Cache-Oblivious String B-trees

Michael A. Bender Martin Farach-Colton Bradley C. Kuszmaul
Stony Brook University Rutgers MIT CSAIL
bender@cs.sunysh.edu  farach@cs.rutgers.edu bradley@mit.edu
ABSTRACT o Keys often share large prefixes, and are thus typically tore

usingfront compression5, 15, 26, 32] within blocks. Front
compression exhibits a tradeoff between the compression
factor and the memory locality for decompression. B-trees
make this tradeoff suboptimally.

B-trees are the data structure of choice for maintainingcsedle
data on disk. However, B-trees perform suboptimally

e when keys are long or of variable length,

e when keys are compressed, even when usimg compres- e Range queries use disk hardware inefficiently because each
sion the standard B-tree compression scheme, leaf block fetched may require a random disk seek. Random

e for range queries, and block accesses perform two orders of magnitude more slowly
e with respect to memory effects such as disk prefetching. than sequential block accesses for disk. Seeks to nearby
tracks are nearly an order of magnitude faster than random

This paper presentscache-oblivious string B-tre@COSB-tree)
data structure that is efficient in all these ways:

e The COSB-tree searches asymptotically optimally and in-
serts and deletes nearly optimally.

e |t maintains an index who_se_ size is proportional to the front Inefficiency in each of these respects can reduce perforensige
compressed size of the dictionary. Furthermore, unlike-sta pificantly. Although some of these issues are addressedulidisi
dard front-compressed strings, keys can be decompressed iny\y i the literature, as discussed below, there are noiqusly
a memory-efficient manner. known search structures that address all these issuetiveffec

e It performs range queries with no extra disk seeks; in con-  This paper presentsaache-oblivious string B-tre@COSB-tree)
trast, B-trees incur disk seeks when skipping from leaflbloc  data structure that is efficient in all four respects. Thé oéshis
to leaf block. section states our results.

e It utilizes all levels of a memory hierarchy efficiently and
makes good use of disk locality by using cache-oblivious lay Variable-length keys. Traditional B-trees do not handle large
out strategies. keys well. Typically, they pack small keys in blocks, but farge

keys the pack a pointer to the key, which is stored elsewfTérey

- i k choose arbitrarily which key to promote to a parent when alblo

rays, Trees; E.5Hiles]: Sorting/searching; H.3.3lijformation is split and often bias their choice toward promoting longskein

Storage and Retrieval: principle, itis better to store short keys near the top ottee, but it

General Terms: Algorithms, Experimentation, Performance, The- is also better to split the search space into nearly eveegidhere

ory. are no known techniques for addressing both issues sinealtesty

in a dynamically changing B-tree.

The string B-tree[19] handles keys of unbounded size effi-
ciently. In the string B-tree, amsertion of a new keyk uses
O(1+ ||k||/B+loggN) block transfers, wherdk|| is the length
1. INTRODUCTION ]?f key kK almdN is the nlumber ofI keys in trgje tree.I This block trans-

ity is nearly optimal in the traditional Disk Aess Ma-

For over three decades, the B-tree [4,16] has been the data st cirir?(e)nr:]%g()e(: [1], where there is a single fixed memory-trarsite
tmug?ngir?h:rllcgr(fjcgrgzjal'snet?lg:;enfs ;ﬁgrzmzwﬁniaeﬁi;nns’d'j';ét?‘gﬁ; B, since it_ trivially takes_ at Ie_aatK_H/ B transfers to read, and
searches, and range queries. Most implementations empley B OUOQBN) IS the cost of_lnsertlon In a B-tree, even vv_hen all keys
trees [16, 26], in which the full keys are all stored in thevks but have unitlength. See Figure 1 for a glossary of notation.
for convenience we refer to all the variations as “B-trees.”

seeks.

e B-trees do not take advantage of memory effects such as disk
prefetching, especially when variable amount of prefetghi
is performed.

Categories and Subject DescriptorsE.1 [Data Structures]: Ar-

Keywords: cache oblivious string B-tree, locality preserving front
compression, packed-memory array, range query, rebalance

Traditional B-trees perform suboptimally in several retpe (Kg g?éry result (a key set) |ZQ)7\ ﬁit;tf):reg?k(zyfil?rtgnary)
e The theoretical and practical performance of B-trees de- B Block size D] Sum of key lengths iD
grades when keys are long or vary in length. N N=|D| (D)  Size of front compressed
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for a single key is a special case of a range query and therefore
usesO(1+ ||k||/B+logg N) block transfers.

The string-B-tree paper [19] also describgsefix-searctopera-
tion, but a prefix search is a special case of a range querywesl|
version of the string B-tree [19] also supposisbstring queries
Since our goal is to support heterogeneous key sizes irtibiadi
database applications, we do not address substring qheresand
compare our results to the faster string B-tree that doesupyort
substring queries.

The string B-tree is deterministic and the performance deun
given are worst-case (that is, not amortized), but it dogssop-
port compression, disk prefetching, or disk-seek-efficiemge
queries. The cache-oblivious string B-tree we present hse
supports keys of unbounded length efficiently. It is amedizor
updates and randomized, but is efficient with respect to cesap
sion, prefetching, and disk seeks.

Compression. Many practical B-trees (e.g. [30]) empldyont
compressior5, 15, 26, 32] within blocks to reduce the amount of
memory required for the keys, but string B-trees [19] do fdius,
the size of a string B-tree ®(||D||). Front compression reduces
space by storing each keyas a pair(¢,s), where/ is the length
of the longest common prefix betwegrandk’s predecessor, and
sis the suffix ofk starting at positiof + 1. This strategy pays off
when keys are stored lexicographically, which maximizesaber-
age longest common prefix between adjacent keys. Althougtt fr
compression is not optimal with respect to the entropy bafride
strings, it is used in many implementations of B-trees.

system services a request for a disk block, the disk firstkshec
whether the requested block is in the disk cache, and if so, re
turns the block. Otherwise, the disk seeks to the appreptiatk,
reads the block, and prefetches the track. Thusetfeetiveblock-
transfer size may be much larger than a disk block. Indeegliese
tial disk-block accesses typically run over two orders ofmtude
faster than random disk-block accesses. However, diskgnaary

in size and heavy loads can pollute the relatively small desthe
quickly, evicting blocks before they have a chance to beestpd.
Therefore the effective block-transfer size between thesdevels

of memory is highly variable.

The cache-oblivious (COnodel [21] enables us to design algo-
rithms that achieve data locality simultaneously for atidi sizes.
Such algorithms are on-line optimal with respect to chaggilock
sizes in the disk system as well as simultaneously optimallat
levels of the memory hierarchy. In the cache-oblivious nhoithe
objective is to minimize the number of transfers between lave
els of the hierarchy. However, unlike traditional exterma@mory
models [1], the parameteB, the block size, and/, the main-
memory size, are unknown to the coder or the algorithm. Tha ma
idea of the CO model is that if it can be proved that some algo-
rithm performs a nearly optimal number of memory transfers i
a two-level model with unknown parameters, then the allgorit
also performs a nearly optimal number of memory transfers on
any unknown, multilevel memory hierarchy. Cache-obligaata
structures are more portable than traditional externahorg data
structures, since they avoid any tuning parameters. CQitigts
do not try to measure the machine’s cache and adjust thedvb®h

To decode a key, one decodes the previous key. This procedureaccordingly. Rather, they are optimized for every level airgilar-

might require scanning back to the beginning of the entiotiai
nary. To mitigate this problem, each node of a B-tree is fommh-
pressed separately. “Blocked” front compression may yaghbor
compression rate compared to front compression of theeeditir
tionary, however. Thus, there is a tradeoff between thectife
ness of front compression and the cost of decompressiorget.ar
blocking improves the former and worsen latter.

