
Cache-Oblivious String B-trees

Michael A. Bender
Stony Brook University

bender@cs.sunysb.edu

Martin Farach-Colton
Rutgers

farach@cs.rutgers.edu

Bradley C. Kuszmaul
MIT CSAIL

bradley@mit.edu

ABSTRACT
B-trees are the data structure of choice for maintaining searchable
data on disk. However, B-trees perform suboptimally

• when keys are long or of variable length,

• when keys are compressed, even when using front compres-
sion, the standard B-tree compression scheme,

• for range queries, and

• with respect to memory effects such as disk prefetching.

This paper presents a cache-oblivious string B-tree (COSB-tree)
data structure that is efficient in all these ways:

• The COSB-tree searches asymptotically optimally and in-
serts and deletes nearly optimally.

• It maintains an index whose size is proportional to the front-
compressed size of the dictionary. Furthermore, unlike stan-
dard front-compressed strings, keys can be decompressed in
a memory-efficient manner.

• It performs range queries with no extra disk seeks; in con-
trast, B-trees incur disk seeks when skipping from leaf block
to leaf block.

• It utilizes all levels of a memory hierarchy efficiently and
makes good use of disk locality by using cache-oblivious lay-
out strategies.

Categories and Subject Descriptors: E.1 [Data Structures]: Ar-
rays, Trees; E.5 [Files]: Sorting/searching; H.3.3 [Information
Storage and Retrieval]:

General Terms: Algorithms, Experimentation, Performance, The-
ory.

Keywords: cache oblivious string B-tree, locality preserving front
compression, packed-memory array, range query, rebalance.

1. INTRODUCTION
For over three decades, the B-tree [4,16] has been the data struc-

ture of choice for maintaining searchable data on disk. B-trees
maintain an ordered set of keys and allow insertions, deletions,
searches, and range queries. Most implementations employ B+-
trees [16,26], in which the full keys are all stored in the leaves, but
for convenience we refer to all the variations as “B-trees.”

Traditional B-trees perform suboptimally in several respects:

• The theoretical and practical performance of B-trees de-
grades when keys are long or vary in length.

This research was supported in part by the Singapore-MIT Al-
liance and NSF Grants ACI-0324974, CCR-0208670, and CCR-
9820879.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PODS’06 June 26–28, 2006, Chicago, Illinois USA
Copyright 2006 ACM 1-595593-318-2/06/0006 ...$5.00.

• Keys often share large prefixes, and are thus typically stored
using front compression [5, 15, 26, 32] within blocks. Front
compression exhibits a tradeoff between the compression
factor and the memory locality for decompression. B-trees
make this tradeoff suboptimally.

• Range queries use disk hardware inefficiently because each
leaf block fetched may require a random disk seek. Random
block accesses perform two orders of magnitude more slowly
than sequential block accesses for disk. Seeks to nearby
tracks are nearly an order of magnitude faster than random
seeks.

• B-trees do not take advantage of memory effects such as disk
prefetching, especially when variable amount of prefetching
is performed.

Inefficiency in each of these respects can reduce performance sig-
nificantly. Although some of these issues are addressed individu-
ally in the literature, as discussed below, there are no previously
known search structures that address all these issues effectively.

This paper presents a cache-oblivious string B-tree (COSB-tree)
data structure that is efficient in all four respects. The rest of this
section states our results.

Variable-length keys. Traditional B-trees do not handle large
keys well. Typically, they pack small keys in blocks, but for large
keys the pack a pointer to the key, which is stored elsewhere. They
choose arbitrarily which key to promote to a parent when a block
is split and often bias their choice toward promoting long keys. In
principle, it is better to store short keys near the top of the tree, but it
is also better to split the search space into nearly even pieces. There
are no known techniques for addressing both issues simultaneously
in a dynamically changing B-tree.

The string B-tree [19] handles keys of unbounded size effi-
ciently. In the string B-tree, an insertion of a new key κ uses
O(1 + ‖κ‖/B + logB N) block transfers, where ‖κ‖ is the length
of key κ and N is the number of keys in the tree. This block trans-
fer complexity is nearly optimal in the traditional Disk Access Ma-
chine model [1], where there is a single fixed memory-transfer size,
B, since it trivially takes at least ‖κ‖/B transfers to read κ, and
O(logB N) is the cost of insertion in a B-tree, even when all keys
have unit length. See Figure 1 for a glossary of notation.

κ Key D Set of keys (a dictionary)
Q Query result (a key set) |D| Number of keys in D
B Block size ‖D‖ Sum of key lengths in D
N N = |D| 〈〈D〉〉 Size of front compressed D

Figure 1: Glossary of symbols.

A range query for keys κ and κ′ returns all keys µ such that
κ ≤ µ ≤ κ′ lexicographically. In a string B-tree, a range query uses
O(1+(‖κ‖+‖κ′‖+‖Q‖)/B+ logB N) block transfers, where Q is

233

the set of result keys and ‖Q‖ is the sum of their lengths.1 A search
for a single key κ is a special case of a range query and therefore
uses O(1+‖κ‖/B+ logB N) block transfers.

The string-B-tree paper [19] also describes a prefix-search opera-
tion, but a prefix search is a special case of a range query. A slower
version of the string B-tree [19] also supports substring queries.
Since our goal is to support heterogeneous key sizes in traditional
database applications, we do not address substring queries here and
compare our results to the faster string B-tree that does not support
substring queries.

The string B-tree is deterministic and the performance bounds
given are worst-case (that is, not amortized), but it does not sup-
port compression, disk prefetching, or disk-seek-efficient range
queries. The cache-oblivious string B-tree we present here also
supports keys of unbounded length efficiently. It is amortized for
updates and randomized, but is efficient with respect to compres-
sion, prefetching, and disk seeks.

Compression. Many practical B-trees (e.g. [30]) employ front
compression [5, 15, 26, 32] within blocks to reduce the amount of
memory required for the keys, but string B-trees [19] do not. Thus,
the size of a string B-tree is Θ(‖D‖). Front compression reduces
space by storing each key κ as a pair 〈�,s〉, where � is the length
of the longest common prefix between κ and κ’s predecessor, and
s is the suffix of κ starting at position �+1. This strategy pays off
when keys are stored lexicographically, which maximizes the aver-
age longest common prefix between adjacent keys. Although front
compression is not optimal with respect to the entropy bound of the
strings, it is used in many implementations of B-trees.

To decode a key, one decodes the previous key. This procedure
might require scanning back to the beginning of the entire dictio-
nary. To mitigate this problem, each node of a B-tree is front com-
pressed separately. “Blocked” front compression may yield a poor
compression rate compared to front compression of the entire dic-
tionary, however. Thus, there is a tradeoff between the effective-
ness of front compression and the cost of decompression. Larger
blocking improves the former and worsen latter.

We introduce a modified front-compression scheme for the
cache-oblivious string B-tree that simultaneously achieves a de-
compression complexity that is linear in key length and an overall
compression that is within an arbitrarily small constant of the op-
timal front compression. Specifically, we compress dictionary D
into (1+ ε)〈〈D〉〉 bits, where pure front compression uses 〈〈D〉〉 bits,
and we decode a key κ in O(‖κ‖/εB) memory transfers, for any
ε > 0. Using our improved front-compression scheme, our cache-
oblivious string B-tree uses space O(〈〈D〉〉) to store dictionary D.

Cache-obliviousness, disk prefetching, and range queries.
Both traditional and string B-trees are based on the assumption that
there is a single block-transfer size B for which the data structure
should be optimized. For example, many B-trees used in practice
are optimized assuming that the unique block-transfer size is 4096
bytes. If the keys are of constant size, then a B-tree achieves a
fanout of Θ(B), which implies that a search uses O(1 + logB N)
block transfers.

Real memory systems are not so simple. The memory hierarchy
is composed of several levels of cache, main memory, and disk, but

1The complexity of range queries, as reported in [19], has an ad-
ditive |Q| term, which appears because the keys are stored in no
particular order to speed up insertions. This data layout means that
actually obtaining the various strings may require one extra block
transfer per key. Using now-standard techniques, the bound can be
improved to the bound we show here.

there are other levels between these. For example, the disk cache
sits between main memory and the rest of the disk. When the disk
system services a request for a disk block, the disk first checks
whether the requested block is in the disk cache, and if so, re-
turns the block. Otherwise, the disk seeks to the appropriate track,
reads the block, and prefetches the track. Thus, the effective block-
transfer size may be much larger than a disk block. Indeed, sequen-
tial disk-block accesses typically run over two orders of magnitude
faster than random disk-block accesses. However, disk tracks vary
in size and heavy loads can pollute the relatively small disk cache
quickly, evicting blocks before they have a chance to be requested.
Therefore the effective block-transfer size between these two levels
of memory is highly variable.

