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ABSTRACT
B-trees are the data structure of choice for maintaining searchable
data on disk. However, B-trees perform suboptimally

• when keys are long or of variable length,

• when keys are compressed, even when usingfront compres-
sion, the standard B-tree compression scheme,

• for range queries, and

• with respect to memory effects such as disk prefetching.

This paper presents acache-oblivious string B-tree(COSB-tree)
data structure that is efficient in all these ways:

• The COSB-tree searches asymptotically optimally and in-
serts and deletes nearly optimally.

• It maintains an index whose size is proportional to the front-
compressed size of the dictionary. Furthermore, unlike stan-
dard front-compressed strings, keys can be decompressed in
a memory-efficient manner.

• It performs range queries with no extra disk seeks; in con-
trast, B-trees incur disk seeks when skipping from leaf block
to leaf block.

• It utilizes all levels of a memory hierarchy efficiently and
makes good use of disk locality by using cache-oblivious lay-
out strategies.

Categories and Subject Descriptors:E.1 [Data Structures]: Ar-
rays, Trees; E.5 [Files]: Sorting/searching; H.3.3 [Information
Storage and Retrieval]:

General Terms: Algorithms, Experimentation, Performance, The-
ory.

Keywords: cache oblivious string B-tree, locality preserving front
compression, packed-memory array, range query, rebalance.

1. INTRODUCTION
For over three decades, the B-tree [4,16] has been the data struc-

ture of choice for maintaining searchable data on disk. B-trees
maintain an ordered set ofkeysand allow insertions, deletions,
searches, and range queries. Most implementations employ B+-
trees [16,26], in which the full keys are all stored in the leaves, but
for convenience we refer to all the variations as “B-trees.”

Traditional B-trees perform suboptimally in several respects:

• The theoretical and practical performance of B-trees de-
grades when keys are long or vary in length.
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• Keys often share large prefixes, and are thus typically stored
using front compression[5, 15, 26, 32] within blocks. Front
compression exhibits a tradeoff between the compression
factor and the memory locality for decompression. B-trees
make this tradeoff suboptimally.

• Range queries use disk hardware inefficiently because each
leaf block fetched may require a random disk seek. Random
block accesses perform two orders of magnitude more slowly
than sequential block accesses for disk. Seeks to nearby
tracks are nearly an order of magnitude faster than random
seeks.

• B-trees do not take advantage of memory effects such as disk
prefetching, especially when variable amount of prefetching
is performed.

Inefficiency in each of these respects can reduce performance sig-
nificantly. Although some of these issues are addressed individu-
ally in the literature, as discussed below, there are no previously
known search structures that address all these issues effectively.

This paper presents acache-oblivious string B-tree(COSB-tree)
data structure that is efficient in all four respects. The rest of this
section states our results.

Variable-length keys. Traditional B-trees do not handle large
keys well. Typically, they pack small keys in blocks, but forlarge
keys the pack a pointer to the key, which is stored elsewhere.They
choose arbitrarily which key to promote to a parent when a block
is split and often bias their choice toward promoting long keys. In
principle, it is better to store short keys near the top of thetree, but it
is also better to split the search space into nearly even pieces. There
are no known techniques for addressing both issues simultaneously
in a dynamically changing B-tree.

The string B-tree [19] handles keys of unbounded size effi-
ciently. In the string B-tree, aninsertion of a new keyκ uses
O(1+ ‖κ‖/B+ logB N) block transfers, where‖κ‖ is the length
of key κ andN is the number of keys in the tree. This block trans-
fer complexity is nearly optimal in the traditional Disk Access Ma-
chine model [1], where there is a single fixed memory-transfer size,
B, since it trivially takes at least‖κ‖/B transfers to readκ, and
O(logBN) is the cost of insertion in a B-tree, even when all keys
have unit length. See Figure 1 for a glossary of notation.

κ Key D Set of keys (a dictionary)
Q Query result (a key set) |D| Number of keys inD
B Block size ‖D‖ Sum of key lengths inD
N N= |D| 〈〈D〉〉 Size of front compressedD

Figure 1: Glossary of symbols.

A range queryfor keys κ and κ′ returns all keysµ such that
κ ≤ µ≤ κ′ lexicographically. In a string B-tree, a range query uses
O(1+(‖κ‖+‖κ′‖+‖Q‖)/B+ logB N) block transfers, whereQ is
the set of result keys and‖Q‖ is the sum of their lengths.1 A search

1The complexity of range queries, as reported in [19], has an ad-



for a single keyκ is a special case of a range query and therefore
usesO(1+‖κ‖/B+ logB N) block transfers.

The string-B-tree paper [19] also describes aprefix-searchopera-
tion, but a prefix search is a special case of a range query. A slower
version of the string B-tree [19] also supportssubstring queries.
Since our goal is to support heterogeneous key sizes in traditional
database applications, we do not address substring querieshere and
compare our results to the faster string B-tree that does notsupport
substring queries.

The string B-tree is deterministic and the performance bounds
given are worst-case (that is, not amortized), but it does not sup-
port compression, disk prefetching, or disk-seek-efficient range
queries. The cache-oblivious string B-tree we present herealso
supports keys of unbounded length efficiently. It is amortized for
updates and randomized, but is efficient with respect to compres-
sion, prefetching, and disk seeks.

Compression. Many practical B-trees (e.g. [30]) employfront
compression[5, 15, 26, 32] within blocks to reduce the amount of
memory required for the keys, but string B-trees [19] do not.Thus,
the size of a string B-tree isΘ(‖D‖). Front compression reduces
space by storing each keyκ as a pair〈ℓ,s〉, whereℓ is the length
of the longest common prefix betweenκ andκ’s predecessor, and
s is the suffix ofκ starting at positionℓ+1. This strategy pays off
when keys are stored lexicographically, which maximizes the aver-
age longest common prefix between adjacent keys. Although front
compression is not optimal with respect to the entropy boundof the
strings, it is used in many implementations of B-trees.

To decode a key, one decodes the previous key. This procedure
might require scanning back to the beginning of the entire dictio-
nary. To mitigate this problem, each node of a B-tree is frontcom-
pressed separately. “Blocked” front compression may yielda poor
compression rate compared to front compression of the entire dic-
tionary, however. Thus, there is a tradeoff between the effective-
ness of front compression and the cost of decompression. Larger
blocking improves the former and worsen latter.

We introduce a modified front-compression scheme for the
cache-oblivious string B-tree that simultaneously achieves a de-
compression complexity that is linear in key length and an overall
compression that is within an arbitrarily small constant ofthe op-
timal front compression. Specifically, we compress dictionary D
into (1+ ε)〈〈D〉〉 bits, where pure front compression uses〈〈D〉〉 bits,
and we decode a keyκ in O(‖κ‖/εB) memory transfers, for any
ε > 0. Using our improved front-compression scheme, our cache-
oblivious string B-tree uses spaceO(〈〈D〉〉) to store dictionaryD.

Cache-obliviousness, disk prefetching, and range queries.
Both traditional and string B-trees are based on the assumption that
there is a single block-transfer sizeB for which the data structure
should be optimized. For example, many B-trees used in practice
are optimized assuming that the unique block-transfer sizeis 4096
bytes. If the keys are of constant size, then a B-tree achieves a
fanout of Θ(B), which implies that a search usesO(1+ logB N)
block transfers.

