
A New Approach to Incremental Topological Ordering

Michael A. Bender∗ Jeremy T. Fineman† Seth Gilbert‡

Abstract

Let G= (V,E) be a directed acyclic graph (dag) withn= |V|
andm= |E|. We say that a total ordering≺ on verticesV is
a topological orderingif for every edge(u,v) ∈ E, we have
u≺ v. In this paper, we consider the problem of maintaining
a topological ordering subject to dynamic changes to the
underlying graph. That is, we begin with an empty graph
G=(V, /0) consisting ofnnodes. The adversary addsmedges
to the graphG, one edge at a time. Throughout this process,
we maintain anonlinetopological ordering of the graphG.

In this paper, we present a new algorithm that has a total
cost ofO(n2 logn) for maintaining the topological ordering
throughout all the edge additions. At the heart of our
algorithm is a new approach for maintaining the ordering.
Instead of attempting to place the nodes in an ordered list, we
assign each node a label that is consistent with the ordering,
and yet can be updated efficiently as edges are inserted.
When the graph is dense, our algorithm is more efficient than
existing algorithms. By way of contrast, the best known prior
algorithms achieve onlyO(min(m1.5,n2.5)) cost.

1 Introduction

Let G= (V,E) be a directed acyclic graph (dag) withn= |V|
and m = |E|. We say that a total ordering≺ on vertices
V is a topological ordering if for every edge(u,v) ∈ E,
we haveu ≺ v. Given a specific dagG, there are two
well-known approaches for finding a topological ordering in
O(n+m), either by depth-first search, or by repeated deletion
of vertices with no incoming edges.

This paper addresses an incremental variant of this prob-
lem, which arises in a variety of contexts, including compil-
ers [14,16], deadlock detection [4], pointer analysis [17,18],
and incremental circuit evaluation [3].

In the problem of incremental topological ordering, our
goal is to maintain a topological ordering even as edges are
added to the graph. Initially, the graphG is unknown; edges
are added one at a time. After each edge addition, we must

∗Dept. of Computer Science, Stony Brook University,
bender@cs.sunysb.edu

†CSAIL, MIT, jfineman@csail.mit.edu
‡EPFL,seth.gilbert@epfl.ch
§This research was supported in part by NSF grants CCF-

0621511, CNS-0615215, CCF-0541209, CCF-0621439/0621425, CCF-
0540897/05414009, CCF-0634793/0632838, and CNS-0627645.

recalculate a valid topological ordering. More specifically,
the goal is to maintain a data structure that supports two
operations: (1) edge insertions, in which a new edge is added
to the graphG; and (2) queries of the form: “Doesu come
beforev in the topological ordering?”1 In this paper, as well
as in previous work, queries are answered inO(1) time; the
key question is how fast can edge insertions be processed?

Prior Work. The simplest solution to the problem of in-
cremental topological ordering is to recalculate a new or-
dering after each edge insertion, resulting inO(n(m+ n))
time for m edge insertions. In recent years, there have been
several significant improvements. Marchetti-Spaccamela et
al. [15] gave the first nontrivial solution, handlingm inser-
tions in a total ofO(mn) time. Alpern et al. [3] gave an al-
gorithm that performs well in a greedy sense: given a topo-
logical ordering and an edge insertion, their algorithm per-
forms (almost) the minimum amount of work possible to find
a new topological ordering. (This form of analysis, how-
ever, says little about the total time to performm edge in-
sertions.) Katriel and Bodlaender [11] gave a variant of the
algorithm introduced by Alpern et al., which they show to
run in O(min

{

m3/2 logn,m3/2 +n2 logn
}

) time. They also
showed significantly better bounds for graphs of bounded
treewidth. Liu and Chao [13] gave a tighter analysis of
the Katriel-Bodlaender algorithm, showing that it runs in
O(m3/2 + mn1/2 logn) time. Kavitha and Mathew [12] gave
a slightly better variant takingO(m3/2 + m1/2nlogn). Most
recently, Haeupler et al. [8,9] gave a variant of the Alpern et
al. / Katriel-Bodlaender algorithm that runs in timeO(m3/2).

The algorithms mentioned thus far do no better than
O(n3) for dense graphs wherem= Θ(n2). Ajwani et al. [2]
gave the first improvement for dense graphs, exhibiting an
algorithm that runs inO(n2.75) time for any number of edge
insertions. Haeupler et al. [8, 12] improved this algorithm,
resulting in a simpler algorithm requiring onlyO(n2.5) time.
This bound is not known to be tight, however, so this
algorithm’s true running time could potentially match our
own.

Pearce and Kelly [18] gave an algorithm that they
showed to be fast in practice on random sparse graphs, but

1Although there may be many valid topological orderings, allanswers
given by the data structure after thekth edge insertion/deletion must be
consistent withthe sametopological ordering.

that is provably worse than that Alpern et al. algorithm in
the worst case. Ajwani and Friedrich [1] proved that the
Alpern et al., Katriel and Bodlaender, and Pearce and Kelly
algorithms all take expected timeO(n2polylog(n)) for edges
forming a complete graph inserted in a random order.

