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ABSTRACT

The packed-memory array (PMA) is a data structure that
maintains a dynamic set of N elements in sorted order in a
O(N)-sized array. The idea is to intersperse ©(N) empty spaces
or gaps among the elements so that only a small number of ele-
ments need to be shifted around on an insert or delete. Because
the elements are stored physically in sorted order in memory
or on disk, the PMA can be used to support extremely efficient
range queries. Specifically, the cost to scan L consecutive ele-
ments is O(1 +L/B) memory transfers.

This paper gives the first adaptive packed-memory array
(APMA), which automatically adjusts to the input pattern. Like
the original PMA, any pattern of updates costs only 0(log2 N)
amortized element moves and O(1 + (log? N)/B) amortized
memory transfers per update. However, the APMA performs
even better on many common input distributions achieving
only O(log N) amortized element moves and O(1+ (logN)/B)
amortized memory transfers. The paper analyzes sequential
inserts, where the insertions are to the front of the APMA,
hammer inserts, where the insertions “hammer” on one part
of the APMA, random inserts, where the insertions are after
random elements in the APMA, and bulk inserts, where for
constant o € [0, 1], N* elements are inserted after random el-
ements in the APMA. The paper then gives simulation results
that are consistent with the asymptotic bounds. For sequential
insertions of roughly 10° elements, the APMA has five times
fewer element moves per insertion than the traditional PMA
and running times that are more than five times faster.

Categories and Subject Descriptors: D.1.0 [Programming
Techniques]: General; E.1 [Data Structures]: Arrays; E.1
[Data Structures]: Lists, stacks, and queues; E.5 [Files]: Sort-
ing/searching; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval.

General Terms: Algorithms, Experimentation, Performance,
Theory.

Keywords: Adaptive Packed-Memory Array, Cache Obliv-
ious, Locality Preserving, Packed-Memory Array, Range
Query, Rebalance, Sequential File Maintenance, Sequential
Scan, Sparse Array.

1. INTRODUCTION

A classical problem in data structures and databases is how
to maintain a dynamic set of N elements in sorted order in
a O(N)-sized array. The idea is to intersperse O(N) empty
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spaces or gaps among the elements so that only a small number
of elements need to be shifted around on an insert or delete.
These data structures effectively simulate a library bookshelf,
where gaps on the shelves mean that books are easily added
and removed.

Remarkably, such data structures can be efficient for any
pattern of inserts/deletes. Indeed, it has been known for
over two decades that the number of element moves per up-
date is only O(log?N) both amortized [14] and in the worst
case [18-20]. Since these data structures were proposed, this
problem has been studied under different names, including
sparse arrays [14,15], sequential file maintenance [18-20],
and list labeling [10-13]. The problem is also closely related
to the order-maintenance problem [1, 10,12, 17].

Recently there has been renewed interest in these sparse-
array data structures because of their application in I/O-
efficient and cache-oblivious algorithms. The I/O-efficient and
cache oblivious version of the sparse array is called the packed
memory array (PMA) [2,3]. The PMA maintains N elements
in sorted order in a ©®(N)-sized array. It supports the opera-
tions insert, delete, and scan. Let B be the number of elements
that fit within a memory block. To insert an element y after a
given element x or to delete x costs O(log? N) amortized ele-
ment moves and O(1 + (log? N)/B) amortized memory trans-
fers. The PMA maintains the density invariant that in any
region of size S (for § greater than some small constant value),
there are ©(S) elements stored in it. To scan L elements after
a given element x costs ©(1 + L/B) memory transfers.

The PMA has been used in cache-oblivious B-trees [2-6,9],
concurrent cache-oblivious B-trees [8], cache-oblivious string
B-tree [6], and scanning structures [1]. A sparse array in the
same spirit as the PMA was independently proposed and used
in the locality-preserving B-tree of [16], although the asymp-
totic space bounds are superlinear and therefore inferior to
the linear space bounds of the earlier sparse-array data struc-
tures [14, 18-20] and the PMA [2,3].

The primary use of the PMA in the literature has been for
sequential storage in memory/disk of all the elements of a
(cache-oblivious or traditional) B-tree. An early paper sug-
gesting this idea was [16]. The PMA maintains locality of ref-
erence at all granularities and consequently supports extremely
efficient sequential scans/range queries of the elements. The
concern with traditional B-trees is that the 2K or 4K sizes
of disk blocks are too small to amortize the cost of disk
seeks. Consequently, on modern disks, random block accesses
are well over an order-of-magnitude slower than sequential
block accesses. Thus, locality-preserving B-trees and cache-
oblivious B-trees based on PMAs support range queries that
run an order of magnitude faster than those of traditional B-
trees [6]. Moreover, since the elements are maintained strictly
in sorted order, these structures do not suffer from aging unlike
most file systems and databases.

The PMA is an efficient and promising data structure, but



it also has weaknesses. The main weakness is that the PMA
performs relatively poorly on some common insertion patterns
such as sequential inserts. For sequential inserts, the PMA
performs near its worst in terms of the number of elements
moved per insert. The PMA’s difficulty with sequential inserts
is that the insertions “hammer” on one part of the array, caus-
ing many elements to be shifted around. Although O(log> N)
amortized elements moves and O(1 + (log> N)/B) amortized
memory transfers is surprisingly good considering the strin-
gent requirements on the data order, it is relatively slow com-
pared with traditional B-tree inserts. Moreover, sequential in-
serts are common, and B-trees in databases are frequently op-
timized for this insertion pattern. It would be better if the PMA
could perform near its best, not worst, in this case.

