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Abstract. We give lower and upper bounds for the batched predecessor problem
in external memory. We study tradeoffs between the I/O budget to preprocess a
dictionary S versus the I/O requirement to find the predecessor in S of each ele-
ment in a query set Q. For Q polynomially smaller than S, we give lower bounds
in three external-memory models: the I/O comparison model, the I/O pointer-
machine model, and the indexability model.
In the comparison I/O model, we show that the batched predecessor problem
needs Ω(logB n) I/Os per query element (n = |S|) when the preprocessing is
bounded by a polynomial. With exponential preprocessing, the problem can be
solved faster, in Θ((log2 n)/B) per element. We give the tradeoff that quantifies
the minimum preprocessing required for a given searching cost.
In the pointer-machine model, we show that with O(n4/3−ε) preprocessing for
any constant ε > 0, the optimal algorithm cannot perform asymptotically faster
than a B-tree. In the indexability model, we exhibit the tradeoff between the re-
dundancy r and access overhead α of the optimal indexing scheme, showing that
to report all query answers in α(x/B) I/Os, log r = Ω((B/α2) log(n/B)).
Our lower bounds have matching or nearly matching upper bounds.

1 Introduction

A static dictionary is a data structure that represents a set S = {s1, s2, . . . , sn} subject
to the following operations:

PREPROCESS(S): Prepare a data structure to answer queries.
SEARCH(q, S): Return TRUE if q ∈ S and FALSE otherwise.
PREDECESSOR(q, S): Return maxsi∈S{si < q}.

The traditional static dictionary can be extended to support batched operations. Let
Q = {q1, . . . , qx}. Then, the batched predecessor problem can be defined as follows:

BATCHEDPRED(Q,S): Return A = {a1, . . . , ax}, where
ai = PREDECESSOR(qi, S).

This research was supported in part by NSF grants CCF 1114809, CCF 1114930,
CCF 1217708, IIS 1247726, IIS 1247750, and IIS 1251137.



In this paper we prove lower bounds on the batched predecessor problem in external
memory [3], that is, when the dictionary is too large to fit into main memory. We study
tradeoffs between the searching cost and the cost to preprocess the underlying set S. We
present our results in three models: the comparison-based I/O model [3], the pointer-
machine I/O model [18], and the indexability model [10, 11].

We focus on query size x ≤ nc, for constant c < 1. Thus, the query Q can be large,
but is still much smaller than the underlying set S. This query size is interesting because,
although there is abundant parallelism in the batched query, common approaches such
as linear merges and buffering [4, 6, 7] are suboptimal.

Our results show that the batched predecessor problem in external memory cannot
be solved asymptotically faster than Ω(logB n) I/Os per query element if the prepro-
cessing is bounded by a polynomial; on the other hand, the problem can be solved
asymptotically faster, in Θ((log2 n)/B) I/Os, if we impose no constraints on prepro-
cessing. These bounds stand in marked contrast to single-predecessor queries, where
one search costs Ω(logB n) even if preprocessing is unlimited.

We assume that S and Q are sorted. Without loss of generality, Q is sorted because
Q’s sort time is subsumed by the query time. Without loss of generality, S is sorted, as
long as the preprocessing time is slightly superlinear. We consider sorted S throughout
the paper. For notational convenience, we let s1 < s2 < · · · < sn and q1 < q2 < · · · <
qx, and therefore a1 ≤ a2 ≤ · · · ≤ ax.

Given that S and Q are sorted, an alternative interpretation of this paper is as fol-
lows: how can we optimally merge two sorted lists in external memory? Specifically,
what is the optimal algorithm for merging two sorted lists in external memory when
one list is some polynomial factor smaller than the other?

Observe that the naı̈ve linear-scan merging is suboptimal because it takes Θ(n/B)
I/Os, which is greater than the O(nc logB n) I/Os of a B-tree-based solution. Buffer
trees [4, 6, 7] also take Θ(n/B) I/Os during a terminal flush phase. This paper shows
that with polynomial preprocessing, performing independent searches for each element
in Q is optimal, but it is possible to do better for higher preprocessing.