The cache-oblivious (CO) model [21] enables us to design algo-
rithms that achieve data locality simultaneously for all block sizes.
Such algorithms are on-line optimal with respect to changing block
sizes in the disk system as well as simultaneously optimal at all
levels of the memory hierarchy. In the cache-oblivious model, the
objective is to minimize the number of transfers between two lev-
els of the hierarchy. However, unlike traditional external-memory
models [1], the parameters B, the block size, and M, the main-
memory size, are unknown to the coder or the algorithm. The main
idea of the CO model is that if it can be proved that some algo-
rithm performs a nearly optimal number of memory transfers in
a two-level model with unknown parameters, then the algorithm
also performs a nearly optimal number of memory transfers on
any unknown, multilevel memory hierarchy. Cache-oblivious data
structures are more portable than traditional external-memory data
structures, since they avoid any tuning parameters. CO algorithms
do not try to measure the machine’s cache and adjust their behavior
accordingly. Rather, they are optimized for every level of granular-
ity throughout their execution without any tuning.

It has been shown [9–11, 13] how to implement cache oblivious
B-trees for fixed-size keys. The cache-oblivious B-tree supports ef-
ficient range queries because of the packed-memory array (PMA)
structure [9], which maintains the search keys tightly packed in
order in memory. Thus, a range query consists of one memory-
optimal search, followed by a scan within an array. This scan
does not incur any more random disk seeks since the items being
scanned are physically in order on disk. In contrast, B-trees may
have their relatively-small leaf blocks scattered throughout a disk in
any order, and if the effective block size is large, then range queries
are far from optimal.

Recently, Brodal and Fagerberg [12] describe a static cache-
oblivious string B-tree. It supports cache-oblivious searches with
the same bounds as the original string B-tree but does not allow up-
dates. Their paper works by physically laying out the tree in mem-
ory with duplications, and it seems difficult to make it dynamic.

In this paper we present a B-tree structure that supports variable-
size key insertions, deletions and searches, near optimal front com-
pression and decoding, and is cache-oblivious.

Experimental motivation. Cache-oblivious data structure have
interesting theoretical properties, as outlined above. Here we
present experimental validation for their on-disk performance. Pre-
vious work has focus on their in-memory performance.

We implemented B-trees from the literature for fixed size keys.
We placed versions of each data structure into a memory-mapped
file, taking care that the data structure was significantly larger than
main memory. For static B-trees we employed a breadth-first lay-
out: The root block appears first in the file, followed by the chil-
dren of the root, followed by the first child’s children, and so forth.
For static CO B-trees, we used a van Emde Boas layout [29]. The

234

Data structure Average time per search
small-machine big-machine

CO B-tree 12.3ms 13.8ms
Btree: 4KB Blocks: 17.2ms 22.4ms

16KB blocks: 13.9ms 22.1ms
32KB blocks: 11.9ms 17.4ms
64KB blocks: 12.9ms 17.6ms

128KB blocks: 13.2ms 16.5ms
256KB blocks: 18.5ms 14.4ms
512KB blocks: 16.7ms

Figure 2: Performance measurements of 1000 random searches on
static trees.

static trees were packed 100% full with data, and since the trees are
static, we did not even allocate space for pointers to the children.
We implemented a dynamic B+tree [16] and a dynamic CO B-
tree [10, 11].

We ran our experiments on two different machines. The small
machine is a 300MHz Pentium II with 128MB of RAM and a
4.3GB ATA disk running Redhat 8.0, Linux Kernel 2.4.20. The
large machine is a 4-processor 1.4GHz Opteron 840 with 16GB
of memory and a 72GB IBM Ultrastar 10,000RPM SCSI-320 disk
running SUSE Linux 2.4.19.

Figure 2 shows the results of our experiments on static trees. We
measured the time to perform 1000 searches on random keys. For
each measurement, before starting the first search, we flushed the
filesystem cache by remounting the filesystem.

For static trees, it is clear that the advertised disk-block size of
4096 bytes is far too small, underperforming big-block B-trees and
CO B-trees by 30–50%. But very large blocks perform poorly as
well. On the small machine the optimal block size is 32KB, and on
the big machine it is 256KB. On the small machine, the B-tree man-
aged to outperform the CO B-tree by 3% in the best case, but in all
other cases the CO B-tree outperformed the B-trees. We conclude
that although there are some situations where a carefully tuned
static B-tree can squeeze out an advantage against a static CO B-
tree, static CO B-trees provide much more robust performance and
can usually outperform even carefully tuned static B-trees.

Figure 3 shows the results for dynamic CO B-trees based on the
PMA construction of [9]. This dynamic CO B-tree has good amor-
tized performance, but very occasionally must rebalance the entire
tree, which is expensive when the tree does not fit in main mem-
ory. Figure 3 shows that for inserting the first 440,000 random
elements, the CO B-tree outperforms any of the traditional B-trees.
Big-block B-trees perform poorly for insertions. But sometime be-
fore the 450,000th insertion, the CO B-tree reorganizes its whole
data structure, at which point it falls behind the small-block B-trees
by about a factor of two. For range-queries and random searches
where all the leaves of the tree are scanned in order, the big-block
B-trees outperform the small-block B-trees, and slightly beat the
CO B-tree. For many applications, the big-block B-trees would
have unacceptable costs for insertions, and the small-block B-trees
are not as fast as the CO B-tree. This suggests that CO B-trees
could be a practical way to improve performance of databases and
file systems.

As a sanity check, we compared the performance of our tra-
ditional and CO B-trees to the Berkeley DB [30], a high-quality
commercially available B-tree. The Berkeley DB with the default
buffer-pool allocation is much slower than our implementation, but
is comparable once the parameters are tuned. Berkeley DB sup-
ports variable-sized keys, crash recovery, and very large databases,
none of which our implementation supports, and so one should not
read too much into these data. It simply suggests that we did a
reasonable job implementing our B-trees.

Block insert insert range 1000
Size 440,000 450,000 query random

random random of all searches
values values data

CO B-tree 15.8s 4.6s 5.9s
CO B-tree 54.8s 9.3s 7.1s

Sequential block allocation: 2K 19.2s 24.8s 12.6s
4K 19.1s 23.1s 10.5s
8K 26.4s 22.3s 8.4s

16K 41.5s 22.2s 7.7s
32K 71.5s 21.4s 7.3s
64K 128.0s 11.5s 6.5s

128K 234.8s 7.3s 6.2s
256K 444.5s 6.5s 5.3s

Random block allocation: 2K 3928.0s 460.3s 24.3s
Berkeley DB (256 KB pool): 1201.1s
Berkeley DB (64 MB pool): 76.6s

Figure 3: Timings for memory-mapped dynamic trees. The keys are
128 bytes long. The range query is a scan of the entire data set after the
insert. Berkeley DB was run with the default buffer pool size (256KB),
and with a customized loader that uses 64MB of buffer pool. These
experiments were performed on the small machine.

Our experiment is biased in favor of the B-trees because the B-
trees were “young,” that is, blocks are allocated sequentially. The
dynamic CO B-tree data structure ages well, whereas B-trees age
poorly, a fact well documented in the context of filesystems [31].
We simulated an aged B-tree in which the blocks are randomly
placed on disk (shown as “Random block allocation” in Figure 3,
and found that all operations, including insertions and range queries
can slow down dramatically, sometimes by two orders of magni-
tude. (Perhaps this setup should be called “super-aged”, since real
B-trees are unlikely ever to allocate their blocks completely ran-
domly.) We view the fact that the CO B-trees do not age as a sig-
nificant advantage for databases and filesystems.

Summary of Results. In this paper we present a solution to the
variable-key-length indexing problem. Our new data structure,
the cache-oblivious string B-tree is simultaneously efficient for all
block sizes and has the following performance:

• Insertions require O(1 + ‖κ‖(log2〈〈D〉〉)/B + logB N) mem-
ory transfers with high probability (w.h.p.).

• Searches and successor/predecessor queries, require an opti-
mal O(1+‖κ′‖/B+ logB N) memory transfers w.h.p..