The only nontrivial general lower bound that we are
aware of is anΩ(nlogn) lower bound forn−1 edge inser-
tions due to Ramalingam and Reps [19]. Katriel [10] gives
an Ω(n2) lower bound whenm = O(n) for algorithms that
explicitly maintain the rank of each vertex in the topologi-
cal order. Of known algorithms, this lower bound only ap-
plies to those algorithms that store the topological ordering in
an array—those of Marchetti-Spaccamela et al., Pearce and
Kelly, and Ajwani et al. It does not apply to our algorithm,
nor does it apply to any of the sparse-graph algorithms. Hae-
upler et al. [9] give anΩ(nm1/2) lower bound for algorithms
that only update the “affected region” of the topological or-
dering on an edge insertion. This lower bound applies to all
previous algorithms, but it does not apply to our algorithm.

Our Results. In this paper, we present a new algorithm
that takesO(n2 logn) time to support any number of edge
insertions. Our analysis is tight in that there exist graphs
and edge-insertion sequences causing our algorithm to run
in Θ(n2 logn) time. This bound beats theO(n2.5) bound
of Haeupler et al. [8, 12] and beats theO(m3/2) bound of
Haeupler et al. [8,9] wheneverm≥ n4/3 log2/3n. We analyze
our algorithm in the RAM model (as is the case for all prior
algorithms).

Our approach is quite different from previous algo-
rithms. Typically, a topological ordering is maintained ex-
plicitly as either a linked list or an array. When adding an
edge(u,v), the algorithm first checks whetheru appears be-
fore or afterv in the existing topological ordering; ifu ap-
pearsafter v, then the array or linked list is updated so that
u precedesv in the ordering, as is required by the insertion
of edge(u,v). During the insertion, the algorithm modifies
only vertices in the “affected region” of the list/array, i.e.,
those vertices that lie betweenv andu. The key to these algo-
rithms is to efficiently discover which vertices in the affected
region need to be moved.

Our algorithm, by contrast, does not maintain an array
or linked list, but instead assigns alabel to each vertex in the
graph, reassigning labels as edges are inserted.2 The labels
induce a topological ordering on the dag and are also used to
assist in efficient updates during edge insertions.

Our data structure can be readily extended in various
ways. First, it can be augmented to support additional oper-
ations, such as queries of the form: “What isu’s successor

2Previous linked-list-based algorithms implicitly use labels to perform
queries as part of an order-maintenance data structure [5, 7]. By contrast,
our labels have semantic meaning within the graph itself andplay a key role
in determining which vertices to update.

(or predecessor) in the topological ordering?” (Such queries
are supported by most previous algorithms.) Second, it can
be augmented to detect cycles in the graphG; we assume
throughout this paper that the graphG is acyclic; however,
with a small amount of bookkeeping we can detect anoma-
lous graphs. Finally, our data structure can readily support
edge deletions as well as edge insertions; however, perfor-
mance guarantees apply only to executions consisting only
of insertions. We comment on these extensions in Section 3.

Roadmap.The remainder of the paper is organized as fol-
lows. First, in Section 2, we present some preliminary def-
initions, along with an overview of our approach for main-
taining a topological ordering. As a simple example of this
approach, we give an algorithm that achievesO(mn) running
time. Next, in Section 3, we present our new algorithm in
detail. Finally, we analyze the algorithm in Section 4, and
conclude in Section 5.

2 Basic strategy

This section describes our basic strategy for maintaining a
topological ordering. We show how this strategy can be
applied in a simple fashion to achieve anO(mn) algorithm
for n vertices andm edge insertions. While this bound is not
new, it demonstrates a quite different approach. In Section3
we show how this same basic approach can be more carefully
applied to develop a more efficient algorithm that yields
running timeO(n2 logn).

Terminology. Given a dagG = (V,E), we say that a node
u is apredecessorof a nodev (and thatv is a successorof
u), if there is a directed path fromu to v in G. Notice that,
according to this terminology, a nodeu is a predecessor (and
successor) of itself. When the edge(u,v) exists, we say that
u is an immediate predecessorof v (andv is an immediate
successor ofu).

Labels and Orders.We associate with each vertexu an
(integer) labelL(u). From these labels, we derive a total
order in the natural way: ifL(u) < L(v), thenu≺ v. If L(u) =
L(v), then we break the tie in an arbitrary but consistent
fashion, say, using the unique identifiers of the vertices in
question.

It is easy to see that the ordering induced by the labels
is a topological ordering as long as the labels are consistent
with the underlying dag. That is, whenever(u,v) is an edge
in E, we haveL(u) < L(v).