Single and batched predecessor problems in RAM. In the comparison model, a
single predecessor can be found in Θ(log n) time using binary search. The batched
predecessor problem is solved in Θ(x log(n/x) + x) by combining merging and bi-
nary search [13, 14]. The bounds for both problems remain tight for any preprocessing
budget.

Pătraşcu and Thorup [15] give tight lower bounds for single predecessor queries in
the cell-probe model. We are unaware of prior lower bounds for the batched predecessor
problem in the pointer-machine and cell-probe models.

Although batching does not help algorithms that rely on comparisons, Karpinski
and Nekrich [12] give an upper bound for this problem in the word-RAM model (bit
operations are allowed), which achieves O(x) for all batches of size x = O(

√
log n)

(O(1) per element amortized) with superpolynomial preprocessing.

Batched predecessor problem in external memory. Dittrich et al. [8] consider mul-
tisearch problems where queries are simultaneously processed and satisfied by navi-
gating through large data structures on parallel computers. They give a lower bound
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of Ω(x logB(n/x) + x/B) under stronger assumptions: no duplicates of nodes are al-
lowed, the ith query has to finish before the (i + 1)st query starts, and x < n1/(2+ε),
for a constant ε > 0.

Buffering is a standard technique for improving the performance of external-
memory algorithms [4,6,7]. By buffering, partial work on a set of operations can share
an I/O, thus reducing the per-operation I/O cost. Queries can similarly be buffered. In
this paper, the number of queries, x, is much smaller than the size, n, of the data struc-
ture being queried. As a result, as the partial work on the queries progresses, the query
paths can diverge within the larger search structure, eliminating the benefit of buffering.

Goodrich et al. [9] present a general method for performing x simultaneous external
memory searches in O((n/B + x/B) logM/B(n/B)) I/Os when x is large. When x is
small, this technique achieves O(x logB(n/B)) I/Os with a modified version of the
parallel fractional cascading technique of Tamassia and Vitter [19].

Results

We first consider the comparison-based I/O model [3]. In this model, the problem
cannot be solved faster than Ω(logB n) I/Os per element if preprocessing is polynomial.
That is, batching queries is not faster than processing them one by one. With exponential
preprocessing, the problem can be solved faster, in Θ((log2 n)/B) I/Os per element. We
generalize to show a query-preprocessing tradeoff.

Next we study the pointer-machine I/O model [18], which is less restrictive than
the comparison I/O model in main memory, but more restrictive in external memory.6

We show that with preprocessing at most O(n4/3−ε) for constant ε > 0, the cost per
element is again Ω(logB n).

Finally, we turn to the more general indexability model [10, 11]. This model is
frequently used to describe reporting problems, and it focuses on bounding the number
of disk blocks that contain the answers to the query subject to the space limit of the data
structure; the searching cost is ignored. Here, the redundancy parameter r measures
the number of times an element is stored in the data structure, and the access overhead
parameter α captures how far the reporting cost is from the optimal.

We show that to report all query answers in α(x/B) I/Os, r = (n/B)Ω(B/α2). The
lower bounds in this model also hold in the previous two models. This result shows
that it is impossible to obtain O(1/B) per element unless the space used by the data
structure is exponential, which corresponds to the situation in RAM, where exponential
preprocessing is required to achieve O(1) amortized time per query element [12].

The rest of this section formally outlines our results.

Theorem 1 (Lower and upper bound, unrestricted preprocessing, I/O comparison
model). Let S be a set of size n and Q a set of size x ≤ nc, 0 ≤ c < 1. In the I/O
comparison model, computing BATCHEDPRED(Q,S) requires

Ω
( x
B

log
n

xB
+
x

B

)
6 An algorithm can perform arbitrary computations in RAM, but a disk block can be accessed

only via a pointer that has been seen at some point in past.
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I/Os in the worst-case, no matter the preprocessing. There exists a comparison-based
algorithm matching this bound.