In contrast, one of the PMA’s strengths is its performance
on common insertion patterns such as random inserts. For
random inserts, the PMA performs extremely well with only
O(logN) element moves per insert and only O(1+ (logN)/B)
memory transfers. This performance surpasses the guarantees
for arbitrary inserts.

Results. This paper proposes an adaptive packed-memory ar-
ray (abbreviated adaptive PMA or APMA), which overcomes
these deficiencies of the traditional PMA. Our structure is
the first PMA that adapts to insertion patterns, and it gives
the largest decrease in the cost of sparse arrays/sequential-file
maintenance in almost two decades. The APMA retains the
same amortized guarantees as the traditional PMA, but adapts
to common insertion patterns, such as sequential inserts, ran-
dom inserts, and bulk inserts, where chunks of elements are
inserted at random locations in the array.
We give the following results for the APMA:

o We first show that the APMA has the “rebalance prop-
erty”, which ensures that any pattern of insertions cost
only O(1 + (log? N)/B) amortized memory transfers
and O(log? N) amortized element moves. Because the
elements are kept in sorted order in the APMA, as with
the PMA, scans of L elements costs O(1 + L/B) mem-
ory transfers. Thus, the adaptive PMA guarantees per-
formance at least as good as that of the traditional PMA.

We next analyze the performance of the APMA under some
common insertion patterns.

e We show that for sequential inserts, where all the in-
serts are to the front of the array, the APMA makes only
O(logN) amortized element moves and O((logN/B) +
1) amortized memory transfers.

e We generalize this analysis to hammer inserts, where
the inserts hammer on any single element in the array.

e We then turn to random inserts, where each insert oc-
curs after a randomly chosen element in the array. We
establish that the insertion cost is again only O(logN)
amortized element moves and O((logN/B) + 1) amor-
tized memory transfers.

e We generalize all these previous results by analyzing the
case of bulk inserts. In the bulk-insert insertion pat-
tern, we pick a random element in the array and per-
form N inserts after that element for o € [0,1]. We
show that for all values of o € [0, 1], the APMA also
only performs O(log N) amortized element moves and
O(1+ (logN)/B) amortized memory transfers.

e We next perform simulations and experiments, measur-
ing the performance of the APMA on these insertion
patterns. For sequential insertions of roughly 1.4 mil-
lion elements, the APMA has over four times fewer ele-
ment moves per insertion than the traditional PMA and
running times that are nearly seven times faster. For bulk
insertions of 1.4 million elements, where f(N) = N0©,
the APMA has over three times fewer element moves
per insertion than the traditional PMA and running times
that are over four times faster.

2. ADAPTIVE PMA

In this section we introduce the adaptive PMA. We first
explain how the adaptive PMA differs from the traditional
PMA. We then show that both PMAs have the same amortized
bounds, O(log?N) element moves and O(1 + (log”N)/B)
memory transfers per insert/delete. Thus, adaptivity comes at
no extra asymptotic cost.

Description of Traditional and Adaptive PMAs. We first
describe how to insert into both the adaptive and traditional
PMAs. Henceforth, PMA with no preceding adjective refers
to either structure. When we insert an element y after an exist-
ing element x in the PMA, we look for a neighborhood around
element x that has sufficiently low density, that is, we look for
a subarray that is not storing too many or too few elements.
Once we find a neighborhood of the appropriate density, we
rebalance the neighborhood by spacing out the elements, in-
cluding y. In the traditional PMA, we rebalance by spacing
out the elements evenly. In the adaptive PMA, we may rebal-
ance the elements unevenly, based on previous insertions, that
is, we leave extra gaps near elements that have recently had
inserts after them.

We now give some terminology. We divide the PMA into
O(N/logN) segments, each of size ©(logN), and we let the
number of segments be a power of 2. We call a contiguous
group of segments a window. We view the PMA in terms of
a tree structure, where the nodes of the tree are windows. The
root node is the window containing all segments, and a leaf
node is a window containing a single segment. A node in the
tree that is a window of 2! segments has two children, a left
child that is the window of the first 2~ ! segments and a right
child that is the window of the last 2! segments.

We let the height of the tree be £, so that 2" = ©(N/log N)
and h =1gN —1glgN + O(1). The nodes at each height ¢ have
an upper density threshold t; and a lower density threshold
p¢, which together determine the acceptable density of keys
within a window of 2¢ segments. As the node height increases,
the upper density thresholds decrease and the lower density
thresholds increase. Thus, for constant minimum and maxi-
mum densities D,,, and D,,,,, we have

Dyin = po <+ <Pp < T <+ < T = Dy ey

The density thresholds on windows of intermediate powers
of 2 are arithmetically distributed. For example, the maximum
density threshold of a segment can be set to 1.0, the maxi-
mum density threshold of the entire array to 0.5, the minimum
density threshold of the entire array to 0.2, and the minimum
density of a segment to 0.1. If the PMA has 32 segments, then
the maximum density threshold of a single segment is 1.0, of



two segments is 0.9, of four segments is 0.8, of eight segments
is 0.7, of 16 segments is 0.6, and of all 32 segments is 0.5.

More formally, upper and lower density thresholds for
nodes and height ¢ are defined as follows:

T = Tt (to—Tth)(h—L)/h 2)
pe = pPn—(Pn—po)(h—1€)/h. 3)

Moreover,
205 < Tns 4

because when we double the size of an array that becomes too
dense, the new array must be within the density threshold.!

We now give more details about how to insert element y af-
ter an existing element x. If there is enough space in the leaf
(segment) containing x, then we rearrange the elements within
the leaf to make room for y. If the leaf is full, then we find the
closest ancestor of the leaf whose density is within the permit-
ted thresholds and rebalance. To delete an element x, we re-
move x from its segment. If the segment falls below its density
threshold, then, as before, we find the smallest enclosing win-
dow whose density is within threshold and rebalance. If the
entire array is above the maximum density threshold (resp.,
below the minimum density threshold), then we recopy the
keys into a PMA of twice (resp., half) the size.