Labels are updated dynamically as edges are added to
the graph. When adding edge(u,v), we update the label
at v, if necessary, along with some subset ofv’s successors.
The first step involves determining whether the label ofv
needs to be increased. We refer to this process asvisiting
v. If v’s label needs to be increased, a new value of the

label is chosen. After visiting a nodev, we perform a
truncated depth-first search on the dag, starting atv and
visiting successors ofv in turn. When we traverse an edge
in the dag, we say that we arefollowing the edge. Choosing
when to follow edges and how to update labels is at the heart
of achieving an efficient algorithm.

A simple algorithm. As an example of how to apply this
paradigm, we consider a simple algorithm in which the label
L(v) represents thedepth of v, where depth is defined as
usual: if v has no immediate predecessors, thenL(v) = 0;
otherwise,L(v) = maxu:(u,v)∈E L(u) + 1. If each node is
labelled with its depth, it is clear that the labelling induces a
topological ordering: ifu precedesv in the dagG andu 6= v,
thenL(u) < L(v).

Initially, as there are no edges in the graphG, L(u) = 0
for every vertexu. Every time an edge is added to the dag,
the labels on the vertices are updated to reflect the changes
in depth caused by the new edge. Specifically, when adding
edge(u,v), we compare the labels atu and v: if L(u) <
L(v), then the depth ofv remains unchanged. If, however,
L(u)≥ L(v), then we updatev’s label: L(v)← L(u)+1. We
then recursively follow all ofv’s outgoing edges, recursively
performing the same “update label/follow edges” procedure
at each ofv’s immediate successors. When this depth-first
traversal terminates, each vertex is labelled with its depth in
the graph.

There is a straightforward analysis of this algorithm. For
each vertexu, the maximum depth isn−1, and henceL(u)≤
n− 1. Since labels/depth are nondecreasing, it follows that
L(u) increases at mostn− 1 times, and thus the total cost
of updating labels isO(n2). The remaining cost comes from
following edges. (Recall that we may sometimes follow an
edge(v,w) but not update the label atw, as it is already
sufficiently large.) Notice that the algorithm follows the edge
(v,w) only when (1)(v,w) is added, or (2)v’s label increases.
Since the label atv increases at mostn−1 times, each edge
can be followed at mostn times. We conclude that the total
cost to insertm edges isO(mn).

3 Algorithm for Dense Graphs

This section describes anO(n2 logn) algorithm for incre-
mental topological sort, which is based on the basic strategy
described in Section 2. The analysis appears in Section 4.

The example in Figure 1 demonstrates a shortcoming of
the simpleO(mn) algorithm. Consider a bipartite clique with
verticesv1,v2, . . . ,vk and w1,w2, . . . ,wk, and an additional
source vertexu that has a directed edge to everyvi . Consider
an execution of the simple algorithm. When the depth
of u increases, the algorithm follows each outgoing edge
(u,vi), and the label of eachvi also increases. Sincevi ’s
label increases, the algorithm also follows each edge(vi ,wj).
Thus, whenever the depth ofu increases, the algorithm

v2

v1

vk

...
...

w2

w1

wk

u

Figure 1: When the dotted edge is added, the depth ofu
increases by 1. The simple algorithm performsΘ(k2) work,
following edges(vi ,wj) for all 1≤ i, j ≤ k.

follows all of theΘ(k2) edges in the clique. Settingk= Θ(n)
and increasing the depth ofu by oneΘ(n) times yields a total
cost ofΘ(n3).

The main goal of our algorithm is to reduce the number
of times that we visit a particular vertexw, that is, to bound
the number of visits byO(nlogn). (By contrast, the simple
algorithm may visit each node up toΩ(n2) times.)

Key Modifications. In order to achieve better performance,
we make two key modifications to the simple algorithm.
First, we do not blindly follow all outgoing edges fromv
wheneverv’s label increases. Instead, for each edge(v,w),
we cache the value ofw’s label atv and only follow the edge
(v,w) if the cached information indicates thatw’s label needs
to increase. Specifically, we associated with each edge(v,w)
the valuecache(v,w), which records the label ofw as of the
last time the algorithm followed edge(v,w). Since labels are
nondecreasing,cache(v,w) ≤ L(w). Thus, we do not follow
(v,w) unlessL(v) ≥ cache(v,w).

This first improvement alone does not improve the
worst-case running time of our algorithm, as exhibited again
by the bipartite-clique example in Figure 1: after each edge
insertion completes, the cache at each edge leavingvi cor-
rectly records the depth of each nodewj ; however, whenvi

increases by 1 on the next edge insertion, we must again fol-
low all outgoing edges fromvi .

Our second modification is to use a more aggressive
label-update rule. If we could update the label of a node
by a larger quantity (instead of incrementing it), then we
could cache that larger value and avoid unnecessary visits.
However, we want to avoid increasing the label too much,
which may result in labels growing too big.