Traditional information-theoretic techniques give tight sorting-like lower bounds for
this problem in the RAM model. In external memory, the analogous approach yields a
lower bound of Ω

(
x
B logM/B

n
x + x

B

)
. On the other hand, repeated finger searching

in a B-tree yields an upper bound of O(x logB n). Theorem 1 shows that both bounds
are weak, and that in external memory this problem has a complexity that is between
sorting and searching.

We can interpret results in the comparison model through the amount of information
that can be learned from each I/O. For searching, a block input reduces the choices for
the target position of the element by a factor of B, thus learning logB bits of informa-
tion. For sorting, a block input learns up to log

(
M
B

)
= Θ(B log(M/B)) bits (obtained

by counting the ways that an incoming block can intersperse with elements resident
in main memory). Theorem 1 demonstrates that in the batched predecessor problem,
the optimal, unbounded-preprocessing algorithm learns B bits per I/O, more than for
searching but less than for sorting.

The following theorem captures the tradeoff between the searching and preprocess-
ing: at one end of the spectrum lies a B-tree (j = 1) with linear construction time and
logB n searching cost per element, and on the other end is the parallel binary search
(j = B) with exponential preprocessing cost and (log2 n)/B searching cost. This trade-
off shows that even to obtain a performance that is only twice as fast as that of a B-tree,
quadratic preprocessing is necessary. To learn up to j log(B/j + 1) bits per I/O, the
algorithm needs to spend nΩ(j) in preprocessing.

Theorem 2 (Search-preprocessing tradeoff, I/O comparison model). Let S be a
set of size n and Q a set of size x ≤ nc, 0 ≤ c < 1. In the I/O comparison
model, computing BATCHEDPRED(Q,S) in O((x logB/j+1 n)/j) I/Os requires that
PREPROCESSING(S) use nΩ(j) blocks of space and I/Os.

In order to show results in the I/O pointer-machine model, we define a graph whose
nodes are the blocks on disk of the data structure and whose edges are the pointers
between blocks. Since a block has sizeB, it can contain at mostB pointers, and thus the
graph is fairly sparse. We show that any such sparse graph has a large set of nodes that
are far apart. If the algorithm must visit those well-separated nodes, then it must perform
many I/Os. The crux of the proof is that, as the preprocessing increases, the redundancy
of the data structure increases, thus making it hard to pin down specific locations of the
data structure that must be visited. We show that if the data structure is reasonable in
size—in our caseO(n4/3−ε)—then we can still find a large, well dispersed set of nodes
that must be visited, thus establishing the following lower bound:

Theorem 3 (Lower bound, I/O pointer-machine model). Let S be a set of size n.
In the I/O pointer-machine model, if PREPROCESSING(S) uses O(n4/3−ε) blocks of
space and I/Os, for any constant ε > 0, then there exists a constant c and a setQ of size
nc such that computing BATCHEDPRED(Q,S) requires Ω(x logB(n/x) + x/B) I/Os.
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We note that in this theorem, c is a function of ε in that, the smaller the preprocessing,
the larger the set for which the lower bound can be established.

Finally, we consider the indexability model [10, 11], where we show:

Theorem 4 (r − α tradeoff, indexability model). In the indexability model, any in-
dexing scheme for the batched predecessor problem with access overhead α ≤

√
B/4

has redundancy r satisfying log r = Ω
(
B log(n/B)/α2

)
.

A crucial ingredient in our proof is a well-known result from extremal set theory due
to Rödl [16]. Partly due to the techniques we use and partly due to the generality of
this model, we do not get lower bounds for query time exceeding Q/

√
B, which was

possible in the previous two models.

2 Batched Predecessor in the I/O Comparison Model

In this section we give the lower bound for when preprocessing is unrestricted. Then
we study the tradeoff between preprocessing and the optimal number of I/Os.

2.1 Lower Bounds for Unrestricted Space/Preprocessing

We begin with the definition of a search interval.

Definition 5 (Search interval). At step t of an execution, the search interval Sti =
[`ti, r

t
i ] for an element qi comprises those elements in S that are still potential values

for ai, given the information that the algorithm has learned so far. When there is no
ambiguity, the superscript t is omitted.