We introduce further notation. Let Cap (uy) denote the num-
ber of array positions in node u; of height /. Since there
are 2¢ segments in the node, the capacity is G)(ZZ logN). Let
Gaps(uy) denote the number of gaps, i.e., unfilled array po-
sitions in node uy. Let Density(u;) denote the fraction of
elements actually stored in node uy, i.e., Density(uy) = 1 —
Gaps(ug)/Cap(uy).

Rebalance. We rebalance a node uy of height ¢ if uy is within
threshold, but we detect that a child node uy_; is outside of
threshold. Any node whose elements are rearranged in the
process of a rebalance is swept. Thus, we sweep a node uy of
height £ when we detect that a child node uy_; is outside of
threshold, but now uy need not be within threshold. Note that
with this rebalance scheme, this tree can be implicitly rather
than explicitly maintained. In this case, a rebalance consists of
two scans, one to the left and one to the right of the insertion
point until we find a region of the appropriate density.

In a traditional PMA we rebalance evenly, whereas in the
adaptive PMA we rebalance unevenly. The idea of the APMA
is to store a smaller number of elements in the leaves in which
there have been many recent inserts. However, since we must
maintain the bound of O(log? N) amortized element moves,
we cannot let the density of any child node be too high or too
low.

PROPERTY 1. (rebalance property) After a rebalance, if
each node uy (except the root of the rebalancing subtree) has
density within ug’s parent’s thresholds, then we say that the re-
balance satisfies the rebalance property. We say that a node
is within balance or well balanced if uy is within its parent’s
thresholds.

IThere are straightforward ways to generalize (4) to further
reduce space usage. Introducing this generalization here leads
to unnecessary complication in presentation.

The following theorem shows if each rebalance satisfies the
rebalance property, then we achieve good update bounds. The
proof is essentially that in [2, 3], but the rebalance property
applies to a wide set of rebalancing schemes.

THEOREM 1. Ifthe rebalance in a PMA satisfies the rebal-
ance property, then updates take 0(log2 N) amortized element
moves and O(1 + (log? N) /B) amortized memory transfers.

PROOF.  Let uy be a node at level /. A rebalance of uy is
trigged by an insert or delete that pushes one descendant node
u; at each height i = 0,...,/ — 1 above its upper threshold T;
or below its lower threshold p;. (If this were not the case, then
we would rebalance a node of a lower height than ¢.)

Consider one particular such node u;. Before the sweep of
u;’s parent ;. 1,

Density(u;) >1; or Density(u;) < p;.
After the sweep of 1,1, by the rebalance property,
Pi+1 < Density (u;) < Tjy 1.
Therefore we need at least
(i — Tit1)Cap(u;)
inserts or at least
(Pi+1— pi)Cap(u;)

deletes before the next sweep of node u;. Therefore the
amortized size of a sweep of node u; ;| per insert into child
node u; is at most

max{ Cap(uit1) Cap(ujy 1) }
(ti —Tip1)Cap(u;) " (Piv1 — pi)Cap(u;)

)
maxy ——,————
Ti—Tirl Pi+1 —Pi

= O(logN).

When we insert an element into the PMA, we actually in-
sert into & = ©(log N) such nodes u;, one at each level in the
tree. Therefore the total amortized size of a rebalance per
insertion into the PMA is O(log?N). Thus, the amortized
number of element moves per insert is O(log? N). Because
a rebalance is composed of a constant number of sequential
scans, the amortized number of memory transfers per insert is
O(1 + (log® N)/B), as promised.

Prediction. In apredictor data structure, we store a small col-
lection of elements that directly precede the newly inserted
elements. For each of these marker elements, we count the
number of recently inserted elements that directly follow the
marker. We store the current leaf node where each marker el-
ement resides.

We give some terminology for prediction: For an element x,
let insert number 1(x) denote a count from O to log N estimat-
ing the number of inserts after x in the last O(log? N) inserts:

I(x) = min{logN, estimate of the number of inserts after

x roughly from the last O(log? N) inserts }.

Furthermore, if x is not in the predictor, then we set I(x) = 0.
For a node uy at level £, let insert number 1(u;) be the sum



of the insert numbers of elements in ;. When rebalancing a
node, we reallocate elements unevenly among its descendant
leafs according to their insert numbers. The larger the insert
number, the fewer elements are allocated.

We implement the predictor as a circular linked list (array)
containing BlogN cells, for constant 3. Two pointers, a head
pointer and a tail pointer, indicate the front and the back of
the linked list. Each cell in the circular linked list contains
three pieces of data: an element x, a pointer to the leaf node in
the PMA where the element x currently resides, and a counter
recording the number of elements recently inserted after ele-
ment x (see Figure 1). The predictor is essentially a priority
queue where elements are removed from the priority queue in
FIFO order. The head cell keep the newest element and the tail
cell keep the oldest element in the predictor.

element | leaf

Tail Pointer

Figure 1: Predictor: each cell contains an element x, a leaf node,
and a count number.

When a new element is inserted after an element x, we first
check whether x already exists in the predictor. If so, we in-
crease x’s count number by 1; then we move x’s cell one posi-
tion forward in the predictor and move the displaced cell back
one position to fill the space vacated by x’s cell. If the element
x does not exist in the predictor, then we create a new cell for x,
which is pointed to by the head pointer. There are two special
cases. One case is when the element x exists in the predictor
and its count number is already at the maximum log/N. The
other case is when element x is not in the predictor and there
is no free cell space for the element x. In both cases, we re-
move the element with the lowest priority (pointed to by the
tail pointer) instead of increasing x’s count number or creating
anew cell. As long as the count number of the tail cell drops to
zero, a new free cell space is available for new inserts. Thus,
with this structure, random noise in inserts does not hurt the
prediction.