We introduce a modified front-compression scheme for the
cache-oblivious string B-tree that simultaneously actsea de-
compression complexity that is linear in key length and asral/
compression that is within an arbitrarily small constantha op-
timal front compression. Specifically, we compress diaigrD
into (1+¢){D)) bits, where pure front compression ug&s) bits,
and we decode a key in O(||k||/eB) memory transfers, for any
€ > 0. Using our improved front-compression scheme, our cache-
oblivious string B-tree uses spaC¥(D}))) to store dictionaryD.

Cache-obliviousness, disk prefetching, and range queries
Both traditional and string B-trees are based on the assomibtat
there is a single block-transfer siBefor which the data structure
should be optimized. For example, many B-trees used inipeact
are optimized assuming that the unique block-transferisiz896
bytes. If the keys are of constant size, then a B-tree achiave
fanout of ©(B), which implies that a search us€{1+ loggN)
block transfers.

ity throughout their execution without any tuning.

It has been shown [9-11, 13] how to implement cache oblivious
B-trees for fixed-size keys. The cache-oblivious B-tregsuis ef-
ficient range queries because of {ecked-memory array (PMA)
structure [9], which maintains the search keys tightly gackn
order in memory. Thus, a range query consists of one memory-
optimal search, followed by a scan within an array. This scan
does not incur any more random disk seeks since the itemg bein
scanned are physically in order on disk. In contrast, Bstreay
have their relatively-small leaf blocks scattered thraugta disk in
any order, and if the effective block size is large, then eanpgeries
are far from optimal.

Recently, Brodal and Fagerberg [12] describe a static eache
oblivious string B-tree. It supports cache-oblivious sbas with
the same bounds as the original string B-tree but does oot alp-
dates. Their paper works by physically laying out the treméem-
ory with duplications, and it seems difficult to make it dyneam

In this paper we present a B-tree structure that supporiablar
size key insertions, deletions and searches, near optioraldom-
pression and decoding, and is cache-oblivious.

Experimental motivation. Cache-oblivious data structure have
interesting theoretical properties, as outlined above.reHege
present experimental validation for their on-disk perfance. Pre-
vious work has focus on their in-memory performance.

Real memory systems are not so simple. The memory hierarchy We implemented B-trees from the literature for fixed sizeskey

is composed of several levels of cache, main memory, and lolisk
there are other levels between these. For example, the ditlec
sits between main memory and the rest of the disk. When tlke dis

ditive |Q| term, which appears because the keys are stored in no

particular order to speed up insertions. This data layownsa¢hat
actually obtaining the various strings may require oneaektock
transfer per key. Using now-standard techniques, the boandbe
improved to the bound we show here.

We placed versions of each data structure into a memory-ashpp
file, taking care that the data structure was significantiydathan
main memory. For static B-trees we employed a breadth-&yst |
out: The root block appears first in the file, followed by thé-ch
dren of the root, followed by the first child’s children, aralfsrth.

For static CO B-trees, we used a van Emde Boas layout [29]. The
static trees were packed 100% full with data, and since destare
static, we did not even allocate space for pointers to thielemi.



Data structure

Average time per search

small-machine  big-machine

CO B-tree 12.3ms 13.8ms

Btree: 4KB Blocks: 17.2ms 22.4Ams
16KB blocks: 13.9ms 22.1ms
32KB blocks: 11.9ms 17.4ms
64KB blocks: 12.9ms 17.6ms
128KB blocks: 13.2ms 16.5ms
256KB blocks: 18.5ms 14.4ms
512KB blocks: 16.7ms

Figure 2: Performance measurements of 1000 random searchem
static trees.

We implemented a dynamic B+tree [16] and a dynamic CO B-
tree [10, 11].

We ran our experiments on two different machines. The small
machine is a 300MHz Pentium Il with 128MB of RAM and a
4.3GB ATA disk running Redhat 8.0, Linux Kernel 2.4.20. The
large machine is a 4-processor 1.4GHz Opteron 840 with 16GB
of memory and a 72GB IBM Ultrastar 10,000RPM SCSI-320 disk
running SUSE Linux 2.4.19.

Figure 2 shows the results of our experiments on static.th&fes
measured the time to perform 1000 searches on random keys. Fo
each measurement, before starting the first search, we dukke
filesystem cache by remounting the filesystem.

For static trees, it is clear that the advertised disk-blsicke of
4096 bytes is far too small, underperforming big-block 8es and
CO B-trees by 30-50%. But very large blocks perform poorly as
well. On the small machine the optimal block size is 32KB, and
the big machine itis 256KB. On the small machine, the B-trae-m
aged to outperform the CO B-tree by 3% in the best case, bt in a
other cases the CO B-tree outperformed the B-trees. We wiacl
that although there are some situations where a carefutigdtu
static B-tree can squeeze out an advantage against a s@tiz- C
tree, static CO B-trees provide much more robust performand
can usually outperform even carefully tuned static B-trees

Figure 3 shows the results for dynamic CO B-trees based on the
PMA construction of [9]. This dynamic CO B-tree has good amor
tized performance, but very occasionally must rebalaneettire
tree, which is expensive when the tree does not fit in main mem-
ory. Figure 3 shows that for inserting the first 440,000 rando
elements, the CO B-tree outperforms any of the traditionatkBs.
Big-block B-trees perform poorly for insertions. But somet be-
fore the 450,000th insertion, the CO B-tree reorganizewlisle
data structure, at which point it falls behind the smallebl8-trees
by about a factor of two. For range-queries and random sesrch
where all the leaves of the tree are scanned in order, thblba
B-trees outperform the small-block B-trees, and slightyatbthe
CO B-tree. For many applications, the big-block B-trees dou
have unacceptable costs for insertions, and the smalkBetcees

are not as fast as the CO B-tree. This suggests that CO B-trees

could be a practical way to improve performance of databasds
file systems.

As a sanity check, we compared the performance of our tra-
ditional and CO B-trees to the Berkeley DB [30], a high-guyali
commercially available B-tree. The Berkeley DB with thealéf
buffer-pool allocation is much slower than our implemeiotatbut
is comparable once the parameters are tuned. Berkeley DB sup
ports variable-sized keys, crash recovery, and very laatgbdises,
none of which our implementation supports, and so one shuatld
read too much into these data. It simply suggests that we did a
reasonable job implementing our B-trees.