Proof of Theorem 1 (Lower Bound). Consider the following problem instance:

1. For all qi, |Si| = n/x. That is, all elements in Q have been given the first log x bits
of information about where they belong in S.

2. For all i and j (1 ≤ i 6= j ≤ x), Si ∩ Sj = ∅. That is, search intervals are disjoint.

We do not charge the algorithm for transferring elements of Q between main mem-
ory and disk. This accounting scheme is equivalent to allowing all elements of Q to
reside in main memory at all times while still having the entire memory free for other
manipulations. Storing Q in main memory does not provide the algorithm with any
additional information, since the sorted order of Q is already known.

Now we only consider I/Os of elements in S. Denote a block being input as b =
(b1, . . . , bB). Observe that every bi (1 ≤ i ≤ B) belongs to at most one Sj . The element
bi acts as a pivot and helps qj learn at most one bit of information—by shrinking Sj to
its left or its right half.

Since a single pivot gives at most one bit of information, the entire block b can
supply at most B bits, during an entire execution of BATCHEDPRED(Q,S).

We require the algorithm to identify the final block in S where each qi belongs.
Thus, the total number of bits that the algorithm needs to learn to solve the problem
is Ω(x log(n/xB)). Along with the scan bound to output the answer, the minimum
number of block transfers required to solve the problem is Ω

(
x
B log n

xB + x
B

)
. ut
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We devise a matching algorithm (assuming B log n < M ), which has O(nB) pre-
processing cost. This algorithm has huge preprocessing costs but establishes that the
lower bound from Theorem 1 is tight.
Proof of Theorem 1 (Upper Bound). The algorithm processes Q in batches of size B,
one batch at a time. A single batch is processed by simultaneously performing binary
search on all elements of the batch until they find their rank within S.

In the preprocessing phase, the algorithm produces all
(
n
B

)
possible blocks. The

algorithm also constructs a perfectly balanced binary search tree T on S. The former
takes at most B

(
n
B

)
I/Os, which is O(nB), while the latter has a linear cost. The

(
n
B

)
blocks are laid out in a lexicographical order in external memory, and it takes B log n
bits to address the location of any block. ut

2.2 Preprocessing-Searching Tradeoffs

We give a lower bound on the space required by the batched predecessor problem when
the budget for searching is limited. We prove Theorem 2 by proving Theorem 7.

Definition 6. An I/O containing elements of S is a j-parallelization I/O if j distinct
elements of Q acquire bits of information during this I/O.

Theorem 7. For x ≤ n1−ε (0 < ε ≤ 1) and a constant γ > 0, any algorithm that
solves BATCHEDPRED(Q,S) in at most (γx log n)/(j log(B/j + 1)) + x/B I/Os re-

quires at least
(
εjnε/2/2eγB

)εj/2γ
I/Os for preprocessing in the worst case.

Proof. The proof is by a deterministic adversary argument. In the beginning, the adver-
sary partitions S into x equal-sized chunks C1, . . . , Cx, and places each query element
into a separate chunk (i.e., Si = Ci). Now each element knows log x ≤ (1 − ε) log n
bits of information. Each element is additionally given half of the number of bits that re-
main to be learned. This leaves another T ≥ (εx log n)/2 total bits yet to be discovered.
As in the proof of Theorem 1, we do not charge for the inputs of elements in Q, thereby
stipulating that all remaining bits to be learned are through the inputs of elements of S.

Lemma 8. To learn T bits in at most (γx log n)/(j log(B/j + 1)) I/Os, there must be
at least one I/O in which the algorithm learns at least (j log(B/j + 1))/a bits, where
a = 2γ/ε.

If multiple I/Os learn at least (j log(B/j + 1))/a bits, consider the last such I/O
during the algorithm execution. Denote the contents of the I/O as bi = (p1, . . . , pB).

Lemma 9. The maximum number of bits an I/O can learn while parallelizing d ele-
ments is d log(B/d+ 1).

Lemma 10. The I/O bi parallelizes at least j/a elements.