Thus, we no longer constrain the label of a node to rep-
resent its depth, as it is expensive to maintain a node’s precise
depth. Rather, we consider the labelL(v) to approximate the
total number of predecessors (not just immediate) ofv. (No-
tice that the depth of a node is a very loose lower bound on

State maintained by each nodeu∈V:

L(u), the label ofu.
∀ j ∈ {0,1, . . . , lgn} : N(u, j), a counter bounded by 2j+2.
∀ j ∈ {0,1, . . . , lgn} : Λ(u, j), an old label ofu.
∀v : (u,v) ∈ E : cache(u,v), an old label ofv.
outgoing(u), an array of outgoing edges.

FOLLOW(u,v)

1 if L(u)≥ L(v)
2 then L(v)← L(u)+1
3 else � Check ifv has sufficiently many immediate

� predecessors to increase its label.
4 j ←⌈lg(L(v)−L(u))⌉
5 N(v, j)← N(v, j)+1
6 if N(v, j) = 2 j+2

7 then L(v)←max(L(v),Λ(v, j)+2 j)
8 N(v, j)← 0
9 Λ(v, j)← L(v)

10 if L(v) has increased:
11 then for each (v,w) such thatcache(v,w)≤ L(v)
12 do FOLLOW(v,w)

� Done following the edge.
� Update(v,w) in u’s outgoing edge set.

13 cache(u,v)← L(v)
14 Update(u,v) in outgoing(u).

Figure 2: Pseudocode for updating labels, when following an
edge in the dag. The triangles denote comments. Each nodev
maintains four data structures: a labelL(v), a counterN(v, j)
and old labelΛ(v, j) for 0≤ j < lg(n), and an outgoing-edge
setoutgoing(v) organized bycache(v,w) — a cached version
of w’s label.

the total number of predecessors.) That is, we assign a label
L(v) such that 0≤ L(v)≤ Pred(v) < n, wherePred(v) is the
total number of predecessors ofv. (Of course, the labels also
must induce a valid topological order.)

When increasingv’s label, the magnitude of the increase
depends on the number of immediate predecessors known to
have large labels: the more predecessors ofv that have large
labels, the higher we increment the label ofv. This strategy
captures the intuition that if a vertex has many immediate
predecessors with large labels, then it most likely has a very
large number of predecessors (immediate or otherwise) in
the dag. By increasing the label significantly, we prevent too
frequent updates as further edges are added.

The Algorithm. As previously noted, our algorithm main-
tains the valueL(v) (initially 0), with 0 ≤ L(v) < n. We
associate with each edge(u,v) the valuecache(u,v), which

stores the (old) value ofL(v) when the algorithm last fol-
lowed edge(u,v). (Note that the cached value may be out-
of-date, asL(v) may have increased since then). We organize
all outgoing edges into a data structureoutgoing(v), which
we describe later.

We also associate withv a collection of countersN(v, j)
and corresponding labelsΛ(v, j), for eachj : 0≤ j < lg(n),
all initially 0. The jth counterN(v, j) satisfies the following
invariant: 0≤ N(v, j) ≤ 2 j+2. The labelΛ(v, j) stores the
value of v’s label whenN(v, j) was last reset to 0. The
N(v, j) counter counts the number of incoming edges(u,v)
that, when last followed, had 2j−1 < L(v)−L(u)≤ 2 j .

We now describe the algorithm in more detail. When
inserting the edge(u,v) into the dag, we proceed as fol-
lows: (1) initialize cache(u,v) ← 0; (2) insert(u,v) into
outgoing(u);, and (3) follow the edge(u,v) as described by
FOLLOW(u,v) in Figure 2. This procedure updatesv’s label
and other state, and then (selectively) calls FOLLOW(v,∗) re-
cursively on the ongoing edges ofv.

When executing FOLLOW(u,v), we first check whether
L(u) < L(v). If not, we increaseL(v) by 1 in line 2,
thus ensuring that the resulting labelling induces a valid
topological ordering.

If, on the other hand, we already haveL(u) < L(v), then
we examine whetherv should have its label increased due to
its counts of immediate predecessors. This step is where the
label is incremented more aggressively than in Section 2.

First, we find the magnitude of difference betweenL(u)
andL(v) in line 4—specifically, we find the smallestj such
thatL(v)−L(u)≤ 2 j . We then increment the corresponding
counterN(v, j). If the counterN(v, j) reaches its maximum
value of 2j+2, then we perform the our “more aggressive”
update ofv’s label, increasingL(v) by up to 2j −1 in line 7.
We next resetN(v, j) to 0 and record the corresponding
Λ(v, j) in lines 8 and 9.

This label update may seem strange at this point, but
we will show in Lemma 4.1 that whenΛ(v, j)+2 j > L(v), v
has at least 2j+1 distinct immediate predecessors with label
at leastΛ(v, j)− 2 j . Thus, we know thatv has at least
Λ(v, j)− 2 j + 2 j+1 predecessors, and we update the label
accordingly.