Our experiment is biased in favor of the B-trees because the B
trees were “young,” that is, blocks are allocated sequigntidhe

Block insert insert range 1000
Size 440,000 450,000 query random
random random ofall  searches
values values data
CO B-tree 15.8s 4.6s 5.9s
CO B-tree 54.8s 9.3s 7.1s
Sequential block allocation: 2K 19.2s 24.8s 12.6s
4K 19.1s 23.1s 10.5s
8K 26.4s 22.3s 8.4s
16K 41.5s 22.2s 7.7s
32K 71.5s 21.4s 7.3s
64K 128.0s 11.5s 6.5s
128K 234.8s 7.3s 6.2s
256K 444.5s 6.5 5.3s
Random block allocation: 2K 3928.0s  460.3s 24.3s
Berkeley DB (256 KB pool): 1201.1s
Berkeley DB (64 MB pool): 76.6s

Figure 3: Timings for memory-mapped dynamic trees. The keysare
128 bytes long. The range query is a scan of the entire data safter the
insert. Berkeley DB was run with the default buffer pool size(256KB),
and with a customized loader that uses 64MB of buffer pool. Thse
experiments were performed on the small machine.

dynamic CO B-tree data structure ages well, whereas B-ages
poorly, a fact well documented in the context of filesysteB1g.[

We simulated an aged B-tree in which the blocks are randomly
placed on disk (shown as “Random block allocation” in FigBre
and found that all operations, including insertions andjesgueries
can slow down dramatically, sometimes by two orders of magni
tude. (Perhaps this setup should be called “super-agette seal
B-trees are unlikely ever to allocate their blocks compjetan-
domly.) We view the fact that the CO B-trees do not age as a sig-
nificant advantage for databases and filesystems.

Summary of Results. In this paper we present a solution to the
variable-key-length indexing problem. Our new data strest
the cache-oblivious string B-treis simultaneously efficient for all
block sizes and has the following performance:

e Insertions required(1+ ||k | (log?(D))/B + logg N) mem-
ory transfers with high probability (w.h.p.).

e Searches and successor/predecessor queries, requirg-an op
mal O(1+ ||K’||/B+logg N) memory transfers w.h.p..

e Range queries require an optim@(1 + (||k|| + ||k’[| +
(Q))/B+loggN) block transfers w.h.p.. The result g8t
is returned in compressed representation and can be decom-
pressed in an addition&(||Q||/B) memory transfers, which
is optimal for front compression. Because COSB-trees store
all keys in order on disk, range queries involve no extra disk
seeks.

e The space usage B({(D})). In contrast, string B-trees and
per-block front-compressed B-trees use more sgaged||)
andO(min{||D||,B{D)}), respectively.

e The COSB-tree is cache oblivious. Thus, itis on-line optima
with respect to disk prefetching and efficient at all levels o
the memory hierarchy.

An important component of the COSB-tree, of independent in-
terest, is thefront-compressed packed-memory ari@C-PMA)
data structure. The FC-PMA maintains a collection of ssidy
stored in order, with a modified front compression. The FCAPM
has the following properties:

e For anyg, the space usage of the FC-PMA can be s¢lte
€){(D), while enabling a string to be reconstructed with
O(1+||k||/(eB)) memory transfers.

e Inserting and deleting a string into an FC-PMA requires
O(||k||(log?{D))/(¢B)) memory transfers.

The advantage of the COSB-tree, as summarized above, is that
keys are kept physically in sorted order on disk, so that eang



queries use a minimum number of disk seeks. If we relax our con
ditions to match those of the string B-tree, that is, rangeriges
return pointers to keys and the strings are not kept comgdesge
can match the string B-tree bounds in an amortized sensé.iSTha
we can achiev®(1+||k||/B+logg N) amortized transfers to insert
K by using the amortized scanning structure from [6]. In mamy a
plications, range queries must retrieve the strings, soresemt the
version outlined above, without the structure from [6]. Eover,
in many applications, keeping order on disk is worth some Ins
theoretical bounds, in order exploit to prefetching meédras by
the disk and operating system.

Roadmap. The rest of this paper is organized as follows. In
Section 2, we describe a internal-memory algorithm foridict
nary matching that forms the basis for the COSB-tree. In Sec-
tion 3, we give a static COSB-tree, and explain the statisivar

of locality-preserving front compression. In Section 4, sfew
how to dynamize this static structure, including an expii@naof

the FC-PMA. .

2. DICTIONARY MATCHING IN

INTERNAL MEMORY

In this section we review a internal memory (RAM) data struc-
ture for the dictionary-matching problem [3,28], which wevdlop
into the COSB-tree. In theictionary-matching problerthe goal is
to preprocess a dictiona® of keys{k1,K2,...,Kn} to answer the
following queries:

e MEMBER(K): Determine whethek € D.
RAM time: O(||k||+logN).

e PRED(K): Return the maximum’ € D such thak’ < k.
RAM time: O(||K|| + [|PRED(K)|| +logN).

e succ(k): Return the minimunk’ € D such thak’ > «.
RAM time: O(||k|| +|[succ(k)|| +logN).

We solve this problem using divide-and-conquer by expigiti
the following observation: Lefl be the compacted tdeof D.
Then there is aentroid vertexp in 7 that has at leadtl/3 and
at most N/3 descendants. Throughout, we identify a trie node
with the string obtained by tracing from the root to that node
answerMEMBER(K) we determine whethep is a prefix ofk (in
which case, we say thatmatche). If kK matche9, then we re-
curse into the trie rooted @i, the so-calledlown trie Otherwise,
we recurse into the trie obtained by excludmgnd its subtree, the
so-calledup trie. Either way, we eliminate a constant fraction of
the trie from consideration. Theentroid treeof 7 is obtained by
making p the root, wherep’s children are the recursively defined
centroid trees op’s up and down tries.

To achieve the required time bounds, we cannot simply com-
pare the letters gb andk to determine if they match. Each com-
parison could take tim&(||k||), yielding a run time that could be
Q(||x||logN). Instead, we employ a hash functigh (such as for
Karp-Rabin fingerprinting [24], CRC, or MD5) that maps sggsn
into integers. Our requirement is that we can compute theffing
print of every prefix ofp in time O(||p||) in a RAM model and that
unequal strings collide with polynomially small probatyili

To speed up matching, we preprocess the dictionary by comput
ing the hashes of all compacted trie nodes. Then, to test memb
ship of K, we compute the hashes of all the prefixesofNow,
whenever we want to match a prefix ofwith a node in7, we
compare the hash values. The algorithm, as stated, is Manrte;C

2A compacted trie is a trie where all nonbranching paths are re
duced to edges.

1010

o [100 ] [Z0100] 10110

10 100 10100 10101

10100

(@)

10101
(b)

Figure 4: An example of the RAM data structure. Part (a) showsthe
compressed trie representation of a dictionary. Each nodenithe com-
pressed trie corresponds to a string. The strings that are irthe dic-
tionary are represented by black nodes, whereas the stringsot in the
dictionary are represented by white nodes. For example, thstring 0 is
not in the dictionary. Edges are labeled with strings. Part b) shows the
centroid tree for the trie. Internal nodes of the tree are shavn as rect-
angles. Each internal node of the tree is labeled with a strig t. Each
internal node has a solid line linking it to the root of its down trie (the
leaves of which haver as a prefix), and a dotted line linking it to the
root of its up trie (the leaves of which do not havet as a prefix). The
leaves are shown as unadorned strings, and are shown in ord@exico-
graphically from left to right). Each leaf string maintains pointers (not
shown) to its predecessor and successor. Each internal nodwintains
a pointer to the leftmost and rightmost matching leaf from the entire
dictionary (not shown.)

we might get a false positive on the matching. To make this-alg
rithm Las Vegas, we do a character-by-character match ohgnw
the hash values match. Since the probability of a mismatkiwis
this does not increase our running time, with high probshbili

Figure 4 shows an example of the RAM data structure. Fig-
ure 4 (a) shows a compressed trie containing several stramgs
Figure 4 (b) shows the centroid tree. To search the trie for
Kk =10101, follow the 10 edge from the root, then follow the
edge, then follow th® edge, and then follow th& edge. In con-
trast, to search the centroid tree for the same key, stahneatobt,
wherek matchest =101 so follow the solid line. Key matches
1010 so follow the solid line. It does not matd0100 so follow
the solid line which leads to a leaf.