Proof. Given that the most bits an I/O can learn while parallelizing j/a − 1 elements
is (j/a− 1) log (B/(j/a− 1) + 1) bits. For all a ≥ 1 and j ≥ 2, ja log

(
B
j + 1

)
>(

j
a − 1

)
log
(

B
j/a−1 + 1

)
. Thus, we can conclude that with the block transfer of bi, the

algorithm must have parallelized strictly more than j/a− 1 distinct elements. ut
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We focus our attention on an arbitrarily chosen group of j/a elements parallelized
during the transfer of bi = {p1, . . . , pB}, which we call q1, . . . , qj/a.

Lemma 11. For every qu parallelized during the transfer of bi there is at least one
pivot pv , 1 ≤ v ≤ B, such that pv ∈ Su.

Consider the vector V = (S1, S2, . . . , Sj/a) where Su denotes the search interval
of qu right before the input of bi.

Each element of Q has acquired at least (1 − ε/2) log n bits, (ε log n)/2 of which
were given for free after the initial (1− ε) log n. For any i, the total number of distinct
choices for Si in the vector V is at least nε/2, because the element could have been sent
to any of these nε/2-sized ranges in the initial nε range. We obtain the following:

Lemma 12. The number of distinct choices for V at the time of parallelization is at
least njε/2a.

Lemma 13. For each of the njε/2a choices of V = (S1, . . . , Sj/a) (arising from the
nε/2 choices for each Si), there must exist a block with pivots p1, p2, . . . , pj/a, such
that pk ∈ Sk.

If the algorithm did not preprocess a block for each vector choice, the adversary
could scan all blocks, find a vector for which no block exists, and assign those search
intervals to q1, . . . , qj/a, thus avoiding parallelization.

The same block can serve multiple vector choices, because the block hasB elements
and we are parallelizing only j/a elements. The next lemma quantifies the maximum
number of vectors covered by one block.

Lemma 14. A block can cover at most
(
B
j/a

)
distinct vector choices.

As a consequence, the minimum number of blocks the algorithm needs to prepro-
cess is at least njε/2a/

(
B
j/a

)
≥
(
nε/2/(eaB/j)

)j/a
. Substituting for the value of a, we

get that the minimum preprocessing is at least
(
εjnε/2/2eγB

)εj/2γ
. ut

Algorithms. An algorithm that runs in O((x log n)/j log(B/j + 1) + x/B) I/Os fol-
lows an idea similar to the optimal algorithm for unrestricted preprocessing. The dif-
ference is that we preprocess

(
n
j

)
blocks, where each block correspond to a distinct

combination of some j elements. The block will contain B/j evenly spaced pivots for
each element. The searching algorithm uses batches of size j.

3 Batched Predecessor in the I/O Pointer-Machine Model

Here we analyze the batched predecessor problem in the I/O pointer-machine model.
We show that if the preprocessing time is O(n4/3−ε) for any constant ε > 0, then
there exists a query set Q of size x such that reporting BATCHEDPRED(Q,S) requires
Ω(x/B+x logB n/x) I/Os. Before proving our theorem, we briefly describe the model.
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I/O pointer machine model. The I/O pointer machine model [18] is a generaliza-
tion of the pointer machine model introduced by Tarjan [21]. Many results in range
reporting have been obtained in this model [1, 2].

To answer BATCHEDPRED(Q,S), an algorithm preprocesses S and builds a data
structure comprised of nk blocks, where k is a constant to be determined later. We use
a directed graph G = (V,E) to represent the nk blocks and their associated directed
pointers. Every algorithm that answers BATCHEDPRED(Q,S) begins at the start node
v0 in V and at each step picks a directed edge to follow from those seen so far. Thus,
the nodes in a computation are all reachable from v0. Furthermore, each fetched node
contains elements from S, and the computation cannot terminate until the visited set of
elements is a superset of the answer set A. A node in V contains at most B elements
from S and at most B pointers to other nodes.