Real memory systems are not so simple. The memory hierarchy
is composed of several levels of cache, main memory, and disk, but
there are other levels between these. For example, the disk cache
sits between main memory and the rest of the disk. When the disk

ditive |Q| term, which appears because the keys are stored in no
particular order to speed up insertions. This data layout means that
actually obtaining the various strings may require one extra block
transfer per key. Using now-standard techniques, the boundcan be
improved to the bound we show here.

system services a request for a disk block, the disk first checks
whether the requested block is in the disk cache, and if so, re-
turns the block. Otherwise, the disk seeks to the appropriate track,
reads the block, and prefetches the track. Thus, theeffectiveblock-
transfer size may be much larger than a disk block. Indeed, sequen-
tial disk-block accesses typically run over two orders of magnitude
faster than random disk-block accesses. However, disk tracks vary
in size and heavy loads can pollute the relatively small diskcache
quickly, evicting blocks before they have a chance to be requested.
Therefore the effective block-transfer size between thesetwo levels
of memory is highly variable.

Thecache-oblivious (CO)model [21] enables us to design algo-
rithms that achieve data locality simultaneously for all block sizes.
Such algorithms are on-line optimal with respect to changing block
sizes in the disk system as well as simultaneously optimal atall
levels of the memory hierarchy. In the cache-oblivious model, the
objective is to minimize the number of transfers between twolev-
els of the hierarchy. However, unlike traditional external-memory
models [1], the parametersB, the block size, andM, the main-
memory size, are unknown to the coder or the algorithm. The main
idea of the CO model is that if it can be proved that some algo-
rithm performs a nearly optimal number of memory transfers in
a two-level model with unknown parameters, then the algorithm
also performs a nearly optimal number of memory transfers on
any unknown, multilevel memory hierarchy. Cache-oblivious data
structures are more portable than traditional external-memory data
structures, since they avoid any tuning parameters. CO algorithms
do not try to measure the machine’s cache and adjust their behavior
accordingly. Rather, they are optimized for every level of granular-
ity throughout their execution without any tuning.

It has been shown [9–11, 13] how to implement cache oblivious
B-trees for fixed-size keys. The cache-oblivious B-tree supports ef-
ficient range queries because of thepacked-memory array (PMA)
structure [9], which maintains the search keys tightly packed in
order in memory. Thus, a range query consists of one memory-
optimal search, followed by a scan within an array. This scan
does not incur any more random disk seeks since the items being
scanned are physically in order on disk. In contrast, B-trees may
have their relatively-small leaf blocks scattered throughout a disk in
any order, and if the effective block size is large, then range queries
are far from optimal.

Recently, Brodal and Fagerberg [12] describe a static cache-
oblivious string B-tree. It supports cache-oblivious searches with
the same bounds as the original string B-tree but does not allow up-
dates. Their paper works by physically laying out the tree inmem-
ory with duplications, and it seems difficult to make it dynamic.

In this paper we present a B-tree structure that supports variable-
size key insertions, deletions and searches, near optimal front com-
pression and decoding, and is cache-oblivious.

Experimental motivation. Cache-oblivious data structure have
interesting theoretical properties, as outlined above. Here we
present experimental validation for their on-disk performance. Pre-
vious work has focus on their in-memory performance.

We implemented B-trees from the literature for fixed size keys.
We placed versions of each data structure into a memory-mapped
file, taking care that the data structure was significantly larger than
main memory. For static B-trees we employed a breadth-first lay-
out: The root block appears first in the file, followed by the chil-
dren of the root, followed by the first child’s children, and so forth.
For static CO B-trees, we used a van Emde Boas layout [29]. The
static trees were packed 100% full with data, and since the trees are
static, we did not even allocate space for pointers to the children.



Data structure Average time per search
small-machine big-machine

CO B-tree 12.3ms 13.8ms
Btree: 4KB Blocks: 17.2ms 22.4ms

16KB blocks: 13.9ms 22.1ms
32KB blocks: 11.9ms 17.4ms
64KB blocks: 12.9ms 17.6ms

128KB blocks: 13.2ms 16.5ms
256KB blocks: 18.5ms 14.4ms
512KB blocks: 16.7ms

Figure 2: Performance measurements of 1000 random searcheson
static trees.

We implemented a dynamic B+tree [16] and a dynamic CO B-
tree [10,11].

We ran our experiments on two different machines. The small
machine is a 300MHz Pentium II with 128MB of RAM and a
4.3GB ATA disk running Redhat 8.0, Linux Kernel 2.4.20. The
large machine is a 4-processor 1.4GHz Opteron 840 with 16GB
of memory and a 72GB IBM Ultrastar 10,000RPM SCSI-320 disk
running SUSE Linux 2.4.19.

Figure 2 shows the results of our experiments on static trees. We
measured the time to perform 1000 searches on random keys. For
each measurement, before starting the first search, we flushed the
filesystem cache by remounting the filesystem.

For static trees, it is clear that the advertised disk-blocksize of
4096 bytes is far too small, underperforming big-block B-trees and
CO B-trees by 30–50%. But very large blocks perform poorly as
well. On the small machine the optimal block size is 32KB, andon
the big machine it is 256KB. On the small machine, the B-tree man-
aged to outperform the CO B-tree by 3% in the best case, but in all
other cases the CO B-tree outperformed the B-trees. We conclude
that although there are some situations where a carefully tuned
static B-tree can squeeze out an advantage against a static CO B-
tree, static CO B-trees provide much more robust performance and
can usually outperform even carefully tuned static B-trees.

Figure 3 shows the results for dynamic CO B-trees based on the
PMA construction of [9]. This dynamic CO B-tree has good amor-
tized performance, but very occasionally must rebalance the entire
tree, which is expensive when the tree does not fit in main mem-
ory. Figure 3 shows that for inserting the first 440,000 random
elements, the CO B-tree outperforms any of the traditional B-trees.
Big-block B-trees perform poorly for insertions. But sometime be-
fore the 450,000th insertion, the CO B-tree reorganizes itswhole
data structure, at which point it falls behind the small-block B-trees
by about a factor of two. For range-queries and random searches
where all the leaves of the tree are scanned in order, the big-block
B-trees outperform the small-block B-trees, and slightly beat the
CO B-tree. For many applications, the big-block B-trees would
have unacceptable costs for insertions, and the small-block B-trees
are not as fast as the CO B-tree. This suggests that CO B-trees
could be a practical way to improve performance of databasesand
file systems.

As a sanity check, we compared the performance of our tra-
ditional and CO B-trees to the Berkeley DB [30], a high-quality
commercially available B-tree. The Berkeley DB with the default
buffer-pool allocation is much slower than our implementation, but
is comparable once the parameters are tuned. Berkeley DB sup-
ports variable-sized keys, crash recovery, and very large databases,
none of which our implementation supports, and so one shouldnot
read too much into these data. It simply suggests that we did a
reasonable job implementing our B-trees.

Our experiment is biased in favor of the B-trees because the B-
trees were “young,” that is, blocks are allocated sequentially. The

Block insert insert range 1000
Size 440,000 450,000 query random

random random of all searches
values values data

CO B-tree 15.8s 4.6s 5.9s
CO B-tree 54.8s 9.3s 7.1s

Sequential block allocation: 2K 19.2s 24.8s 12.6s
4K 19.1s 23.1s 10.5s
8K 26.4s 22.3s 8.4s

16K 41.5s 22.2s 7.7s
32K 71.5s 21.4s 7.3s
64K 128.0s 11.5s 6.5s

128K 234.8s 7.3s 6.2s
256K 444.5s 6.5s 5.3s

Random block allocation: 2K 3928.0s 460.3s 24.3s
Berkeley DB (256 KB pool): 1201.1s
Berkeley DB (64 MB pool): 76.6s

Figure 3: Timings for memory-mapped dynamic trees. The keysare
128 bytes long. The range query is a scan of the entire data setafter the
insert. Berkeley DB was run with the default buffer pool size(256KB),
and with a customized loader that uses 64MB of buffer pool. These
experiments were performed on the small machine.

dynamic CO B-tree data structure ages well, whereas B-treesage
poorly, a fact well documented in the context of filesystems [31].
We simulated an aged B-tree in which the blocks are randomly
placed on disk (shown as “Random block allocation” in Figure3,
and found that all operations, including insertions and range queries
can slow down dramatically, sometimes by two orders of magni-
tude. (Perhaps this setup should be called “super-aged”, since real
B-trees are unlikely ever to allocate their blocks completely ran-
domly.) We view the fact that the CO B-trees do not age as a sig-
nificant advantage for databases and filesystems.