Uneven Rebalance. Now we present the algorithm for un-
even rebalance. Assume that nodes uy_; and vy_; are left and
right children of u, at level £ and that there are m ordered ele-
ments {xy,x2,...,%p,} stored in ;. The uneven rebalance per-
forms as follows:

e If I(x;) = 0 for all i € [1,m], then we perform an even
rebalance for this node uy.
e Otherwise, we perform an uneven rebalance. Our un-

even rebalance is designed so that, the bigger the insert
numbers, the more gaps we leave. Specifically, we min-

imize the quantity

‘ Hug—y) — 1(ve-1)
Gaps(ug—1)  Gaps(vi—1)
subject to the constraint that the rebalance property must
be satisfied. When we rebalance, we split at an element
x;, meaning that we put elements {xj,...,x;} in u;_
and {xj;+1,...,%,} in vp_;. The objective is to find the
index i to minimize

; (&)

Z;‘:l 1(x;) _ Z?:iﬂ 1(x;) ©)
Cap(ug—y)—i  Cap(v—1) —(m—1i) |’
subject to the constraints that
i€ [CaP(MeA)pz, CaP(WA)Te] @

/I density of left child within parents’ threshold

i€ [m*CaP(WA)Tz, m*CaP(VeA)pe] ®)
// density of right child within parents’ threshold

e We recursively allocate elements in uy_| and vy_;’s
child nodes and proceed down the tree until we reach
the leaves. Once we know the number of elements in
each leaf, we rebalance uy in one scan.

For example, in the insert-at-head case, the insert numbers of
right descendants are always 0. Thus, minimizing the simpli-
fied objective quantity |/(uy—1)/Gaps(uy_;)| means maximiz-
ing Gaps(uy_1).

Now we show how to implement the rebalance so that there
is no asymptotic overhead in the bookkeeping for the rebal-
ance. Specifically, the number of element moves in the uneven
rebalance is dominated by the size of the rebalancing node, as
described is the following theorem:

THEOREM 2. To rebalance a node uy at level { unevenly
requires O(Cap(uy)) operations and O(1+ Cap(uy)/B) mem-
ory transfers.

PROOF.  There are three steps to rebalancing a node uy un-
evenly. First, we check the predictor to obtain the insert num-
bers of the elements located in all descendant nodes of .
Because the size of the predictor is O(logN), this step takes
O(logN) operations and O(1 + (logN)/B) memory transfers.
Second, we recursively determine the number of elements to
be stored in uy’s children, grandchildren, etc., down to de-
scendent leaves. Naively, this procedure uses O(¢Cap(uy))
operations and O(1 + ¢{Cap(uy)/B) memory transfers; below
we show how to perform this procedure in O(Cap(uy)) oper-
ations and O(1 + Cap(uy)/B) memory transfers. Third, we
scan the node uy putting each element into the correct leaf
node. Thus, this last step also takes O(Cap(uy)) operations
and O(1+ Cap(uy)/B) memory transfers.

We now show how to implement the second step effi-
ciently. We call the elements in the predictor weighted cle-
ments and the remaining elements unweighted. Recall that
only weighted elements have nonzero insert numbers. In the
first step, we obtain all information about which elements are
weighted. Then, we start the second step, which is recursive.
At the first recursive level, we determine which elements are
allocated to the left and right children of uy, i.e., we find the



index i minimizing (6). At first glance, it seems necessary to
check all indices i in order to get the minimum, which takes
O(Cap(uy)) operations, but we can do better. Observe that
when the index i is in a sequence of unweighted elements be-
tween two weighted elements, the numerator in (6) does not
change. Only the denominator changes, and it does so con-
tinuously. So in order to minimize (6) at the first recursive
level, it is not necessary to check all elements in node uy. It
is enough to check which two contiguous weighted elements
the index i is between such that (6) is minimized. Since there
are at most O(log N) weighted elements, the number of opera-
tions at each recursive level is at most O(log N). Furthermore,
because there are / recursive levels, the number of operations
in the whole recursive step is at most O(¢log N), which is less
than O(Cap(uy)). By storing these weighted elements contigu-
ously, we obtain O(1+ Cap(uy)/B) memory transfers.

3. SEQUENTIAL AND HAMMER
INSERTIONS

In this section we first analyze the adaptive PMA for the
sequential insert pattern, where inserts occur at the front of the
PMA. Then we generalize the result to hammer inserts.

Sequential Inserts. We prove the following theorem:

THEOREM 3. For sequential inserts, the APMA has
O(log N) amortized element moves and O(1+1og N /B) amor-
tized memory transfers.

We give some notation. In the rest of this section, we as-
sume that uy is the leftmost node at level ¢ and v,_ is the right
child of uy. Recall that leaves have height 0. Suppose that we
insert N elements in the front of an array of size ¢cN (¢ > 1).
Since we always insert elements at the front, rebalances oc-
cur only at the leftmost node uy (0 < ¢ < h). If we know the
number of sweeps of uy in the process of inserting these N
elements, then we also know the total number of moves.

