLin measure performed approximately equally with over 10.4% more error than

the SJiangConrath measure. The path-based similarity measures were all among the least effective

for the task.
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Table 5.4: Results of the application-oriented evaluation on the SemEval-2007 Task17.

noun verb both
SWuPalmer 41.5 56.3 48.3

SLeacockChodorow 44.1 59.3 51.1
SSchwartzGomez 48.0 - -

SResnik 46.3 51.1 48.5
SJiangConrath 59.6 65.1 62.1

SLin 52.6 57.8 54.9
RHirstStOnge 50.9 55.1 52.8
RY angPowers 53.2 54.6 53.9

RBanerjeePedersen 49.9 57.7 53.5
RPartwardhanPedersen 50.6 61.5 55.6

Results are F1 values which are broken down by part of speech.

One can see improvement from all measures between noun and verb instances. Among the

relatedness measures, the differences in values indicate that theRY angPowers measure may be better

suited for nouns, while theRPartwardhanPedersen method may be stronger with verbs. The suspicion

is that the verb results were higher overall because the verb selectors were more often acquired

with surrounding context, and were thus more reliable than noun selectors which were more often

acquired at the beginning or end of a sentence. Had the algorithm not been restricted to focus on

similarity, the noun results would have been higher as was reported originally by Schwartz and

Gomez (2008).

5.4 Discussion

This chapter presented a novel semantic similarity measure as well as evaluations of WordNet-

based semantic similarity and relatedness measures (included the one presented here) focused on
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concept similarity. One type of experiment was based on human judgments and the other was

an application-oriented task. Interestingly, the results found metrics categorized as measuring

relatedness to be strongest in correlation with human judgments of concept similarity, though the

difference in correlation is small. On the other hand, an information content metric, categorized

as measuring similarity, is notably strongest according to the application-oriented evaluation. In

particular, the measures of Patwardhan and Pederson (2006), and Yang and Powers (2006) had

consistently high correlations with human judgments. Both of these measures were categorized

as more broad relatedness measures, though the best performing similarity measures were not

significantly lower for any of the datasets. For the application-oriented experiment, the similarity

measure of Jiang and Conrath (1997) clearly gave us the best results with an error reduction of

10.4% over the next best measure.

There are several possible extensions to this work to provide additional insights about similarity

measures. The existing gold-standard judgments of similarity that were annotated with senses

only included nominal concepts. To address this drawback, a human annotated dataset of verb

pairs could be created. Additionally, one could replicate experiments over different versions of

WordNet as an evaluation of the WordNet improvements. Never the less, the results of this study

alone are intended to impact work in computational linguistics when a task calls for similarity

judgments over concepts.
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6 CONCLUSIONS

The primary goal of this work was to effectively use knowledge acquired from the Web in problems

of semantic interpretation. The knowledge utilized was described as common sense knowledge

(CSK), knowledge which helps one with understanding and perception in their everyday life. The

acquisition approaches utilized the idea of searching the Web with context rather than searching

with individual words. Towards semantic interpretation, the focus was on the central problem of

word sense disambiguation (WSD), which tries to determine the meaning of words in a sentence

based on the context of each word. It is the hope that improvements to semantic interpretation

will be able to benefit real world technologies such as machine translation, question answering,

web search, sentiment analysis, and text mining. Furthermore, outside of technological advances,

semantic interpretation has benefits for fields such as cognitive psychology, neurology, psycholin-

guistics, and other aspects of cognitive science. A model of understanding language which is useful

to a computer could be a good direction of exploration into the mechanics of the human mind.

Through experiments in WSD, this work validated the idea of using automatically acquired

CSK from the Web for aspects of semantic interpretation. In the case of evaluating a database

of common sense knowledge (the CSKB), integrating the knowledge into an existing minimally-

supervised disambiguation system significantly improved results with a 20.5% error reduction.

Similarly, the Web selectors disambiguation system, which acquires knowledge directly as part of

133



the algorithm, achieved results comparable with top minimally-supervised systems, an F-score of

80.2% on a standard noun disambiguation task. An impact analysis of the various types of selectors

and the amount of data acquired, suggest stronger results could be achieved with more selectors.

The results for both major approaches were comparable to most frequent sense baselines and other

top minimally-supervised systems. Lastly, the evaluation of semantic similarity and relatedness

measures found metrics categorized as measuring relatedness to be strongest in correlation with

human judgments. On the other hand, an information content metric, categorized as measuring

similarity, is notably strongest according to the application-oriented experiment.