Now we describe how to perform a successor or predecessor
query efficiently. Ifk € D, we can perform a membership query
to find k in the dictionary and then use a doubly linked list to find
the predecessor or successor. But # D, we must do something
else. Consider tracing down from the rootbfnith k. If K is notin
D, then at some point we match as far as some naatel into the
edge betweenand one of its childrep, but we do not match as far
asp. If the first mismatch betweek and the trie is becausehas
a0 where therp edge has a, thenk is lexicographically less than
all strings belowp, and its successor ss leftmost trie descendant
(in the entire trie). Otherwise, by symmetrys predecessor ig's
rightmost trie descendant.

Thus, we can always find either a predecessor or successor if
every node in the centroid tree keeps track of its lexicolgicgily
least and greatest trie descendants. If we want the prestedast
find the successor, or vice versa, we can traverse the lingedf|
leaves forward, respectively backward, to find the desiesd k

For example, in Figure 4, consider the problem of searctong f
K =1010 which is not actually a member of the dictionary. As we
descend the trie we firdmatchesl01, and does not matct010,
leading us to leat 0110 which is not what we want. We backtrack
up the tree to the child of the last node that matchied01). That



node has a pointer to the leftmost key that has ptEdik. That key
is 10100, which is the successor @010 in the dictionary.
We conclude with the following lemma:

LEMMA 1 ([3]). The dictionary-matching problem can be
solved within the bounds(@x|| +logN) for MEMBER(K), O(||K|| +
|IPRED(K)|| + logN) for PRED(k), and QK| + ||sucdk)| +
logN) for sucgk) on a RAM.

In fact, on a RAM, we can solve this problem trivially by ditec
trie traversals without the Idg additive factor, but we will employ
this centroid method in the following to achieve good datzliy.

3. STATIC COSB-tree

In this section we present a static cache-oblivious strirtgeB.
Our data structure preprocesses aB3eff N keys{K1,Ka,...,KN}
to answer the following query types efficiently in the cache-
oblivous model:

e MEMBER(K): Determine whethek € D.
Memory transfersO(1+logg N +||K||/B).

e PRED(K): Returnk’ wherek’ is the predecessor &fin D.
Memory transfersO(1+logg N + ||| /B+||K||/B).

e sucgK): Returnk’ wherex’ is the successor afin D.
Memory transfersO(1+logg N + ||| /B+||K||/B).

e RANGE-QUERY(Kj,Kj): Given two keyskij,Kj € D, return
a compressed representation of all keys in theset{k
DIKj <K <Kj}.

Memory transfersO(1+logg N + (||ki ||+ [|K; ||+ (Q))/B),
plusO(1+ ||Q||/B) to uncompress results.

We first present a relatively simple COSB-tree, which onlyg-su
ports queries on uncompressed data. We then present dorariat
on front compression [5, 15, 32] that permits uncompresaikgy
K with only O(]|k||/B) block transfers.

3.1 Static COSB-tree with no compression

A COSB-tree with no compression is made up of two pieces,
an array of keys stored in lexicographic order and a centreiel
for faster searching of the data. The centroid tree is jusdeas
scribed in Section 2, except that the leaves of the tree point
locations in the array of keys, and the tree is laid out to eehi
good cache-oblivious performance. The centroid tree hashde

such a layout dynamically. Instead, we use the weight of & tod
select it for the frontier, as follows.

Given integemw, we say that a node &elected by \if both that
node and its sibling have weight at least and neither of their
children are selected hw. That is, we select the deepest nodes that
have weight at least and whose siblings also have weight at least
w. Selected nodes have the following property:

LeEMMA 2. All nodes selected by w have weight at least w and
at most3w.

Proof. If any nodeu has weight greater tham3then both ofu's
children have weight at least, because centroid trees are weight
balanced with a constant of 2. If both @& children have weight
at leastw, then the children would be selected, rather than O

Define thehyperfloorof x, denoted) x|/, to be 2'9%/. Thus, the
hyperfloor roundx down to the nearest power of 2. Let thgper-
hyperfloorbe ||| x||] = 21'9Xl. Thus, the hyperhyperfloor rounds
down to the nearest power of a power of 2.

To lay out a centroid tree, we select nodes by wevght ||| N||].
We call the resulting nodes the roots of thettom recursive sub-
treesC1, C2,. .., Cz and call the remaining tree, above, tbe re-
cursive subtree”y. We now lay outCop, Cy,...,Cz in memory in
that order, recursively with selection weig{f[|[N]].

For this static construction, it would also work to selectie®
by weightN/2,N¥/4 N/8 and so forth, rather than arranging for
the weights to always be powers of powers of 2. We use powers of
powers of 2 because it is convenient in Section 4. The keglnsi
for either construction is that the selection weights mesabthe
same for recursive subtrees at a givevel of detailed defined as
follows. Each level of detail is a partition of the tree intigjdint
recursive subtrees. At the coarsest level of detail theentee
forms the unique recursive subtree. At the finest level cdifed,
each node forms its own recursive subtree with selectiomghtei
22 In general, at level-of-detad we view the tree as partitioned
into recursive subtrees with selection weigﬁkt.zr he key property
of the layout is that, at any level of detail, each recursivetiee is
stored in a contiguous block of memory.

It is straightforward to lay out tree§s,..., Cz recursively be-
cause they are as weight-balanced"ase., 2-balanced. However,
Co is only 4-balanced. If we were to lay odY in the same way,
then Co’s recursive subtree would only be 16-balanced. Instead,
we employ the following strategy for laying out recursivdosaes

O(logN), but not all leaves have the same depth. There are severalthat do not contain leaves ¢f. Suppose that we want to find recur-

ways [2,9,17,22,29] to lay out such a tree in memory to aghiev
optimal cache-oblivious searching, that is, willflogg N) mem-
ory transfers. However, these techniques require thedrbe pro-
cessed in a batch, whereas we need a layout that will lenfltibse
dynamization in Section 4.

Theweightof a node in a tree is defined to be the total number
nodes in the subtree rooted at the node. We exploit the fatt th
centroid trees arveight balancedthat is, for each node, 1 plus
the weight of the left subtree is within a constant factor qflds
the weight of the right subtree of that node. The constamistout
to be 2 for centroid trees. The rest of this subsection dessra
modified van Emde Boas (VEB) layout for weight-balanced tyina
trees.

The standard approach for laying out a tree in memory is to cut queries.

the tree along a frontier so that the top tree and each of ttierbo
trees have size roughly/N. The original layout in [29] did this
partitioning by selecting bottom-tree roots by height. @iféculty

in applying this method here is that centroid-tree leaves mon-
uniform depth. Nonetheless, it is possible to adapt heigised
partitioning to centroid trees, but we do not know how to rteiim

sive subtrees with selection weight 2bove nodes with selection

weight 2'. Then we select nodes weigh"li*z2j to be the roots of
the bottom recursive subtrees.

LEMMA 3. Subtrees containing leaves have size one to three
times their selection weight. Subtrees that do not conta@ves
have size between one third and three times their selecghiv

LEmMMA 4. This nonuniform layout of a weight 2-balanced bi-
nary tree incurs Qlogg N) block transfers on a root-to-leaf traver-
sal.