In order to bound the number of sweeps at each level, we
need more notation. Let Ak(¢,i) be the number of sweeps
of the leftmost node u at level k between the (i — 1)th sweep
and the ith sweep of node u,. We imagine a virtual parent node
uy+1 of the root node uy,, where uy, 1 has size 2cN. Thus, the
time when the root node u, reaches its upper threshold 15, after
we insert N elements, is the time when the virtual parent node
performs the first rebalance. Thus, N (h+ 1, 1) is the number
of sweeps of node u at level k during the insertion of these N
elements (0 < k < h). Since each sweep of u, costs 2¥log N
moves, the total number of moves is:

h
> Ag(h+1,1)2%logN.
K=0
This quantity is the sum of the sweep costs at each level, until
the virtual node needs its first rebalance. Thus, the amortized
number of element moves is

h
%ZMUH— 1,1)2%logN. )
k=0

PROOF OF THEOREM 3: We bound N(/, 1), the number
of sweeps of the leftmost child uy at level x until the ances-
tor node uy performs the first rebalance. We decompose this

process into three phases. Phase i of node uy (1 <i < 3), starts
after the (i — 1)th sweep of uy_ and ends at the ith sweep of
uy_1. At the end of the last phase, u, performs its first rebal-
ance, which is the third sweep of u,_. Thus, we have at most
three sweeps of node uy_| before the first rebalance of uy:

N, 1) < Ne(0 =1, 1) + - + N (£ 1,3).

Now we prove the above claim analyzing the densities in
each phase.

I) We consider the densities of child nodes uy_» and vy_»
of uy_ at the end of phase 1. The first rebalance of uy_
occurs when uy_; reaches its upper threshold t,_;. For
sequential inserts, we allocate as many free spaces as
possible to uy_», while ensuring that uy_, and vy_, have
densities between py_j and T,_;. Thus, after the first
rebalance, which happens after t,_,Cap(uy_;) inserts,
we have densities:

Density (us—2) = pr—1
Density(vp—2) = Ty—2—pr—1-

It is immediate that the density setting of u,_, is legal;
we now explain why the above density setting of vy_,
is legal, i.e., satisfies the rebalance property. Notice that
Pr—1 < Ty—2 —Pr—1 < Tp—y, since 2pp—; < Ty < Ty
by (1) and (4)and ty_» — Ty = O(1/logN) < py_1 by
(1) and (2).

II) We now consider the densities of child nodes u;_»
and vy_, at the end of phase 2. When uy_, reaches
its threshold again, phase 2 of node u; ends. After
uy_y does the second rebalance, which happens after
(ty_p —p¢—1)Cap(up_,) inserts, we have densities:

Density (u/-2) 2Ty 2 —Pe—1 — T

Density(vp—2) = T¢—_i.

It is immediate that the density setting of v,_, is legal;
we now show that the density setting of uy_, is legal.
Notice that py_| <2Tp_p —pPy—1 —Tr—1 < T¢—], because
2pp-1 <Tp—2 < T2+ (T—2 —T¢—1) by (1) and (4) and
2(tp—2 = —1) = O(1/logN) < ps—1 by (1) and (2).
III) Now we consider the densities of child nodes uy_, and
vy_p at the end of phase 3. When uy_, reaches its
threshold a third time, which happens after (t,_; —
Ty_2+p¢—1)Cap(up_s) inserts, phase 3 of node u; ends.
When uy_| does the third sweep, the density of uy_|
is (Tp_o+7Tr_1)/2 > Ty_1, SO uy_ is above threshold.
Thus, the end of phase 3 is the first rebalance of uy.

Thus, there are at most three sweeps of uy_| before the first
rebalance of uy, that is,

N (0,1) < Ne(0—1,1)+ N (£—1,2) + N (£—1,3). (10)

We cannot simply use the bound N (¢, 1) < 3N (¢ —1,1) for
our analysis, since this bound naively leads to O(Nl"g(3/ 2))
amortized moves, which is far from our goal of O(logN).

To establish our bound, we prove the following recurrences
for phase 2 and phase 3:

and

N (€ —1,3) <A (£—1,2). (12)



Solving (10), (11), and (12) will yield the desired bound.

We already showed (10); now we show (11). We proceed
by breaking phase 2 into two subphases. The first subphase
begins when phase 2 begins, i.e., after the first rebalance of
up_1, and it ends after the next sweep of uy_». The second
subphase begins when the first subphase ends, and it ends after
the next another sweep of uy_,. We will show that at the end
of subphase 2, uy_» is above threshold, meaning that subphase
2 ends with a sweep of uy_, i.e., phase 2 ends as well.

e At the beginning of subphase 1, uy_3 has density py_»,
and the sweep of uy_» is triggered once the density of
up_3 reaches 1, 3. At the end of subphase 1, after
(ty_3 —py_2)Cap(us_3) inserts, the density of uy_3 and
Vy_3 are:

Density(uy3) 20/_1 —Pr—2 +Te—3 —Tr—2,

Density(vy_3) = T/_».

It is immediate that the density of vy_3 is legal; we show
that the density of uy_3 is legal too. Notice that py_, <
2001 —Pr—2 + T3 — T2 < Tg_2, because 2py o <
2pp—1 and Ty < Ty—3 by (1) and 2p;—; < Ty < Ty
and T3 —Ty_» = O(1/logN) < ps_» by (1) and (4).

We now show that the number of sweeps of u in sub-
phase 1 is equal to Ak (¢ —2,2). Observe that subphase
1 is exactly phase 2 of the node uy_; because they both
start with the node u,_3 having density p,_, and end
with the node uy_3 having density ty_3. Although in
subphase 1 and phase 2 of node u_ 1, node vy_3 has dif-
ferent densities, this difference does not matter because
the density of v,_3 does not affect when subphase 1 and
phase 2 of node uy_; end.

e At the beginning of subphase 2, uy_3 has density
20pp—1 —Pr—2 +Tr—3 —Ty—2 > P¢—2, and the subsequent
sweep of uy_, is triggered once the density of w3
reaches T,_3 again. Since the density of vy_3 is Ty_», the
density of uy_5 is (Ty_3+7T¢_2)/2 > T/, at the end of
subphase 2, so uy_, is above its upper threshold. Thus,
the end of subphase 2 is the sweep of up_;.