At this point, if v’s label increases (whether in line 2
or line 7), then we follow all outgoing edges whose targets
have cached labels that are≤ L(v), i.e., targets that may need
to have their label increased. Finally, when the algorithm
has finished following outgoing edges, we associatev’s new
labelL(v) with cache(u,v) and update the edge(u,v) in u’s
outgoing edge list.

We next comment on some of the implementation de-
tails.

Implementing the Outgoing-Edge Set.The outgoing-edge
set data structure is straightforward to implement. The

variableoutgoing(v) is ann-slot array, each slot containing
a linked list of outgoing edges. Ifcache(v,w) = x, then a
pointer tow is stored in a linked list at slotx in the array.
Notice that updating an edge (i.e., in line 14) is easy in thatit
simply involves removing it from one linked list and adding
it to another.

To determine which edges to follow (in line 11), we
follow all outgoing edges in array slots betweenv’s old label
andv’s new label. After following each edge, the target’s
label (and hence the edge’s cached label) has increased
beyondv’s current labelL(v). Thus, when FOLLOW(u,v)
returns, there are no outgoing edges stored in array slots
0, . . . ,L(v). As a result, we need only examine each slot of
the array once during an execution.

Calculating in the RAM model.Some machine models al-
low for a constant-time lg calculation, but we do not re-
quire such an assumption. Since we only compute this log-
arithm for at mostn different values (i.e., the difference in
the possible labels), we can pre-compute a size-n logarithm
table with all the necessary entries. Even a naive algorithm
for computing base-2 logarithms of log(n)-bit numbers re-
quires onlyO(log(n)) time using only additions (repeated
doubling) and comparisons. TheO(nlog(n)) time for pre-
computing the entire table is dwarfed by theO(n2 log(n))
time of the topological-ordering algorithm.

Similarly, we could pre-compute a table for calculating
2 j+2 using only additions, thereby not requiring a bitshift
operation in the machine model.

Supporting Predecessor/Successor queries.As described
so far, our data structure supports only queries of the form,
“Doesu precedev in the topological ordering?” It does not
(efficiently) support queries of the form, “What is the next
vertex in the topological ordering afteru?” These queries are
easy to support without increasing the asymptotic running
time.

Throughout the execution of the algorithm, maintain a
linked list matching the topological ordering. To search
into the linked list, also maintain a balanced search tree
(BST) (see [6], Chapter 13), ordered/keyed by label, where
ties are broken by unique vertex identifiers. Initially the
vertices are simply sorted by identifier. Wheneverv’s label
increases, removev from the tree and reinsert it with key
equal to its new label. Query the BST forv’s predecessoru,
and movev from its current location in the linked list, instead
locating v after its BST-predecessoru. Since labels have
maximum value ofn− 1 (shown later in Lemma 4.1), a
nodev is reinserted at mostn−1 times, resulting inn BST
insertions and predecessor queries, as well asn linked-list
moves, per vertex. Each BST operations has costO(logn)
(using a reasonable BST implementation), and each linked-
list operation has constant cost. The total additive cost of

O(n2 logn) for the O(n2) BST operations has no effect on
the asymptotic running time of our algorithm.

Detecting a Cycle.Thus far, we have assumed that no edge
insertion introduces a cycle to the graph. It is easy to modify
our algorithm to detect the introduction of a cycle, although
the performance bounds only hold until the first cycle is
detected; that is, we provide no mechanism for deleting an
edge aside from rebuilding the entire data structure.

To detect whether the addition of(u,v) introduces a
cycle, simply check whetheru is ever visited during the
depth-first search performed while following edges. If so,
there is a cycle. The nodes in the cycle can be found by a
separate graph search.

4 The Analysis

We now analyze the algorithm from Section 3. There are
three key theorems. First, we argue that the ordering induced
by the labels is, in fact, a topological order. Second, we argue
that labels are bounded byn. Lastly, we analyze the cost of
edge insertions, demonstrating that the total cost of inserting
medges isO(n2 logn), and we show this analysis to be tight.
The key observation is that no edge is followed too many
times.

Correctness of the Topological Ordering.We begin by
showing that the data structure maintains a valid topological
ordering:

THEOREM 4.1. After completely processing each edge in-
sertion, if((u,v)) ∈ E, then L(u) < L(v).

Proof. Initially, the labels trivially induce a good ordering
since there are no edges in the dag. Assume, for the sake
of contradiction, that after some edge insertion the theorem
is violated. Consider the first edge insertion causing a
violation, and let edge(u,v) be an edge for whichL(u) >
L(v). During the edge insertion, the labelL(u) must have
increased, thereby causing the violation. If we subsequently
followed(u,v), thenL(v) would have increased beyondL(u)
(in line 2).