Achievements of this dissertation can be broken into three parts: two major works on knowl-

edge acquisition and knowledge application, and one additional work on semantic similarity. The

first work, concerning the automatic acquisition of a database of common sense knowledge, gath-

ered relationships by searching the Web with automatically constructed queries. Results were run

through a statistical parser to verify that the results from the Web matched an intended structure.

This approach then took the knowledge of word relationships and induced knowledge about con-

cepts by using an information-theoretic analysis over WordNet. The Web selectors research, the

second major work presented, acquired knowledge directly within a word sense disambiguation

algorithm. Selectors are words which can take the place of a target word within its local context,

and they serve as a source of concepts which should be similar to the sense of the target word. The

Web selectors and the database of CSK both employed the idea of searching the Web with context

in order to gain more targeted results. Lastly, this dissertation presented work in semantic simi-

larity and relatedness measures which are useful tools for semantic interpretation using acquired
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knowledge. This area of work included the development of a novel path-based similarity measure,

as well as evaluations of measures under tasks of concept similarity.

The key contributions from this dissertation to the field of NLP spanned all aspects of the

research. During acquisition of the common sense knowledge database (CSKB), a novel idea was

used by incorporating a statistical parser to validate the syntactic structure of results from the Web.

In order to create more applicable knowledge about concepts rather than ambiguous words the

CSKB system utilized information theoretic approaches to generalize information about concepts

in WordNet. This novel analysis could be applied to data containing word relationships of other

types. The Web selectors algorithm for WSD reworked a previous approach to disambiguation

which required dependency parses into a method able to leverage the large amounts of data on

the Web. Additionally, the Web selectors algorithm had an original component of incorporating

the selectors from words in context in addition to those of the target word. With respect to the

research in semantic similarity, this dissertation contributed a path-based method that normalized

depths according to the subgraphs. An evaluation was presented with a specific focus on concept

similarity, filling a gap in past semantic similarity studies which focused entirely on relatedness

or only evaluated judgments over words rather than concepts. Lastly, the CSKB is available for

other researchers to use as a resource; This is the first work to acquire a more general knowledge

describing what is often found in or on something.

The research achievements fit this dissertation’s primary objective to investigate the effective

acquisition of lexical knowledge from the Web to perform aspects of semantic interpretation. The

Web provided an unprecedented amount of unannotated sentences from which to gain knowledge
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useful for semantic interpretation. Both the work on the Web selectors and CSKB utilized the idea

of searching the Web with context and found the acquired knowledge to be helpful for WSD, an

aspect of semantic interpretation. Accuracy was increased on an existing state-of-the-art disam-

biguation system using the CSKB, and the Web selectors disambiguation approach was found to

rival top minimally-supervised systems. Overall, this work contributes a piece to broad goals of

computational linguistics: solving the puzzle of how humans understand natural language, and

enabling technologies that make a positive impact on society.

6.1 Future Directions

This section highlights a few possible future directions of research enabled by the work in this dis-

sertation. These directions include applying the techniques introduced in this work to other aspects

of semantic interpretation, both supervised and minimally-supervised, analyzing relationship data

provided by others, and improvements to the particular techniques of this work by developing new

methods of searching the Web with context. Below, one will find details of how such research may

proceed.

One of the largest areas for future work is to apply acquired CSK to aspects of semantic in-

terpretation in addition to word sense disambiguation. Other aspects include prepositional phrase

attachment (PP attachment), anaphora resolution (AR), and named entity recognition as defined

in Section 2.2. These algorithms will follow in a minimally-supervised fashion much like the WSD

approach completed in this dissertation.

136



To get an idea of how the approaches in this dissertation may help these problems, consider

the problems of PP attachment and anaphora resolution. PP attachment, though dealing with the

syntactic structure, requires semantic knowledge in many cases. The CSKB could be used in order

to determine which word or phrase is being modified by the prepositional phrase. The algorithm

can proceed by identifying the prepositional phrase and the relationship it describes. In sentences

(28) and (29), the CSKB would ideally indicate that it is common for grapes to be in a refrigerator,

but not a person. Thus, in (28) the phrase would be attached to ‘the grapes’ while in (29) the

attachment happens at ‘she ate’.

(28) She ate the grapes in the refrigerator.

(29) She ate the grapes at home.

In the case of AR one is trying to determine the antecedent for a reference word (Jurafsky &

Martin, 2000). In sentence (30), the pronoun ‘it’ is referencing an antecedent. ‘Hank’, ‘ball’,

and other entities listed in previous sentences in context would be candidate antecedents. One

method to determine the antecedent could use the CSKB to find relationships between candidate

antecedents and the context of the pronoun. For example, the CSKB may indicate a ‘ball’ travels,

and a ‘person’ can run. The antecedent with the strongest relationships would thus be chosen.