• Range queries require an optimal O(1 + (‖κ‖ + ‖κ′‖ +
〈〈Q〉〉)/B + logB N) block transfers w.h.p.. The result set Q
is returned in compressed representation and can be decom-
pressed in an additional O(‖Q‖/B) memory transfers, which
is optimal for front compression. Because COSB-trees store
all keys in order on disk, range queries involve no extra disk
seeks.

• The space usage is O(〈〈D〉〉). In contrast, string B-trees and
per-block front-compressed B-trees use more space, O(‖D‖)
and O(min{‖D‖,B〈〈D〉〉}), respectively.

• The COSB-tree is cache oblivious. Thus, it is on-line optimal
with respect to disk prefetching and efficient at all levels of
the memory hierarchy.

An important component of the COSB-tree, of independent in-
terest, is the front-compressed packed-memory array (FC-PMA)
data structure. The FC-PMA maintains a collection of strings D
stored in order, with a modified front compression. The FC-PMA
has the following properties:

• For any ε, the space usage of the FC-PMA can be set to (1+
ε)〈〈D〉〉, while enabling a string κ to be reconstructed with
O(1+‖κ‖/(εB)) memory transfers.

• Inserting and deleting a string κ into an FC-PMA requires
O(‖κ‖(log2〈〈D〉〉)/(εB)) memory transfers.

235

The advantage of the COSB-tree, as summarized above, is that
keys are kept physically in sorted order on disk, so that range
queries use a minimum number of disk seeks. If we relax our con-
ditions to match those of the string B-tree, that is, range queries
return pointers to keys and the strings are not kept compressed, we
can match the string B-tree bounds in an amortized sense. That is,
we can achieve O(1+‖κ‖/B+ logB N) amortized transfers to insert
κ by using the amortized scanning structure from [6]. In many ap-
plications, range queries must retrieve the strings, so we present the
version outlined above, without the structure from [6]. Moreover,
in many applications, keeping order on disk is worth some loss in
theoretical bounds, in order exploit to prefetching mechanisms by
the disk and operating system.

Roadmap. The rest of this paper is organized as follows. In
Section 2, we describe a internal-memory algorithm for dictio-
nary matching that forms the basis for the COSB-tree. In Sec-
tion 3, we give a static COSB-tree, and explain the static version
of locality-preserving front compression. In Section 4, we show
how to dynamize this static structure, including an explanation of
the FC-PMA .

2. DICTIONARY MATCHING IN
INTERNAL MEMORY

In this section we review a internal memory (RAM) data struc-
ture for the dictionary-matching problem [3,28], which we develop
into the COSB-tree. In the dictionary-matching problem the goal is
to preprocess a dictionary D of keys {κ1,κ2, . . . ,κN} to answer the
following queries:

• MEMBER(κ): Determine whether κ ∈ D .
RAM time: O(‖κ‖+ log N).

• PRED(κ): Return the maximum κ′ ∈ D such that κ′ < κ.
RAM time: O(‖κ‖+‖PRED(κ)‖+ log N).

• SUCC(κ): Return the minimum κ′ ∈ D such that κ′ > κ.
RAM time: O(‖κ‖+‖SUCC(κ)‖+ logN).

We solve this problem using divide-and-conquer by exploiting
the following observation: Let T be the compacted trie2 of D .
Then there is a centroid vertex ρ in T that has at least N/3 and
at most 2N/3 descendants. Throughout, we identify a trie node
with the string obtained by tracing from the root to that node. To
answer MEMBER(κ) we determine whether ρ is a prefix of κ (in
which case, we say that κ matches ρ). If κ matches ρ, then we re-
curse into the trie rooted at ρ, the so-called down trie. Otherwise,
we recurse into the trie obtained by excluding ρ and its subtree, the
so-called up trie. Either way, we eliminate a constant fraction of
the trie from consideration. The centroid tree of T is obtained by
making ρ the root, where ρ’s children are the recursively defined
centroid trees of ρ’s up and down tries.

To achieve the required time bounds, we cannot simply com-
pare the letters of ρ and κ to determine if they match. Each com-
parison could take time Ω(‖κ‖), yielding a run time that could be
Ω(‖κ‖ log N). Instead, we employ a hash function H (such as for
Karp-Rabin fingerprinting [24], CRC, or MD5) that maps strings
into integers. Our requirement is that we can compute the finger-
print of every prefix of ρ in time O(‖ρ‖) in a RAM model and that
unequal strings collide with polynomially small probability.

To speed up matching, we preprocess the dictionary by comput-
ing the hashes of all compacted trie nodes. Then, to test member-
ship of κ, we compute the hashes of all the prefixes of κ. Now,

2A compacted trie is a trie where all nonbranching paths are re-
duced to edges.

101011010010010

0 10110

1010110100

10110

100

0

0

10

10

100

0

10

1

101

10 1010

10100100

(a) (b)

Figure 4: An example of the RAM data structure. Part (a) shows the
compressed trie representation of a dictionary. Each node in the com-
pressed trie corresponds to a string. The strings that are in the dic-
tionary are represented by black nodes, whereas the strings not in the
dictionary are represented by white nodes. For example, the string 0 is
not in the dictionary. Edges are labeled with strings. Part (b) shows the
centroid tree for the trie. Internal nodes of the tree are shown as rect-
angles. Each internal node of the tree is labeled with a string τ. Each
internal node has a solid line linking it to the root of its down trie (the
leaves of which have τ as a prefix), and a dotted line linking it to the
root of its up trie (the leaves of which do not have τ as a prefix). The
leaves are shown as unadorned strings, and are shown in order (lexico-
graphically from left to right). Each leaf string maintains pointers (not
shown) to its predecessor and successor. Each internal node maintains
a pointer to the leftmost and rightmost matching leaf from the entire
dictionary (not shown.)

whenever we want to match a prefix of κ with a node in T , we
compare the hash values. The algorithm, as stated, is Monte Carlo;
we might get a false positive on the matching. To make this algo-
rithm Las Vegas, we do a character-by-character match only when
the hash values match. Since the probability of a mismatch is low,
this does not increase our running time, with high probability.

Figure 4 shows an example of the RAM data structure. Fig-
ure 4 (a) shows a compressed trie containing several strings, and
Figure 4 (b) shows the centroid tree. To search the trie for
κ =10101, follow the 10 edge from the root, then follow the 1
edge, then follow the 0 edge, and then follow the 1 edge. In con-
trast, to search the centroid tree for the same key, start at the root,
where κ matches τ =101 so follow the solid line. Key κ matches
1010 so follow the solid line. It does not match 10100 so follow
the solid line which leads to a leaf.

Now we describe how to perform a successor or predecessor
query efficiently. If κ ∈ D , we can perform a membership query
to find κ in the dictionary and then use a doubly linked list to find
the predecessor or successor. But if κ �∈ D , we must do something
else. Consider tracing down from the root of T with κ. If κ is not in
D , then at some point we match as far as some node τ and into the
edge between τ and one of its children ρ, but we do not match as far
as ρ. If the first mismatch between κ and the trie is because κ has
a 0 where the τρ edge has a 1, then κ is lexicographically less than
all strings below ρ, and its successor is ρ’s leftmost trie descendant
(in the entire trie). Otherwise, by symmetry, κ’s predecessor is ρ’s
rightmost trie descendant.

Thus, we can always find either a predecessor or successor if
every node in the centroid tree keeps track of its lexicographically
least and greatest trie descendants. If we want the predecessor but
find the successor, or vice versa, we can traverse the linked list of
leaves forward, respectively backward, to find the desired key.

For example, in Figure 4, consider the problem of searching for
κ =1010 which is not actually a member of the dictionary. As we
descend the trie we find κ matches 101, and does not match 1010,

236

leading us to leaf 10110which is not what we want. We backtrack
up the tree to the child of the last node that matched (τ =101). That
node has a pointer to the leftmost key that has prefix 101. That key
is 10100, which is the successor of 1010 in the dictionary.

We conclude with the following lemma:

LEMMA 1 ([3]). The dictionary-matching problem can be
solved within the bounds O(‖κ‖+log N) for MEMBER(κ), O(‖κ‖+
‖PRED(κ)‖ + logN) for PRED(κ), and O(‖κ‖ + ‖SUCC(κ)‖ +
logN) for SUCC(κ) on a RAM.

In fact, on a RAM, we can solve this problem trivially by direct
trie traversals without the logN additive factor, but we will employ
this centroid method in the following to achieve good data locality.