Summary of Results. In this paper we present a solution to the
variable-key-length indexing problem. Our new data structure,
thecache-oblivious string B-treeis simultaneously efficient for all
block sizes and has the following performance:

• Insertions requireO(1+ ‖κ‖(log2〈〈D〉〉)/B+ logB N) mem-
ory transfers with high probability (w.h.p.).

• Searches and successor/predecessor queries, require an opti-
mal O(1+‖κ′‖/B+ logB N) memory transfers w.h.p..

• Range queries require an optimalO(1 + (‖κ‖ + ‖κ′‖ +
〈〈Q〉〉)/B+ logB N) block transfers w.h.p.. The result setQ
is returned in compressed representation and can be decom-
pressed in an additionalO(‖Q‖/B) memory transfers, which
is optimal for front compression. Because COSB-trees store
all keys in order on disk, range queries involve no extra disk
seeks.

• The space usage isO(〈〈D〉〉). In contrast, string B-trees and
per-block front-compressed B-trees use more space,O(‖D‖)
andO(min{‖D‖,B〈〈D〉〉}), respectively.

• The COSB-tree is cache oblivious. Thus, it is on-line optimal
with respect to disk prefetching and efficient at all levels of
the memory hierarchy.

An important component of the COSB-tree, of independent in-
terest, is thefront-compressed packed-memory array(FC-PMA)
data structure. The FC-PMA maintains a collection of strings D
stored in order, with a modified front compression. The FC-PMA
has the following properties:

• For anyε, the space usage of the FC-PMA can be set to(1+
ε)〈〈D〉〉, while enabling a stringκ to be reconstructed with
O(1+‖κ‖/(εB)) memory transfers.

• Inserting and deleting a stringκ into an FC-PMA requires
O(‖κ‖(log2〈〈D〉〉)/(εB)) memory transfers.

The advantage of the COSB-tree, as summarized above, is that
keys are kept physically in sorted order on disk, so that range



queries use a minimum number of disk seeks. If we relax our con-
ditions to match those of the string B-tree, that is, range queries
return pointers to keys and the strings are not kept compressed, we
can match the string B-tree bounds in an amortized sense. That is,
we can achieveO(1+‖κ‖/B+ logB N) amortized transfers to insert
κ by using the amortized scanning structure from [6]. In many ap-
plications, range queries must retrieve the strings, so we present the
version outlined above, without the structure from [6]. Moreover,
in many applications, keeping order on disk is worth some loss in
theoretical bounds, in order exploit to prefetching mechanisms by
the disk and operating system.

Roadmap. The rest of this paper is organized as follows. In
Section 2, we describe a internal-memory algorithm for dictio-
nary matching that forms the basis for the COSB-tree. In Sec-
tion 3, we give a static COSB-tree, and explain the static version
of locality-preserving front compression. In Section 4, weshow
how to dynamize this static structure, including an explanation of
the FC-PMA .

2. DICTIONARY MATCHING IN
INTERNAL MEMORY

In this section we review a internal memory (RAM) data struc-
ture for the dictionary-matching problem [3,28], which we develop
into the COSB-tree. In thedictionary-matching problemthe goal is
to preprocess a dictionaryD of keys{κ1,κ2, . . . ,κN} to answer the
following queries:

• MEMBER(κ): Determine whetherκ ∈D.
RAM time: O(‖κ‖+ logN).

• PRED(κ): Return the maximumκ′ ∈D such thatκ′ < κ.
RAM time: O(‖κ‖+‖PRED(κ)‖+ logN).

• SUCC(κ): Return the minimumκ′ ∈D such thatκ′ > κ.
RAM time: O(‖κ‖+‖SUCC(κ)‖+ logN).

We solve this problem using divide-and-conquer by exploiting
the following observation: LetT be the compacted trie2 of D.
Then there is acentroid vertex ρ in T that has at leastN/3 and
at most 2N/3 descendants. Throughout, we identify a trie node
with the string obtained by tracing from the root to that node. To
answerMEMBER(κ) we determine whetherρ is a prefix ofκ (in
which case, we say thatκ matchesρ). If κ matchesρ, then we re-
curse into the trie rooted atρ, the so-calleddown trie. Otherwise,
we recurse into the trie obtained by excludingρ and its subtree, the
so-calledup trie. Either way, we eliminate a constant fraction of
the trie from consideration. Thecentroid treeof T is obtained by
makingρ the root, whereρ’s children are the recursively defined
centroid trees ofρ’s up and down tries.

To achieve the required time bounds, we cannot simply com-
pare the letters ofρ andκ to determine if they match. Each com-
parison could take timeΩ(‖κ‖), yielding a run time that could be
Ω(‖κ‖ logN). Instead, we employ a hash functionH (such as for
Karp-Rabin fingerprinting [24], CRC, or MD5) that maps strings
into integers. Our requirement is that we can compute the finger-
print of every prefix ofρ in time O(‖ρ‖) in a RAM model and that
unequal strings collide with polynomially small probability.

To speed up matching, we preprocess the dictionary by comput-
ing the hashes of all compacted trie nodes. Then, to test member-
ship of κ, we compute the hashes of all the prefixes ofκ. Now,
whenever we want to match a prefix ofκ with a node inT , we
compare the hash values. The algorithm, as stated, is Monte Carlo;

2A compacted trie is a trie where all nonbranching paths are re-
duced to edges.
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Figure 4: An example of the RAM data structure. Part (a) showsthe
compressed trie representation of a dictionary. Each node in the com-
pressed trie corresponds to a string. The strings that are inthe dic-
tionary are represented by black nodes, whereas the stringsnot in the
dictionary are represented by white nodes. For example, thestring 0 is
not in the dictionary. Edges are labeled with strings. Part (b) shows the
centroid tree for the trie. Internal nodes of the tree are shown as rect-
angles. Each internal node of the tree is labeled with a string τ. Each
internal node has a solid line linking it to the root of its down trie (the
leaves of which haveτ as a prefix), and a dotted line linking it to the
root of its up trie (the leaves of which do not haveτ as a prefix). The
leaves are shown as unadorned strings, and are shown in order(lexico-
graphically from left to right). Each leaf string maintains pointers (not
shown) to its predecessor and successor. Each internal nodemaintains
a pointer to the leftmost and rightmost matching leaf from the entire
dictionary (not shown.)

we might get a false positive on the matching. To make this algo-
rithm Las Vegas, we do a character-by-character match only when
the hash values match. Since the probability of a mismatch islow,
this does not increase our running time, with high probability.

Figure 4 shows an example of the RAM data structure. Fig-
ure 4 (a) shows a compressed trie containing several strings, and
Figure 4 (b) shows the centroid tree. To search the trie for
κ =10101, follow the 10 edge from the root, then follow the1
edge, then follow the0 edge, and then follow the1 edge. In con-
trast, to search the centroid tree for the same key, start at the root,
whereκ matchesτ =101 so follow the solid line. Keyκ matches
1010 so follow the solid line. It does not match10100 so follow
the solid line which leads to a leaf.