Let L(W ) be the union of the elements contained in a node set W , and letN (a) be
the set of nodes containing element a. We say that a node setW covers a set of elements
A if A ⊆ L(W ). An algorithm for computing A can be modeled as the union of a set
of paths from v0 to each node in a node set W that covers A.

To prove a lower bound on BATCHEDPRED(Q,S), we show that there is a query
set Q whose answer set A requires many I/Os. In other words, for every node set W
that coversA, a connected subgraph spanningW contains many nodes. We achieve this
result by showing that there is a set A such that, for every pair of nodes a1, a2 ∈ A,
the distance between N (a1) and N (a2) is large, that is, all the nodes in N (a1) are far
from all the nodes inN (a2). Since the elements ofA can appear in more than one node,
we need to guarantee that the node set V of G is not too large; otherwise the distance
between N (a1) and N (a2) can be very small. For example, if |V | ≥

(
n
2

)
, every pair of

elements can share a node, and a data structure exists whose minimum pairwise distance
between any N (a1) and N (a2) is 0.

First, we introduce two measures of distance between nodes in any (undirected or di-
rected) graphG = (V,E). Let dG(u, v) be the length of the shortest (di-)path from node
u to node v in G. Furthermore, let ΛG(u, v) = minw∈V (dG(w, u) + dG(w, v)). Thus,
ΛG(u, v) = dG(u, v) for undirected graphs, but not necessarily for directed graphs.

For each W ⊆ V , define fG(W ) to be the minimum number of nodes in any con-
nected subgraphH such that (1) the node set ofH containsW∪{v0} and (2)H contains
a path from v0 to each v ∈ W . Observe that fG({u, v}) ≥ ΛG(u, v). The following
lemma gives a more general lower bound for fG(W ). In other words, the size of the
graph containing nodes of W is linear in the minimum pairwise distance within W .

Lemma 15. For any directed graph G = (V,E) and any W ⊆ V of size |W | ≥ 2,
fG(W ) ≥ rW |W |/2, where rW = minu,v∈W,u 6=v ΛG(u, v).

Proof Sketch. Consider the undirected version of G, and consider a TSP of the nodes in
W . It must have length rW |W |. Any tree that spans W must therefore have size at least
rW |W |/2. Finally, fG(W ) contains a tree that spans W . ut

Our next goal is to find a query set Q such that every node set W that covers the
corresponded answer setA has a large rW . The answer setA will be an independent set
of a certain kind, that we define next. For a directed graph G = (V,E) and an integer
r > 0, we say that a set of nodes I ⊆ V is r-independent if ΛG(u, v) > r for all
u, v ∈ I where u 6= v. The next lemma guarantees a substantial r-independent set.
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Lemma 16. Given a directed graph G = (V,E), where each node has out-degree at
most B ≥ 2, there exists an r-independent set I of size at least |V |2

|V |+4r|V |Br .

Proof. Construct an undirected graph H = (U,F ) such that U = V and (u, v) ∈ F
iff ΛG(u, v) ∈ [1, r]. Then, H has at most 2r|V |Br edges. By Turán’s Theorem [20],
there exists an independent set of the desired size in H , which corresponds to an r-
independent set in G, completing the proof. ut

In addition to r-independence, we want the elements in A to occur in few blocks,
in order to control the possible choices of the node set W that covers A. We define the
redundancy of an element a to be |N (a)|. Because there are nk blocks and each block
has at most B elements, the average redundancy is O(nk−1B). We say that an element
has low redundancy if its redundancy is at most twice the average. We show that there
exists an r-independent set I of size nε (here ε depends on r) such that no two blocks
share the same low-redundancy element. We will then construct our query set Q using
this set of low-redundancy elements in this r-independent set.7

Finally, we add enough edges to place all occurrences of every low-redundancy
element within ρ < r/2 of all other occurrences of that element. We show that we can
do this by adding few edges to each node, therefore maintaining the sparsity ofG. Since
this augmented graph also contains a large r-independent set, all the nodes of this set
cannot share any low-redundancy elements.

The following lemma shows that nodes sharing low-redundancy elements can be
connected with low diameter and small degrees.