THEOREM 5. This static COSB-tree represents a $eof N el-
ements, and supports member, predecessor, successoraagel r
The operatiomeEMBER(K) runs in Q1+ loggN +
|[k||/B) memory transfers w.h.p., andRED(k), and succ(k)
run in O(1+ logg N + [|k||/B+ ||K’||/B) memory transfers w.h.p.,
wherek’ is the predecessor (resp. successor)kof The opera-
tion RANGE-QUERY(K,K’) runs in Q1+ logg N + (||K|| + [|K'|| +
IQl)/B) transfers, where Q is set of keys in the result. These results
hold in the cache-oblivious model with the tall-cache agstion.



Proof. There are two cases:

Case 1:||k|| = O(M), i.e., the key is small compared to mem-
ory. Computing the Karp-Rabin fingerprints takes &/B memory
transfers, and all keys remain in internal memory while warce
in the centroid tree.

Case 2]|K|| = Q(M), i.e., the key is large compared to memory.
In this case, the Karp-Rabin fingerprints that we computenaan
fit in memory at the same time. Thus, since we queiogN)
fingerprints, the number of memory transfer®igogN +logg N +
|lk]|/B+1). However, theO(logN) term is dominated as long as
logN < |[k||/B. Since the CO model is transdichotomous=
Q(logN)) [20] and assuming the cache is tall & Q(B?)) [21],
logN <M/B < |[k]|/B.

The scan bounds are trivially obtained. OJ

3.2 Locality-preserving front compression

In this subsection we show how to add compression to oucstati
COSB-tree. We develop a new strategy for achieving front-com
pression without high decoding cost. The front-compresized
then replaces the array of keys used in the static COSB-reeea

The decoding scheme is just as with standard front compres-
sion, and it immediately matches the desired bounds: degodi
Kj touches at most|kj|| contiguous characters, and decoding
Q touchesO(||Q||) contiguous characters. The remaining issue
is to show that LPFC achieves a compressed dictionary of size
(1+8&)(D).

LEMMA 6. The total length of the LPF®) is at most(1+
€){D) and every kex; can be decoded with @k;||/eB) block
transfers.

Proof.  Call any keyk that has been inserted without front com-
pression aopied key Denote asativeany characters in the com-
pression that are not copied (that is, characters that appélae
full front-compressed version @b). Denote the preceding|k||
characters as theft extentof k. Notice that ifk is a copied key,
there can be no copied key beginning in the left extent.dflow-
ever, a copied key may end withi’s left extent.

We consider two cases. In the first case, the preceding copied
key ends at least|k||/2 characters befone. Then, we say that
is uncrowded In the second case the preceding copiedkeynds

Front compression works as follows: Given a sequence of keys within ¢||k|| /2 characters of. Then, we say that is crowded

K1,K2,...,Ki to store, a naive representation requidey |||
memory. Instead, we latj 3 be the longest common prefix of
Kj andkj.1. In this case, we can remove neally; ||| memory
from the representation by representing the keys as

K1, HT[ZHvo-Zv HT[3H7 L) HTrI Hvo-i

wheregj is the suffix ofk; after removing the firstr; bits. To
decodexj, one concatenates the firgtbits fromk;_; to g;. Find-
ing the firstr bits of kj_; may require further decoding, possi-
bly resulting in expensive decoding. Front compressiorickvis

a lossless compression scheme, requires the the same sphee a
(uncompacted) trie fo [26]. The total size of a front-compressed
set of keysD is written as{D})).

Front and rear compression are described in [14, 15, 32]erRef
ence [26] describes front compression in an exercise, lowiges
less detail. Reference [5] argues that front and rear cossjme are
particularly important for secondary indices. Front coegsion is
relevant for compressing the keys stored at the leaves cdratse
tree, whereas rear compression is essentially used onheimt
dices, and is subsumed by the string-B-tree technique® s
here and in [19].

Our goal is to achiev®(1+ ||k||/B) memory transfers to de-
compress any key itD, but to storeD with O({D))) space. The
challenge is that, for front compression, uncompressinigles
key may require scanning back through the entire compresged
resentation. This is a well known problem for front compi@ss

One common strategy is to compress enough keys to fill some pre

defined block and to start the compression over when thaklioc
full. This idea does not provide any theoretical bounds, dwx:

the compression achieved can be much worse than the best fron

compression, and a block size may be arbitrarily bigger /@)
so decompression also has no guarantees.
Here we show docality-preserving front compression (LPFC)

Partition the sequence of all copied keys just before eaeh un
crowded key. We call each such subsequenchan Note that
each chain begins with an uncrowded key and is followed by a se
quence of crowded keys.

Furthermore, the lengths of these crowded keys decrease geo
metrically. To see this, consider a crowded keySincek’s pre-
decessor in the chair], must begin before’s left extent, it must
have length at least|k|| /2.

Thus, if Kk is uncrowded, théth crowded key in its chain has
length at mosi|k||(2/c). The total length of all keys in a chain
starting ak is thus at most||k||/(c—2).

Finally, charge the cost of copying these keys todhe|/2 char-
acters preceding the uncrowded key at the beginning of thench
This charge is at most/2c — 2) = € per character.

THEOREM 7. The static COSB-tree with front compression
represents a setD of N elements, and supports member, pre-
decessor, successor, prefix, and range queries. The operati
MEMBER(K) runs in Q1+ loggN + ||K|[/B) memory transfers
w.h.p., andPRED(K) and sucd(K) run in O(1+logg N + [|k||/B+
|lk’||/B) memory transfers w.h.p., whee is the predecessor
(resp. successor) &f. The operatiorRANGE-QUERY(K,K') runs
in O(1+loggN + (||| + |[keyY|| + {Q)))/B) transfers. The com-
pressed keys can be decoded for an additidf@l|/B transfers.
All results hold in the cache-oblivious model with the tediche
assumption.

4. DYNAMIC COSB-trees

In this section we dynamize the COSB-tree. We use a combina-
tion of cache-oblivious data-structure tools, such as vad&Boas
(VEB) layouts [29] and packed-memory arrays (PMASs) [9, &8,
none of these are strong enough for our purposes. For thiar pap

which meets our goal. Our modified compression scheme beginsWe need augmented versions of these tools. In the followireg,

with key k1. Suppose we have compressed the firsi keys and
now we want to add key;. We setc =2+¢/2. We scan back
c||ki|| characters in the compression to see if we could degpde
from just this information. If so, we add, ; as before. If not, we
add Qk; to the compression, that is, we do not compresskset
all. Call this sequence tHecality-preserving front compression of
D, denoted LPFQD).

present an overview of the three parts of a dynamic COSB-tree
We then give a detailed description of each in turn.

The Data Structure

The dynamic COSB-tree consists of three pieces. The to piec
called thecentroid tree is a dynamic version of the centroid tree
described in Section 3, i.e., a binary tree of dePtogN). The



centroid tree is embedded into a packed-memory array witra d
namic cache-oblivious layout, so that a root-to-leaf traskin the
centroid tree requires onl(logg N) transfers. The centroid tree is
built upon only®(N/logN) keys. We use the centroid tree to find a
key that is withinO(logN) of our target key usin@(logg N) mem-
ory transfers. The reason to build the top tree on a sparseseat
is that there is an additiv®@(logN) insertion cost in the top level,
which is amortized away with this level of indirection.