We now prove that the number of sweeps of w4 in sub-
phase 2 is less than Ak (¢ —2,2), because both subphase
2 and phase 2 of node u,_ end with node uy_3 reaching
its upper threshold T,_3, but subphase 2 starts with node
up_3 having density greater than p,_, while phase 2 of
node uy_ | starts with node uy_3 having density p;_».

Thus, there are at most two subphases in phase 2 of node
uy and each subphase has the number of sweeps of node u at
most Ny (¢ —2,2), which shows (11). Since Recurrence (11)
has the base case Ng(K,2) = 1, we obtain the solution

Nee(£—1,2) <2771 (13)

Now we establish the recurrence in (12). Both phase 2 and
phase 3 end with node u,_, reaching its upper threshold t,_»,
while phase 3 starts with the node u,_» having density 2t)_, —
Ty_1 —P¢—1 > Pr—1. phase 2 starts with node u;_, having
density py_i.

‘We now establish the desired bound. Plugging (13) and (12)
into (10), we have

Ne(6,1) < Ag(l—1,1)+ N (£ —1,2) + N (€ — 1,3)

< N(l—1,1)42. 207!
S 257K+1.

Finally, the amortized number of moves is

h h
1
N > Ae(h+1,1)2%0gN =Y Ne(h+1,1)257"
Kk=0 K=0

h

h
<D @ =% "4 = 0(logN).

K=0 k=0

Observe that after any insert the elements are moved from
a contiguous group, and the moves can be performed with a
constant number of scans. Therefore the amortized number of
memory transfer is O(1+ (logN)/B). O

Hammer Inserts. We now consider the hammer insertion
distribution, where we always insert the elements at the same
rank. We show that the analysis from sequential insertion dis-
tribution (Theorem 3) applies here.

THEOREM 4. When inserted elements have fixed rank
(hammer inserts), the APMA has O(logN) amortized element
moves and O(1+ (logN)/B) amortized memory transfers.

PROOF.  In the hammer-insert case, we always insert new
elements after a given element x. Notice that in the rebalancing
subtree rooted at uy, there is a unique path from the leaf node
containing the element x to the root node uy. Let node u; (i < /)
be the ancestor of x at level i, and let v; be u;’s sibling.

Intuitively, we want to use the same argument as in the proof
of Theorem 3, except that u;_; and sibling v;_; may be either
left or right children of u;. Beyond this change, we want to use
the same analysis. This approach almost works, but requires a
generalization. In particular, as we show, Recurrences (10) and
(12) still hold, but there is one value of ¢ for which Recurrence
(11) does not.

We examine the density of u; after one rebalance; we
demonstrate that Density (1;) can be different in the sequential-
insert case and the hammer-insert case. With sequential in-
serts, a rebalance tries to put as many elements as possible in
v; without disobeying the upper and lower density thresholds.
With hammer inserts, we also want to put as many elements as
possible in v; without disobeying the density thresholds. But
now we have the additional constraint that node x remains in
u;. This constraint means that our rebalance may not be able
to be as uneven as in the sequential-insert case. However, if
we have this constraint, then x will always be at one end of
u;, either at the very beginning or very end. We now look at
higher and lower nodes in the tree. For nodes nearer the root,
i.e., u;j (j > 1), the position of x does not constrain the allowed
splits, and the elements in u; are exactly the same as for se-
quential inserts. For nodes nearer the leaves, i.e., u; (j < i),
the insertion pattern of u; matches the sequential-insert case,
although with different densities.

Thus, Recurrence (11) is still true except for one interme-
diate node u;. However, N(i,2) < BNg(i —1,2) is true for



some constant 3. Thus, the solution for Recurrence (11) is
N (£ —1,2) < 207%=2B. Thus, the solution for Recurrence
(10) is Nk (¢4, 1) < 2/=%B, and the theorem follows.

4. RANDOM AND BULK INSERTIONS

In the previous section, we analyzed the sequential and
hammer insertion distributions, where the inserts hammer on
one part of the PMA. In this section we analyze the random
insertion distribution, where we insert after random elements
in the array. Then we generalize all of these distributions and
consider the bulk insertion distribution.

The bulk insertion distribution for function N%, 0 < ot < 1,
is defined as follows: pick a random element and insert N*
elements after it; then pick another element and repeat. Bulk
insert generalizes all distributions seen so far: For oo = 0, we
have random inserts, and for oo = 1, we have sequential or ham-
mer inserts.

Random Inserts. We now give the performance for the PMA
and APMA with random inserts.

THEOREM 5 ([7,14]). For random inserts, with high
probability the original PMA and the APMA have O(logN)
element moves and O(1+ (logN)/B) memory transfers.

Even simpler rebalance schemes perform well under random
inserts, as shown in [7, 14]. These papers show that there are
O(log N) moves with high probability for random inserts, even
with the most basic of rebalances: When we insert an element
y after an element x, we simply push the elements to the right
or left to make room for y. The maximum number of element
moves is O(logN) with high probability. Thus, for the PMA,
as long as the density thresholds in the leaves is a constant less
than 1, we need no big rebalances in the tree.

Bulk Inserts. For bulk inserts, we have the following:

THEOREM 6. For bulk inserts with f(N) = N* (0 < o0 <
1), the APMA achieves O(log N) amortized element moves and
O(1+ (logN)/B) memory transfers.