Now we describe how to perform a successor or predecessor
query efficiently. Ifκ ∈ D, we can perform a membership query
to find κ in the dictionary and then use a doubly linked list to find
the predecessor or successor. But ifκ 6∈D, we must do something
else. Consider tracing down from the root ofT with κ. If κ is not in
D, then at some point we match as far as some nodeτ and into the
edge betweenτ and one of its childrenρ, but we do not match as far
asρ. If the first mismatch betweenκ and the trie is becauseκ has
a0 where theτρ edge has a1, thenκ is lexicographically less than
all strings belowρ, and its successor isρ’s leftmost trie descendant
(in the entire trie). Otherwise, by symmetry,κ’s predecessor isρ’s
rightmost trie descendant.

Thus, we can always find either a predecessor or successor if
every node in the centroid tree keeps track of its lexicographically
least and greatest trie descendants. If we want the predecessor but
find the successor, or vice versa, we can traverse the linked list of
leaves forward, respectively backward, to find the desired key.

For example, in Figure 4, consider the problem of searching for
κ =1010 which is not actually a member of the dictionary. As we
descend the trie we findκ matches101, and does not match1010,
leading us to leaf10110which is not what we want. We backtrack
up the tree to the child of the last node that matched (τ=101). That



node has a pointer to the leftmost key that has prefix101. That key
is 10100, which is the successor of1010 in the dictionary.

We conclude with the following lemma:

LEMMA 1 ( [3]). The dictionary-matching problem can be
solved within the bounds O(‖κ‖+ logN) for MEMBER(κ), O(‖κ‖+
‖PRED(κ)‖ + logN) for PRED(κ), and O(‖κ‖ + ‖SUCC(κ)‖ +
logN) for SUCC(κ) on a RAM.

In fact, on a RAM, we can solve this problem trivially by direct
trie traversals without the logN additive factor, but we will employ
this centroid method in the following to achieve good data locality.

3. STATIC COSB-tree
In this section we present a static cache-oblivious string B-tree.

Our data structure preprocesses a setD of N keys{κ1,κ2, . . . ,κN}
to answer the following query types efficiently in the cache-
oblivous model:

• MEMBER(κ): Determine whetherκ ∈D.
Memory transfers:O(1+ logB N+‖κ‖/B).

• PRED(κ): Returnκ′ whereκ′ is the predecessor ofκ in D.
Memory transfers:O(1+ logB N+‖κ‖/B+‖κ′‖/B).

• SUCC(κ): Returnκ′ whereκ′ is the successor ofκ in D.
Memory transfers:O(1+ logB N+‖κ‖/B+‖κ′‖/B).

• RANGE-QUERY(κi ,κ j ): Given two keysκi ,κ j ∈ D, return
a compressed representation of all keys in the setQ= {κ ∈
D |κi ≤ κ ≤ κ j}.
Memory transfers:O(1+ logB N+(‖κi‖+‖κ j‖+ 〈〈Q〉〉)/B),
plusO(1+‖Q‖/B) to uncompress results.

We first present a relatively simple COSB-tree, which only sup-
ports queries on uncompressed data. We then present a variation
on front compression [5, 15, 32] that permits uncompressinga key
κ with only O(‖κ‖/B) block transfers.

3.1 Static COSB-tree with no compression
A COSB-tree with no compression is made up of two pieces,

an array of keys stored in lexicographic order and a centroidtree
for faster searching of the data. The centroid tree is just asde-
scribed in Section 2, except that the leaves of the tree pointto
locations in the array of keys, and the tree is laid out to achieve
good cache-oblivious performance. The centroid tree has depth
O(logN), but not all leaves have the same depth. There are several
ways [2, 9, 17, 22, 29] to lay out such a tree in memory to achieve
optimal cache-oblivious searching, that is, withO(logB N) mem-
ory transfers. However, these techniques require the tree to be pro-
cessed in a batch, whereas we need a layout that will lend itself to
dynamization in Section 4.

Theweightof a node in a tree is defined to be the total number
nodes in the subtree rooted at the node. We exploit the fact that
centroid trees areweight balanced, that is, for each node, 1 plus
the weight of the left subtree is within a constant factor of 1plus
the weight of the right subtree of that node. The constant turns out
to be 2 for centroid trees. The rest of this subsection describes a
modified van Emde Boas (vEB) layout for weight-balanced binary
trees.

The standard approach for laying out a tree in memory is to cut
the tree along a frontier so that the top tree and each of the bottom
trees have size roughly

√
N. The original layout in [29] did this

partitioning by selecting bottom-tree roots by height. Thedifficulty
in applying this method here is that centroid-tree leaves have non-
uniform depth. Nonetheless, it is possible to adapt height-based
partitioning to centroid trees, but we do not know how to maintain

such a layout dynamically. Instead, we use the weight of a node to
select it for the frontier, as follows.

Given integerw, we say that a node isselected by wif both that
node and its sibling have weight at leastw, and neither of their
children are selected byw. That is, we select the deepest nodes that
have weight at leastw and whose siblings also have weight at least
w. Selected nodes have the following property:

LEMMA 2. All nodes selected by w have weight at least w and
at most3w.

Proof. If any nodeu has weight greater than 3w, then both ofu’s
children have weight at leastw, because centroid trees are weight
balanced with a constant of 2. If both ofu’s children have weight
at leastw, then the children would be selected, rather thanu.

Define thehyperfloorof x, denoted⌊⌊x⌋⌋, to be 2⌊lgx⌋. Thus, the
hyperfloor roundsx down to the nearest power of 2. Let thehyper-
hyperfloorbe⌊⌊⌊x⌋⌋⌋ = 2⌊⌊lgx⌋⌋. Thus, the hyperhyperfloor roundsx
down to the nearest power of a power of 2.

To lay out a centroid tree, we select nodes by weightw= ⌊⌊⌊N⌋⌋⌋.
We call the resulting nodes the roots of thebottom recursive sub-
treesC1,C2, . . . ,Cz, and call the remaining tree, above, thetop re-
cursive subtreeC0. We now lay outC0,C1, . . . ,C z in memory in
that order, recursively with selection weight

√

⌊⌊⌊N⌋⌋⌋.
For this static construction, it would also work to select nodes

by weightN1/2,N1/4,N1/8 and so forth, rather than arranging for
the weights to always be powers of powers of 2. We use powers of
powers of 2 because it is convenient in Section 4. The key insight
for either construction is that the selection weights must be all the
same for recursive subtrees at a givenlevel of detailed, defined as
follows. Each level of detail is a partition of the tree into disjoint
recursive subtrees. At the coarsest level of detail the entire tree
forms the unique recursive subtree. At the finest level of detail, 0,
each node forms its own recursive subtree with selection weight
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. In general, at level-of-detailk we view the tree as partitioned
into recursive subtrees with selection weight 22k

. The key property
of the layout is that, at any level of detail, each recursive subtree is
stored in a contiguous block of memory.

It is straightforward to lay out treesC1, . . . ,C z recursively be-
cause they are as weight-balanced asC , i.e., 2-balanced. However,
C0 is only 4-balanced. If we were to lay outC0 in the same way,
thenC0’s recursive subtree would only be 16-balanced. Instead,
we employ the following strategy for laying out recursive subtrees
that do not contain leaves ofC . Suppose that we want to find recur-
sive subtrees with selection weight 22i

above nodes with selection
weight 22

j
. Then we select nodes weight 22i+2j

to be the roots of
the bottom recursive subtrees.

LEMMA 3. Subtrees containing leaves have size one to three
times their selection weight. Subtrees that do not contain leaves
have size between one third and three times their selection weight.

LEMMA 4. This nonuniform layout of a weight 2-balanced bi-
nary tree incurs O(logB N) block transfers on a root-to-leaf traver-
sal.