The centroid-tree leaves point into a middle layer, calleel t
hashdata This is a packed-memory array [9] that conta{Dgl)
words of information for each key. This layer is designed Ito a
low for fast sequential searches of predecessor and sucdess.
When we enter the hashdata from the centroid tree, we aréwith

required to look arbitrarily far to the right ef* to find a violation.
We present a modified compression scheme, Eymamic
Locality-Preserving Front Compression (DLPFE®@)hich preserves
the compression rate, preserves the locality in the degpdimd en-
forces locality for insertions. To implement DLPFC, we awgn
the (static) LPFC wittcopied prefixesFor LPFC, each key could
be coded with a pair representing the largest common prefpy (1
with its predecessor and its suffix beyond the Icp; for DLPWE,
may now also choose to explicitly copy any prefix of the keyr Fo
LPFC, we decode keys from the last character forward; forBCP
we may simultaneously decode some prefix and some suffix until
we meet somewhere in the middle. We will see that copied m®fix
can be used to prevent the effects of an insertion from patpay

O(logN) keys of our true successor/predecessor. We finish the too far forward.

search in this local neighborhood by a sequential scan,hwlges
O(1+(||k||+logN)/B) memory transfers. This local search works
by storing, for each key, the fingerprint of the longest commure-
fix of the key with it predecessor.

Once we have localized our target key, we follow a pointer to
the bottom piece, another packed-memory array callelapeata
The keydata contains the actual keys, sorted in lexicogramh

The algorithm proceeds as follows. We first check the lefeeixt
of the inserted kex* to see ifk* should be copied. If so, we insert
it as a copied string and are done. Otherwise, we need to check
the characters to the right &f. Call the firstc||k*| characters to
the right of the insertion point theear right extenof k* and the
first 3c||k*|| characters théar right extent The Icp¢ of k* and
whichever key is at the end of the far right extent is the mimm

der and compressed. For the compression we use a dynamic varilcp in the far right extent. If there is a copied key in the fight

ant of our augmented front compression of Section 3. This dy-
namized data structure supports insertion or deletion oéyakk
with O(1+ ||||log?(D)/B) block transfers (amortized), once we
have determined where the key belongs.

extent, or a copied prefix of length at ledsthen the the effects of

insertingk* do not propagate to the end of its far right extent, in
which case<* is inserted normally. If there is propagation, then we
consider the kex’ being touch at the end of the near right extent.

If we want faster updates, but the data does not need to be phys Let#’ be the Icp ok* andk’. Then we change the representation of

ically in sorted order, then we add another level of inditta
scanning structure (see [6]), which reduces the insedaetion
cost toO(1+ ||k || log**€log(D) /B), for anye > 0. If, as with the
original string B-tree, range queries return pointers tgskeot to
the keys themselves, then we can use yet another level sémdi
tion in addition to the scanning structure to match the gtBriree
bounds in amortized sense while remaining cache-oblivious

The rest of this section details the three pieces, startitiytive
keydata, then the centroid tree, and then the hashdata.etliers
concludes with an explanation of how these pieces fit togethe
achieve our desired bounds.

Keydata PMA

For the static COSB-tree, we showed how to implement localit
preserving front compression. For the dynamic COSB-tree, w
need to support insertions and deletions while maintaimpiray-
ably good compression. We employ a packed-memory arraghwhi
allows us to keeps data in order dynamically. The PMA, asi-orig
nally described, supports keys of unit length. Howeverjri¢atly
achieves the desired bounds if we break up any long key irite un
length pieces and use the original algorithm.

We already showed how to implement cache-efficient decoding
for front compression. We need another idea to implemertiesac
efficient insertions and deletions. We preserve the degadirari-
ant: if decoding ke requires more thatjk|| /€ elements of the
compressed representation to be scanned,ktstrould be copied.

However, insertions interfere with this invariant. To selyw
observe that when we insert a key, we can easily check itsxednt
to see if needs to be a copied key, as we did for the static Thse.
problem comes with keys to the right. Suppose that akeis
inserted within the left extent of some key If K andk* are not
copied keys, the insertion of* may increase the decoding cost
of k to above||k|| /B transfers. A solution would be to copy key
K, that is, to replace its compressed representation withpgéedo
representation. However, such problem keysay be large, and
so their left extents may be arbitrarily long. We would thes b

K’ to include a copied prefix of its firgt characters. Furthermore,
for technical reasons that will become clear in the follayyimve
also include a copied prefix of the firét characters ok* in its
representation.

THEOREM 8. Dynamic Locality-Preserving Front Compres-
sionis a compression scheme that can represent a set of N keys
D in size at mostl+e€) (D) + N bits so that kex can be decoded
in O(1+ ||k||/B) memory transfers and, given a finger to the loca-
tion of insertion, kex* can be inserted in A+ ||K*|| /Bg) memory
transfers in the CO model.

Proof.  Inserting copied prefixes in our algorithm can only im-
prove decoding complexities, and the number of bytes schdune
ing insertion is linear. Now we must prove that insertingtskeys
does not cause too much damage to the compression.

If there is a copied prefix that starts within the near righteak
of k*, thenk™ will not induce a prefix copy, since the effects of
insertingk* cannot propagate beyond that copied prefix. Thus, any
copied prefix after the far right extent ©f must have been caused
by the insertion of a key’ that either starts after the far right extent
of k* or beforex™. We charge*’s copied prefix only to characters
within k*'s near right extent, so we do not care about insertions
after the far right extent.

Consider now the other types of insertions: a kéyinserted
beforek* that induces a prefix copy after the far right extenktf
The near (and indeed the far) right extentdfis part of the near
right extent ofk’, so we need to make sure that we do not charge
the same characters twice for prefix copying.

To keep charges from overlapping, we take any copied prefix
of length ¢ at the end of a near right extent and charge it to its
precedingc? characters. Since each such copied prefix is paired
with a matching size-copied prefix at the beginning of the near
right extent, each character is charged @nits.

The copied prefix ok’ is of size at mosfik*|| by the transitivity
of Icp in lexicographically ordered strings. Thus, the deat re-
gion fork’ is of length at most||k*||, but it begins at leastc}k*||



afterk*, and thus cannot overlap the near right extent, and particu-
larly the charged region &f*“. Therefore, no character gets charged
twice. As before, set = 2/c.

Centroid tree:
balanced trees

In this section we show how to maintain the VEB layout of a dyna
ically changing weight-balanced tree. This approach wesadly
used in the first CO B-tree [8, 9], but now we show how to support
faster dynamic updates more efficiently and on more generat

Recall that a tree isveight balancedf for all nodes, one plus
the weight of the left subtree is within a constant factor roé plus
the weight of the right subtree. For (static) centroid tréleis con-
stant is 2 in the worst case. For dynamic centroid trees, \wd ae
constant greater than 2.

By allowing for c-weight balance, for constant> 2, we obtain
the following guarantee: A nodeonly gets out of balance every
Q(WEIGHT(V)) insertions or deletions of nodes that are descen-
dants ofv (see, e.g., [27]).

This property of insertions means that whenevéalls out of
balance, we can afford to scan al\s subtree for a total amortized
cost ofO(logN) work andO(1+ (logN)/B) memory transfers per
update (see, e.g., [27, Theorem 5]). In principle, thisighib scan
descendants enables us to maintain the vEB layout of theodgnt
tree dynamically; if a node falls out of balance, then we chn a
ford to rebuild the whole subtree and its VEB layout. We shiogv t
following:

Dynamic layout of weight-

LEMMA 9. There exists a dynamic van Emde Boas layout of
a weight-balanced tree in a PMA, where the amortized relzdan
cost is @1+ (log?N)/B) per update. This layout has the property
that whenever a node v is in a rebalance interval of the PMénth
so are all of v's descendants.