In the second approach to AR, Web selectors would be acquired for the pronouns or reference

word. The predicted antecedent would be chosen by comparing similarity of the selectors with the

candidates. For example, in (30) selectors for ‘it’ may include ‘baseball’, ‘object’, and ‘ball’ itself.

(30) After Hank hit the ball with the bat, it traveled far.
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Although CSK acquired from the Web can be applied to semantic interpretation algorithms that

do not require training data, the use of CSK within supervised algorithms is worth investigation.

There is a chance knowledge from the Web could provide information not otherwise available. Typ-

ical supervised systems, utilizing standard machine learning algorithms such as maximum entropy

or support vector machines, rely on a set of features indicating syntactic and lexical information

of the context of a given target word (Gildea & Jurafsky, 2002; Gildea & Palmer, 2002; Dang &

Palmer, 2005; Pradhan et al., 2005; Dligach & Palmer, 2008; Schwartz et al., 2008). An additional

feature could be a list of selectors obtained from the Web for arguments.

The motivation behind a Web selectors feature is the potential that a concept can be represented

more robustly by its set of selectors than by a word itself. Supervised systems learn entirely from

the features of examples they are trained on. In the case of lexical features (features based on

words), generalization from one sentence to another can be limited. Consider a system that was

trained on sentence (31), seen previously in Figure 2.3. When using a trained system to annotate

sentence (32), the lexical features of the nouns (‘surface tension’ verse ‘pressure’, ‘liquid’ verse

‘fluid’, and ‘capillary’ verse ‘tube’) will be almost entirely different. However, the verb sense and

semantic roles for the noun phrases should be annotated nearly identically. Web selectors could

provide a strong clue to the similarity in that each constituent will likely have the same selectors.

(31) Surface tension will draw liquid into a capillary.

(32) Pressure will draw fluid through a tube.

Additionally, when lexical features (features based on words) are included in current systems they

are ambiguous (their disambiguation being the task of WSD), leading to matching lexical features

138



of different senses of words. Selectors help with this situation under the assumption that a different

sense of a word will have a different set of selectors.

There are many lexical knowledge sources of noun-noun relationships. Girju et al. (2007)

plus Hendrickx et al. (2010) provide a good overview. The information-theoretic concept analysis

which was used to induce concept information from noun-noun relationships could be applied

to other existing sources of noun-noun relationships. As was found in this dissertation, in many

situations knowledge about concepts is more beneficial than knowledge about ambiguous words.

Additionally, the method could be expanded to work in both directions, concept-concept relations

form the noun-noun relations.

In order to improve the Web acquisition techniques introduced in this dissertation, one could

look into reconstructing phrases, such as Web queries, in a fashion where the meaning is still

maintained. The precision results from requiring a minimum numbers of selectors in Web selector

experiment 1 (Table 4.3) gives promise to the idea that more selectors can improve WSD accuracy.

Furthermore, Figure 4.3 indicated that there is a loss of similarity between a selector and its target

word as queries get shorter. Finally, considering that the Web selectors algorithm was only able

to acquire selectors for 54.7% of word instances (computed from Table 4.1), the ability to create

alternative web queries would be very helpful. Essentially, this idea of alternative queries is con-

cerned with the trade-off between the quality and quantity of selectors. As one shortens a query

to receive more quantity, the quality goes down due to a less accurate local context. One may be

able to side-step this trade-off by searching with alternative queries that capture just as much local

context. For example, the query (33) can be mapped into the passive transformation (34).
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(33) He * the strikers at the rally

(34) The strikers were * at the rally by him

Despite being motivated to improve results for selector acquisition, alternative queries can also

assist with creating the CSKB. The idea is to create more web queries using alternative query

construction based on a search phrase. Since search phrases are given by hand, the supervision of

the algorithm would be minimized as more data could be gathered through a single search phrase.

The future directions enabled by this dissertation are broken down into many tasks, but they are

inter-related under the idea of searching with context, and subsequent studies may combine tasks.

Many of these improvements will be concerned with both the CSKB and Web selectors, addressing

commonalities between the two such as query construction or applications to similar problems.

A single study may incorporate the query reconstruction and supervised semantic interpretation

using Web selectors. In the end, the directions of future research may go down many paths and the

implications of such work are rich with benefits for computational linguistics, cognitive models of

language understanding, and real-world technologies.
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