THEOREM 5. This static COSB-tree represents a setD of N el-
ements, and supports member, predecessor, successor, and range
queries. The operationMEMBER(κ) runs in O(1+ logB N +
‖κ‖/B) memory transfers w.h.p., andPRED(κ), and SUCC(κ)
run in O(1+ logB N+ ‖κ‖/B+ ‖κ′‖/B) memory transfers w.h.p.,
where κ′ is the predecessor (resp. successor) ofκ. The opera-
tion RANGE-QUERY(κ,κ′) runs in O(1+ logB N+(‖κ‖+ ‖κ′‖+
‖Q‖)/B) transfers, where Q is set of keys in the result. These results
hold in the cache-oblivious model with the tall-cache assumption.



Proof. There are two cases:
Case 1:‖κ‖ = O(M), i.e., the key is small compared to mem-

ory. Computing the Karp-Rabin fingerprints takes 1+κ/B memory
transfers, and all keys remain in internal memory while we search
in the centroid tree.

Case 2:‖κ‖= Ω(M), i.e., the key is large compared to memory.
In this case, the Karp-Rabin fingerprints that we compute cannot
fit in memory at the same time. Thus, since we queryO(logN)
fingerprints, the number of memory transfers isO(logN+ logB N+
‖κ‖/B+1). However, theO(logN) term is dominated as long as
logN < ‖κ‖/B. Since the CO model is transdichotomous (B =
Ω(logN)) [20] and assuming the cache is tall (M = Ω(B2)) [21],
logN ≤ M/B≤ ‖κ‖/B.

The scan bounds are trivially obtained.

3.2 Locality-preserving front compression
In this subsection we show how to add compression to our static

COSB-tree. We develop a new strategy for achieving front com-
pression without high decoding cost. The front-compresseddata
then replaces the array of keys used in the static COSB-tree above.

Front compression works as follows: Given a sequence of keys
κ1,κ2, . . . ,κi to store, a naive representation requires

∑

j ‖κ j‖
memory. Instead, we letπ j+1 be the longest common prefix of
κ j andκ j+1. In this case, we can remove nearly

∑

j ‖π j‖ memory
from the representation by representing the keys as

κ1,‖π2‖,σ2,‖π3‖, . . . ,‖πi‖,σi

whereσ j is the suffix ofκ j after removing the firstπ j bits. To
decodeκ j , one concatenates the firstπ j bits fromκ j−1 to σ j . Find-
ing the firstπ j bits of κ j−1 may require further decoding, possi-
bly resulting in expensive decoding. Front compression, which is
a lossless compression scheme, requires the the same space as the
(uncompacted) trie forD [26]. The total size of a front-compressed
set of keysD is written as〈〈D〉〉.

Front and rear compression are described in [14, 15, 32]. Refer-
ence [26] describes front compression in an exercise, but provides
less detail. Reference [5] argues that front and rear compression are
particularly important for secondary indices. Front compression is
relevant for compressing the keys stored at the leaves of a search
tree, whereas rear compression is essentially used only in the in-
dices, and is subsumed by the string-B-tree techniques presented
here and in [19].

Our goal is to achieveO(1+ ‖κ‖/B) memory transfers to de-
compress any key inD, but to storeD with O(〈〈D〉〉) space. The
challenge is that, for front compression, uncompressing a single
key may require scanning back through the entire compressedrep-
resentation. This is a well known problem for front compression.
One common strategy is to compress enough keys to fill some pre-
defined block and to start the compression over when that block is
full. This idea does not provide any theoretical bounds, however:
the compression achieved can be much worse than the best front
compression, and a block size may be arbitrarily bigger than‖Q‖,
so decompression also has no guarantees.

Here we show alocality-preserving front compression (LPFC),
which meets our goal. Our modified compression scheme begins
with key κ1. Suppose we have compressed the firsti −1 keys and
now we want to add keyκi . We setc = 2+ ε/2. We scan back
c‖κi‖ characters in the compression to see if we could decodeκi
from just this information. If so, we addπi ,σi as before. If not, we
add 0,κi to the compression, that is, we do not compress keyκi at
all. Call this sequence thelocality-preserving front compression of
D, denoted LPFC(D).

The decoding scheme is just as with standard front compres-
sion, and it immediately matches the desired bounds: decoding
κi touches at mostc‖κi‖ contiguous characters, and decoding
Q touchesO(‖Q‖) contiguous characters. The remaining issue
is to show that LPFC achieves a compressed dictionary of size
(1+ ε)〈〈D〉〉.

LEMMA 6. The total length of the LPFC(D) is at most(1+
ε)〈〈D〉〉 and every keyκi can be decoded with O(‖κi‖/εB) block
transfers.

Proof. Call any keyκ that has been inserted without front com-
pression acopied key. Denote asnativeany characters in the com-
pression that are not copied (that is, characters that appear in the
full front-compressed version ofD). Denote the precedingc‖κ‖
characters as theleft extentof κ. Notice that ifκ is a copied key,
there can be no copied key beginning in the left extent ofκ. How-
ever, a copied key may end withinκ’s left extent.

We consider two cases. In the first case, the preceding copied
key ends at leastc‖κ‖/2 characters beforeκ. Then, we say thatκ
is uncrowded. In the second case the preceding copied keyκ ends
within c‖κ‖/2 characters ofκ. Then, we say thatκ is crowded.

Partition the sequence of all copied keys just before each un-
crowded key. We call each such subsequence achain. Note that
each chain begins with an uncrowded key and is followed by a se-
quence of crowded keys.

Furthermore, the lengths of these crowded keys decrease geo-
metrically. To see this, consider a crowded keyκ. Sinceκ’s pre-
decessor in the chain,κ′, must begin beforeκ’s left extent, it must
have length at leastc‖κ‖/2.

Thus, if κ is uncrowded, thekth crowded key in its chain has
length at most‖κ‖(2/c)k. The total length of all keys in a chain
starting atκ is thus at mostc‖κ‖/(c−2).

Finally, charge the cost of copying these keys to thec‖κ‖/2 char-
acters preceding the uncrowded key at the beginning of the chain.
This charge is at most 2/(c−2) = ε per character.

THEOREM 7. The static COSB-tree with front compression
represents a setD of N elements, and supports member, pre-
decessor, successor, prefix, and range queries. The operation
MEMBER(κ) runs in O(1+ logB N + ‖κ‖/B) memory transfers
w.h.p., andPRED(κ) andSUCC(κ) run in O(1+ logB N+‖κ‖/B+
‖κ′‖/B) memory transfers w.h.p., whereκ′ is the predecessor
(resp. successor) ofκ. The operationRANGE-QUERY(κ,κ′) runs
in O(1+ logB N+(‖κ‖+ ‖key′‖+ 〈〈Q〉〉)/B) transfers. The com-
pressed keys can be decoded for an additional‖Q‖/B transfers.
All results hold in the cache-oblivious model with the tall-cache
assumption.

4. DYNAMIC COSB-trees
In this section we dynamize the COSB-tree. We use a combina-

tion of cache-oblivious data-structure tools, such as van Emde Boas
(vEB) layouts [29] and packed-memory arrays (PMAs) [9,23],but
none of these are strong enough for our purposes. For this paper
we need augmented versions of these tools. In the following,we
present an overview of the three parts of a dynamic COSB-tree.
We then give a detailed description of each in turn.

The Data Structure
The dynamic COSB-tree consists of three pieces. The top piece,
called thecentroid tree, is a dynamic version of the centroid tree
described in Section 3, i.e., a binary tree of depthO(logN). The



centroid tree is embedded into a packed-memory array with a dy-
namic cache-oblivious layout, so that a root-to-leaf traversal in the
centroid tree requires onlyO(logB N) transfers. The centroid tree is
built upon onlyΘ(N/ logN) keys. We use the centroid tree to find a
key that is withinO(logN) of our target key usingO(logB N) mem-
ory transfers. The reason to build the top tree on a sparse data set
is that there is an additiveO(logN) insertion cost in the top level,
which is amortized away with this level of indirection.