3. STATIC COSB-tree
In this section we present a static cache-oblivious string B-tree.

Our data structure preprocesses a set D of N keys {κ1,κ2, . . . ,κN}
to answer the following query types efficiently in the cache-
oblivous model:

• MEMBER(κ): Determine whether κ ∈ D .
Memory transfers: O(1+ logB N +‖κ‖/B).

• PRED(κ): Return κ′ where κ′ is the predecessor of κ in D .
Memory transfers: O(1+ logB N +‖κ‖/B+‖κ′‖/B).

• SUCC(κ): Return κ′ where κ′ is the successor of κ in D .
Memory transfers: O(1+ logB N +‖κ‖/B+‖κ′‖/B).

• RANGE-QUERY(κi,κ j): Given two keys κi,κ j ∈ D , return
a compressed representation of all keys in the set Q = {κ ∈
D|κi ≤ κ ≤ κ j}.
Memory transfers: O(1+ logB N +(‖κi‖+‖κ j‖+ 〈〈Q〉〉)/B),
plus O(1+‖Q‖/B) to uncompress results.

We first present a relatively simple COSB-tree, which only sup-
ports queries on uncompressed data. We then present a variation
on front compression [5, 15, 32] that permits uncompressing a key
κ with only O(‖κ‖/B) block transfers.

3.1 Static COSB-tree with no compression
A COSB-tree with no compression is made up of two pieces,

an array of keys stored in lexicographic order and a centroid tree
for faster searching of the data. The centroid tree is just as de-
scribed in Section 2, except that the leaves of the tree point to
locations in the array of keys, and the tree is laid out to achieve
good cache-oblivious performance. The centroid tree has depth
O(logN), but not all leaves have the same depth. There are several
ways [2, 9, 17, 22, 29] to lay out such a tree in memory to achieve
optimal cache-oblivious searching, that is, with O(logB N) mem-
ory transfers. However, these techniques require the tree to be pro-
cessed in a batch, whereas we need a layout that will lend itself to
dynamization in Section 4.

The weight of a node in a tree is defined to be the total number
nodes in the subtree rooted at the node. We exploit the fact that
centroid trees are weight balanced, that is, for each node, 1 plus
the weight of the left subtree is within a constant factor of 1 plus
the weight of the right subtree of that node. The constant turns out
to be 2 for centroid trees. The rest of this subsection describes a
modified van Emde Boas (vEB) layout for weight-balanced binary
trees.

The standard approach for laying out a tree in memory is to cut
the tree along a frontier so that the top tree and each of the bottom
trees have size roughly

√
N. The original layout in [29] did this

partitioning by selecting bottom-tree roots by height. The difficulty
in applying this method here is that centroid-tree leaves have non-
uniform depth. Nonetheless, it is possible to adapt height-based

partitioning to centroid trees, but we do not know how to maintain
such a layout dynamically. Instead, we use the weight of a node to
select it for the frontier, as follows.

Given integer w, we say that a node is selected by w if both that
node and its sibling have weight at least w, and neither of their
children are selected by w. That is, we select the deepest nodes that
have weight at least w and whose siblings also have weight at least
w. Selected nodes have the following property:

LEMMA 2. All nodes selected by w have weight at least w and
at most 3w.

Proof. If any node u has weight greater than 3w, then both of u’s
children have weight at least w, because centroid trees are weight
balanced with a constant of 2. If both of u’s children have weight
at least w, then the children would be selected, rather than u.

Define the hyperfloor of x, denoted

x��, to be 2
lgx�. Thus, the
hyperfloor rounds x down to the nearest power of 2. Let the hyper-
hyperfloor be

x��� = 2

lgx��. Thus, the hyperhyperfloor rounds x
down to the nearest power of a power of 2.

To lay out a centroid tree, we select nodes by weight w =

N���.
We call the resulting nodes the roots of the bottom recursive sub-
trees C 1,C 2, . . . ,C z, and call the remaining tree, above, the top re-
cursive subtree C0. We now lay out C0,C 1, . . . ,C z in memory in
that order, recursively with selection weight

p

N���.
For this static construction, it would also work to select nodes

by weight N1/2,N1/4,N1/8 and so forth, rather than arranging for
the weights to always be powers of powers of 2. We use powers of
powers of 2 because it is convenient in Section 4. The key insight
for either construction is that the selection weights must be all the
same for recursive subtrees at a given level of detailed, defined as
follows. Each level of detail is a partition of the tree into disjoint
recursive subtrees. At the coarsest level of detail the entire tree
forms the unique recursive subtree. At the finest level of detail, 0,
each node forms its own recursive subtree with selection weight
220

. In general, at level-of-detail k we view the tree as partitioned
into recursive subtrees with selection weight 22k

. The key property
of the layout is that, at any level of detail, each recursive subtree is
stored in a contiguous block of memory.

It is straightforward to lay out trees C1, . . . ,C z recursively be-
cause they are as weight-balanced as C , i.e., 2-balanced. However,
C 0 is only 4-balanced. If we were to lay out C0 in the same way,
then C0’s recursive subtree would only be 16-balanced. Instead,
we employ the following strategy for laying out recursive subtrees
that do not contain leaves of C . Suppose that we want to find recur-
sive subtrees with selection weight 22i

above nodes with selection
weight 22 j

. Then we select nodes weight 22i+2 j
to be the roots of

the bottom recursive subtrees.

LEMMA 3. Subtrees containing leaves have size one to three
times their selection weight. Subtrees that do not contain leaves
have size between one third and three times their selection weight.

LEMMA 4. This nonuniform layout of a weight 2-balanced bi-
nary tree incurs O(logB N) block transfers on a root-to-leaf traver-
sal.

THEOREM 5. This static COSB-tree represents a set D of N el-
ements, and supports member, predecessor, successor, and range
queries. The operation MEMBER(κ) runs in O(1 + logB N +
‖κ‖/B) memory transfers w.h.p., and PRED(κ), and SUCC(κ)
run in O(1 + logB N + ‖κ‖/B + ‖κ′‖/B) memory transfers w.h.p.,
where κ′ is the predecessor (resp. successor) of κ. The opera-
tion RANGE-QUERY(κ,κ′) runs in O(1 + logB N + (‖κ‖+ ‖κ′‖+

237

‖Q‖)/B) transfers, where Q is set of keys in the result. These results
hold in the cache-oblivious model with the tall-cache assumption.

Proof. There are two cases:
Case 1: ‖κ‖ = O(M), i.e., the key is small compared to mem-

ory. Computing the Karp-Rabin fingerprints takes 1+κ/B memory
transfers, and all keys remain in internal memory while we search
in the centroid tree.

Case 2: ‖κ‖ = Ω(M), i.e., the key is large compared to memory.
In this case, the Karp-Rabin fingerprints that we compute cannot
fit in memory at the same time. Thus, since we query O(logN)
fingerprints, the number of memory transfers is O(logN + logB N +
‖κ‖/B + 1). However, the O(logN) term is dominated as long as
logN < ‖κ‖/B. Since the CO model is transdichotomous (B =
Ω(logN)) [20] and assuming the cache is tall (M = Ω(B2)) [21],
logN ≤ M/B ≤ ‖κ‖/B.

The scan bounds are trivially obtained.

3.2 Locality-preserving front compression
In this subsection we show how to add compression to our static

COSB-tree. We develop a new strategy for achieving front com-
pression without high decoding cost. The front-compressed data
then replaces the array of keys used in the static COSB-tree above.

Front compression works as follows: Given a sequence of keys
κ1,κ2, . . . ,κi to store, a naive representation requires

P
j ‖κ j‖

memory. Instead, we let π j+1 be the longest common prefix of
κ j and κ j+1. In this case, we can remove nearly

P
j ‖π j‖ memory

from the representation by representing the keys as

κ1,‖π2‖,σ2,‖π3‖, . . . ,‖πi‖,σi

where σ j is the suffix of κ j after removing the first π j bits. To
decode κ j, one concatenates the first π j bits from κ j−1 to σ j . Find-
ing the first π j bits of κ j−1 may require further decoding, possi-
bly resulting in expensive decoding. Front compression, which is
a lossless compression scheme, requires the the same space as the
(uncompacted) trie for D [26]. The total size of a front-compressed
set of keys D is written as 〈〈D〉〉.