Proof.  We maintain the sorted order of tree nodes in the vVEB
layout in memory by storing the nodes inpacked-memory ar-
ray (PMA)[9]. The PMA storesN elements in sorted order in a
O(N)-sized array, subject to insertions or deletions. When we in
sert/delete an element in the array, we scan left and rigfintb

a neighborhood of the array whose density is “within thrédho
Then werebalancethe neighborhood, i.e., we spread out the el-
ements uniformly in the range. Thus, in principle, the amed
cost to insert a node into the weight-balanced tree B(1 -+
(log?N)/B) to make room in the PMA plu®(1+ (logN)/B) to
re-layout the tree.

Unfortunately, this analysis is incomplete because it dmgsc-
count for the cost to maintain the pointers in the tree as sietit
around in the PMA. To understand the problem, consider an up-
per recursive subtre@l and lower recursive subtredg £, /3. ..
laid out in ordertiLy £, L3. ... An insert near the “left” part of 1
may cause many nodes i to move around in the PMA. In order
to maintain the child pointers, we also maintain parent {gog) but
maintaining parent pointers causes trouble. If we move sudes
in U, which are high up in the tree, then we also have to follow the
child pointers of these moved nodes to update the parentgosin
of the children. Unfortunately, these children may be spi@at in
the VEB layout causing one memory transfer per child for altot
update cost 0©(log?N) memory transfers.

3In the conference version of the original CO B-tree [8] thistp
lem was partially solved using “dummy nodes”; specifical,

Our solution is to use a more flexible PMA [7, 25]. The earliest
PMA [9] gives no choice to the user in determining the extétiie
rebalance interval; the rebalance intervals are definetidopaodes
of an implicit binary tree placed on top of the array. A more so
phisticated PMA [7, 25] enables us to choose the neighbatihyo
growing left or right arbitrarily until we find a neighborhood that
is within the appropriate density threshold. Then we ratdahis
neighborhood. This PMA gives us the flexibility to lay out iarb
trary weight-balanced trees. (In contrast, the dynamic \d&But
from [9] only applies to strongly weight-balanced treese(§8])
and requires indirection for efficiency.)

The main idea of our layout algorithm is that we do not include
a nodev in a PMA rebalance unless we also include alvsfde-
scendants. This rebalance policy completely fixes the pomain-
tenance problems from above. We now give the rebalanceypolic
Suppose that we insert/delete a leaf in the weight-balatresd
This leaf is in some lower recursive subtrée with target size
220, which is in the layouttis, ... £ ... Lx. We start with a re-
balance interval in the PMA consisting only af. If the density
is not within threshold, then we can adgl ; or i1 to the re-
balance interval. If the density is still not within thresthothen
we add more lower recursive subtrees, and once all lowersizeu
subtrees/; ... L ... Ly have been added, we add the upper recur-
sive subtreell to the rebalance interval. However the rebalance
interval may not be within threshold. Lég =UL...L...Lx be

the lower recursive subtree with targets sizle, Wvhich forms part
of the Iayout‘ll’Li...Llf L{, We repeat the same procedure by
growing the rebalance interval starting witly, adding the top re-
cursive subtreell’ last, and proceeding to recursive subtrees with
target size &, 22°, 22'  etc.

The crucial feature of the VEB layout enabling the dynamiatst
egy is that all recursive subtrees in a level of detail hayengsgot-

ically the same size; see Lemma 3. Thus, we establish thedemm
O

Centroid tree: Modified successor queries

We now show how to implement predecessor/successor queries
in the dynamic data structure. Unfortunately the predeces-
sor/successor queries in the static structure do not dyreaeasily.
The static CO string B-tree maintains a pointer to the larged
smallest descendants of each centroid in the originalarid,an in-
sert of one key means that a large number of nodes in thisaientr
tree may need updated max/min descendant pointers.

We avoid this problem by changing the specification of the
max/min descendant pointers, based on the following strakt
property of the centroid tree:

LEMMA 10. Leta be the parent node of in the compressed
trie. Then, in the centroid tree, eitheris a descendant of, or yis
a descendant af.

Proof. Consider starting at the root of the centroid tree. If neithe
a ory is the centroid, then both nodes are in the up-tree or both
nodes are in the down-tree, and we recursively consider ¢lae n

at each level of detail, reducing this above cost t@(a/E) fac-
tor. Both conference and journal versions [9] ultimatelpidvthe
problem by using indirection. Specifically, a top tree ssooaly

a ©(N/log?N) fraction of the elements, so that while modifica-
tions of the top tree are expensive, they occur only etEitpg® N)

much space as possible was added in the PMA between each topupdates. Subsequent CO B-trees have avoided arbitranhtveig

recursive subtreé! and its rightmost bottom recursive subtreg

balanced trees.



trie. Otherwise, one node af andy is a centroid, and the other
node is therefore either in the up-tree or down-tree of thaten[]

In the new specification, the predecessor (successor)goaht
a nodev points to the lexicographically minimum (maximum) de-
scendant leaf off (which is a key) in the centroid tree. Now the
successor/predecessor pointers may no longer point t@xieot
graphically minimum/maximum descendants in the subtrig; m
the centroid tree. To understand this distinction considemne sub-
trie. As we descend in the centroid tree, some of the subisabtr
have been matched by down-trees higher up in the centrad tre

Centroid tree: Maintaining PMA max/min de-
scendant pointers

We now show how to maintain the max/min descendant pointers
from the centroid tree into the PMA when the PMA elementstshif

around. We show that this update may in fact have an additive
cost ofO(logN) memory transfers, meaning that the algorithm for
rebalancing centroid trees, as described, has an addidd#ive
cost ofO(logN) memory transfers.

Let D represent the keys in the down-tree of the rdat,repre-
sent the keys in the up-tree lexicographically beforeand Ur rep-

and there ar®(logN) such subsubtries. The leftmost descendant resent the keys in the up-tree lexicographically afferThus, the

of the root of the subtrie is the leftmost descendant of toaenn

the centroid or the leftmost descendant of one of the ansesfo
that node in the centroid tree, since these ancestors egpr@@wvn-

trees that were removed.

We now explain how to answer successor/predecessor queries

In the static case a successor/predecessor query was adswer
following the max/min descendant pointers from a singleenad

In the dynamic case, we need to look at the max/min pointers fo

O(logN) nodes:v and all ofv's ancestors in the centroid tree. By
Lemma 10, the minimum and maximum descendantstmdlongs
to this set. We can determine which pointers indicate the-min
mum and maximum descendant without having to follow thefpoin
ers (e.g., by using a tree-labeling scheme and order-nmainte
queries [6, 18] to determine which nodes are descendanisrof
the trie, and from those that are, looking at the leftmost ragiat-
most pointing pointers in the PMA). Thus, we answer theseigsie
matching the static performance of Theorem 5.

With this new specification, when we insert a key into the PMA,
we only need to update the first and last pointer©®@dbgN) cen-
troid nodes. Thus, we achieve following the performancenbdsu

LEMMA 11. We can answer predecessor and successor queries
in the same bounds as Theorem 5, where on inserts and defetes o

keys only QlogN) centroid nodes are affected.