The centroid-tree leaves point into a middle layer, called the
hashdata. This is a packed-memory array [9] that containsO(1)
words of information for each key. This layer is designed to al-
low for fast sequential searches of predecessor and successor keys.
When we enter the hashdata from the centroid tree, we are within
O(logN) keys of our true successor/predecessor. We finish the
search in this local neighborhood by a sequential scan, which uses
O(1+(‖κ‖+ logN)/B) memory transfers. This local search works
by storing, for each key, the fingerprint of the longest common pre-
fix of the key with it predecessor.

Once we have localized our target key, we follow a pointer to
the bottom piece, another packed-memory array called thekeydata.
The keydata contains the actual keys, sorted in lexicographic or-
der and compressed. For the compression we use a dynamic vari-
ant of our augmented front compression of Section 3. This dy-
namized data structure supports insertion or deletion of a key κ
with O(1+ ‖κ‖ log2〈〈D〉〉/B) block transfers (amortized), once we
have determined where the key belongs.

If we want faster updates, but the data does not need to be phys-
ically in sorted order, then we add another level of indirection, a
scanning structure (see [6]), which reduces the insertion/deletion
cost toO(1+‖κ‖ log2+ε log〈〈D〉〉/B), for anyε > 0. If, as with the
original string B-tree, range queries return pointers to keys, not to
the keys themselves, then we can use yet another level of indirec-
tion in addition to the scanning structure to match the string B-tree
bounds in amortized sense while remaining cache-oblivious.

The rest of this section details the three pieces, starting with the
keydata, then the centroid tree, and then the hashdata. The section
concludes with an explanation of how these pieces fit together to
achieve our desired bounds.

Keydata PMA
For the static COSB-tree, we showed how to implement locality-
preserving front compression. For the dynamic COSB-tree, we
need to support insertions and deletions while maintainingprov-
ably good compression. We employ a packed-memory array, which
allows us to keeps data in order dynamically. The PMA, as origi-
nally described, supports keys of unit length. However, it directly
achieves the desired bounds if we break up any long key into unit-
length pieces and use the original algorithm.

We already showed how to implement cache-efficient decoding
for front compression. We need another idea to implement cache-
efficient insertions and deletions. We preserve the decoding invari-
ant: if decoding keyκ requires more than‖κ‖/ε elements of the
compressed representation to be scanned, thenκ should be copied.

However, insertions interfere with this invariant. To see why,
observe that when we insert a key, we can easily check its leftextent
to see if needs to be a copied key, as we did for the static case.The
problem comes with keys to the right. Suppose that a keyκ∗ is
inserted within the left extent of some keyκ. If κ andκ∗ are not
copied keys, the insertion ofκ∗ may increase the decoding cost
of κ to above‖κ‖/εB transfers. A solution would be to copy key
κ, that is, to replace its compressed representation with a copied
representation. However, such problem keysκ may be large, and
so their left extents may be arbitrarily long. We would thus be

required to look arbitrarily far to the right ofκ∗ to find a violation.
We present a modified compression scheme, theDynamic

Locality-Preserving Front Compression (DLPFC), which preserves
the compression rate, preserves the locality in the decoding, and en-
forces locality for insertions. To implement DLPFC, we augment
the (static) LPFC withcopied prefixes. For LPFC, each key could
be coded with a pair representing the largest common prefix (lcp)
with its predecessor and its suffix beyond the lcp; for DLPFC,we
may now also choose to explicitly copy any prefix of the key. For
LPFC, we decode keys from the last character forward; for DLPFC,
we may simultaneously decode some prefix and some suffix until
we meet somewhere in the middle. We will see that copied prefixes
can be used to prevent the effects of an insertion from propagating
too far forward.

The algorithm proceeds as follows. We first check the left extent
of the inserted keyκ∗ to see ifκ∗ should be copied. If so, we insert
it as a copied string and are done. Otherwise, we need to check
the characters to the right ofκ∗. Call the firstc‖κ∗‖ characters to
the right of the insertion point thenear right extentof κ∗ and the
first 3c‖κ∗‖ characters thefar right extent. The lcpℓ of κ∗ and
whichever key is at the end of the far right extent is the minimum
lcp in the far right extent. If there is a copied key in the far right
extent, or a copied prefix of length at leastℓ, then the the effects of
insertingκ∗ do not propagate to the end of its far right extent, in
which caseκ∗ is inserted normally. If there is propagation, then we
consider the keyκ′ being touch at the end of the near right extent.
Let ℓ′ be the lcp ofκ∗ andκ′. Then we change the representation of
κ′ to include a copied prefix of its firstℓ′ characters. Furthermore,
for technical reasons that will become clear in the following, we
also include a copied prefix of the firstℓ′ characters ofκ∗ in its
representation.

THEOREM 8. Dynamic Locality-Preserving Front Compres-
sion is a compression scheme that can represent a set of N keys
D in size at most(1+ε)〈〈D〉〉+N bits so that keyκ can be decoded
in O(1+‖κ‖/B) memory transfers and, given a finger to the loca-
tion of insertion, keyκ∗ can be inserted in O(1+‖κ∗‖/Bε) memory
transfers in the CO model.

Proof. Inserting copied prefixes in our algorithm can only im-
prove decoding complexities, and the number of bytes scanned dur-
ing insertion is linear. Now we must prove that inserting such keys
does not cause too much damage to the compression.

If there is a copied prefix that starts within the near right extent
of κ∗, thenκ∗ will not induce a prefix copy, since the effects of
insertingκ∗ cannot propagate beyond that copied prefix. Thus, any
copied prefix after the far right extent ofκ∗ must have been caused
by the insertion of a keyκ′ that either starts after the far right extent
of κ∗ or beforeκ∗. We chargeκ∗’s copied prefix only to characters
within κ∗’s near right extent, so we do not care about insertions
after the far right extent.

Consider now the other types of insertions: a keyκ′ inserted
beforeκ∗ that induces a prefix copy after the far right extent ofκ∗.
The near (and indeed the far) right extent ofκ∗ is part of the near
right extent ofκ′, so we need to make sure that we do not charge
the same characters twice for prefix copying.

To keep charges from overlapping, we take any copied prefix
of length ℓ at the end of a near right extent and charge it to its
precedingcℓ characters. Since each such copied prefix is paired
with a matching size-ℓ copied prefix at the beginning of the near
right extent, each character is charged 2/c units.

The copied prefix ofκ′ is of size at most‖κ∗‖ by the transitivity
of lcp in lexicographically ordered strings. Thus, the charged re-
gion for κ′ is of length at mostc‖κ∗‖, but it begins at least 3c‖κ∗‖



afterκ∗, and thus cannot overlap the near right extent, and particu-
larly the charged region ofκ∗. Therefore, no character gets charged
twice. As before, setε = 2/c.

Centroid tree: Dynamic layout of weight-
balanced trees
In this section we show how to maintain the vEB layout of a dynam-
ically changing weight-balanced tree. This approach was already
used in the first CO B-tree [8,9], but now we show how to support
faster dynamic updates more efficiently and on more general trees.

Recall that a tree isweight balancedif for all nodes, one plus
the weight of the left subtree is within a constant factor of one plus
the weight of the right subtree. For (static) centroid trees, this con-
stant is 2 in the worst case. For dynamic centroid trees, we need a
constant greater than 2.

By allowing for c-weight balance, for constantc> 2, we obtain
the following guarantee: A nodev only gets out of balance every
Ω(WEIGHT(v)) insertions or deletions of nodes that are descen-
dants ofv (see, e.g., [27]).