Front and rear compression are described in [14, 15, 32]. Refer-
ence [26] describes front compression in an exercise, but provides
less detail. Reference [5] argues that front and rear compression are
particularly important for secondary indices. Front compression is
relevant for compressing the keys stored at the leaves of a search
tree, whereas rear compression is essentially used only in the in-
dices, and is subsumed by the string-B-tree techniques presented
here and in [19].

Our goal is to achieve O(1 + ‖κ‖/B) memory transfers to de-
compress any key in D , but to store D with O(〈〈D〉〉) space. The
challenge is that, for front compression, uncompressing a single
key may require scanning back through the entire compressed rep-
resentation. This is a well known problem for front compression.
One common strategy is to compress enough keys to fill some pre-
defined block and to start the compression over when that block is
full. This idea does not provide any theoretical bounds, however:
the compression achieved can be much worse than the best front
compression, and a block size may be arbitrarily bigger than ‖Q‖,
so decompression also has no guarantees.

Here we show a locality-preserving front compression (LPFC),
which meets our goal. Our modified compression scheme begins
with key κ1. Suppose we have compressed the first i−1 keys and
now we want to add key κi. We set c = 2 + ε/2. We scan back
c‖κi‖ characters in the compression to see if we could decode κi
from just this information. If so, we add πi,σi as before. If not, we
add 0,κi to the compression, that is, we do not compress key κi at

all. Call this sequence the locality-preserving front compression of
D , denoted LPFC(D).

The decoding scheme is just as with standard front compres-
sion, and it immediately matches the desired bounds: decoding
κi touches at most c‖κi‖ contiguous characters, and decoding
Q touches O(‖Q‖) contiguous characters. The remaining issue
is to show that LPFC achieves a compressed dictionary of size
(1+ ε)〈〈D〉〉.

LEMMA 6. The total length of the LPFC(D) is at most (1 +
ε)〈〈D〉〉 and every key κi can be decoded with O(‖κi‖/εB) block
transfers.

Proof. Call any key κ that has been inserted without front com-
pression a copied key. Denote as native any characters in the com-
pression that are not copied (that is, characters that appear in the
full front-compressed version of D). Denote the preceding c‖κ‖
characters as the left extent of κ. Notice that if κ is a copied key,
there can be no copied key beginning in the left extent of κ. How-
ever, a copied key may end within κ’s left extent.

We consider two cases. In the first case, the preceding copied
key ends at least c‖κ‖/2 characters before κ. Then, we say that κ
is uncrowded. In the second case the preceding copied key κ ends
within c‖κ‖/2 characters of κ. Then, we say that κ is crowded.

Partition the sequence of all copied keys just before each un-
crowded key. We call each such subsequence a chain. Note that
each chain begins with an uncrowded key and is followed by a se-
quence of crowded keys.

Furthermore, the lengths of these crowded keys decrease geo-
metrically. To see this, consider a crowded key κ. Since κ’s pre-
decessor in the chain, κ′, must begin before κ’s left extent, it must
have length at least c‖κ‖/2.

Thus, if κ is uncrowded, the kth crowded key in its chain has
length at most ‖κ‖(2/c)k . The total length of all keys in a chain
starting at κ is thus at most c‖κ‖/(c−2).

Finally, charge the cost of copying these keys to the c‖κ‖/2 char-
acters preceding the uncrowded key at the beginning of the chain.
This charge is at most 2/(c−2) = ε per character.

THEOREM 7. The static COSB-tree with front compression
represents a set D of N elements, and supports member, pre-
decessor, successor, prefix, and range queries. The operation
MEMBER(κ) runs in O(1 + logB N + ‖κ‖/B) memory transfers
w.h.p., and PRED(κ) and SUCC(κ) run in O(1+ logB N +‖κ‖/B+
‖κ′‖/B) memory transfers w.h.p., where κ′ is the predecessor
(resp. successor) of κ. The operation RANGE-QUERY(κ,κ′) runs
in O(1 + logB N + (‖κ‖+ ‖key′‖+ 〈〈Q〉〉)/B) transfers. The com-
pressed keys can be decoded for an additional ‖Q‖/B transfers.
All results hold in the cache-oblivious model with the tall-cache
assumption.

4. DYNAMIC COSB-trees
In this section we dynamize the COSB-tree. We use a combina-

tion of cache-oblivious data-structure tools, such as van Emde Boas
(vEB) layouts [29] and packed-memory arrays (PMAs) [9, 23], but
none of these are strong enough for our purposes. For this paper
we need augmented versions of these tools. In the following, we
present an overview of the three parts of a dynamic COSB-tree.
We then give a detailed description of each in turn.

The Data Structure
The dynamic COSB-tree consists of three pieces. The top piece,
called the centroid tree, is a dynamic version of the centroid tree

238

described in Section 3, i.e., a binary tree of depth O(logN). The
centroid tree is embedded into a packed-memory array with a dy-
namic cache-oblivious layout, so that a root-to-leaf traversal in the
centroid tree requires only O(logB N) transfers. The centroid tree is
built upon only Θ(N/ log N) keys. We use the centroid tree to find a
key that is within O(logN) of our target key using O(logB N) mem-
ory transfers. The reason to build the top tree on a sparse data set
is that there is an additive O(logN) insertion cost in the top level,
which is amortized away with this level of indirection.

The centroid-tree leaves point into a middle layer, called the
hashdata. This is a packed-memory array [9] that contains O(1)
words of information for each key. This layer is designed to al-
low for fast sequential searches of predecessor and successor keys.
When we enter the hashdata from the centroid tree, we are within
O(logN) keys of our true successor/predecessor. We finish the
search in this local neighborhood by a sequential scan, which uses
O(1+(‖κ‖+ log N)/B) memory transfers. This local search works
by storing, for each key, the fingerprint of the longest common pre-
fix of the key with it predecessor.

Once we have localized our target key, we follow a pointer to
the bottom piece, another packed-memory array called the keydata.
The keydata contains the actual keys, sorted in lexicographic or-
der and compressed. For the compression we use a dynamic vari-
ant of our augmented front compression of Section 3. This dy-
namized data structure supports insertion or deletion of a key κ
with O(1 + ‖κ‖ log2〈〈D〉〉/B) block transfers (amortized), once we
have determined where the key belongs.

If we want faster updates, but the data does not need to be phys-
ically in sorted order, then we add another level of indirection, a
scanning structure (see [6]), which reduces the insertion/deletion
cost to O(1+‖κ‖ log2+ε log〈〈D〉〉/B), for any ε > 0. If, as with the
original string B-tree, range queries return pointers to keys, not to
the keys themselves, then we can use yet another level of indirec-
tion in addition to the scanning structure to match the string B-tree
bounds in amortized sense while remaining cache-oblivious.

The rest of this section details the three pieces, starting with the
keydata, then the centroid tree, and then the hashdata. The section
concludes with an explanation of how these pieces fit together to
achieve our desired bounds.

Keydata PMA
For the static COSB-tree, we showed how to implement locality-
preserving front compression. For the dynamic COSB-tree, we
need to support insertions and deletions while maintaining prov-
ably good compression. We employ a packed-memory array, which
allows us to keeps data in order dynamically. The PMA, as origi-
nally described, supports keys of unit length. However, it directly
achieves the desired bounds if we break up any long key into unit-
length pieces and use the original algorithm.

We already showed how to implement cache-efficient decoding
for front compression. We need another idea to implement cache-
efficient insertions and deletions. We preserve the decoding invari-
ant: if decoding key κ requires more than ‖κ‖/ε elements of the
compressed representation to be scanned, then κ should be copied.

However, insertions interfere with this invariant. To see why,
observe that when we insert a key, we can easily check its left extent
to see if needs to be a copied key, as we did for the static case. The
problem comes with keys to the right. Suppose that a key κ∗ is
inserted within the left extent of some key κ. If κ and κ∗ are not
copied keys, the insertion of κ∗ may increase the decoding cost
of κ to above ‖κ‖/εB transfers. A solution would be to copy key
κ, that is, to replace its compressed representation with a copied
representation. However, such problem keys κ may be large, and

so their left extents may be arbitrarily long. We would thus be
required to look arbitrarily far to the right of κ∗ to find a violation.