Suppose, therefore, that we did not follow(u,v) after the
last increase toL(u). It follows thatcache(u,v) > L(u), as
the edge was not followed in lines 11–12. We know that the
cached labelcache(u,v)≤ L(v), sinceL(v) is nondecreasing.
Hence,L(v)≥ cache(u,v) > L(u), which is a contradiction.

Bounded Labels.We next show that the value of each label
is bounded byn. (Notice that this fact also ensures that each
label can be stored in a single word, which has been implicit
throughout.)

LEMMA 4.1. For v∈ V, let Pred(v) be the total number of
predecessors of v. Then at any point during the algorithm
execution, L(v)≤ Pred(v) < n.

Proof. We proceed by induction over the number of edges
that have been followed. Initially,L(v) = 0, and the claim
holds trivially. Assume the lemma is true before following
the edge(u,v). We show that it holds after following the
edge. If labelL(v) does not increase, then the claim follows
immediately, asL(v)≤ Pred(v) by inductive hypothesis.

Suppose instead thatL(v) increases while following
(u,v). There are two places thatv’s label increases: line 2
and line 7 of Figure 2. In the first case,L(v)← L(u) + 1.
By inductive hypothesis,L(u) ≤ Pred(u), and we know that
Pred(u) < Pred(v) since the predecessors ofv include all
the predecessors ofu plus the nodev itself. (Recall thatv
is considered to be a predecessor of itself.) Thus,L(v) =
L(u)+1≤ Pred(u)+1≤ Pred(v), and the claim follows.

In the second case,L(v) increases in line 7 as a result of
N(v, j) increasing to 2j+2. We fix j for the remainder of this
proof. First, we observe thatL(v) increasing here implies
that (prior to the update)L(v) < Λ(v, j) + 2 j . (Otherwise
the labelL(v) would remain unchanged.) Consider the 2j+2

increases toN(v, j) since the last time it was reset to 0.
We claim that each distinct edge contributed at most 2

such increases toN(v, j). Suppose for the sake of contradic-
tion that some edge(u,v) contributed 3 or more increases to
N(v, j), and consider the last 3 such increases. Forx∈ {u,v},
let L1(x), L2(x), and L3(x) be the values ofx’s label im-
mediately prior to these 3 increases, respectively. Since the
counter increases,Li(v)−Li(u) > 2 j−1. (Recall that this in-
equality follows from the choice ofj, see line 4.)

Moreover, sincecache(u,v) is updated after each edge
is followed, and since the edge is only followed if the label
L(u) exceeds the cached value ofL(v), we can conclude
thatL2(u)≥ L1(v) andL3(u)≥ L2(v). Combining these two
facts, we conclude thatL2(v) > L2(u)+2 j−1≥ L1(v)+2 j−1

and L3(v) > L3(u) + 2 j−1 ≥ L2(v) + 2 j−1, which together
imply that L3(v) > L1(v) + 2 j . Finally, since the counter
does not reset between these increases, andΛ(v, j) represents
v’s label at the time of the previous reset,L1(v) ≥ Λ(v, j).
It follows that L(v) ≥ L3(v) > Λ(v, j) + 2 j , which is a
contradiction.

We therefore conclude that each edge contributes at
most 2 increases toN(v, j). Since there have been 2j+2

increases when the counter resets (causing the label ofv to be
increased), we conclude that there are at least 2j+2/2 distinct
edges contributing toN(v, j). Fix someu such that(u,v)
contributes toN(v, j). Each time edge(u,v) contributes to
the count, we haveL(u) ≥ L(v)− 2 j (again, by the way in
which j was chosen on line 4). Thus, sinceL(v) ≥ Λ(v, j),
we know thatL(u)≥ Λ(v, j)−2 j .

Thus,vhas at least 2j+1 distinct immediate predecessors
with label at leastΛ(v, j)− 2 j . We call these vertices the

“contributing predecessors.”
Let x be a topologically earliest contributing predeces-

sor. By inductive hypothesis, we havePred(x)≥ L(x). All of
x’s predecessors are predecessors ofv. Moreover, none of the
other contributing predecessors, norv itself, are predecessors
of x. Thus, Preds(v) ≥ Preds(x) + 2 j+1 ≥ L(x) + 2 j+1 ≥
(Λ(v, j)− 2 j) + 2 j+1 = Λ(v, j) + 2 j . Noting that the label
L(v) is increased toΛ(v, j)+2 j completes the proof.

Complexity Analysis of Insertions.We now show that the
total cost of up tom edge insertions isO(n2 logn). The
key observation is that no vertex is visited too many times,
specifically, more thanO(nlogn) times. The main idea of the
proof is to amortize the cost of following an edge directed
towardsv against the number of times that the label ofv is
increased.

LEMMA 4.2. In every execution, for every v∈V, vertex v is
visited at most O(nlogn) times.

Proof. Whenever we visitv, we either increasesL(v)
(line 2), or we increaseN(v, j) for some j (line 5). The
former occurs at mostn− 1 times over the course of the
algorithm.