The intuition for Theorem 6 is as follows: Conceptually, we
divide the virtual tree into a top tree with @(N/(f(N)logN))
leaves, each of which is the root of a bottom tree B; with
O(f(N)) leaves, i.e., O(f(N)logN) array positions. Thus, we
split the virtual tree at height /' = [atlog N|. Bulk inserts can
be analyzed by looking at the process as a combination ran-
dom and hammer inserts: random inserts in the top tree A with
big leaf nodes of size f(N)log N and hammer inserts in a bot-
tom tree B; of size f(N)logN. In an insertion, we randomly
choose a leaf node of the top tree A and do a hammer insert at
the bottom subtree of the chosen leaf node of A.

We first show that f(N) = N* (0 < o < 1) hammer inserts
into B; costs O(log N) amortized moves when the nodes all are
well balanced. Then, we explain that these f(N) inserts trigger
at most one rebalance in the top tree A. Thus, from the point of
view of A, there is a big element of size f(N) inserted, and this
big insert costs O(log N) amortized moves in the leaf node.

We prove the following lemma for f(N) = N%.

LEMMA 7. Consider inserting f(N) = N* elements after
an element x in subtree B; of size N*log N. Suppose that at the

beginning of these insertions, each node in B; is well balanced.
Then, the amortized number of moves is O(logN) and the
amortized number of memory transfers is O(1 + (logN)/B).

The proof appears in the full version. Based on Lemma 7,
Theorem 6 is proved as follows.

PROOF OF THEOREM 6: We consider each bottom subtree
B;. Suppose that an ancestor of the root of B; does a rebal-
ance. Then the root of B; has density at most Tj;. Thus, we
can insert at least (Tjy — Ty 1)O(N%log N) = O(NY) elements
without triggering sweeps above level 7/, i.e., inserting N* el-
ements in B; triggers at most one rebalance in top subtree A.

Now we consider a round of N* inserts into some bottom
subtree B;. We show that there are O(log N) amortized element
moves in the APMA. Recall that we use the predictor to store
recent inserts. For the first N* inserts, the predictor only uses
one cell. When the next N* inserts start to hammer, the predic-
tor uses the second cell to store new elements. After the count
number in the second cell reaches log N, which means there
are log N new elements at the second position, the count num-
ber in the first cell begins to decrease. Thus, at most 2log N
inserts remove the first cell, meaning that the hammer-insert
pattern starts after the first 2log N inserts. Thus, we divide the
N% inserts in the round into two parts: the first 2log N ones and
the N* —2log N subsequent ones. This is one dividing point.

The second dividing point is when some insert triggers a
rebalance in the top subtree A. We assume the second divid-
ing point is after the first one. The alternative is similar to the
following analysis, although somewhat easier. These two di-
viding points split the round into three parts. We analyze the
cost of the rebalance in the bottom subtree B; for these parts
as follows:

1. The rebalance cost for the first part, the insertion of the
first 2log N elements, is at most 3N%log N. To see why,
observe that there exists a node i of size N%, such
that these 2logN elements trigger at most one rebal-
ance above #/, by an argument similar to that above.
This rebalance is within B;, and therefore costs at most
N%logN. Thus, the total cost is the cost of this rebal-
ance plus the cost of the rebalances below i/, at most
(2logN — 1)N®.

2. The second part is from the (2logN)th element insert
to the element insert triggering the rebalance in the top
subtree A. The total cost is at most the worst-case cost
in Lemma 7, which is O(N*logN).

3. The third part is from the element insert triggering the
rebalance in the top subtree A to the last element in-
sert of these N* elements. From Lemma 7, the cost is
less than the cost to insert all N* elements in subtree B;
whose ancestor did the rebalance, which is O(N*logN).

Thus, without counting the rebalance cost in the top sub-
tree A, the average cost for each round is 30(N*logN) /N* =
O(logN). If we can show that the average cost in the top sub-
tree A is also log NV, then the theorem is proved.

From the view point of top subtree A, the bulk insert is sim-
ilar to random inserts of “big elements” of size N* in A, be-
cause big element triggers at most one rebalance in A and a leaf
node of size N*logN is a black box that has O(logN) amor-
tized moves. So the bulk inserts is: randomly choose a leaf
node in A, a black-box operation to insert N* elements in the
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Figure 2: Sequential inserts: average moves per insert divided by
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Figure 3: Sequential inserts: the running time to insert up to 1.4
million elements.
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The array size grows to two million and 1.4 million elements are

inserted.

leaf node, each with O(logN) moves. If the leaf node reaches
its threshold, then a rebalance is triggered at most once in A.
Thus, as in Theorem 5, we have O(log N) element moves in the
top subtree A. As before, the memory-transfer bound follows
because all rebalances are to contiguous groups of elements.

O

S. EXPERIMENTAL RESULTS

In this section we describe our simulation and experimental
study. We show that our results are consistent with the as-
ymptotic bounds from the previous sections and suggest the
constants involved. We also demonstrate that the bookkeeping
for the adaptive structure has little computational overhead.

We ran our experiments as follows: For each insert pattern,
we began with an empty array and added elements until the
array contained roughly 1.4 million elements. We began our
measurements once the array had size at least 100,000. We
recorded the amortized number of element moves per insert as
well as the running times. We considered the sequential, ham-
mer, random, and bulk insertion distributions from the previ-
ous sections. We also added noise to the distributions, combin-
ing, for example, the hammer and random distributions, show-
ing that the predictor is resilient to this noise. Each graph plots
the intermediate data points in a single run.

We ran our experiments on a Pentium 4 CPU 3.0GHZ, with
2GB of RAM, running Windows XP professional, and a 100G
ATA disk drive. Our file contained up to 22! keys, and the total
memory used was up to 1.4 GB. We implemented a search
into the PMA as a simple binary search. The binary search

lion elements.

was appropriate since our experiments were small enough that
they did not involve paging to disk. Consequently, the search
time was dominated by the insertion time into the PMA.