Lemma 17. For any k > 0 and m > k there exists an undirected k-regular graph H
of order m having diameter logk−1m+ o(logk−1m).

Proof. In [5], Bollobás shows that a random k-regular graph has the desired diameter
with probability close to 1. Thus there exists some graph satisfying the constraints. ut

Consider two blocks B1 and B2 in the r-independent set I above, and let a and
b be two low-redundancy elements such that a ∈ B1, b /∈ B1 and a /∈ B2, b ∈ B2.
Any other pair of blocks B

′

1 and B
′

2 that contain a and b respectively must be at least
(r − 2ρ) apart, since B

′

i is at most ρ apart from Bi. By this argument, every node set
W that covers A has rW ≥ (r − 2ρ). Now, by Lemma 15, we get a lower bound of
Ω((r − 2ρ)|W |) on the query complexity of Q. We choose r = c1 logB(n/x) and get
ρ = c2 logB(n/x) for appropriate constants c1 > 2c2. This is the part where we require
the assumption that k < 4/3 as shown in Theorem 3, where nk was the size of the
entire data structure. We then apply Lemma 16 to obtain that |W | = Ω(x).

Proof of Theorem 3. We partition S into S` and Sh by the redundancy of elements
in these nk blocks and claim that there exists A ⊆ S` such that query time for the
corresponded Q matches the lower bound.

Let S` be the set of elements of redundancy no more than 2Bnk/n (i.e., twice of the
average redundancy). The rest of elements belong to Sh. By the Markov inequality, we

7 Our construction does not work if the query set contains high redundancy elements, because
high redundancy elements might be placed in every block.
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have |S`| = Θ(n) and |Sh| ≤ n/2. Let G = (V,E) represent the connections between
the nk blocks as the above stated. We partition V into V1 and V2 such that V1 is the set
of blocks containing some elements in S` and V2 = V \ V1. Since each block can at
most contain B elements in S`, |V1| = Ω(n/B).

Then, we add some additional pointers to G and obtain a new graph G′ such that, for
each e ∈ S`, every pair u, v ∈ N (e) has small ΛG′(u, v). We achieve this by, for each
e ∈ S`, introducing graph He to connect all the nk blocks containing element e such
that the diameter in He is small and the degree for each node in He is O(Bδ) for some
constant δ. By Lemma 17, the diameter of He can be as small as

ρ ≤ 1

δ
logB |He|+ o(logB |He|) ≤

k − 1

δ
logB n+ o(logB n).

We claim that the graph G′ has a (2ρ + ε)-independent set of size nc, for some
constants ε, c > 0. For the purpose, we construct an undirected graph H(V1, F ) such
that (u, v) ∈ F iff ΛG′(u, v) ≤ r. Since the degree of each node in G′ is bounded by
O(Bδ+1), by Lemma 16, there exists an r-independent set I of size

|I| ≥ |V1|2

|V1|+ 4r|V |O(Br(δ+1))
≥ n2−k

4rO(Br(δ+1)+2)
= nc.

Then, r = ((2− k − c) logB n)/(δ + 1) + o(logB n). To satisfy the condition made in
the claim, let r > 2ρ. Hence, (2 − k − c)/(δ + 1) > 2(k − 1)/δ. Then, k → 4/3 for
sufficiently large δ. Observe that, for each e ∈ S`, e is contained in at most one node in
I; in addition, for every pair e1, e2 ∈ S` where e1, e2 are contained in separated nodes
in I , then ΛG′(u, v) ≥ ε for any u 3 e1, v 3 e2. By Lemma 15, we are done. ut

4 Batched Predecessor in the Indexability Model

This section analyzes the batched predecessor problem in the indexability model [10,
11]. This model is used to analyze reporting problems by focusing on the number of
blocks that an algorithm must access to report all the query results. Lower bounds on
queries are obtained solely based on how many blocks were preprocessed. The search
cost is ignored—the blocks containing the answers are given to the algorithm for free.