For the latter case, consider thejth counter. Whenever
the counter reaches 2j+2 it resets. LetΛi(v, j) denote the
value of v’s label associated with theith reset. Observe
Λi+1(v, j)≥ Λi(v, j)+2 j due to the update in line 7, or more
generallyΛi(v, j) ≥ i2 j . Sincen > L(v) ≥ Λ(v, j), it follows
that the maximum value ofi here is

⌊

(n−1)/2 j
⌋

, and hence
N(v, j) can be increased at most

2 j+2(⌊

(n−1)/2 j⌋+1
)

≤
2 j+2n

2 j +2 j+2≤ 4n+2 j+2

times. Summing over allO(logn) values of j gives
O(nlogn) counter increments and hence visitations ofv.

Combining Lemma 4.2 with a cost analysis of each call to
FOLLOW yields our total running time:

THEOREM 4.2. The total running time to perform up to m
edge insertions is O(n2 logn).

Proof. To reach this bound, we calculate the cost of each
call to FOLLOW, and multiply by the total number of times
that any node is visited. Ignoring lines 11–12, each step
of FOLLOW has constant cost. The only remaining cost
is due to finding edges to follow in the outgoing-edge data
structure. The outgoing-edge data structure is a size-n array
of linked lists. We visit each array cell only once over
the entire course of the algorithm, for an aggregate cost of
O(n). We charge theO(1) cost of traversing the linked list
against the outgoing edge followed. Multiplying the array-
traversal cost for each outgoing-edge data structure byn

vertices yields a total cost for our algorithm ofO(n2 + F),
whereF is the total number of edge followings. Applying
Lemma 4.2 completes the proof.

Finally, we show that our analysis is tight.

THEOREM 4.3. For any sufficiently large n, there exists a
sequence ofΘ(n2) edge insertions on an n-vertex dag that
causes our algorithm to followΩ(n2 logn) edges.

Proof. Without loss of generality, supposen = 3k−
4, wherek ≥ 23 is a power of 2. The graph we con-
struct consists of three categories of vertices: (1) vertices
u0,u1, . . . ,uk−1, (2) sets of verticesS0,S1, . . . ,Slg(k)−3 with
∣

∣Sj
∣

∣ = 2 j+2 (so
∑

j

∣

∣Sj
∣

∣ = k−4), and (3) a set of verticesT
with |T|= k. Initially there are no edges in the graph, and all
labels are 0.

First, add edges(ui ,ui+1) in order for 0≤ i < k− 1.
After these edge additions,L(ui) = i. These labels are
invariant over the remainder of the edge insertions — we
use these vertices as anchors to increase the labels of all the
other vertices. In fact, theonly time the labels of any other
vertexv∈ (

⋃

j Sj)∪T will increase is when adding an edge
(ui ,v).

The edge insertions proceed in phases ranging from 1 to
k. In phasei, first insert edge(ui−1, t) for all t ∈ T, thereby
increasingL(t) such thatL(t) = i. Next, consider eachj for
which i is a multiple of 2j . There are two cases.
Case 1: If i = 2 j , add edges(sj , t) for all sj ∈ Sj and
t ∈ T. Observe that before the edge addition,N(t, j) = 0,
Λ(t, j) = 0, andL(sj) = 0 = L(t)− 2 j . After the 2j+2th
edge insertion,N(t, j) reaches 2j+2. We have, however,
that L(t) ≥ Λ(t, j) + 2 j , and henceL(t) does not increase.
The counterN(t, j) is subsequently reset to 0, andΛ(t, j)←
L(t) = 2 j . Finally,cache(sj , t)← 2 j as well.
Case 2: Otherwise,i ≥ 2 · 2 j , and the edges(sj ,t) already
exist. Instead, insert edges(ui−2 j−1,sj), for all sj ∈ Sj . This
edge insertion causesL(sj) to increase to the next multiple
of 2 j . After the update, we haveL(sj) = cache(sj ,t) =
Λ(t, j) = i − 2 j , and hence all edges(sj , t) are followed.
The counterN(t, j) again resets to 0,Λ(t, j)← L(t) = i, and
finally cache(sj ,t)← i.

In both cases, whenever the phase numberi is a multiple
of 2 j , we follow all edges(sj , t) for all sj ∈ Sj and t ∈
T. Consider a fixedj. There are

∣

∣Sj
∣

∣ · |T| = 2 j+2k such
edges. Summing over allk/2 j phases during which the phase
number is a multiple of 2j , there are(2 j+2k)(k/2 j) = 4k2 =
Ω(n2) edge followings from vertices inSj to vertices inT.
Summing over all lg(k)−2 = Θ(logn) values of j yields a
total of Ω(n2 logn) edge followings.