This property of insertions means that wheneverv falls out of
balance, we can afford to scan all ofv’s subtree for a total amortized
cost ofO(logN) work andO(1+(logN)/B) memory transfers per
update (see, e.g., [27, Theorem 5]). In principle, this ability to scan
descendants enables us to maintain the vEB layout of the centroid
tree dynamically; if a node falls out of balance, then we can af-
ford to rebuild the whole subtree and its vEB layout. We show the
following:

LEMMA 9. There exists a dynamic van Emde Boas layout of
a weight-balanced tree in a PMA, where the amortized rebalance
cost is O(1+(log2 N)/B) per update. This layout has the property
that whenever a node v is in a rebalance interval of the PMA, then
so are all of v’s descendants.

Proof. We maintain the sorted order of tree nodes in the vEB
layout in memory by storing the nodes in apacked-memory ar-
ray (PMA) [9]. The PMA storesN elements in sorted order in a
Θ(N)-sized array, subject to insertions or deletions. When we in-
sert/delete an element in the array, we scan left and right tofind
a neighborhood of the array whose density is “within threshold.”
Then werebalancethe neighborhood, i.e., we spread out the el-
ements uniformly in the range. Thus, in principle, the amortized
cost to insert a nodev into the weight-balanced tree isO(1+
(log2N)/B) to make room in the PMA plusO(1+(logN)/B) to
re-layout the tree.

Unfortunately, this analysis is incomplete because it doesnot ac-
count for the cost to maintain the pointers in the tree as nodes shift
around in the PMA. To understand the problem, consider an up-
per recursive subtreeU and lower recursive subtreesL1L2L3 . . .
laid out in orderUL1L2L3 . . .. An insert near the “left” part ofL1
may cause many nodes inU to move around in the PMA. In order
to maintain the child pointers, we also maintain parent pointers, but
maintaining parent pointers causes trouble. If we move somenodes
in U, which are high up in the tree, then we also have to follow the
child pointers of these moved nodes to update the parent pointers
of the children. Unfortunately, these children may be spread out in
the vEB layout causing one memory transfer per child for a total
update cost ofO(log2N) memory transfers.3

3In the conference version of the original CO B-tree [8] this prob-
lem was partially solved using “dummy nodes”; specifically,as
much space as possible was added in the PMA between each top
recursive subtreeU and its rightmost bottom recursive subtreeL1

Our solution is to use a more flexible PMA [7, 25]. The earliest
PMA [9] gives no choice to the user in determining the extent of the
rebalance interval; the rebalance intervals are defined by the nodes
of an implicit binary tree placed on top of the array. A more so-
phisticated PMA [7,25] enables us to choose the neighborhood by
growing left or right arbitrarily until we find a neighborhood that
is within the appropriate density threshold. Then we rebalance this
neighborhood. This PMA gives us the flexibility to lay out arbi-
trary weight-balanced trees. (In contrast, the dynamic vEBlayout
from [9] only applies to strongly weight-balanced trees (see [9])
and requires indirection for efficiency.)

The main idea of our layout algorithm is that we do not include
a nodev in a PMA rebalance unless we also include all ofv’s de-
scendants. This rebalance policy completely fixes the pointer main-
tenance problems from above. We now give the rebalance policy.
Suppose that we insert/delete a leaf in the weight-balancedtree.
This leaf is in some lower recursive subtreeLi with target size
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, which is in the layoutUL1 . . .Li . . .Lx. We start with a re-
balance interval in the PMA consisting only ofLi . If the density
is not within threshold, then we can addLi−1 or Li+1 to the re-
balance interval. If the density is still not within threshold, then
we add more lower recursive subtrees, and once all lower recursive
subtreesL1 . . .Li . . .Lx have been added, we add the upper recur-
sive subtreeU to the rebalance interval. However the rebalance
interval may not be within threshold. LetL ′

j =UL1 . . .Li . . .Lx be

the lower recursive subtree with targets size 221
, which forms part

of the layoutU′L ′
1 . . .L

′
j . . .L

′
y. We repeat the same procedure by

growing the rebalance interval starting withL ′
j , adding the top re-

cursive subtreeU′ last, and proceeding to recursive subtrees with
target size 22

2
, 223

, 224
, etc.

The crucial feature of the vEB layout enabling the dynamic strat-
egy is that all recursive subtrees in a level of detail have asymptot-
ically the same size; see Lemma 3. Thus, we establish the lemma.

Centroid tree: Modified successor queries
We now show how to implement predecessor/successor queries
in the dynamic data structure. Unfortunately the predeces-
sor/successor queries in the static structure do not dynamize easily.
The static CO string B-tree maintains a pointer to the largest and
smallest descendants of each centroid in the original trie,and an in-
sert of one key means that a large number of nodes in this centroid
tree may need updated max/min descendant pointers.

We avoid this problem by changing the specification of the
max/min descendant pointers, based on the following structural
property of the centroid tree:

LEMMA 10. Let α be the parent node ofγ in the compressed
trie. Then, in the centroid tree, eitherα is a descendant ofγ, or γ is
a descendant ofα.

Proof. Consider starting at the root of the centroid tree. If neither
α or γ is the centroid, then both nodes are in the up-tree or both
nodes are in the down-tree, and we recursively consider the new

at each level of detail, reducing this above cost by aΩ̃(
√

B) fac-
tor. Both conference and journal versions [9] ultimately avoid the
problem by using indirection. Specifically, a top tree stores only
a Θ(N/ log2 N) fraction of the elements, so that while modifica-
tions of the top tree are expensive, they occur only everyΩ(log2N)
updates. Subsequent CO B-trees have avoided arbitrary weight-
balanced trees.



trie. Otherwise, one node ofα andγ is a centroid, and the other
node is therefore either in the up-tree or down-tree of that node.

In the new specification, the predecessor (successor) pointer of
a nodev points to the lexicographically minimum (maximum) de-
scendant leaf ofv (which is a key) in the centroid tree. Now the
successor/predecessor pointers may no longer point to the lexico-
graphically minimum/maximum descendants in the subtrie, only in
the centroid tree. To understand this distinction considersome sub-
trie. As we descend in the centroid tree, some of the subsubtries
have been matched by down-trees higher up in the centroid tree,
and there areO(logN) such subsubtries. The leftmost descendant
of the root of the subtrie is the leftmost descendant of that node in
the centroid or the leftmost descendant of one of the ancestors of
that node in the centroid tree, since these ancestors represent down-
trees that were removed.

We now explain how to answer successor/predecessor queries.
In the static case a successor/predecessor query was answered by
following the max/min descendant pointers from a single node v.
In the dynamic case, we need to look at the max/min pointers for
O(logN) nodes:v and all ofv’s ancestors in the centroid tree. By
Lemma 10, the minimum and maximum descendants ofv belongs
to this set. We can determine which pointers indicate the mini-
mum and maximum descendant without having to follow the point-
ers (e.g., by using a tree-labeling scheme and order-maintenance
queries [6, 18] to determine which nodes are descendants ofv in
the trie, and from those that are, looking at the leftmost andright-
most pointing pointers in the PMA). Thus, we answer these queries
matching the static performance of Theorem 5.

With this new specification, when we insert a key into the PMA,
we only need to update the first and last pointers ofO(logN) cen-
troid nodes. Thus, we achieve following the performance bounds:

LEMMA 11. We can answer predecessor and successor queries
in the same bounds as Theorem 5, where on inserts and deletes of
keys only O(logN) centroid nodes are affected.

Centroid tree: Rebuilding
When keys are inserted or removed from the centroid tree, parts
of the tree may go out of balance and need to be rebuilt. We can-
not simply employ an existing cache-oblivious layout strategy for
nonuniform trees (e.g., [2,17,22]) because we want to rebuild only
subtrees, not the entire tree. The centroid tree of Section 3is always
weight balanced to within a factor of two. If we allow the centroid
tree to “drift” out of balance (say to within a factor of four), then we
have a weight-balanced property and a subtree needs to be rebuilt
only if a relatively large number of insertions or deletionshave oc-
curred. Here we explain how a given subtree of the centroid tree
can be rebuilt without incurring too many block transfers.