We present a modified compression scheme, the Dynamic
Locality-Preserving Front Compression (DLPFC), which preserves
the compression rate, preserves the locality in the decoding, and en-
forces locality for insertions. To implement DLPFC, we augment
the (static) LPFC with copied prefixes. For LPFC, each key could
be coded with a pair representing the largest common prefix (lcp)
with its predecessor and its suffix beyond the lcp; for DLPFC, we
may now also choose to explicitly copy any prefix of the key. For
LPFC, we decode keys from the last character forward; for DLPFC,
we may simultaneously decode some prefix and some suffix until
we meet somewhere in the middle. We will see that copied prefixes
can be used to prevent the effects of an insertion from propagating
too far forward.

The algorithm proceeds as follows. We first check the left extent
of the inserted key κ∗ to see if κ∗ should be copied. If so, we insert
it as a copied string and are done. Otherwise, we need to check
the characters to the right of κ∗. Call the first c‖κ∗‖ characters to
the right of the insertion point the near right extent of κ∗ and the
first 3c‖κ∗‖ characters the far right extent. The lcp � of κ∗ and
whichever key is at the end of the far right extent is the minimum
lcp in the far right extent. If there is a copied key in the far right
extent, or a copied prefix of length at least �, then the the effects of
inserting κ∗ do not propagate to the end of its far right extent, in
which case κ∗ is inserted normally. If there is propagation, then we
consider the key κ′ being touch at the end of the near right extent.
Let �′ be the lcp of κ∗ and κ′. Then we change the representation of
κ′ to include a copied prefix of its first �′ characters. Furthermore,
for technical reasons that will become clear in the following, we
also include a copied prefix of the first �′ characters of κ∗ in its
representation.

THEOREM 8. Dynamic Locality-Preserving Front Compres-
sion is a compression scheme that can represent a set of N keys
D in size at most (1+ε)〈〈D〉〉+N bits so that key κ can be decoded
in O(1+‖κ‖/B) memory transfers and, given a finger to the loca-
tion of insertion, key κ∗ can be inserted in O(1+‖κ∗‖/Bε) memory
transfers in the CO model.

Proof. Inserting copied prefixes in our algorithm can only im-
prove decoding complexities, and the number of bytes scanned dur-
ing insertion is linear. Now we must prove that inserting such keys
does not cause too much damage to the compression.

If there is a copied prefix that starts within the near right extent
of κ∗, then κ∗ will not induce a prefix copy, since the effects of
inserting κ∗ cannot propagate beyond that copied prefix. Thus, any
copied prefix after the far right extent of κ∗ must have been caused
by the insertion of a key κ′ that either starts after the far right extent
of κ∗ or before κ∗. We charge κ∗’s copied prefix only to characters
within κ∗’s near right extent, so we do not care about insertions
after the far right extent.

Consider now the other types of insertions: a key κ′ inserted
before κ∗ that induces a prefix copy after the far right extent of κ∗.
The near (and indeed the far) right extent of κ∗ is part of the near
right extent of κ′, so we need to make sure that we do not charge
the same characters twice for prefix copying.

To keep charges from overlapping, we take any copied prefix
of length � at the end of a near right extent and charge it to its
preceding c� characters. Since each such copied prefix is paired
with a matching size-� copied prefix at the beginning of the near
right extent, each character is charged 2/c units.

The copied prefix of κ′ is of size at most ‖κ∗‖ by the transitivity
of lcp in lexicographically ordered strings. Thus, the charged re-

239

gion for κ′ is of length at most c‖κ∗‖, but it begins at least 3c‖κ∗‖
after κ∗, and thus cannot overlap the near right extent, and particu-
larly the charged region of κ∗. Therefore, no character gets charged
twice. As before, set ε = 2/c.

Centroid tree: Dynamic layout of weight-
balanced trees
In this section we show how to maintain the vEB layout of a dynam-
ically changing weight-balanced tree. This approach was already
used in the first CO B-tree [8, 9], but now we show how to support
faster dynamic updates more efficiently and on more general trees.

Recall that a tree is weight balanced if for all nodes, one plus
the weight of the left subtree is within a constant factor of one plus
the weight of the right subtree. For (static) centroid trees, this con-
stant is 2 in the worst case. For dynamic centroid trees, we need a
constant greater than 2.

By allowing for c-weight balance, for constant c > 2, we obtain
the following guarantee: A node v only gets out of balance every
Ω(WEIGHT(v)) insertions or deletions of nodes that are descen-
dants of v (see, e.g., [27]).

This property of insertions means that whenever v falls out of
balance, we can afford to scan all of v’s subtree for a total amortized
cost of O(logN) work and O(1+(log N)/B) memory transfers per
update (see, e.g., [27, Theorem 5]). In principle, this ability to scan
descendants enables us to maintain the vEB layout of the centroid
tree dynamically; if a node falls out of balance, then we can af-
ford to rebuild the whole subtree and its vEB layout. We show the
following:

LEMMA 9. There exists a dynamic van Emde Boas layout of
a weight-balanced tree in a PMA, where the amortized rebalance
cost is O(1+(log2 N)/B) per update. This layout has the property
that whenever a node v is in a rebalance interval of the PMA, then
so are all of v’s descendants.

Proof. We maintain the sorted order of tree nodes in the vEB
layout in memory by storing the nodes in a packed-memory ar-
ray (PMA) [9]. The PMA stores N elements in sorted order in a
Θ(N)-sized array, subject to insertions or deletions. When we in-
sert/delete an element in the array, we scan left and right to find
a neighborhood of the array whose density is “within threshold.”
Then we rebalance the neighborhood, i.e., we spread out the el-
ements uniformly in the range. Thus, in principle, the amortized
cost to insert a node v into the weight-balanced tree is O(1 +
(log2 N)/B) to make room in the PMA plus O(1 + (logN)/B) to
re-layout the tree.

Unfortunately, this analysis is incomplete because it does not ac-
count for the cost to maintain the pointers in the tree as nodes shift
around in the PMA. To understand the problem, consider an up-
per recursive subtree U and lower recursive subtrees L1L2L3 . . .
laid out in order UL1L2L3 An insert near the “left” part of L1
may cause many nodes in U to move around in the PMA. In order
to maintain the child pointers, we also maintain parent pointers, but
maintaining parent pointers causes trouble. If we move some nodes
in U, which are high up in the tree, then we also have to follow the
child pointers of these moved nodes to update the parent pointers
of the children. Unfortunately, these children may be spread out in
the vEB layout causing one memory transfer per child for a total
update cost of O(log2 N) memory transfers.3

3In the conference version of the original CO B-tree [8] this prob-
lem was partially solved using “dummy nodes”; specifically, as
much space as possible was added in the PMA between each top

Our solution is to use a more flexible PMA [7, 25]. The earliest
PMA [9] gives no choice to the user in determining the extent of the
rebalance interval; the rebalance intervals are defined by the nodes
of an implicit binary tree placed on top of the array. A more so-
phisticated PMA [7, 25] enables us to choose the neighborhood by
growing left or right arbitrarily until we find a neighborhood that
is within the appropriate density threshold. Then we rebalance this
neighborhood. This PMA gives us the flexibility to lay out arbi-
trary weight-balanced trees. (In contrast, the dynamic vEB layout
from [9] only applies to strongly weight-balanced trees (see [9])
and requires indirection for efficiency.)

The main idea of our layout algorithm is that we do not include
a node v in a PMA rebalance unless we also include all of v’s de-
scendants. This rebalance policy completely fixes the pointer main-
tenance problems from above. We now give the rebalance policy.
Suppose that we insert/delete a leaf in the weight-balanced tree.
This leaf is in some lower recursive subtree Li with target size
220

, which is in the layout UL1 . . .Li . . .Lx. We start with a re-
balance interval in the PMA consisting only of Li. If the density
is not within threshold, then we can add Li−1 or Li+1 to the re-
balance interval. If the density is still not within threshold, then
we add more lower recursive subtrees, and once all lower recursive
subtrees L1 . . .Li . . .Lx have been added, we add the upper recur-
sive subtree U to the rebalance interval. However the rebalance
interval may not be within threshold. Let L′

j = UL1 . . .Li . . .Lx be

the lower recursive subtree with targets size 221
, which forms part

of the layout U′L ′
1 . . .L ′

j . . .L
′
y. We repeat the same procedure by

growing the rebalance interval starting with L′
j, adding the top re-

cursive subtree U′ last, and proceeding to recursive subtrees with
target size 222

, 223
, 224

, etc.
The crucial feature of the vEB layout enabling the dynamic strat-

egy is that all recursive subtrees in a level of detail have asymptot-
ically the same size; see Lemma 3. Thus, we establish the lemma.