A workload is given by a pairW = (S,A), where S is the set of n input objects,
and A is a set of subsets of S—the output to the queries. An indexing scheme I for a
given workloadW is given by a collection B ofB-sized subsets of S such that S = ∪B;
each b ∈ B is called a block.

An indexing scheme has two parameters associated with it. The first parameter,
called the redundancy, represents the average number of times an element is replicated
(i.e., an indexing scheme with redundancy r uses rdn/Be blocks). The second param-
eter is called the access overhead. Given a query with answer A, the query time is
min{|B′ | : B′ ⊆ B, A ⊆ ∪B′}, because this is the minimum number of blocks that
contain all the answers to the query. If the size of A is x, then the best indexing scheme
would require a query time of dx/Be. The access overhead of an indexing scheme is
the factor by which it is suboptimal. An indexing scheme with access overhead α uses
αdx/Be I/Os to answer a query of size x in the worst case.
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Every lower bound in this model applies to our previous two models as well. To
show the tradeoff between α and r, we use the Redundancy Theorem from [11, 17]:

Theorem 18 (Redundancy Theorem [11, 17]). For a workload W = (S,A) where
A = {A1, · · · , Am}, let I be an indexing scheme with access overhead α ≤

√
B/4

such that for any 1 ≤ i, j ≤ m, i 6= j, |Ai| ≥ B/2 and |Ai ∩ Aj | ≤ B/(16α2). Then
the redundancy of I is bounded by r ≥ 1

12n

∑m
i=1 |Ai|.

Proof of Theorem 4. For the sake of the lower bound, we restrict to queries where all the
reported predecessors reported are distinct. To use the redundancy theorem, we want to
create as many queries as possible.

Call a family of k-element subsets of S β-sparse if any two members of the family
intersect in less than β elements. The size C(n, k, β) of a maximal β-sparse family is
crucial to our analysis. For a fixed k and β this was conjectured to be asymptotically
equal to

(
n
β

)
/
(
k
β

)
by Erdös and Hanani and later proven by Rödl in [16]. Thus, for large

enough n, C(n, k, β) = Ω(
(
n
β

)
/
(
k
β

)
).

We now pick a (B/2)-element,B/(16α2)-sparse family of S, where α is the access
overhead of I. The result in [16] gives us that

C

(
n,
B

2
,
B

16α2

)
= Ω

((
n

B/ (16α2)

)
/

(
B/2

B/ (16α2)

))
.

Thus, there are at least (2n/eB)B/(16α2) subsets of size B/2 such that any pair
intersects in at most B/(16α2) elements. The Redundancy Theorem then implies that
the redundancy r is greater than or equal to (n/B)Ω(B/α2), completing the proof. ut

We describe an indexing scheme that is off from the lower bound by a factor α.

Theorem 19 (Indexing scheme for the batched predecessor problem). Given any
α ≤
√
B, there exists an indexing scheme Iα for the batched predecessor problem with

access overhead α2 and redundancy r = O((n/B)B/α
2

)

Proof. Call a family of k-element subsets of S β-dense if any subset of S of size β is
contained in at least one member from this family. Let c(n, k, β) denote the minimum
number of elements of such a β-dense family. Rödl [16] proves that for a fixed k and β,

lim
n→∞

c(n, k, β)
(
k
β

)(
n
β

)−1
= 1,

and thus, for large enough n, c(n, k, β) = O(
(
n
β

)
/
(
k
β

)
).

The indexing scheme Iα consists of all sets in a B-element, (B/α2)-dense family.
By the above, the size of Iα is O((n/B)B/α

2

).
Given a query answerA = {a1, · · · , ax} of size x, fix 1 ≤ i < dx/Be and consider

theB-element sets Ci = {a(i−1)B , · · · , aiB} (Cdx/Be may have less thanB elements).
Since Iα is an indexing scheme, we are told all the blocks in Iα that contain the ais. By
construction, there exists a block in Iα that contains a 1/α2 fraction ofCi. In at most α2

I/Os we can output Ci, by reporting B/α2 elements in every I/O. The number of I/Os
needed to answer the entire answer A is thus α2dx/Be, which proves the theorem. ut
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