First, put all the trie elements, stored in the centroid treeinto
DFS/Euler-tour order for the trie. This reordering can be done bot-
tom up inO(logN) scans of the centroid tree, since the tree is only
O(logN) deep. Then given the trie in Euler-tour order, scan the
trie to find the centroid, partition the trie into upper and lower trees
stored in different parts of memory, and then repeat recursively on
each part.

Thus, we have the following performance bounds:

LEMMA 12. The amortized cost to re-layout a centroid tree is
O(1+(log2 N)/B) amortized memory transfers. This cost does not
include the maintenance of the max/min descendant pointers.

Centroid tree: Maintaining PMA max/min de-
scendant pointers
We now show how to maintain the max/min descendant pointers
from the centroid tree into the PMA when the PMA elements shift
around. We show that this update may in fact have an additive
cost ofO(logN) memory transfers, meaning that the algorithm for
rebalancing centroid trees, as described, has an additional additive
cost ofO(logN) memory transfers.

LetD represent the keys in the down-tree of the root,UL repre-
sent the keys in the up-tree lexicographically beforeD, andUR rep-
resent the keys in the up-tree lexicographically afterD. Thus, the
lexicographic order isULDUR, and the centroid order isDULUR.
Let D be further divided intoD ′, U′

L, andU′
R, let D ′ be further

divided intoD ′′, U′′
L , andU′′

R, etc. Thus, the lexicographic or-
der isULU

′
LU

′′
LU

′′′
L D

′′′U′′′
RU

′′
RU

′
RUR, and the centroid order is

D ′′′U′′′
L U

′′′
R U′′

LU
′′
RU

′
LU

′
RULUR. Suppose that. . .U′′′

R U′′
RU

′
RUR

each have very few keys in them. Then, an insert in the PMA
may move the keys inU′′′

R U′′
RU

′
RUR, which are in lexicographic

order. However, there are pointers to these keys in the centroid
tree, and the centroid-tree nodes are stored in centroid order. Thus,
a small number of moves in the PMA means that we need to update
in what we will show isO(logN) distinct regions in the centroid
tree. Since there is no data locality, this update could useO(logN)
memory transfers.

LEMMA 13. The amortized cost to update the centroid tree is
O((log2N)/B+ logN) amortized memory transfers. The additive
O(logN) memory transfers comes from maintaining the max/min
descendant pointers.

Proof. The centroid tree is stored in memory in centroid order,
but we update the pointers of the centroid tree in lexicographic or-
der. We begin by showing that if we scan all centroid-tree nodes
in lexicographic order, then the number of memory transfersis
O(N/B+1). In a left-to-right scan, we first scan the elements in
UL (the up-tree whose elements are lexicographically before the
centroid), then the elements inD (the down-tree), and then the ele-
ments inUR (the up-tree whose elements are lexicographically af-
ter the centroid), proceeding recursively within each subtree. In this
tree of down-trees, left up-trees, and right up-trees, markthe deep-
est nodes containing at leastB descendants, but where all (three)
children contain fewer thanB descendants. There areO(N/B)
such nodes, and each node causesO(1) memory transfers. To fin-
ish counting memory transfers, observe that there are also left or
right up-trees with fewer thanB descendants that are “aunt/uncle”
nodes of marked nodes, i.e., children of ancestors of markednodes;
each of these nodes also causesO(1) memory transfers. However,
there are also onlyO(N/B) of these nodes, because each left (re-
spectively right) up-tree of this form is matched to a sibling right
(resp. left) up-tree containing more thanB descendants, and there
are onlyO(N/B) such nodes.

We now show how the preceding analysis changes if we do not
scan all nodes, only a range of lexicographically contiguous nodes
in the centroid tree. Specifically, we may scan the left up-tree with-
out having to scan the sibling down-tree or right up-tree. The same
analysis applies if we do not scan all the data, but instead, for every
scanned left or right up-tree, we also completely scan the sibling
down-tree. We do not retain the same analysis when we scan a left
(resp. right) up-tree but not the sibling down-tree or sibling right
(resp. left) up-tree. The maximum number of such left or right up-
trees that we could scan isO(logN). For each of these orphan left
or right up-trees, we pay an additionalO(1) memory transfers, for
a total additive cost ofO(logN) memory transfers.



Hashdata PMA and indirection
The centroid-tree is built onΘ(N/B) keys, and the hashdata PMA is
built uponN keys, storingO(1) information about each key. There
are pointers from the leaves of the centroid tree (representing keys)
to the elements (again representing keys) in the hashdata PMA, and
there are pointers from each element in the hashdata PMA to its
associated key in the keydata PMA. There are no back pointers
because these would be too expensive to maintain.

The hashdata PMA also stores the fingerprint of the longest com-
mon prefix between each key and the previous element, along with
the next character in the key. Thus, a search proceeds by finding the
predecessor and successor in the centroid tree, searching the hash-
data PMA using an additionalO(1+(logN)/B) memory transfers
to find the representation of the predecessor and successor in the
hashdata PMA, and then jumping into the keydata to return theac-
tual values.

With this extra level of indirection the additiveO(logN) mem-
ory transfers in the update cost of the centroid-tree (Lemma13) is
amortized to anO(1) update cost, giving the desired performance
bounds.

We now give more details of how the searches work in the hash-
data. By searching in the centroid tree, we get pointers to the pre-
decessor and successor in the centroid tree, which gives us arange
of Θ(logN) possible keys in the hashdata. Note that the predeces-
sor and successor in the centroid tree may be much longer thanthe
search keyκ, but we do not need to read these keys unless we ac-
tually return them. Instead, we scan from the leftmost key inthe
range which precedesκ. By comparing the fingerprints and next
characters and by scanningκ once, we can determine the predeces-
sor and successor keys.

We thus obtain the following performance bounds:

THEOREM 14. The dynamic COSB-tree with front compression
represents a setD of N elements, and supports member, predeces-
sor, successor, and range queries. The operationMEMBER(κ) runs
in O(1+ logB N+‖κ‖/B) memory transfers w.h.p., andPRED(κ),
and SUCC(κ) run in O(1+ logB N + ‖κ‖/B+ ‖κ′‖/B) memory
transfers w.h.p., whereκ′ is the predecessor (resp. successor) of
κ. The operationRANGE-QUERY(κ,κ′) runs in O(1+ logB N +
(‖κ‖+‖κ′‖+ 〈〈Q〉〉)/B) transfers w.h.p.. The compressed keys can
be decoded for an additional‖Q‖/B transfers. FinallyINSERT(κ)
and DELETE(κ) run in O(1+ logB N + log2N‖κ‖/B) memory
transfers w.h.p.. All results hold in the cache-oblivious model with
the tall-cache assumption.

As described earlier, we can reduce the bounds by using scan-
ning structures [6], but at the cost of keeping the data out oforder
and of amortizing scans; details are left for the full version. Finally,
if we only need to return pointers to keys, as in the string B-tree,
we need not store the keys themselves in a PMA. We call this mod-
ification thepointer COSB-tree. Our pointer COSB-tree matches
the bounds of the string B-tree in the amortized sense while retain-
ing all of the advantages of cache-obliviousness. In summary, we
obtain:

THEOREM 15. The dynamic COSB-tree augmented with a
scanning structure achieves the bounds from Theorem 14, except
that range queries are amortized, andINSERT(κ) and DELETE(κ)
are accelerated to O(1+ logB N+ log2+ε logN‖κ‖/B) amortized
memory transfers w.h.p., for anyε > 0. If range queries only need
to return pointers to keys, then the updates become O(1+ logB N+
‖κ‖/B) amortized memory transfers w.h.p.. All results hold in the
cache-oblivious model with the tall-cache assumption.
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