Centroid tree: Rebuilding

When keys are inserted or removed from the centroid trees par

of the tree may go out of balance and need to be rebuilt. We can- children contain fewer thaB descendants.

not simply employ an existing cache-oblivious layout gyt for
nonuniform trees (e.g., [2,17,22]) because we want to telouily
subtrees, not the entire tree. The centroid tree of Secti®al@/ays
weight balanced to within a factor of two. If we allow the aend
tree to “drift” out of balance (say to within a factor of fouthen we
have a weight-balanced property and a subtree needs to bié reb
only if a relatively large number of insertions or deletidrae oc-
curred. Here we explain how a given subtree of the centreid tr
can be rebuilt without incurring too many block transfers.

First, put all the trie elements, stored in the centroid iree
DFS/Euler-tour order for the trie. This reordering can baelbot-

lexicographic order i€l DUg, and the centroid order B URr.

Let D be further divided inta?’, 4], and Uk, let D' be further
divided into D", 7', and Ug, etc. Thus, the lexicographic or-
der is U U W' 4" D" U UL URUr, and the centroid order is
D" U Uy U UR U UpUL Ur.  Suppose that.. Uy URURUR
each have very few keys in them. Then, an insert in the PMA
may move the keys ity U% UL Ur, which are in lexicographic
order. However, there are pointers to these keys in the adntr
tree, and the centroid-tree nodes are stored in centrogt.ofthus,

a small number of moves in the PMA means that we need to update
in what we will show isO(logN) distinct regions in the centroid
tree. Since there is no data locality, this update couldQ($egN)
memory transfers.

LEMMA 13. The amortized cost to update the centroid tree is
O((log?N)/B +logN) amortized memory transfers. The additive
O(logN) memory transfers comes from maintaining the max/min
descendant pointers.

Proof.  The centroid tree is stored in memory in centroid order,
but we update the pointers of the centroid tree in lexicdgi@pr-
der. We begin by showing that if we scan all centroid-treeasod
in lexicographic order, then the number of memory transfers
O(N/B+1). In a left-to-right scan, we first scan the elements in
U (the up-tree whose elements are lexicographically befoee t
centroid), then the elements i (the down-tree), and then the ele-
ments in€R (the up-tree whose elements are lexicographically af-
ter the centroid), proceeding recursively within each séotIn this
tree of down-trees, left up-trees, and right up-trees, rttegldeep-
est nodes containing at leaBtdescendants, but where all (three)
There a@N/B)
such nodes, and each node cau®ék) memory transfers. To fin-
ish counting memory transfers, observe that there are afsoi
right up-trees with fewer thaB descendants that are “aunt/uncle”
nodes of marked nodes, i.e., children of ancestors of markdds;
each of these nodes also cau€g&) memory transfers. However,
there are also onlp(N/B) of these nodes, because each left (re-
spectively right) up-tree of this form is matched to a sigliight
(resp. left) up-tree containing more thBrdescendants, and there
are onlyO(N/B) such nodes.

We now show how the preceding analysis changes if we do not
scan all nodes, only a range of lexicographically contiguoodes

tom up inO(logN) scans of the centroid tree, since the tree is only in the centroid tree. Specifically, we may scan the left ee-with-
O(logN) deep. Then given the trie in Euler-tour order, scan the out having to scan the sibling down-tree or right up-treee $ame

trie to find the centroid, partition the trie into upper anaiéo trees
stored in different parts of memory, and then repeat reeeissbn
each part.

Thus, we have the following performance bounds:

LEMMA 12. The amortized cost to re-layout a centroid tree is

analysis applies if we do not scan all the data, but insteacd:\ery
scanned left or right up-tree, we also completely scan thkngi
down-tree. We do not retain the same analysis when we scdh a le
(resp. right) up-tree but not the sibling down-tree or siglright
(resp. left) up-tree. The maximum number of such left ortrigh
trees that we could scan@®logN). For each of these orphan left

O(1+ (logZN)/B) amortized memory transfers. This cost does not OF right up-trees, we pay an additior@a(1) memory transfers, for

include the maintenance of the max/min descendant pointers

a total additive cost o0®(logN) memory transfers. O



Hashdata PMA and indirection 5.
The centroid-tree is built o®(N/B) keys, and the hashdata PMAis  [1]
built uponN keys, storingd(1) information about each key. There 2l

are pointers from the leaves of the centroid tree (represgekeys)
to the elements (again representing keys) in the hashdatg &hdl

there are pointers from each element in the hashdata PMAto it (3l

associated key in the keydata PMA. There are no back pointers

because these would be too expensive to maintain. [4]
The hashdata PMA also stores the fingerprint of the longest co -

mon prefix between each key and the previous element, alahg wi

the next character in the key. Thus, a search proceeds bgditfu [6]

predecessor and successor in the centroid tree, seartiaiingsh-

data PMA using an addition&®(1+ (logN)/B) memory transfers 7]

to find the representation of the predecessor and successoe i

hashdata PMA, and then jumping into the keydata to returiathe

tual values. 8]
With this extra level of indirection the additiv@(logN) mem-

ory transfers in the update cost of the centroid-tree (LerhB)ds (0]

amortized to arD(1) update cost, giving the desired performance

bounds. [10]
We now give more details of how the searches work in the hash-

data. By searching in the centroid tree, we get pointersdgtk- [11]

decessor and successor in the centroid tree, which givesamgea 121

of ©(logN) possible keys in the hashdata. Note that the predeces-
sor and successor in the centroid tree may be much longettiean
search ke, but we do not need to read these keys unless we ac- [13]
tually return them. Instead, we scan from the leftmost kethan
range which precedas. By comparing the fingerprints and next
characters and by scannir@nce, we can determine the predeces-
sor and successor keys.

[14]

We thus obtain the following performance bounds: [16]

THEOREM 14. The dynamic COSB-tree with front compression [17]
represents a seb of N elements, and supports member, predeces-
sor, successor, and range queries. The operatieMBER(K) runs [18]
in O(1+logg N + ||k||/B) memory transfers w.h.p., arRRED(K),
and succ(k) run in O(1+ loggN + [[k||/B + ||K||/B) memory [19]
transfers w.h.p., where’ is the predecessor (resp. successor) of
K. The operationRANGE-QUERY(K,K’) runs in Q{1+ loggN + 20
(k]| + ||| + {Q))/B) transfers w.h.p.. The compressed keys can (20l
be decoded for an additiondlQ|| /B transfers. FinallyNSERT(K) [21]
and DELETE(K) run in O(1+ loggN + log?N||k||/B) memory
transfers w.h.p.. All results hold in the cache-obliviousdel with [22]
the tall-cache assumption. [23]

As described earlier, we can reduce the bounds by using scan-
ning structures [6], but at the cost of keeping the data outrdér
and of amortizing scans; details are left for the full vensiBinally,
if we only need to return pointers to keys, as in the stringd®
we need not store the keys themselves in a PMA. We call this mod

[24]
[25]

[26]

ification thepointer COSB-tree Our pointer COSB-tree matches  [27]
the bounds of the string B-tree in the amortized sense wéitn- (28]
ing all of the advantages of cache-obliviousness. In summma
obtain:
[29]

THEOREM 15. The dynamic COSB-tree augmented with a |3q
scanning structure achieves the bounds from Theorem 1épexc
that range queries are amortized, amiSERT(K) and DELETE(K) (31]
are accelerated to L+ logg N -+ log>*¢logN ||k || /B) amortized
memory transfers w.h.p., for agy> 0. If range queries only need  [32]

to return pointers to keys, then the updates becortiet@ogg N +
|l]|/B) amortized memory transfers w.h.p.. All results hold in the
cache-oblivious model with the tall-cache assumption.
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