Centroid tree: Modified successor queries
We now show how to implement predecessor/successor queries
in the dynamic data structure. Unfortunately the predeces-
sor/successor queries in the static structure do not dynamize easily.
The static CO string B-tree maintains a pointer to the largest and
smallest descendants of each centroid in the original trie, and an in-
sert of one key means that a large number of nodes in this centroid
tree may need updated max/min descendant pointers.

We avoid this problem by changing the specification of the
max/min descendant pointers, based on the following structural
property of the centroid tree:

LEMMA 10. Let α be the parent node of γ in the compressed
trie. Then, in the centroid tree, either α is a descendant of γ, or γ is
a descendant of α.

Proof. Consider starting at the root of the centroid tree. If neither
α or γ is the centroid, then both nodes are in the up-tree or both
nodes are in the down-tree, and we recursively consider the new

recursive subtree U and its rightmost bottom recursive subtree L1
at each level of detail, reducing this above cost by a Ω̃(

√
B) fac-

tor. Both conference and journal versions [9] ultimately avoid the
problem by using indirection. Specifically, a top tree stores only
a Θ(N/ log2 N) fraction of the elements, so that while modifica-
tions of the top tree are expensive, they occur only every Ω(log2 N)
updates. Subsequent CO B-trees have avoided arbitrary weight-
balanced trees.

240

trie. Otherwise, one node of α and γ is a centroid, and the other
node is therefore either in the up-tree or down-tree of that node.

In the new specification, the predecessor (successor) pointer of
a node v points to the lexicographically minimum (maximum) de-
scendant leaf of v (which is a key) in the centroid tree. Now the
successor/predecessor pointers may no longer point to the lexico-
graphically minimum/maximum descendants in the subtrie, only in
the centroid tree. To understand this distinction consider some sub-
trie. As we descend in the centroid tree, some of the subsubtries
have been matched by down-trees higher up in the centroid tree,
and there are O(logN) such subsubtries. The leftmost descendant
of the root of the subtrie is the leftmost descendant of that node in
the centroid or the leftmost descendant of one of the ancestors of
that node in the centroid tree, since these ancestors represent down-
trees that were removed.

We now explain how to answer successor/predecessor queries.
In the static case a successor/predecessor query was answered by
following the max/min descendant pointers from a single node v.
In the dynamic case, we need to look at the max/min pointers for
O(logN) nodes: v and all of v’s ancestors in the centroid tree. By
Lemma 10, the minimum and maximum descendants of v belongs
to this set. We can determine which pointers indicate the mini-
mum and maximum descendant without having to follow the point-
ers (e.g., by using a tree-labeling scheme and order-maintenance
queries [6, 18] to determine which nodes are descendants of v in
the trie, and from those that are, looking at the leftmost and right-
most pointing pointers in the PMA). Thus, we answer these queries
matching the static performance of Theorem 5.

With this new specification, when we insert a key into the PMA,
we only need to update the first and last pointers of O(logN) cen-
troid nodes. Thus, we achieve following the performance bounds:

LEMMA 11. We can answer predecessor and successor queries
in the same bounds as Theorem 5, where on inserts and deletes of
keys only O(logN) centroid nodes are affected.

Centroid tree: Rebuilding
When keys are inserted or removed from the centroid tree, parts
of the tree may go out of balance and need to be rebuilt. We can-
not simply employ an existing cache-oblivious layout strategy for
nonuniform trees (e.g., [2,17,22]) because we want to rebuild only
subtrees, not the entire tree. The centroid tree of Section 3 is always
weight balanced to within a factor of two. If we allow the centroid
tree to “drift” out of balance (say to within a factor of four), then we
have a weight-balanced property and a subtree needs to be rebuilt
only if a relatively large number of insertions or deletions have oc-
curred. Here we explain how a given subtree of the centroid tree
can be rebuilt without incurring too many block transfers.

First, put all the trie elements, stored in the centroid tree into
DFS/Euler-tour order for the trie. This reordering can be done bot-
tom up in O(logN) scans of the centroid tree, since the tree is only
O(logN) deep. Then given the trie in Euler-tour order, scan the
trie to find the centroid, partition the trie into upper and lower trees
stored in different parts of memory, and then repeat recursively on
each part.

Thus, we have the following performance bounds:

LEMMA 12. The amortized cost to re-layout a centroid tree is
O(1+(log2 N)/B) amortized memory transfers. This cost does not
include the maintenance of the max/min descendant pointers.

Centroid tree: Maintaining PMA max/min de-
scendant pointers
We now show how to maintain the max/min descendant pointers
from the centroid tree into the PMA when the PMA elements shift
around. We show that this update may in fact have an additive
cost of O(logN) memory transfers, meaning that the algorithm for
rebalancing centroid trees, as described, has an additional additive
cost of O(logN) memory transfers.

Let D represent the keys in the down-tree of the root, UL repre-
sent the keys in the up-tree lexicographically before D , and UR rep-
resent the keys in the up-tree lexicographically after D . Thus, the
lexicographic order is ULDUR, and the centroid order is DULUR.
Let D be further divided into D′, U′

L, and U′
R, let D ′ be further

divided into D′′, U′′
L , and U′′

R, etc. Thus, the lexicographic or-
der is ULU′

LU′′
LU′′′

L D ′′′U′′′
R U′′

RU′
RUR, and the centroid order is

D ′′′U′′′
L U′′′

R U′′
LU′′

RU′
LU′

RULUR. Suppose that . . .U′′′
R U′′

RU′
RUR

each have very few keys in them. Then, an insert in the PMA
may move the keys in U′′′

R U′′
RU′

RUR, which are in lexicographic
order. However, there are pointers to these keys in the centroid
tree, and the centroid-tree nodes are stored in centroid order. Thus,
a small number of moves in the PMA means that we need to update
in what we will show is O(logN) distinct regions in the centroid
tree. Since there is no data locality, this update could use O(logN)
memory transfers.

LEMMA 13. The amortized cost to update the centroid tree is
O((log2 N)/B + log N) amortized memory transfers. The additive
O(logN) memory transfers comes from maintaining the max/min
descendant pointers.

Proof. The centroid tree is stored in memory in centroid order,
but we update the pointers of the centroid tree in lexicographic or-
der. We begin by showing that if we scan all centroid-tree nodes
in lexicographic order, then the number of memory transfers is
O(N/B + 1). In a left-to-right scan, we first scan the elements in
UL (the up-tree whose elements are lexicographically before the
centroid), then the elements in D (the down-tree), and then the ele-
ments in UR (the up-tree whose elements are lexicographically af-
ter the centroid), proceeding recursively within each subtree. In this
tree of down-trees, left up-trees, and right up-trees, mark the deep-
est nodes containing at least B descendants, but where all (three)
children contain fewer than B descendants. There are O(N/B)
such nodes, and each node causes O(1) memory transfers. To fin-
ish counting memory transfers, observe that there are also left or
right up-trees with fewer than B descendants that are “aunt/uncle”
nodes of marked nodes, i.e., children of ancestors of marked nodes;
each of these nodes also causes O(1) memory transfers. However,
there are also only O(N/B) of these nodes, because each left (re-
spectively right) up-tree of this form is matched to a sibling right
(resp. left) up-tree containing more than B descendants, and there
are only O(N/B) such nodes.

We now show how the preceding analysis changes if we do not
scan all nodes, only a range of lexicographically contiguous nodes
in the centroid tree. Specifically, we may scan the left up-tree with-
out having to scan the sibling down-tree or right up-tree. The same
analysis applies if we do not scan all the data, but instead, for every
scanned left or right up-tree, we also completely scan the sibling
down-tree. We do not retain the same analysis when we scan a left
(resp. right) up-tree but not the sibling down-tree or sibling right
(resp. left) up-tree. The maximum number of such left or right up-
trees that we could scan is O(logN). For each of these orphan left
or right up-trees, we pay an additional O(1) memory transfers, for
a total additive cost of O(logN) memory transfers.

241

Hashdata PMA and indirection
The centroid-tree is built on Θ(N/B) keys, and the hashdata PMA is
built upon N keys, storing O(1) information about each key. There
are pointers from the leaves of the centroid tree (representing keys)
to the elements (again representing keys) in the hashdata PMA, and
there are pointers from each element in the hashdata PMA to its
associated key in the keydata PMA. There are no back pointers
because these would be too expensive to maintain.