5 Conclusion

We have shown in this paper how to solve the problem of in-
cremental topological ordering where the total cost of insert-

ing medges into a graph containingn vertices isO(n2 logn).
It supports order queries of the form “Doesu come beforev
in the topological ordering?” inO(1) time, and, with minor
modifications, it can support successor/predecessor queries
in O(1) time. For dense graphs wherem≥ n4/3 log2/3n, our
algorithm is the most efficient to date.

As presented, our algorithm requiresO(n2) space (in
terms of machine words, not bits); using a priority queue
to manage the outgoing edges should reduce the space to
O(m+nlogn) but increase the running time toO(n2 log2n).

The major open question is whether the new techniques
introduced in this paper can yield improvements in the sparse
case. For our algorithm, there exists an instance ofn−1 edge
insertions that requiresΩ(n2) work. For example, always
adding edges to the front of a chain results in relabelling
every node in the chain on every edge insertion. It would be
interesting, however, if some variant of our approach leads
to a good algorithm for sparse graphs.

Acknowledgements

We would like to give special thanks to Robert E. Tarjan and
the anonymous reviewers for detailed suggestions on how to
simplify and improve our algorithm. The current formulation
of our algorithm draws heavily on Tarjan’s comments, and
his suggestions also helped us to improve the running time
by a factor of logn.

References

[1] D. Ajwani and T. Friedrich. Average-case analysis of online
topological ordering. In T. Tokuyama, editor,ISAAC, volume
4835 ofLecture Notes in Computer Science, pages 464–475.
Springer, 2007.

[2] D. Ajwani, T. Friedrich, and U. Meyer. AnO(n2.75) algo-
rithm for online topological ordering. InProceedings of the
10th Scandinavian Workshop on Algorithm Theory, volume
4059 of Lecture Notes in Computer Science, pages 53–64.
Springer, 2006.

[3] B. Alpern, R. Hoover, B. K. Rosen, P. F. Sweeney, and F. K.
Zadeck. Incremental evaluation of computational circuits. In
Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 32–42, 1990.

[4] F. Belik. An efficient deadlock avoidance technique.IEEE
Transactions. on Computers, 39(7), 1990.

[5] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton,
and J. Zito. Two simplified algorithms for maintaining order
in a list. In Proceedings of the European Symposium on
Algorithms, pages 152–164, 2002.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Second Edition. MIT Press, 2001.

[7] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining
order in a list. InProceedings of the ACM Symposium on the
Theory of Computing, pages 365–372, May 1987.

[8] B. Haeupler, T. Kavitha, R. Mathew, S. Sen, and R. E. Tar-
jan. Faster algorithms for incremental topological ordering.

In Proceedings of the 35th International Colloquium on Au-
tomata, Languages, and Programming, July 2008.

[9] B. Haeupler, S. Sen, and R. E. Tarjan. Incremental topo-
logical ordering and strong component maintenance.CoRR,
abs/0803.0792, 2008.

[10] I. Katriel. On algorithms for online topological ordering and
sorting. Technical Report MPI-I-2004-1-003, Max-Planck-
Institut für Informatik, Saarbrücken, Germany, 2004.

[11] I. Katriel and H. L. Bodlaender. Online topological order-
ing. In Proceedings of the 16th ACM-SIAM Symposium
on Discrete Algorithms, pages 443–450, Vancouver, British
Columbia, Canada, January 2005.

[12] T. Kavitha and R. Mathew. Faster algorithms for online
topological ordering.CoRR, abs/0711.0251, 2007.

[13] H.-F. Liu and K.-M. Chao. A tight analysis of the katriel–
bodlaender algorithm for online topological ordering.Theo-
retical Computer Science, 389(1-2):182–189, 2007.

[14] A. Marchetti-Spaccamela, U. Nanni, and H. Rohnert. On-line
graph algorithms for incremental compilation. InProceed-
ings of the 19th International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 70–86, June 1993.

[15] A. Marchetti-Spaccamela, U. Nanni, and H. Rohnert. Main-
taining a topological order under edge insertions.Information
Processing Letters, 59(1):53–58, 1996.

[16] S. M. Omohundro, C. Lim, and J. Bilmes. The sather lan-
guage compiler/debugger implementation. Technical report,
International Computer Science Institute, Berkeley, March
1992.

[17] D. Pearce, P. Kelly, and C. Hankin. Online cycle detection
and difference propagation for pointer analysis. InProceed-
ings of the 3rd International Workshop on Source Code Anal-
ysis and Manipulation, pages 3–12, Sept. 2003.

[18] D. J. Pearce and P. H. J. Kelly. A dynamic algorithm for
topologically sorting directed acyclic graphs. InProceedings
of the 3rd International Workshop on Efficient Experimental
Algorithms, volume 3059 ofLecture Notes in Computer
Science, pages 383–398. Springer, 2004.

[19] G. Ramalingam and T. Reps. On competitive on-line algo-
rithms for the dynamic priority-ordering problem.Informa-
tion Processing Letters, 51(3):155–161, 1994.