The adaptive PMA is ultimately targeted for used in cache-
oblivious and locality-preserving B-trees, where the search
time becomes relatively more expensive because the data
structures do not fit in main memory. In this case the binary
search will be too slow because it lacks sufficient data local-
ity. (The number of memory transfers for the PMA insert is
O(1+ (logN)/B), which is dominated by the cost of a binary
search, O(log [N/B]), as well as the optimal external-memory
search cost, O(1+logzN).) Thus, our next round of exper-
iments on larger data sets is to be run with the objective of
speeding up inserts in the cache-oblivious B-tree.

Sequential inserts. We first compared the adaptive and tra-
ditional PMAs on sequential insertions. For sequential inserts
of roughly 1.4 million elements, the APMA has four times
fewer element moves per insertion than the traditional PMA
and running times that are nearly seven times faster.

Figure 2 shows the average number of element moves in the
PMAs. The x-axis indicates the number of inserted elements
up to 1.4 million. The y-axis indicates the number of element
moves divided by Ig/N. For both the adaptive and traditional
PMA, we choose the upper and lower density thresholds as
follows: 19 = 0.92, 1, = 0.7, p;, = 0.3, and pg = 0.08. In our
experiments, we double when the array gets too full. Thus,
before doubling, the array has density over 0.7 and after, the
array has density over 0.35. (By increasing the array size by
only a (1+ ¢€)-factor for constant €, we can make the density
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elements are inserted.

of the entire array at least (1 + €)py, with only a small additive
increase in the number of elements moved. Thus, we can have
an array whose density is always arbitrary close to 70% full.)
The roughly flat line shows the performance of the APMA.
These experiments suggest that the constant in front of the IgN
(see Theorem 3) is roughly 2.5 for the density thresholds cho-
sen. Because we are measuring number of element moves,
these results are machine independent. Figure 3 gives the run-
ning times for our experiment. Observe that the APMA runs
almost 7 times faster even though the amortized number of el-
ement moves is only 4 times smaller. Hence, the overhead for
the adaptive PMA is small. We suspect that this decrease has
to do with caching issues; the APMA has a smaller working
set than the traditional PMA.

Random inserts. For random insertions the traditional PMA
performs slightly better than the APMA because there is seem-
ingly no advantage in uneven rebalalances. For sequential in-
sertions of 1.4 million elements with the same density thresh-
olds and axes as in Figures 2 and 3, both the adaptive and tradi-
tional PMAs have the same asymptotic performance (see The-
orem 5). The traditional PMA’s constant seem to be less than
12% smaller. Figures 4 and 5 show that both the amortized
number of element moves and the running times are compa-
rable, with the traditional PMA performing slightly better, as
expected. Figure 5 indicates that the bookkeeping overhead
for the APMA is small.

Bulk inserts. We next investigated the bulk-insert distribu-
tion, comparing both the adaptive and traditional PMAs. For
sequential insertions of 1.4 million elements, the APMA has

roughly 3.2 times fewer element moves per insertion than the
traditional PMA and running times that are over 4.7 times
faster. Figure 6 shows the average number of elements moves
in the PMAs with the same thresholds as in Figure 2 and bulk
parameter N9©. The roughly flat line shows the performance
of the APMA. These experiments suggest that the constant in
front of the 1g/N (see Theorem 6) is roughly 2.7 for the cho-
sen density thresholds and bulk parameter. Figure 7 shows the
running times of the traditional and adaptive PMAs.

Multiple sequential inserts. We next consider a distribution
that performs sequential inserts into multiple parts of the array
atonce. We first choose R random elements and then insert one
element at a time after one of these chosen elements. As long
as the number of chosen elements R is less than the number of
elements stored in the predictor, most predictions are good and
the performance of APMA remains O(log N). Figures 8 and 9
compare the performance of the traditional and adaptive PMAs
when we choose 5 fixed elements. The APMA in this case has
a performance only slightly worse than that in the sequential-
insert case while tradition PMA still performs much worse.

Half random and half sequential inserts. Finally, we ana-
lyze a distribution that adds noise to sequential inserts. We de-
cide randomly whether to insert a new element at the front of
the PMA or after a random element. Thus, roughly half of the
inserted elements form random noise. Figures 10 and 11 com-
pare the performance of the traditional PMA and APMA. The
roughly flat curve in Figure 10 is the performance of APMA,
which is slightly worse than that in random inserts and better
than that in sequential inserts, while the performance of tradi-
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Figure 10: Half random, half sequential inserts: average moves per
insert divided by Ig/N. The array size grows to two million and 1.4

million elements are inserted.

tional PMA is about 3 times worse than that of random inserts.

6. CONCLUSION

We introduced an adaptive packed-memory array. The
adaptive PMA guarantees a performance at least as good as
that of the traditional PMA, while simultaneously adapting to
common insertion distributions. Thus, the adaptive PMA al-
ways achieves at most O(log? N) amortized element moves
and O(1 + (log’ N)/B) memory transfers per update, but it
achieves only O(logN) amortized element moves and O(1 +
(logN)/B) memory transfers for sequential inserts, hammer
inserts, random inserts, and bulk inserts. Our simulations and
experiments are consistent with these asymptotic bounds. Sev-
eral open problems remain. For example, can we show some
type of working-set property for an adaptive PMA? Perhaps
such an investigation will require study into the design of other
predictors. The next step in this research is to use the adaptive
PMA in a cache-oblivious B-tree and to measure the speedup
obtained for updates.
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