The hashdata PMA also stores the fingerprint of the longest com-
mon prefix between each key and the previous element, along with
the next character in the key. Thus, a search proceeds by finding the
predecessor and successor in the centroid tree, searching the hash-
data PMA using an additional O(1+(logN)/B) memory transfers
to find the representation of the predecessor and successor in the
hashdata PMA, and then jumping into the keydata to return the ac-
tual values.

With this extra level of indirection the additive O(logN) mem-
ory transfers in the update cost of the centroid-tree (Lemma 13) is
amortized to an O(1) update cost, giving the desired performance
bounds.

We now give more details of how the searches work in the hash-
data. By searching in the centroid tree, we get pointers to the pre-
decessor and successor in the centroid tree, which gives us a range
of Θ(logN) possible keys in the hashdata. Note that the predeces-
sor and successor in the centroid tree may be much longer than the
search key κ, but we do not need to read these keys unless we ac-
tually return them. Instead, we scan from the leftmost key in the
range which precedes κ. By comparing the fingerprints and next
characters and by scanning κ once, we can determine the predeces-
sor and successor keys.

We thus obtain the following performance bounds:

THEOREM 14. The dynamic COSB-tree with front compression
represents a set D of N elements, and supports member, predeces-
sor, successor, and range queries. The operation MEMBER(κ) runs
in O(1+ logB N +‖κ‖/B) memory transfers w.h.p., and PRED(κ),
and SUCC(κ) run in O(1 + logB N + ‖κ‖/B + ‖κ′‖/B) memory
transfers w.h.p., where κ′ is the predecessor (resp. successor) of
κ. The operation RANGE-QUERY(κ,κ′) runs in O(1 + logB N +
(‖κ‖+‖κ′‖+ 〈〈Q〉〉)/B) transfers w.h.p.. The compressed keys can
be decoded for an additional ‖Q‖/B transfers. Finally INSERT(κ)
and DELETE(κ) run in O(1 + logB N + log2 N ‖κ‖/B) memory
transfers w.h.p.. All results hold in the cache-oblivious model with
the tall-cache assumption.

As described earlier, we can reduce the bounds by using scan-
ning structures [6], but at the cost of keeping the data out of order
and of amortizing scans; details are left for the full version. Finally,
if we only need to return pointers to keys, as in the string B-tree,
we need not store the keys themselves in a PMA. We call this mod-
ification the pointer COSB-tree . Our pointer COSB-tree matches
the bounds of the string B-tree in the amortized sense while retain-
ing all of the advantages of cache-obliviousness. In summary, we
obtain:

THEOREM 15. The dynamic COSB-tree augmented with a
scanning structure achieves the bounds from Theorem 14, except
that range queries are amortized, and INSERT(κ) and DELETE(κ)
are accelerated to O(1 + logB N + log2+ε logN ‖κ‖/B) amortized
memory transfers w.h.p., for any ε > 0. If range queries only need
to return pointers to keys, then the updates become O(1+ logB N +
‖κ‖/B) amortized memory transfers w.h.p.. All results hold in the
cache-oblivious model with the tall-cache assumption.

5. REFERENCES
[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related

problems. Commun. ACM, 31(9):1116–1127, Sept. 1988.
[2] S. Alstrup, M. A. Bender, E. D. Demaine, M. Farach-Colton, T. Rauhe,

and M. Thorup. Efficient tree layout in a multilevel memory hierarchy.
arXiv:cs.DS/0211010, 2004. http://www.arXiv.org/pdf/cs.DS/0211010.

[3] A. Amir, M. Farach, and Y. Matias. Efficient randomized dictionary matching
algorithms (extended abstract). In Proc. 3rd Symp. on Combinatorial Pattern
Matching (CPM), pp. 262–275, Tucson, Arizona, Apr. 1992.

[4] R. Bayer and E. M. McCreight. Organization and maintenance of large ordered
indexes. Acta Inf., 1(3):173–189, Feb. 1972.

[5] R. Bayer and K. Unterauer. Prefix B-trees. ACM Trans. Database Syst., 2(1):11–
26, 1977.

[6] M. A. Bender, R. Cole, E. Demaine, M. Farach-Colton, and J. Zito. Two simpli-
fied algorithms for maintaining order in a list. In Proc. 10th European Symp. on
Algorithms (ESA), pp. 152–164, Rome, Italy, Sept. 2002.

[7] M. A. Bender, R. Cole, E. D. Demaine, and M. Farach-Colton. Scanning and
traversing: Maintaining data for traversals in a memory hierarchy. In Proc. 10th
Annual European Symp. on Algorithms (ESA), pp. 139–151, Rome, Italy, Sept.
2002.

[8] M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. In
Proc. 41st Annual Symp. on Foundations of Computer Science (FOCS), pp. 399–
409, Redondo Beach, California, 2000.

[9] M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious B-trees.
SIAM J. Comput., 35(2):341–358, 2005.

[10] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-
oblivious dynamic dictionary. In Proc. 13th Annual Symp. on Discrete Mathe-
matics (SODA), pp. 29–38, San Francisco, California, Jan. 2002.

[11] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-
oblivious dynamic dictionary. J. Algorithms, 3(2):115–136, 2004.

[12] G. S. Brodal and R. Fagerberg. Cache-oblivious string dictionaries. In Proc.
17th Annual Symposium on Discrete Algorithm (SODA), pp. 581–590, Miami,
Florida, Jan. 2006.

[13] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious search trees via binary
trees of small height. In Proc. 13th Annual Symposium on Discrete Algorithms
(SODA), pp. 39–48, San Francisco, California, Jan. 2002.

[14] H. K. Chang. Compressed indexing method. IBM Technical Disclosure Bulletin,
11(11):1400–1401, 1969.

[15] W. A. Clark IV, K. A. Salmond, and T. A. Stafford. Method and means for gen-
erating compressed keys. US Patent 3,593,309, 3 Jan. 1969.

[16] D. Comer. The ubiquitous B-tree. ACM Comput. Surv., 11(2):121–137, June
1979.

[17] E. D. Demaine, J. Iacono, and S. Langerman. Worst-case optimal tree layout
in a memory hierarchy. Manuscript. arXiv:DS/0410048, 2004. http://john2.
poly.edu/papers/manu04/paper.pdf.

[18] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list. In
Proc. 19th Annual Symposium on Theory of Computing (STOC), pp. 365–372,
1987.

[19] P. Ferragina and R. Grossi. The String B-Tree: A new data structure for string
search in external memory and its applications. J. ACM, 46(2):236–280, Mar.
1999.

[20] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound
with fusion trees. J. Comput. Syst. Science, 47:424–436, 1994.

[21] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In Proc. 40th Annual Symp. on Foundations of Computer Science
(FOCS), pp. 285–297, New York, New York, Oct. 1999.

[22] J. Gil and A. Itai. How to pack trees. J. Algorithms, 32(2):108–132, 1999.
[23] A. Itai, A. G. Konheim, and M. Rodeh. A sparse table implementation of prior-

ity queues. In Proc. 8th Internationl Colloquium on Automata, Languages, and
Programming (ICALP), vol. 115, pp. 417–431, Acre (Akko), Israel, July 1981.

[24] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms.
IBM J. Res. Dev., 31(2):249–260, Mar. 1987.

[25] I. Katriel. Implicit data structures based on local reorganizations. Master’s thesis,
Technion, Israel Inst. of Tech., Haifa, May 2002.

[26] D. E. Knuth. Sorting and Searching, vol. 3 of The Art of Computer Programming.
Addison-Wesley, Reading, Massachusetts, 1973.

[27] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching, pp.
198–199. Springer-Verlag, Berlin, 1984.

[28] M. Naor. String matching with preprocessing of text and pattern. In Proc. 18th
International Colloquium on Automata, Languages and Programming (ICALP),
pp. 739–750, 1991.

[29] H. Prokop. Cache-oblivious algorithms. Master’s thesis, Department of Electri-
cal Engineering and Computer Science, Massachusetts Inst. of Tech., June 1999.

[30] Sleepycat Software. The Berkeley Database. http://www.sleepycat.com,
2005.

[31] K. A. Smith and M. I. Seltzer. File system aging - increasing the relevance of file
system benchmarks. In Proc. 1997 ACM SIGMETRICS Conf. on Measurement
and Modeling of Computer Systems, pp. 203–213, Seattle, Washington, 1997.

[32] R. E. Wagner. Indexing design considerations. IBM Syst. J., 12(4):351–367,
1973.

242

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

